

MATH 461: Homework #12

- 1) Let X be a set. Let $\mathcal{T}_i \subset \mathcal{P}(X)$ be a topology on X for each $i \in I$. Show that $\bigcap_{i \in I} \mathcal{T}_i \subset \mathcal{P}(X)$ is also a topology.
- 2) Let X be $\mathbb{R} \cup \{\alpha\}$, where α is some other element of the set, not a real number. Let \mathcal{B} consist of the open intervals (a, b) in \mathbb{R} , and the sets $(a, 0) \cup \{\alpha\} \cup (0, b)$ for $a < 0 < b$. In other words, the elements of \mathcal{B} containing α are the intervals containing 0, but with 0 replaced by α . Show that \mathcal{B} is a basis and that in this topology, any sequence converging to 0 also converges to α . (This is sometimes called “duplicating a point”).
- 3) Let $X = \mathbb{R}$ and let $\mathcal{B} = \{[a, b] \mid a, b \in \mathbb{R}\}$ be the set of half open intervals. Show
 - (1) \mathcal{B} satisfies the two properties of a basis, and thus $\mathcal{T}_{\mathcal{B}}$ is a topology on \mathbb{R} .
 - (2) The collection $[x, x + \frac{1}{n}]$, $n \in \mathbb{N}$ is a neighborhood basis for x , so $\mathcal{T}_{\mathcal{B}}$ is first countable.
 - (3) $[a, b]$ is also closed, for each $a, b \in \mathbb{R}$.
 - (4) Points are closed, and not open (these are *not* the same thing!).

\mathbb{R} with this topology is called the *Sorgenfrey* line.