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1. Introduction

In [15] P. Ozsváth and Z. Szabó use the technology of Heegaard-Floer homology to refine
the Alexander-Conway polynomial of a marked knot in S3. In particular, they define Knot-
Floer homology groups for relative Spinc structures, invariant up to isotopy of K, that
correspond to the terms in the polynomial: the Euler characteristic of the homology with
rational coefficients corresponding to i gives the coefficient of ti. They have since shown
that the non-vanishing of these groups characterizes the genus of the knot, [18]. In [12]
they employ Kauffman’s state summation approach to the Alexander-Conway polynomial
to give a concrete realization of the generators of the chain complex for each i and their
gradings (though not, unfortunately, for the differential). Furthermore, the techniques
extend to null-homologous knots in an arbitrary three manifold, Y , where the knot may
also be interpreted as giving a filtration of the Heegaard-Floer chain groups for Y that
is also an invariant of the isotopy class of the knot. They also refine the one variable
Alexander-Conway polynomial of an m-component link in S3 by converting the link, in a

way preserving isotopy classes, to a null-homologous knot in a
m−1
# S1 × S2.

In this paper we simultaneously generalize the preceding picture in two ways: first, by
removing the restriction on the homology class of the embedding, and second, by defining
chain complexes corresponding to a multi-variable Alexander polynomial, with a variable
for each component of a “string link”, corresponding to the universal Abelian Zk-covering
space of the complement of the “string link”.

The string link restriction corresponds to basing a link in Y in a particular way: we
require an oriented disc D embedded in Y so that the link components intersect the disc
once, positively. This configuration is known as a d-basing, following the work of N. Habeg-
ger and X.S. Lin, [4]. There are many d-basings of the same link, and our invariant will be
sensitive to these.

In S3 there is a more perspicuous description of string links:

Definition 1.1. Choose k points p1, . . . , pk in D2. A k-stranded “string link” in D2 × I
is a proper embedding,

∐k
i=1 fi of

∐k
i=1 Ii into D2 × I, where fi : Ii → D2 × I, such that

fi(0) = pj × 0 and fi(1) = ps × 1. Following the literature, we call the string link “pure” if
j = s for each interval.

A neighborhood of a d-base, D, is a copy of D2 × I, and its complement in S3 is also a
copy of D2 × I. In this D2 × I, the d-based link appears as k copies of I extending from
one end to the other. For more general three manifolds, we will present our string link as a
string link in D2 × I with the data of a framed link diagram where all the surgeries occur
in D2 × I
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We consider a d-based link L∪D embedded in a general three manifold Y . We measure
the homology of the components of the embedding by a lattice, Λ, in Zk spanned by the
all vectors of the form ([h] ∩ L1, . . . , [h] ∩ Lk), where [h] ∈ H2(Y ; Z) and the Li are the
components of the associated link. We will prove:

Theorem 1. Let L ∪D be a d-based link in Y . Then, for each Spinc structure, s, on Y ,

there is a relatively Zk/Λ-indexed abelian group ⊕λĤF (Y,Γ; s, λ) where each of the factors
is an isotopy invariant of the based link.

When Λ ≡ 0, most of the results for knots transfer straightforwardly. In particular, the
presence of the d-based link imposes a filtration upon the Heegaard-Floer chain complexes
of the ambient manifold that is filtered chain homotopy invariant up to isotopy of based
link. The case where Λ 6≡ 0 occurs naturally when trying to define chain maps from cobor-
disms of knots in cobordisms of three manifolds.

Note: In [?] the Knot-Floer homology is denoted by ĤFK(Y,K; ·). We will assume
that the presence of a Γ = L ∪ D or K implies the use of the data determined by that

object. Thus, we will use ĤF (Y,K; ·) for the knot-Floer homology. When we wish to refer
to the Heegaard-Floer homology of the ambient three manifold (ignoring the information
provided by K) we will simply omit reference to the knot or bouquet. However, these are
not relative homology groups, though they are homology groups for pairs and do not solely
depend upon the complement of the knot or link.

When L ∪ D ⊂ S3, we may re-state the theorem in terms of the associated string link,
S:

Corollary 1. For each v ∈ Zk there is an isotopy invariant ĤF (S; v) of the string link S.

In section 8, we realize the generators of the chain complex for a string link S in D2 × I
from a projection of S. They are identified with a sub-set of maximal forests – satisfying
specific constraints imposed by the meridians – in a planar graph constructed from the
projection of S. This description generalizes the description of generators, their indices,
and their gradings given by P. Ozsváth an Z. Szabó in [12].

Lemma 1. There are vector weights assigned to crossings so that for each tree, adding
the weights calculates in which index, v, the corresponding generator occurs. Furthermore,
there are weights assigned to crossings which likewise calculate the grading of the generator.

For the specific weights see Figure 10. This lemma requires a generalization of L. Kauff-
man’s “Clock Lemma” to maximal forests that describes the connectivity of the set of
maximal forests in a planar graph under two natural operations.

The weights and gradings are enough to form the Euler characteristic of the homology
groups with rational coefficients, which is related to the Alexander-Conway polynomials of
the link components in section 8.7. However, the Euler characteristic can also be interpreted
as a polynomial arising from the first homology of a covering space.

We let X = D2 × I − int(N(S)) and E = ∂X − D2 × {0}. Consider the Zk-covering

space, X̃, determined by the Hurewicz map π1(X) → H1(X; Z) ∼= Zk taking meridians
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to generators. Let Ẽ be the pre-image of E under the covering map. Then there is a

presentation, [11], Zk → Zk → H1(X̃, Ẽ; Z) → 0 of Z[t±1
1 , . . . , t±1

k ]-modules whose 0th

elementary ideal is generated by a detM , a polynomial called the torsion of the string link.

Theorem 2. Let S be a string link. The Euler characteristic of ĤF (S; v; Q) is the coef-
ficient of tv11 · · · t

vk

k in a polynomial p(t1, · · · , tk) describing the torsion of the string link,
τ(S), [8].

R. Litherland appears to have originated the study of the moduleH1(X̃, Ẽ; Z) as a source
of Alexander polynomials, [11]. He used it to study generalized θ-graphs, which, once we
pick a preferred edge, correspond to the string links above.

Many results follow from trying to replicate known properties of the torsion. Braids are
a special sub-class of string links, for which it is known that the torsion is always trivial.
Likewise, it follows easily that

Lemma 2. If the string link S is isotopic to a braid, then ĤF (S) ∼= Z(0) where ĤF (S) ∼=

⊕vĤF (S; v)

The subscript in Z(0) designates the grading.
This result should be likened to the analogous result for 1-stranded string links, i.e.

marked knots, that are also braids: the unknot has trivial knot Floer homology. While
string links are usually considered up to isotopy fixing their endpoints on D2 × {0, 1}, this
result has the implication that our invariant will be unchanged if we move the ends of the
strings on D2×{0, 1} (but not between ends). There is a composition for string links similar
to that for braids, and our invariant is a map on the semi-group quotient Strings/Braids.

Furthermore, as in [12],

Lemma 3. Alternating string links have trivial differential in each index, v, for the Hee-
gaard decomposition arising from an alternating projection.

The proof may be found in section 8.6.2
As P. Ozsváth and Z. Szabó can extend the knot Floer homology to links, we may extend

the constructions for string links to a sub-class of colored tangles in D2 × I. For a tangle,
T , we allow closed components, in addition to open components requiring that the open
components independently form a string link. To each open or closed component we assign
a color {1, . . . , k} which corresponds to the variable ti used for that component. We require
that each color be applied to one and only one open component. We may then use the

colors to construct a string link, S(T ) in a second manifold,
n

# S1 × S2, where n is the
number of closed components in T . The isotopy class of S(T ) is determined by that of T in

D2 × I, allowing us to consider ĤF (Y, S(T ); s0, i) as an isotopy invariant of T . With this
definition, we may extend the skein exact sequence of [15] to crossings where each strand
has the same color, see section 8

Finally, we analyze how the homology changes for three types of string link compositions.
Each has the form of connect sum in its Heegaard diagram, and the proofs roughly follow
the approach for connect sums taken by P. Ozsváth and Z. Szabó . We picture our three
manifolds as given by surgery on framed links in D2 × I with an additional string link, S,
with k components. Given such diagrams for S1 in Y1 and S2 in Y2 we may 1) place them
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side by side to create a string link, S1 + S2 with k1 + k2 components, 2) when k1 = k2 we
may stack one diagram on top of the other (as with composition of braids) to obtain the
string link S1 · S2, and 3) we may replace a tubular neighborhood, i.e. a copy of D2× I, of
the ith strand in S1 with the entire picture for S2 to obtain a string satellite, S1(i, S2). The
analysis of the second type proceeds differently than in [15]: we consider it as a closure of
S1 + S2 found by joining the ends of S1 on D2 × {1} with the ends of S2 on D2 × {0} in a
particular way. We prove the following formulas for the homologies, where s = s0#s1:

ĤF (Y, S1 + S2; s, [j0]⊕ [j1])
∼= H∗(ĈF (Y0, S0; s0, [j0])⊗ ĈF (Y1, S1; s1, [j2]))

ĤF (Y, S1 · S2; s, [k]) =
⊕

[k1]+[k2]=[k]modΛ

H∗(ĈF (Y1, S1; s1, [k1])⊗ ĈF (Y2, S2; s2, [k2]))

ĤF (Y, S1(i, S2); s, [(l1, . . . , lk1+k2−1)] ∼=

⊕
[v′]+[w′]=[l]mod Λ′ H∗(ĈF (Y0, S0; s0, [v])⊗ ĈF (Y1, S1; s1, [w]))

where v′ = (v1, . . . , vi−1, vi, . . . , vi, vi+1, . . . , vk1), repeating vi a total of k2-times, and
w′ = (0, . . . , 0, w1, . . . , wk2 , 0, . . . , 0) with zero entries except for places i, . . . , i + k2 − 1.
and Λ′ = Λ + 0⊕ Λ1 ⊕ 0.

Summary by section:

In section 2 we describe Heegaard decompositions for string links. In particular, we analyze
the Heegaard equivalences preserving the structure of a d-based link and relate them to the
types of diagrams – multi-point Heegaard diagrams – used to define the chain complexes.
Section 3 describes the indices that replace the exponents of the Alexander polynomials in
the general setting and defines the chain complexes we will use. We define the homology
theory and record its basic properties. In section 5 we provide a summary of invariance
slanted towards dealing with the effects of an ambient manifold with non-zero second Betti
number. Section 4 develops the necessary theory for chain maps and is here largely for
completeness. Section 4.6 illustrates the first substantive examination of the effect of Λ.
Section 6.4 records the proofs of the results cited for combining string links. In section 7 we
review the study of Alexander invariants related to string links in D2× I. In 8 we describe
the state summation approach to the Euler characteristic and its relationship with the gen-
erators of the chain complex. We also describe the results for braids and alternating string
links; the relationship with the Alexander-Conway polynomial of the link components; and
the skein exact sequence.

Note: We do not address issues of orientation of moduli spaces in the paper. However,
nothing we say will alter the existence of the coherent orientations. It is merely convenient
to suppress this information. As usual we may work with Z/2Z-coefficients to avoid these
issues.
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7. Alexander Invariants for String Links in D2 × I 40
8. State Summation for Alexander Invariants of String Links in S3 45
Appendix A. Maslov Index Calculation 66
References 68

2. String Links and Heegaard Diagrams

2.1. String Links in D2 × I. In this section, the topological input for our invariant will
be laid out. To start we consider the situation in S3:

Definition 2.1. Choose k points p1, . . . , pk in D2. A k-stranded “string link” in D2 × I
is a proper embedding,

∐k
i=1 fi of

∐k
i=1 Ii into D2 × I, where fi : Ii → D2 × I, such that

fi(0) = pj × 0 and fi(1) = ps × 1. The string link is pure if j = s for each interval. We
orient the strands “down” from 1 to 0.

We consider these up to isotopy, preserving the ends D2 × {i} for i = 0, 1. Then braids
form a sub-set of string links. However, the invariant we define will allow us to move the
ends of the string link on their end of the cylinder, but not between ends. With this addi-
tional freedom we can always undo any braid.

We consider D2 × I embedded inside S3. A projection of the string link onto a plane
provides the data for a Heegaard decomposition of S3. For a string link whose strands are
oriented downwards, we may draw a Heegaard diagram as in Figure 1.

We take a small tubular neighborhood of each strand in D2 × I and glue it to the three
ball that is S3 − i(D2 × I ). This is a handlebody to which we attach 1 handles at each
of the crossings. These handles occur along the axis of the projection, between the two
strands; when we compress the handle to obtain the tubular neighborhood of an “X”, the
attaching circles appear as in Figure 1, one for each type of crossing, cf. [12]. The attaching
circles for the handles from the strands are placed in D2×{0} as meridians for each strand.

The complement of this in S3 is also a handlebody. It can be described by taking two
0-handles in D2 × I, above and below the plane we projected onto (thought of as cutting
D2 × I through the middle). We then attach handles through the faces of image of the
projection: a copy of the D2 factor in the handle should be the face. We use 1-handle
for the face on the leftmost side of the diagram, called U , to cancel one of the 0-handles.
As these two handlebodies have the same boundary, they must have the same number of
handles, and the decomposition is a Heegaard decomposition.
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Figure 1. The Heegaard Diagram for a String Link. We place the merid-
ians at the bottom of the diagram and α curves at each of the crossings,
reflecting the type of crossing.

To each strand of a string link, we may associate a knot: ignore the other strands and join
the two ends of our strand with an unknotted arc in the complement of D2 × I. Likewise
we may associate a link to a pure string link by using k unknotted, unlinked arcs as for
the closure of a braid. Furthermore, by retaining D2 × {0}, oriented as the boundary of
D2×I, we have an embedded disc which intersects the strands of the link in one point with
Li ∩D = +1. This is a d-base in the language of Habbegger and Lin, [4].

2.2. String Links in Y . For general three manifolds, Y , we define a string link to be a
d-based link:

Definition 2.2. A d-base for an oriented link L is an oriented disc, D, embedded in Y
whose interior intersects each component of L exactly once, positively.

By thickening the disc, D, we obtain an embedded ball with the structure of a cylinder,
D2× I. L in the complement of this ball comports more with our intuition for a string link.
We consider these complexes up to isotopy of the complex D∪L, preserving the orientations
on the parts. However, the invariant will allow the strands of L not to return to the same
point, and these ends to move independently on, but not between, the two sides of D.

Example: For knots in S3 a d-basing amounts to picking a point on the knot, the in-
tersection point with D. This is a marked knot as used in [15]. The string link associated
to a knot comes from dividing the knot at that point and pulling the ends apart.

We will use Heegaard diagrams for Y where the α-handlebody extends the handlebody
that is a neighborhood of D ∪ L. If we think of this neighborhood up to isotopy we would
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have great freedom in moving around the handles corresponding to the strands. When we
transfer to the Heegaard picture the additional freedom allows us to braid the ends of the
strands through isotopies of the Heegaard surface without altering the disc. We may even
disjoin the link componenets: if the endpoints of a strand correspond, we have a d-based
link, but we may braid the ends on one side of the disc independently of the other. However,
the data from D prevents the ends from moving between the different sides D.

Example: To draw the Heegaard diagram for a string link in Y , we think of D ∪ L
embedded in a framed link diagram for Y in S3. We may then draw a Heegaard diagram
from a projection of the whole configuration, attaching the framed components by paths to
D ∪ L. The α curves on the new components are no longer the meridians, but instead are
chosen to be framing curves for the surgery, oriented opposite the longitudes from S 3. All
of this can be done away from the disc D2 × {0} containing the meridians. By inverting a
neighborhood of the disc, we can present the string link in Y by a string link in a framed
link diagram in D2 × I with D2 × {0} as preferred disc.

2.3. Heegaard Diagrams and Based Links. We describe the general approach to Hee-
gaard diagrams subordinate to a string link, D∪L. Above we gave specific examples of such
diagrams; we would now like to characterize all such diagrams and describe the Heegaard
equivalences between them. In particular, we will be concerned with retaining the data
provided by D.

First we establish some conventions. Let Y be a three manifold. Assume, as given, a
Heegaard decomposition, Y = Hα ∪Σg Hβ, where ∂Hα = Σ = −∂Hβ and the gradient
flow corresponds to the outward-pointing normal to Hα. We denote this decomposition by
(Σ, {αi}

g
i=1, {βi}

g
i=1) with {αi}

g
i=1 being the co-cores of the one handles in Hα and likewise

for {βi}
g
i=1.

To make our diagram reflect a string link L ∪ D, we additionally require that our Hee-
gaard decomposition satisfies:

(1) The three manifold (Σ, {αi}
g
i=k+1, {βi}

g
i=1) is Y 3 −N(L ∪D). The complement of

(Σ, {αi}i6=j, {βi}
g
i=1) for j ≤ k, should be homeomorphic to a tubular neighborhood

of Lj in Y . We require αj to be an oriented meridian for this tubular neighborhood.
(2) There is a disc D′ in Σ−{αi}

g
i=1−{βi}

g
i=1 whose boundary contains one connected

segment from each of α1, . . . , αk. The string link formed from D′ glued to the
attaching discs for α1, . . . , αk and the components of L from (1) is isotopic to L∪D.

The first condition requires that the diagram be subordinate to the string link. The
second requires that there be a disc in the Heegaard data that produces a d-basing for L
and that induces a string link isotopic to the original one. Such diagrams are said to be
subordinate to L ∪ D. Furthermore, a diagram with such a choice of α’s and a disc D ′

determines a string link as in item (2). Note that D ′ must be oriented opposite to Σ.

We may relate diagrams subordinate to a configuration L ∪ D, embedded inside a three
manifold, Y , by the following lemma:
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Lemma 4. [cf. Lemma 4.5 [16]] Let Y be a closed, oriented three-manifold. Let L∪D ⊂ Y
be an embedded d-base. Then there is a Heegaard diagram subordinate to L ∪ D and any
two such subordinate diagrams may be connected by a sequence of the following moves:

(1) Handleslides and isotopies among the elements of {αi}
g
i=k+1

(2) Handleslides and isotopies of {βi}
g
i=1.

(3) Stabilization introducing αg+1, βg+1 intersecting in a single point.

(4) Isotopies of {αi}
k
i=1 and handleslides of them over elements of {αi}

g
i=k+1.

where we disallow isotopies and handleslides of any attaching circles resulting in a curve
intersecting the disc D′.

Proof: Let Γ = L ∪ D. N(Γ) is a handlebody which we may extend to a Heegaard
decomposition for Y . The disc D corresponds to a disc D ′ in ∂N(Γ) at one end of the
thickening of D, determined by the orientation requirements. The meridians are chosen to
occur in the disc, and thus abut D′ in accordance with requirements. The additional α’s
and β’s may be chosen to avoid D′ as D′ is contractible in Σ. Thus, such a diagram does
exist. It is shown in [13], Prop. 7.1, that any isotopy across a contractible region in Σ
may be obtained by handleslides and isotopies not crossing that contractible region; any β
isotopy which crosses the entire star may be accomplished by handleslides not intersecting
the star. This assures us that the choice made in pushing the β’s away from D ′ does not
affect the outcome.

Given the diagrams for two isotopic embeddings of Γ, we must see that they can be
related by the moves described above. These moves preserve the region D in the original
diagram. This region and a small neighborhood of it in Y act as the disk for the d-base.
On the other hand, the isotopy carries a neighborhood of the disc into a neighborhood of
the new disc; these neighborhoods are all homeomorphic and may be used as a 3-handle
for each of the Heegaard diagrams. That the isotopy preserves L outside this ball allows us
to fix the meridians and consider the additional handles, describing Y −N(Γ).

If we consider ∂N(Γ) as ∂+(Y − N(Γ)) then the existence of the Heegaard diagram
follows from the existence of a relative Morse function that is equal to 1 on the boundary
and that the isotopy class of {αi}

k
i=1 is determined by their being meridians of the knots

determined by the strands of L. As usual, we may cancel 1-handles with 0-handles until
there is only one 0-handle. Similarly we may cancel off 3-handles until there are none. The
relative version of Cerf’s theorem states that any two such diagrams can be linked through
the first three moves and the introduction of new index 0/1 cancelling pairs or new index
2/3 cancelling pairs.

However, we would like to ensure that the path can be chosen through diagrams with
only one index 0 handle and no index 3 handles. As we introduce a new 3-handle, we
also introduce a cancelling 2-handle. The new 2-handle will have one end of its co-core
on ∂N(Γ), since there are no other 3-handles. In the diagram for Y , the one with the
prescribed meridians, this 2-handle has a core that is a homological linear combination of
the α’s. If we cut Σ along {αk+1, . . . , αg}, and cap the new boundaries with discs, the
image of the core will be null-homotopic: it will be homotopic to the boundary of the B 2 at
the end of the co-core lying on ∂N(Γ). Since it is null-homotopic, the core cannot have a
non-zero coefficient for a meridian for its homology class. Thus, it is linear combination of
{αk+1, . . . , αg}. According to lemma 2.3 of [13], the core curve can be obtained as the image
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of a {αk+1, . . . , αg} under handleslides. Thus, any diagram obtained from the diagram after
a 2/3 pair is added, could be obtained from the old diagram as handleslides over the new
core can be given by handleslides over α’s, not using any meridians. We may bypass 2/3-
handle pairs. The same argument applies for 0-handles, as there are fewer restrictions on
the β’s.

Allowing the meridians to move, the last equivalence follows from considering the bouquet
after surgering out {αi}

g
i=k+1. The meridians are determined up to isotopy, and as those

isotopies cross surgery discs there are corresponding handleslides. Likewise, two curves for
the same meridian, abutting the same disc D ′ at a specified point, will be isotopic. Thus,
any choice of meridians may be moved to the one chosen above. This takes care of all our
choices, so any two diagrams subordinate to the same isotopy class of string link can be
related with the moves in the lemma. Q.E.D.

Without disallowing equivalences that intersect D ′, the moves above preserve the han-
dlebody neighborhood of L∪D. This is weaker than preserving the isotopy class of L∪D.
However, with the additional data provided by D ′, any isotopy will pull the disc along,
preventing the ends of strands from twisting at the intersection point with D.

Example: We return to our method for drawing a Heegaard diagram for a string link
in Y . Using the reduced Heegaard equivalences, we argue that the construction does not
depend upon how the framed components are joined to N(L ∪ D). The argument comes
from [16], for the same result for a bouquet, with minor alteration.

Consider two distinct arcs, s1 and s2, joining a framed component to Γ, and form a
regular neighborhood of the graph provided by Γ ∪ s1 ∪ s2. We extend this to a diagram
for S3 (by adding handles for crossings, etc). We draw a subordinate diagram using s1 to
attach the framed component by placing αk+1 as a meridian to s2. To obtain a diagram
subordinate to the second choice of paths we erase αk+1 and replace it with α′

k+1, a meridian
to s1. We surger out all the αi for i > k + 1 to obtain a genus k + 1 surface. We wish to
see that αk+1 and α′

k+1 are isotopic; if they are we may move the correponding curves in
the original diagram through isotopies and handleslides one into the other. The two curves,
along with some non-meridional α’s, bound a punctured torus coming from the framed
component. After surgering, the other boundaries are filled, and surgering the framing
attaching circle transforms the torus into a cylinder. Therefore, the αk+1 and α′

k+1 now
bound a cylinder which does not involve the disc D ′. Each time the isotopy of curves
determined by the cylinder crosses a disc coming from the surgered handles, there is a
corresponding handleslide in the original picture. This provides a sequence of Heegaard
equivalences that are allowed under the reduced equivalences of d-based links.

Sliding a strand in the string link over a framed curve produces a new string link which,
along with the framed components, produces a second Heegaard diagram for Y equivalent
to that from before handlesliding (a simple process, but lengthy, and not provided here).
Handleslides of framed components over each other can be effected by a bouquet with a
path joining the two components, which we have seen is available, and then using the same
argument as above. Likewise, adding ±1 framed unlinked, unknots (blowing up/down) can
be effected using the reduced Heegaard equivalences. Hence, using two different framed
link descriptions for Y will not change the equivalence of the Heegard diagram.



10 LAWRENCE P. ROBERTS

2.4. Marked Diagrams. It is cumbersome to retain the disc, D ′, in our Heegaard di-
agrams. Furthermore, since the restricted Heegaard equivalences eliminate handleslides
over the meridians they often impede the simplification of the Heegaard diagram. We give
another interpretation of the topology making our diagrams more tractable.

Using the embedded star, D′, we may introduce marked points into Σ. We choose w to be
in the interior of D′ and zi to be on the other side of αi in the region of Σ−{αi}

g
i=1−{βi}

g
i=1

abutting the same segment as D′. From a subordinate diagram for the d-based link we
have realized a multi-pointed diagram. The equivalences for multi-pointed diagrams are the
standard Heegaard equivalences – with no restriction on handleslides – but with the caveat
that no isotopy of an attaching circle or marked point may allow one to cross the other.

Conversely, for any Heegaard diagram with a choice of marked points w, z1, . . . , zk in
Σ− {αi}

g
i=1 − {βi}

g
i=1 we can construct a Heegaard diagram subordinate to a string link.

First, choose paths from each zi to w crossing only α’s. Then take neighborhoods of the
gradient flow lines, in Hβ, joining the index 0 critical point and the marked points Σ,
remove these neighborhoods from Hβ and add them to Hα. The complement in Hβ is
still a handlebody, since we have removed the neighborhood of k + 1 segments. Adding
the neighborhoods to Hα creates a new handlebody Hα′ . The new α’s are meridians of
the gradient flow lines, and the new β’s are loops following the flow line from w to the
critical point, then to zi and back along the path we chose in Σ, crossing only α’s. It is
straightforward to find the region D ′: it is a disc in the portion of ∂Hα′ coming from the
exchange. Thus, a multi-point diagram gives us a diagram subordinate to a string link
through the preferred disc D. Furthermore, if we use the preferred disc, D, to produce
a multi-point diagram, after some handleslides of the α’s over the new meridians, we can
de-stabilize the new α’s and β’s to obtain the original multi-point diagram.

The relationship between the equivalences for multi-point diagrams and those subordi-
nate to string links comes from by noticing that when going from a multi-point diagram to
a string link diagram, performing an illicit isotopy over a marked point zi corresponds to
an illicit handleslide over a meridian, according to the construction above. In fact, were we
to surger out the meridians, the point zi would correspond to one of the two discs used to
replace that meridian (the other would be close to w inside the region D). Isotoping across
it would be the same as a handleslide across a meridian.

This construction may depend upon the choice of the new β-paths. If we surger all the β
attaching circles in the multi-point diagram, the chosen paths become a star in S 2 joining
zi to w for all i. If two such stars are isotopic in the complement of the marked points, the
resulting diagrams for the θk+1 graph are equivalent. Each time the isotopy of a segment
crosses a disc introduced by the surgery, we should think of our new β being slid over an old
β. Braiding of the marked points in S2, carrying along the star, will not, in general, pro-
duce a diagram isotopic to the one with the star before braiding. However, these produce
equivalent diagrams as they are both stabilizations of the same diagram. This discrepancy,
once again, reflects the inability to detect braiding once we switch to considering Heegaard
diagrams.

Note: We may perform handleslides to ensure that in our Heegaard diagrams the meridians
each intersect only one β-curve. When the meridian intersects only one β, the boundary
of such a region must include multiples of the full meridian When there is more than one
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β intersecting the meridian, we will instead count the intersections with the the embedded
θk+1-graph found from the gradient flow lines through the marked points.

2.5. Admissibility and d-Based Links.

In Heegaard-Floer homology, when H2(Y ; Z) 6∼= 0, we must use diagrams submitting to
certain admissibility requirements, [13]. We argue here that presenting a d-based link as a
string link in D2 × I, with an additional framed link defining Y , can be made admissible
without disrupting the disc D or the structure of D2 × I.

We make use of the lemmas in section 5 of [13].

Lemma 5. Let L∪D ⊂ Y be a d-based link. Let s be a Spinc structure on Y . Then there
is a strongly/weakly admissible diagram for (Y, s,L ∪D) presented as a framed link on the
complement of a string link in D2 × I.

Proof: Suppose Y is presented as surgery on a link in S3, and Γ is L∪D in this diagram.
We adjust this, as above, to be a framed link diagram in D2 × I with a string link. Recall
that we must join the framed components to L∪D by paths which we assume do not touch
D2×{0}. With the framing curves as α-curves, this provides a diagram for Y . However, it
need not be admissible; we may need to wind the attaching circles to make it so. We must
ensure that the winding paths do not affect the discs D2 × {0} or D2 × {1}. We make two
observations.

(1) First, any doubly periodic domain must have at least one boundary containing mul-
tiples of a framing curve. Otherwise, by replacing framing curves with the meridians
of the link components, we would obtain a periodic domain in a diagram for S 3.
Furthermore, two periodic domains may not produce the same linear combination
of framing curves in their boundaries.

(2) Second, a meridian of a framed component may be chosen to intersect the framing
curve which replaces it, once and only once, and intersect no other α’s. Each will,
however, intersect at least one β curve in the projection. By Proposition 5.3.11 of
[3], these meridians generate all of H1(Y ; Z). By winding along them we may obtain
intersection points representing any Spinc structure; we have an intersection point
which employs the framing curves intersecting the same β’s as the meridian.

These are the conditions necessary to draw the conclusion of lemmas 5.2, 5.4, and 5.6 of
[13]. These lemmas guarantee the results in the proposition. Q.E.D.

When we present a d-based link in Y as a string link in a framed surgery diagram

Remark: There are other embedded objects lurking in the background of our Heegaard
diagrams. The first:

Definition 2.3. [16] An oriented bouquet, Γ, is a one-complex embedded in Y which is the
union of a oriented link L = ∪ki=1Li with a collection of k embedded segments, γi, each
connecting a point on Li to a fixed reference point in Y , and otherwise disjoint from L and
each other.

We will consider such objects up to isotopy in Y , preserving the graph structure. They are
also known as clover links, [9]. Such embedded graphs underly the construction of maps in
Heegaard-Floer homology from four-dimensional cobordisms formed by 2-handle additions.
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Given a d-based link, we may form such an object by choosing our reference point in D
and joining it to the intersections with L by a tree. There are many such trees, found, for
instance, by braiding in D, and these are not necessarily isotopic. However, our invariant
does not distinguish them. Furthermore, two different string links can give the same iso-
topy class of bouquet corresponding to twisting the bouquet along the reference paths (or
moving the ends of the string link back and forth between the ends of the cylinder). We can
record this twisting by adorning a bouquet with a d-base formed from a disc neighborhood
of its reference paths.

Additionally, in an associated multi-pointed diagram, the critical points corresponding to
the 3-cell and the 0-cell for a Morse function compatible with the Heegaard decomposition
along with the gradient flow lines though the marked points gives an embedded copy of
a θk+1-graph with a preferred edge arising from w: a graph with two vertices and k + 1
edges oriented from one vertex to the other. By taking a tubular neighborhood of the
preferred edge we have a copy of D2 × I; in its complement is a string link determined by
the other edges. The region around v− together with discs bounded by the meridians of
the non-preferred edges forms the d-base. The θk+1 graph may be obtained from a diagram
subordinate to a string link by stretching Σ along the boundary of D ′ ∪i≤k D(αi) where
D(αi) is the attaching disc for αi. The result is a diagram for a tubular neighborhood of
the θk+1-graph with one edge linked by the embedded circle. The region bounded by the
meridians and the new curve, containing D ′, corresponds to v−, the vertex into which the
edges point. Isotopies of d-based links correspond to isotopies of the associated θk+1-graphs.

3. Multi-point Heegaard-Floer Homology

3.1. Background and Notation. Let Hα ∪Σg Hβ and a choice of w ∈ Σ be a pointed
strongly/weakly admissible Heegaard decomposition of Y , [13]. Let {αi}

g
i=1 be a set of g

disjoint, simple, closed curves in Σ whose images are linearly independent in H1(Σ; Z) and
which bound compression discs in Hα. Define {βi}

g
i=1 similarly for Hβ.

These sets give rise to g-dimensional tori embedded in Symg(Σ) and found by taking the
image of

α1 × · · · × αg β1 × · · · × βg

under the quotient map Σ×g → Symg(Σ). A choice of orientation on each element of
{αi}

g
i=1 induces an orientation on orientation on the image, Tα.

An intersection point, x between the tori Tα and Tβ corresponds to a set, {x1, . . . , xg},
of points in Σ where xi ∈ αi ∩ βσ(i) for i = 1, . . . , g and some permutation σ ∈ Sg. We will
denote the point in Σ defining x and lying on αi by x(αi), and likewise for the β curves.

We consider homotopy classes of continuous maps, u : D → Symg(Σ) taking i to y, −i
to x and the remainder of the boundary into Tα if Re > 0 or Tβ if Re < 0. The set of such
classes is denoted by π2(x,y). When we have classes φ1 ∈ π2(x,y) and φ2 ∈ π2(y, z) there
is a well-defined class φ1 ∗ φ2 ∈ π2(x,y)

The intersection points divide into equivalence classes according to whether π2(x,y) is
the empty set or not. The set of all equivalence classes will be denoted Sαβ and a specific
equivalence class will be denoted s. The set of intersection points representing s will be
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denoted by I(s). Once we add the point w to the diagram, the equivalence classes can be
interpretted as Spinc structures for Y (see [13]).

Let z ∈ Σ− {αi}
g
i=1 − {βi}

g
i=1 and denote by nz(φ) the intersection number of a generic

representative of φ with the image z × Σg−1 under the quotient onto Symg(Σ). If we
consider Σ − ({αi}

g
i=1 ∪ {βi}

g
i=1) =

∐
Di be the disjoint union of domains, Di, we may

calculate a multiplicity for each domain by assigning nDi
(ψ) = nz(ψ) for some z ∈ int(Di).

Definition 3.1. The domain of a class φ ∈ π2(x,y) is defined to be the formal linear
combination

D(φ) =

s∑

i=1

nDi
(φ)Di

P. Ozsváth and Z. Szabó describe the structure of π2(x,y) when g > 1.

π2(x,y) ∼=

{
∅ when ε(x,y) 6= 0

Z⊕H2(Y,Z) when ε(x,y) = 0

The value in Z arises from evaluating nw(φ). It can be altered by adding or subtracting
the generator of π2(Sym

g(Σ)) ∼= Z to the homotopy classes of discs:

π2(Sym
g(Σ)) ∗ π2(x,y)→ π2(x,y)

This, in turn, corresponds to adding or subtracting D(Σ) to or from D(ψ) and will be
referred to as adding or subtracting [S].

The H2(Y,Z) term arises from the doubly periodic domains:

Definition 3.2. A doubly periodic region is a two chain P =
∑
aiDi whose boundary is a

sum of curves contained in {αi}
g
i=1∪{βi}

g
i=1. Let Di be the domain containing w. A doubly

periodic domain is a periodic region with ai = 0.

To each periodic region, P, there is an associated homology class, H(P), in H2(Y ; Z)
found by gluing copies of the attaching discs associated to the boundary curves of P.
Furthermore, every homology class in H2(Y ; Z) defines a periodic domain. These may be
thought of as classes in π2(x,x) and have the property that

D(φ+ P) = D(φ) +D(P)

3.2. Pseudo-Holomorphic discs in Symg(Σ). For a given φ ∈ π2(x,y) we consider the
moduli space of pseudo-holomorphic representatives:

MJs(φ) =





u(1 + t i) ⊂ Tα
u(0 + t i) ⊂ Tβ

u ∈ φ limt→+∞ u(z) = y

limt→−∞ u(z) = x
∂ u
∂ s

+ J(s)∂ u
∂ t

= 0
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Translating in the t direction provides a natural R action on MJs(φ). We will usually
take the quotient

M̂Js(φ) =MJs(φ)/R

The reader should consult [13] for further details.
The formal dimension of the moduli space, found from the index of a certain Fredholm

operator, called the Maslov index of φ and denoted µ(φ). The index has the property that
µ(φ+ k[S]) = µ(φ) + 2k for any φ and is additive under splicing.

For µ ≤ 2 these spaces are orientable and have Gromov compatifications, [13]. Hence,

generically, there will be no elements of a moduli space with µ = 0. When µ = 1, M̂Js(φ)
is a compact, zero-dimensional manifold. When µ(φ) = 2 and φ possesses holomorphic rep-
resentatives, the ends of the corresponding moduli spaces can occur either through bubbling
off spheres, boundary degenerations, or through limiting to holomorphic representatives of
φ1 and φ2 where φ = φ1 ∗ φ2, [13].

3.3. The Chain Complex for a Multi-point Diagram. We start with a multi- pointed
Heegaard diagram (Σ, {αi}

g
i=1, {βi}

g
i=1) where the curves in {αi}

g
i=1 and {βi}

g
i=1 are in

general position. We choose a path of generic nearly symmetric almost-complex structures,
Js, on Symg(Σ), in accordance with the restrictions in [13]. Furthermore, we choose an
equivalence class of intersection points, s, for Y and a coherent system of orientations for
the equivalence class, [13]1. We also assume that marked points w, z1, . . . , zk have been
prescribed. We denote the additional marked point data by Γ.

Take the set x ∈ I(s) and define CF∞
Γ (Y ; s) as the Z-module

SpanZ{[x, i, v]|x ∈ I(s), i ∈ Z, v ∈ Zk}

There is a natural map on CF∞
Γ :

U([x, i, v]) = [x, i− 1, v1 − 1, . . . , vk − 1]

which makes CF∞
Γ into a module over Z[U ].

As in [13], we may define other groups by taking CF −
Γ (Y ; s) to be the sub-group of CF∞

Γ

where i < 0; by taking CF+
Γ (Y ; s) to be the resulting quotient group (with i ≥ 0); and by

taking ĈFΓ(Y, s) to be that sub-group spanned by those generators with i = 0.
We may define a relative grading by the formula

grw([x, i, v1], [y, j, v2]) = µ(φ)− 2nw(φ) + 2(i − j)

where we may use any φ ∈ π2(x,y). However, when c1(sw(x)) is not torsion the right side
is only well-defined in Z/δ(s)Z where

δ(s) = gcd
ξ∈H2(Y ;Z)

< c1(s), ξ >

since
µ(Px) =< c1(sw(x)), [P] >

1Those willing to work with Z/2Z-coefficients may ignore this requirement
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The map U reduces this grading by 2, [13].
If s has torsion first Chern class, the relative grading lies in Z. In addition, for a torsion

Spinc structure, P. Ozsváth and Z. Szabó in [16] show that there exists a absolute Q-
grading, grQ, lifting the relative grading. The absolute Q grading in [16] depends only
upon the i component, so the multi-point complex inherits it. Alternately, we may present
Y as surgery on a link which includes the components of L, which receive an ∞-framing.
Then we can assign the absolute grading to the generators using the formula in [16].

3.4. Filtration Indices. The additional marked points z1, . . . , zk provide indices for the
generators related to the grading.

3.4.1. Complete Sets of Paths.

For the equivalence class s, we choose a complete set of paths for s as in Definition 3.12
of [13]:

(1) An enumeration S = {x0,x1, . . . ,xm} of the intersection points in I(s).
(2) A collection of homotopy classes φi ∈ π2(x0,xi) with nw(φi) = 0
(3) Periodic domains Ξ1, . . . ,Ξb2 ∈ π2(x0,x0) representing a basis for H2(Y ; Z).

Any path in π2(xi, xj) can then be written uniquely as splicings of the Ξi and the paths
φi, and any periodic domain in π2(x,x) can be identified with one in π2(x0,x0).

As in [14], given a complete set of paths we may find a map

A : π2(x,y)→ H2(Y ; Z)

by taking φ−1
y ∗ φ ∗ φx ∈ π2(x0,x0) ∼= Z ⊕H2(Y ; Z), and projecting to the second factor.

This map has the property that A(φ1 ∗ φ2) = A(φ1) + A(φ2). The procedure provides an
identification of π2(x,x) with π2(x0,x0), and the action of P ∈ π2(x,x) on φ ∈ π2(x,y)
produces φ′ with A(φ′) = A(φ) +A(P).

Furthermore, a choice of basepoint x0, a basis for H2(Y,Z), and a choice of an additive
A which maps π2(x0,x0) surjectively onto H2(Y ; Z) and is invariant under the action of
[S], gives a complete set of paths. For a doubly periodic domain P ∈ π2(x0,x0), A assigns
it a value in H2(Y ; Z). For φ ∈ π2(x0,y) we have two quantities A(φ) and nw(φ). By
subtracting the periodic domain P with the same value under A as φ and subtracting the
right number of [S]’s, we find a φ′ where both quantities are zero. This φ′ is unique since
A is surjective, so we choose it as our element, φy, in a complete set of paths.

3.4.2. Definition of Filtration Indices. We may define a filtration index for the complete
set of paths as a map F : I(s)→ Zk satisfying the basic relation

F(y) −F(x) = (nw − nz)(φ) + nz(A(φ))

where nz(φ) = (nz1(φ), . . . , nzk
(φ)) and nw(φ) = (nw(φ), . . . , nw(φ)). These compare the

information found at the preferred point, w, to that at any other marked point zk.
When we add a periodic domain P to φ the right hand side of the filtration relation

changes by −nz(P) + nz(P) = 0. Thus, with the complete set of paths, the relation
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determines the value of F on every intersection point, independent of φ, up to a vector:
any other filtration index for x0 and A has the form F + v for some vector v ∈ Zk.

The last term on the right can be re-written in the ith coordinate as Li ∩ A(φ). The
orientation on the meridians is the one induced from the attaching disk oriented to intersect
Li positively: Li ∩Di = +1. If we choose P a periodic region representing the homology
class h ∈ H2 then ∂P may contain multiples of the meridians. By drawing the diagrams we
find that with this orientation convention (nw −nzi

)(P) = −Li ∩ h. The quantity nw− nzi

measures2 the number of times the ith meridian occurs in ∂P.
Adding or subtracting elements of π2(x,x) thus alters the last term by vectors in the

lattice, Λ ⊂ Zk, spanned by:

(nz1(Ξ1), . . . , nzk
(Ξ1))

...
(nz1(Ξk), . . . , nzk

(Ξk))

since we assume nw(Ξj) = 0.

Differences in the filtration index can be calculated directly if we know explicitly the ho-
motopy classes in the complete set of paths. The difference between x and y is given by
nz(φy ∗ φ

−1
x ). For this composite disc A = 0 and nw = 0. For rational homology spheres

the choice of φ ∈ π2(x,y) varies only by multiples of [S]. Thus, φy ∗−φx = φ+r[S]. In this

case, or in any case where Λ ≡ 0, the filtration index takes values in Zk, and we recover the
formulas used for knots in [15].

Once we have fixed the value of x0, the choice of A prescribes a value in Zk for each
y. Different choices of complete sets of paths prescribe different values for y; however, all
these values map to the same element of Zk/Λ. For example, consider x and y joined by
a path φ with nw(φ) = 0. If we change to A′ then −nz(φ − A

′(φ)) = −nz(φ
′
y) + nz(φ

′
x)

= −nz(φy ∗ −φx ∗ P) = −nz(φ−A(φ)) + λ. Changing A to A′ changes the relation by an
element of Λ for each pair of intersection points.

Thus, we may remove the dependence upon A by considering filtraion indices with val-
ues in the quotient Zk/Λ. The intersection points are then relatively Zk/Λ-indexed. The
Zk indices are “lifts” of these indices, which we use when needing to facilitate comparisons
as Λ changes.

Remark 3.3. From now on, we assume, as chosen, a point x0 ∈ I(s) and a complete set
of paths for s and x0. Furthermore, we require that if zi and zj are in the same component
of Σ− {αi}

g
i=1 − {βi}

g
i=1 then Fi and Fj must be equal. If zi is in the same component as

w then Fi ≡ Ci, a constant, which we require to be 0, unless otherwise noted.

3.4.3. A Special Case.
For null-homologous knots and torsion s there is a canonical choice of filtration index found
from the first Chern class, [15]. Suppose all the knots in Y found by closing strands in S
are null-homologous, and that we have a Heegaard diagram where the intersection point

2When αi intersects more than one β, and with the gradient flowing with the outward normal of Hα,
nw − nzi

is minus the intersection number with the edge corresponding to Li in the graph, Θ(Γ).
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on the each meridian is fixed. Let λi be a longitude for the closure of the ith strand, Li.
This curve can be realized in the Heegaard diagram for the string link as a curve crossing
only one α-curve, the ith meridian. Interchanging the meridian with this longitude gives a
Heegaard diagram for the manifold found by performing 0-framed surgery on Li. To each
intersection point in x ∈ Tα ∩ Tβ we can associate an intersection point, x′, for the new

Heegaard diagram, cf. [15]. The Seifert surface for the closure of the ith strand becomes
a doubly periodic domain, Pi, in the new diagram. Following the argument in [15] shows
that we may choose

Fi(x) =
1

2
< c1(sw(x′), [Pi] >

for our filtration index. This provides a canonical choice over different Spinc structures on
Y , which the axiomatic description lacks.

3.5. The Relationship Between Gradings and Filtration Indices. There is another
interpretation of the filtration indices, which we describe for a knot. If we choose φ ∈
π2(x,y) we can lift the relative Z/δ(s)Z-grading using the procedure for filtrations:

grw([x, i], [y, j]) = µ(φ)− 2nw(φ) + 2(i− j)− < c1(sw),A(φ) >

where sw is the Spinc structure represented by (w,x). When we use z as the basepoint for
Heegaard-Floer homology, we have

grz([x, i], [y, j]) = µ(φ)− 2nz(φ) + 2(i − j)− < c1(sz),A(φ) >

calculating A(φ) using the complete set of paths for w. If we add a periodic domain for z,
the term with nz does not change. However, Pz = Pw + r [S], so A(Pz) = A(Pw) and this
expression is independent of φ. The difference

grz([x, i], [y, j]) − grw([x, i], [y, j]) = 2(nw − nz)(φ)− < c1(sw),A(φ) > + < c1(sz),A(φ) >

is equal to 2(F(y) − F(x)) since sz − sw = [K] and nz(A(φ)) = [K] ∩ A(φ). We can
adapt this discussion to string links by considering each coordinate separately. In effect,
the filtration indices are measuring the difference in relative gradings for Spinc structures
induced by the same intersection point but with different basepoints.

3.6. The Differential and the Γ-Sub-Complex. As in [13] there is a differential, ∂ ◦ on
CF ◦

Γ(Y ; s) for ◦ equal to ∞, +, −, or ·̂, defined by the linear extension of

∂[x, i, v] =
∑

y∈I(s)

∑

φ ∈ π2(x,y)
µ(φ) = 1

#M̂(φ)[y, i − nw(φ), v − nz(φ) + nz(A(φ))]

where the signed count is made with respect to a choice of a coherent system of orientations.
We verify that this is a differential below. The differential is a Z[U ]-module map when ◦
is ± or ∞. Since i − nw(φ) ≤ i when φ admits holomorphic representatives, we see that
the sub-group CF−

Γ is a sub-complex. The differential on CF+
Γ makes it into a quotient

complex. For ĈFΓ we restrict to those generators with i = 0 and those φ with nw(φ) = 0.

When the lattice Λ(Y,Γ) ≡ 0 this complex is Zk+1 filtered by the relation
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(i, j1, . . . , jk) < (i′, j′1, . . . , j
′
k)

when i < i′ and jl < j′l for all l. We have ∂[x, i, v] ≤ [x, i, v] since nw(φ), nzi
(φ) ≥ 0 on

classes represented by a holomorphic disc. (The partial ordering on non-zero linear com-
binations of generators,

∑
yi ≤

∑
xj, occurs when every generator yi ≤ xj for each j).

When Λ 6≡ 0 the additional terms in the differential can disrupt the monotonicity of the

indices, precluding similar filtrations. For ĈFΓ and Λ ≡ 0 there is a Zk filtration defined
analogously for the indices from the vector, v.

We choose a complete set of paths and a multi-point filtration index F . Consider the
sub-group of CF∞

Γ (Y ; s) generated by those [x, i, v] with

(v1, v2, . . . , vk)− (i, i, . . . , i) = F(x)

For a choice of A, there is a unique k-tuple (v1, . . . , vk) associated with [x, i] giving an
element of this sub-group. When Λ ≡ 0 this k-tuple induces a Zk filtration on the chain
complexes for the Heegaard-Floer homology, CF ◦(Y, s) in [13]. We define the filtration by
(v1, . . . , vk) ≤ (c1, . . . , ck) for each fixed k-tuple (c1, . . . , ck).

The filtration index relation ensures that this sub-group is a sub-complex. In particular, if
y is in the boundary of x, i.e. < ∂x,y >6= 0, then

F(y) = F(x) + (nw − nz)(φ) + nz(A(φ))

= (v1, . . . , vk)− (i, . . . , i) + ((nw − nz1)(φ), . . . , (nw − nz1)(φ)) + nz(A(φ))

= ((v1 − nz1(φ))− (i− nw(φ)) + nz1(A(φ)), . . . , (vk − nzk
(φ)) − (i− nw(φ)) + nzk

(A(φ))

=
(
v − nz(φ) + nz(A(φ))

)
−

(
i− nw(φ)

)

Thus [y, i − nw(φ), v−nz(φ)+nz(A(φ))] still satisfies the sub-complex condition. Further-
more, the action of U preserves the sub-complex, affording it the structure of a Z[U ]-module.
We call this sub-complex CF∞(Y,Γ; s).

Lemma 6. The map ∂ : CF∞(Y,Γ; s)→ CF∞(Y,Γ; s) is a differential.

Proof: This follows from [13] with almost no alteration. We consider ψ ∈ π2(x0,x2) with
a moduli space of holomorphic representatives of dimension µ(ψ) = 2. We already know
that the components of the boundary of M(ψ) which contribute to ∂2 are of the form
M(φ1) ×M(φ2) for classes φ1 ∈ π2(x0,x1) and φ2 ∈ π2(x1,x2). The other possible ends
are eliminated as in [13]. We choose our almost complex structures to exclude the bubbling
of spheres at the intersection points. The introduction of marked points in the diagram
does not alter this. On the other hand, we know that boundary bubbles will cancel in the
summation of coefficients. This occurs for counts in specified degenerate homotopy classes,
and all representatives of the homotopy class will induce the same change in the indices:
i, v1, . . . , vk. All other degenerations are excluded for dimension reasons.

Since every homotopy class of discs satisfies the filtration index relation so will each of
the classes ψ, φ1 and φ2. In particular, every boundary component of M(ψ) of the form
φ1 ∗ φ2 contributes to ∂2. We know that

nw(ψ) = nw(φ1) + nw(φ2)
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nzi
(ψ) = nzi

(φ1) + nzi
(φ2)

A(ψ) = A(φ1) +A(φ2)

As a result, different ends of the compactification of M̂(ψ) are taken to the same element
[y, i, v] in ∂2 and still cancel after a choice of a coherent orientations for the moduli spaces.
So ∂2 = 0 and defines a differential on both our complex and sub-complex.
Q.E.D.

The action of H1(Y,Z)/Tors on the Heegaard-Floer homology, [13], extends to an ac-
tion on the homology of the sub-complex. Let γ ⊂ Σ be a simple, closed curve representing
the non-torsion class h ∈ H1 and missing every intersection point between an α and a β.
Let a(γ, φ) be the intersection number in Tα of γ × Symg−1(Σ) ∩ Tα and u(1 + it) where
u represents φ. This induces a map ζ ∈ Z1(Ω(Tα,Tβ),Z). The action of such a co-cycle is
defined by the formula:

Aζ([x, i, v]) =
∑

y

∑

{φ:µ(φ)=1}

ζ(φ) ·
(
#M̂(φ)

)
[y, i − nw(φ), v − nz(φ−A(φ))]

If ΛY is trivial then the map Aζ is a filtered chain morphism. In addition, Aζ preserves the
sub-complex CF∞(Y,Γ; s), as ∂ does.

Following the argument presented above that ∂2 = 0, we can verify that this is a chain
map. We have the analog of Proposition 4.17 of [13]:

Theorem 3. There is a natural action of the exterior algebra, Λ∗(H1(Y,Z)/Tors) on the
homology HF∞(Y,Γ; s), where ζ ∈ H1(Y,Z)/Tors lowers degree by 1 and induces a filtered
morphism of the chain complex when ΛY ≡ 0.

Proof: To see that this is a chain map note that the formula in lemma 4.17 of [13] for the
coefficients of ∂Aζ ± Aζ∂ still applies as it only depends upon the φ’s and not upon the
additional indices. As for the differential, any φ used in π2(x, z) with µ(φ) = 2 will give the
same set of indices for z. The same observation applies to lemmas 4.18 and 4.19 of [13].

Various other chain complexes may be defined from the above construction. When Λ ≡ 0
we may require any sub-set of the indices to be less than zero to get a sub-complex. Or we
may take the quotient by this sub-complex. We can require that i = 0 and look at holomor-
phic discs with nw = 0, or also disallow discs that cross some of the zi. When we require

nzi
(φ) = 0 for some or all of the marked points, we denote the resulting complex by ĈF .

We then examine the sub-complexes generated by the intersection points inducing a given
filtration index for the zi we have disallowed. If we allow the disc to intersect the marked
points associated with the components in a sub-link L2, but not all marked points, then the

filtration indices from L2 define a Z|L2|- filtration on each complex ĈF (Y,Γ−L2; v1), where
v1 records the fixed filtration indices for the complementary sub-complex. When Λ 6≡ 0 the
only obvious sub-complexes are those that depend upon the i index, as in Heegaard-Floer
homology. However, it is still meaningful to look at the sub-complex where i = 0 and the
differential includes only those φ with nw(φ) = 0 and nzi

(φ) = 0 for all of the zi. The
differential in this complex is
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∂̂[x, j] =
∑

y

∑

φ

#M̂(φ)[y, v + nz(A(φ))]

The v index may change, but only by an element of Λ. Thus the sub-complex differential
preserves the summands:

⊕

v≡v′ modΛ

CF (Y,Γ; s, v)

For null-homologous links, this definition reduces to the complex ĈF (Y,Γ; s, v). The equiv-

alent when Λ 6≡ 0 should be a complex ĈF (Y,Γ; [v]) where the last entry is a coset of Zk/Λ.
The specific filtration index prescribes a specific coset; however, only the relative difference
between cosets will be invariant.

Convention: For the rest of the paper, ĈF (Y,Γ; s, [v]) is the complex with differential
counting φ’s with nw(φ) = 0 and nzi

(φ) = 0 for all of the zi. When Λ ≡ 0, it is the E1

term in the spectral sequence defined by the Zk filtration on ĈFΓ(Y ; s).

Altogether we will have the following theorem, an extension of the theorem in [15] which
provided the statement for null-homologous knots. The union Γ1 ∪Γ2 = Γ requires that Γj
be found from Γ by ignoring a set of link components, sets that are disjoint for j = 1, 2.

Theorem 4. For Γ ⊂ Y coming from a d-based link, the homology ĤF (Y,Γ; s) is a rela-
tively Zk/Λ indexed invariant of L ∪D up to isotopy which is a direct sum

⊕[λ]ĤF (Y,Γ; s, [λ]) of invariant sub-groups. There is a natural action of H1(Y ; Z)/Tors on
each of the factors. When Γ1 ∪ Γ2 = Γ, and ΛΓ2 ≡ 0, the filtration indices for Γ2 may be

defined using the first Chern class. In this case, the Z|Γ2| filtered chain homotopy type of
CFΓ2(Y,Γ1; s, [j]) is an invariant of Γ for each coset, [j], of Z|Γ1|/ΛΓ1 .

Comments:

(1) Although it seems plausible, when Λ 6≡ 0, to consider those φ with nz (φ) ∈ Λ, this
does not prescribe a differential. That φ = φ1 ∗ φ2 does not imply that nz(φj) ∈ Λ.
Hence the terms in ∂2 may give rise to complementary boundaries one of which
does not arise from the definition of the differential.

(2) The complexes for Γ are superficially similar to the twisted coefficients of [14]. In-
deed, the proof of invariance parallels that for the twisted coefficients. However,
twisted coefficients are used to distiguish homotopy classes that are otherwise in-
distiguishable; we cancel distinctions which would otherwise appear.

(3) The action of H1(Y ; Z) may be extended to the various sub-complexes discussed.
The definition mimics that for the differential. In particular, we may limit ourselves
to φ with nw(φ) = 0 and nzi

(φ) = 0. When Λ ≡ 0, this action will be natural as
filtered morphisms of chain complexes.

4. Maps of Multi-Pointed Homologies

We may extend the theory of maps on HF ◦ induced by cobordisms of three manifolds.
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4.1. More about Complete Sets of Paths. Let X be a Heegaard triple Σαβγ . We wish
to choose an assignment A from triangles representing certain Spinc structures to H2(X,Z)
that is

I. Additive under splicing and addition of periodic domains.
II. Restricts to each boundary of the triple as a specified additive assignment from
a complete set of paths for that component.

Let u be a Spinc structure for X. We show how to define an additive assigment for the
homotopy classes representing an orbit of u under the action of H2(X; Z). The endpoints of
these triangles represent the same Spinc structures on the boundary. The homology classes
of doubly periodic domains do not change the Spinc structure on X; while the other Spinc

structures in the orbit occur through Im (H2(X)→ H2(X, ∂X) ).
Given a single triangle ψ0 ∈ π2(x0,y0, z0) with nw(ψ0) = 0, representing u, and complete

sets of paths Aαβ, Aγα, and Aγβ for the Spinc structures it restricts to at the boundary,
we may define a triply periodic domain for any triangle ψ ∈ π2(x,y, z) which restricts to
the boundaries as the same Spinc structures as ψ0. Take φx, φy, and φz in their respective
complete set of paths and consider the triply periodic domain such that

φz ∗ ψ0 + T = ψ ∗ (φx ⊗ φy) + r[S]

Then Aαβγ(ψ) = [T ] in H2(X; Z).
If we change φx, φy, and φz by Pαβ , Pγα, and Pγβ, respectively, then we obtain a new

additive assignment, related to the old by:

A′(ψ) = A(ψ)−Pγβ + Pγα + Pαβ

Thus, if in H2(X,Z), we have [Pγβ ] = [Pαβ ] + [Pγα], and we get the same assignment
of classes of triangles to H2(X; Z). Furthermore, for any triple of intersection points rep-
resenting the correct Spinc structures, the map, A, chooses a base-triangle for π2(x,y, z),
the one for which [T ] = 0 in H2(X; Z): φz ∗ ψ0 ∗ (φ−1

x ⊗ φ
−1
y ).

Alteration of ψ by a class φ in one of the boundaries induces the relation:

Aαβγ(ψ ∗ φ) = Aαβγ(ψ) +A◦(φ)

where ◦ should be replaced with the pair of subscripts designating that boundary. Applying
the definitions, A(ψ ∗ φ) is the class [T ] where

φ ∗ ψ ∗ (φx ⊗ φy) = φz′ ∗ ψ0 + T + r[S]

but ψ ∗ (φx ⊗ φy) = φz ∗ ψ0 +A(ψ) so φ ∗ ψ ∗ (φx ⊗ φy) = (φ ∗ φz) ∗ ψ0 +A(ψ). However,
φ ∗ φz = φz′ +A◦(φ).

For the particular case that ψ = φγβ ∗ ψ0 ∗ (φαβ ⊗ φγα) where φαβ ∈ π2(x,x0), φγα ∈
π2(y,y0), φγβ ∈ π2(z0, z), we have:

Aαβγ(ψ) = Aγβ(φγβ) +Aαβ(φαβ) +Aβγ(φγα)

Finally, alteration of ψ0 without changing the basepoints on the boundary components
changes the identification with homology classes by adding the class of a triply periodic
domain.
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4.2. Push-Forward Filtration Indices. In analogy to the three dimensional case, let
Λαβγ be the lattice in Zk of vectors (nz1(T ), . . . , nzk

(T )) where T is any triply periodic
domain. With additive identifications on the boundaries compatible with that on the
homotopy classes of triangles, we can push forward the filtration indices from Yαβ and Yγα.
We define

G(z) = Fαβ(x) + Fγα(y) + (nw − nz)(ψ) + nz(A(ψ))

where ψ ∈ π2(x,y, z). The expression on the right does not change under the addition of
any triply periodic domains or the class [S]. Thus it does not depend upon the specific
homotopy class of triangles joining three given intersection points. Nor indeed does it
change if we use a triangle abutting z but with different intial intersection points. Since

Fαβ(x)−Fαβ(x
′) = (nw − nz)(φ1) + nz(Aαβ(φ1))

Fγα(y)−Fγα(y′) = (nw − nz)(φ2) + nz(Aγα(φ2))

when ψ′ = ψ ∗ φ1 ∗ φ2, we find

G(z) = Fαβ(x
′) + Fγα(y′) + (nw − nz)(ψ

′) + nz(A(ψ′))

since
Aαβγ(ψ) +Aαβ(φ1) +Aγα(φ2) = Aαβγ(ψ

′)

We may then check that G is a filtration index for the Spinc structure on the γβ boundary.
Let φ ∈ π2(z, z

′) and ψ ∈ π2(x0,y0, z), then

G(z′)− G(z) = (nw − nz)(φ) + nz(Aαβγ(ψ
′))− nz(Aαβγ(ψ))

where ψ′ = φ ∗ ψ. But Aαβγ(ψ
′) = Aαβγ(ψ) +Aγα(φ), and we are done.

Note: If we require the filtration index to be 0 on the basepoints, x0 and y0, we may
use ψ0 to calculate the value of G(z0) = −nz(ψ0). We will assume, unless otherwise stated,
that nz(ψ0) = 0.

We will often consider only those triangles which include y0 in Σγα. A similar argument
allows us to pull back filtration indices from Σγβ to Σαβ, written for this case:

G
′
(x) = Fγβ(z)− (nw − nz)(ψ) − nz(Aαβγ)(ψ)

4.3. Constructing Additive Assignments. Suppose we have a four manifold Xαβγ de-
fined by a Heegaard triple. We can consider the long exact sequence

· · · → H3(X,Yγβ)→ H2(Yγβ)→ H2(X)→ H2(X,Yγβ)→ · · ·

H2(Yγβ) injects into H2(X) for a Heegaard triple because each doubly periodic domain is
also a triply periodic domain. Furthermore, the image of H2(X) inside H2(X,Yγβ) is a
free group as it consists of those triply periodic domains with non-trivial α-boundary; it is
finitely generated and torsion free, since no multiple except 0 can eliminate that boundary.
We may choose a splitting H2(X) ∼= H2(Yγβ)⊕C, which we hope will reflect our Heegaard
diagram.
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Suppose we have additive assignments Aαβ, Aγα, and a specified basepoint z0 in Tγ∩Tβ.
Suppose further that we have chosen a single triangle ψ0 ∈ π2(x0,y0, z0) and for each
z ∈ Tγ ∩ Tβ, there is a preferred triangle, ψz ∈ π2(x,y, z), abutting z and representing a
Spinc structure whose restrictions to the three boundary components are the same as those
of ψ0. We will assume that all these triangles have nw(ψz) = 0. We wish to see that this
induces a complete set of paths on Σγβ for the Spinc structure represented by z0.

For each z and φ ∈ π2(z0, z), nw(φ) = 0, there is a triply periodic domain satisfying
ψz ∗ (φx ⊗ φy) = φ ∗ ψ0 + T . Using the splitting we may divide [T ] = [P] ⊕ [T ′]. If we
subtract T ′ from ψz ∗ (φx ⊗ φy), we have a triangle which differs from φ ∗ ψ0 by a doubly
periodic domain in Yγβ. We add this periodic domain to φ to get φz. Different choices of
φ produce the same choice for φz relative to the splitting. Suppose φ′ = φ + Pγβ + r[S].
We can ignore the term involvong [S]. Then Tφ′ = Tφ−P. Projecting to H2(Yγβ), we have
Pφ′ = Pφ −P. Adding this to φ′ shows that φ′ + Pφ′ = φ+ Pφ.

4.4. Chain Maps. As in [13] and [16], we start with a Heegaard triple defining a four
manifold Xαβγ . We assume that we have complete sets of paths on the boundaries for the
restriction of a Spinc structure, u, and that there is a compatible map A for Σαβγ . We may
define a multi-point chain map for the Spinc structure:

Fs([x, i1, j1], [y, i2, j2]) =
∑

z

∑

ψ

#M(ψ)[z, i1 + i2−nw(ψ), j1 + j2−nz(ψ) +nz(Aαβγ(ψ))]

where ψ is class representing s with µ(ψ) = 0.
That this is a chain map follows from the usual arguments by examining ends of moduli

spaces with µ(ψ′) = 1. The identities for compatibility of additive assignments imply that
for an end modelled upon

M(ψαβγ)×M(φγα)

we have

Aαβγ(ψ
′) = Aαβγ(ψ) +Aγα(φγα)

Thus, the additional indices appear in the composition of the map and the differential
in each boundary according to the triangles that arise in the splicing. Different ends from
moduli spaces joining the same three intersection points will have the same value in the
last entry, allowing us to conclude that the various cancellations necessary for this to be a
chain map still occur.

Furthermore, the map is U invariant as the moduli spaces do not depend upon the par-
ticular i or jl. Finally, the map preserves the sub-complexes defined from the filtration
relations, where the filtration on the γβ-boundary is the push-forward of those on the αβ
and γα-boundaries for a choice of a complete set of paths. This follows from the formula
for the push-forward index.

Note: The next section outlines the invariance of the homology groups under the reduced
Heegaard equivalences. We should additionally check the invariance of the cobordism maps
on homology under the various alterations: invariance of the almost complex structure,
isotopies of attaching circles, handleslides, and stabilizations. Using the observations of the
next section, these proofs follow directly. The compatibility of the maps, A, ensure that
the new indices do not disrupt the chain homotopy identities found in [13]. The following
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sub-section relates the associativity properties of these maps. Once that is done, we can
recover the arguments in the first sections of [16] by slight modifications. The natural-
ity of the strong equivalence maps follows from these considerations. Specifically, under
our restricted set of Heegaard equivalences, the chain maps for two presentations of (Y,Γ)
commute with the maps induced by strong equivalences on homology.

4.5. Associativity with Multi-point Filtrations.

We consider two triples (Σ, {αi}
g
i=1, {βi}

g
i=1, {γi}

g
i=1;w) and (Σ, {γi}

g
i=1, {βi}

g
i=1, {δi}

g
i=1;w)

where we have equipped Σ with marked points z1, . . . , zk. We assume a choice of Spinc

structures, s1 and s2, for the respective triples and a complete sets of paths for Σαβ, Σγβ,
Σδβ, Σγα, and Σγδ, as well as ψαβγ ∈ π2(x0,y0,u0) and ψγβδ ∈ π2(u0, z0,w0) representing
the Spinc structures. Let s be the Spinc structure, s1#s2 on the quadruple, Xαβδγ .

In this paper we consider chain maps resulting from diagrams which represent surgeries,
handleslides, or the other Heegaard equivalences. For these diagrams, each of the three
manifolds described by Σγα, Σδγ , and Σδα will be homeomorphic to a connected sum of
S3’s and S1 × S2’s, although the additional basepoints may prevent the reduced Heegaard
equivalences from converting the diagram into the standard picture. The only triply pe-
riodic domains for this triple will be sums of doubly periodic domains from Σγα and Σγδ.
Furthermore, every doubly periodic domain, Pαδ ⊂ Σαδ, will be a linear combination of
doubly periodic domains from Σγα and Σγδ.

Each diagram will possess only one torsion Spinc structure which will admit a special,
closed generator for its chain group: Θ+. All our homotopy classes of triangles and quadri-
laterals will be required to use those special generators when available. For example, in the
class ψαβγ we will require that y0 = Θ+

γα), and our chain map will be Fs1
(x⊗Θ+

γα) These

generators will always have filtration index equal to 0 and be basepoints for their respective
complete set of paths. We denote by s0 the unique Spinc structure represented by classes
in π2(Θ

+
αδ ,Θ

+
δγ ,Θ

+
γα). The geometry of the Heegaard diagram will often provide a splitting

H2(Yγα) ⊕ H2(Yγδ) as H2(Yαδ) ⊕ Zm and a homotopy class of triangles, ψΘ abutting the
special intersection points in Xαδγ . We will use this data in the construction of a complete

set of paths for the Spinc structure represented by Θ+
δα.

Adding Pαδ to ψ1 ∗ ψ2 will not alter the Spinc structure on the quadruple, since in
homology it is homlogous to a boundary class. However, adding a doubly periodic domain
from Σβγ may alter that Spinc structure (although not on the original triples). Given s

let G be its orbit under the action of i∗
(
H2(Yβγ ; Z)

)
. We may then extend the coherent

systems of orientations for the triples to one for quadruple Xαβδγ and this orbit, see [13].
We also assume that the quadruple is strongly/weakly admissible, as necessary.

The choices made above define maps, A, on the boundaries of the quadruple and on the
two original triples. As before, we may define such a map on the quadruple: Aαβγδ(ψ) as
the homology class of the sum of doubly periodic domains from pairs of {α, β, γ, δ} which
must be added to φw ∗ ψ0 to get ψ ∗

(
φx ⊗ φy ⊗ φz

)
+ r[S]. The map

HG([x, i1, j1]⊗ [y, i2, j2]⊗ [z, i3, j3]) =

∑
w

∑
{ψ|µ(ψ)=0} #M(ψ)[w, i1 + i2 + i3 − nw(ψ), j1 + j2 + j3 − nz(ψ) + nz(Aαβγδ(ψ))]
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where ψ represents a Spinc structure from G. This map induces a chain homotopy

Fs1 ◦ Fs2 −
∑

{u∈G}

Fu|Xαβδ
◦ Fs0 = ∂δβ ◦H ±H ◦ ∂αβ⊗γα⊗δγ

in the standard way, [13], thereby establishing associativity for our cobordism maps if
we can find compatible additive assignments. (In the above formula, Fs0 = F (Θ+

αδ ⊗Θ+
γα)

which, under our assumptions, if almost always ±Θ+
γδ; however, with the additional marked

points, this will need to be verified.)
Suppose that ψ = ψ1 ∗ ψ2 represents an element of G with ψ1 occuring on Σαβγ and

ψ2 occuring on Σγβδ and that they restricts to the boundary of the quadruple as does
ψ0 = ψαβγ ∗ψγβδ . By the construction of Aαβδγ we have Aαβδγ(ψ) = Aαβγ(ψ1) +Aγβδ(ψ2)
and the additive assignments for the decomposition as quadrilateral and disc add correctly.
We must examine the other decomposition into Heegaard triples: Xαβδ ∪ Xαδγ . to find
compatible choices for Aαβδ and Aαδγ .

Since Xαβδγ is homotopy equivalent to four three-dimensional handlebodies glued along
their boundary, any three of the boundary components form a basis for H3(X). We have
the Meyer-Vietoris sequence for the decomposition along Yαδ:

0→ H2(Yαδ)→ H2(Xαδγ)⊕H2(Xαβδ)→ H2(X)→ TorsH1(Yαδ)

since the transverse intersection of an element of H2(X; Z) cannot non-trivially intersect a
class in H2(Yαδ), as these come from ∂ X. However, Tors H1(Yαδ) = 0.

Each element of G therfore restricts to Yαδ as the torsion Spinc structure. By assumption,
it must restrict to the other boundary components of Xαδγ as their torsion Spinc structure,
and thus be in the same equivalence class as ψΘ. We may use this triangle, and the
assumptions on this triple to construct an additive assignment on Σαδ. Then for each
element in G there is a triangle ψu such that ψu ∗ ψΘ = ψαβγ ∗ ψγβδ . By the long exact
sequence above, the only variation in these choices arise from periodic domains in the Yαδ,
i.e. from the boundary of the quadruple diagram. These choices determine maps Aαβδ and
Aαδγ , which will be compatible with the choices on the other decomposition.

Finally, if we push forward filtrations from Yαβ to Yγβ and then to Yδβ , using the base-
points for the complete sets of paths in the other boundaries, we find that for the homotopy
classes ψ representing a Spinc structure on αβδ, the relationship is:

F δβ(w) = Fαβ(x) − nz(ψΘ) + (nw − nz)(ψ) + nz(Aαβδ(ψ))

Implicit here is the calculation of −nz(ψ
′ − A(ψ′)) = −nz(ψΘ) since ψ′ abuts the three

basepoints. When nz(ψΘ) = 0 we recover the push forward from the αβδ-diagram, so the
filtraion indices are also correct.

4.6. Filtration Changes under Chain Maps in Various Settings.

Suppose (Σ, {αi}
g
i=1, {βi}

g
i=1, {γi}

g
i=1) defines a cobordism from Y0 to Y1 presented as surgery

on a framed link in Y0. We will think of this as a diagram in Y0 with the components of
L receiving +∞ framing. We now elucidate the effect of chain maps on the Λ-lattices and
the filtration indices in the common situations in which they arise. We will assume that
any initial triangle, ψ0, for building A has nw(ψ0) = 0 and nzi

(ψ0) = 0 for every i. This
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condition ensures that the push-forward filtration is 0 on the basepoint abutting ψ0.

I. When considering the complexes ĈF (Y0,Γ; s0) and ĈF (Y1,Γ; s1) we restrict to homotopy
classes of triangles, ψ, with nw(ψ) = nz(ψ) = 0. The chain complexes are relatively Zk/Λαβ
and Zk/Λγβ -indexed, respectively, and the homology group for each filtration index is an
invariant. Let F be the chain map defined as before for a Spinc structure restricting to s0

and s1. Both Λαβ and Λγβ inject into Λαβγ . We may consider, by taking direct sums of

the homologies at each end, that ĈF (Yi,Γ; si) is Zk/Λαβγ - indexed. The direct sums occur

over the pre-images of the maps Zk/Λαβ , Zk/Λγβ → Zk/Λαβγ . The chain map preserves

the relative Zk/Λαβγ structure as the filtrations now satisfy

G(x) = F(x) + nz(Aαβγ(ψ))

II. Λαβγ ≡ 0: For example, when we have a string link in S3 and the cobordism is generated
by surgeries on curves which are algebraically split from S. In this case, the push-forward
filtration satisfies

G(y) = F(x) + (nw − nz)(ψ)

for every ψ representing a Spinc structure on the cobordism restricting in a specified way
to the ends, and for any choice of a complete set of paths. The filtrations on the ends are
Zk filtrations and the chain map is a filtered map for the Zk+1-filtration. This situation
occurs in the long exact skein sequence of [15]. In S3, a filtration index on each component
can be calculated using the first Chern class of a Spinc structure on the manifold obtained
by performing 0 surgery on the knot. In [15], P. Ozsváth and Z. Szabó show that, in the
case under consideration, the push forward of this filtration is the one determine by the
first Chern class calculation on Y1 and the formula above corresponds to their identity for c1.

III. We will assume that no periodic domain from Σγα has nzi
(P) 6= 0. The diagrams

encoding legitimate handleslides of attaching circles satisfies this assumption. Addition-
ally, surgery on components of a bouquet, but not on any of the components of Γ, produces
such a diagram. These periodic domains arise from the S1×S2 connected sum components
in Σγα. Then the filtration on Σγα for the torsion Spinc structure is equivalent to 0. We
require our ψ’s to restrict to this Spinc structure. The filtration index will now satisfy

Fγβ(z) = Fαβ(x) + (nw − nz)(ψ) + nz(Aαβγ(ψ))

The last term may be improved when we are considering only ψ’s representing a given Spinc

structure. For then, Aαβγ takes values in those triply periodic domains formed by summing
doubly periodic domains from the boundary components. The value of nz (Aαβγ(ψ)) is

nz([Pαβ ]) + nz([Pγβ ]). Upon taking the quotient by Λαβ + Λγβ ⊂ Zk we have the same
relationship as in case I. In the proof of invariance in the next section we will give example
of the general push-forward filtration index and the construction of complete sets of paths
for a triple.
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5. Invariance

To see that homology of these complexes are truly an invariant of the triple (Y,Γ; s), we
need to show that performing any of the following moves will produce a chain homotopy
equivalent complex:

• Handleslides and isotopies of {βi}
g
i=1.

• Handleslides and isotopies of {αi}
g
i=k+1.

• Stabilization.
• Istopies of {αi}

k
i=1 and handleslides of them over element of {αi}

g
i=k+1.

Furthermore, we are not allowed to isotope or slide over any portion of the disc D ′. We
can, however, arrange for a β curve to isotope past the entire disc. The resulting diagram
can be achieved by allowable handleslides in {βi}

g
i=1 because the disc is contractible, [13].

We develop the proof of invariance through the multi-pointed diagrams; it precisely
mimics the proof for Heegaard-Floer homology, [13], and uses the same technical results.

5.1. Invariance Under Alteration of the Complete Set of Paths. It does not matter
which additive identification one uses. Let x0 be the basepoint for both A and A′. This
data determines the filtration index using the defining relation after choosing a value for

F(x0), which we also take to be F
′
(x0). We define a map between the two complexes

by [x, i, v] → [x, i, v + nz(A
′(φx))] where φx is the special path found from A. This is an

isomorphism on the generators and is a chain map. Furthermore, the map takes the sub-
complex defined by A to that defined by A′. Thus it is an isomorphism on the homology
groups determined by the different sets of data. Note that altering A changes the filtration
index for an intersection point by an element of Λ. The identification with cosets remains
unalterred by this isomorphism.

For changing x0 to y0, we may use φ−1
y0

for φ′x0
and φz ∗ φ

−1
y0

as φ′z to define a complete
set of paths and associated identification A′. This does not alter nz(A(φ)) and changes
F by F(y0). The map [x, i, v] → [x, i, v + nz(φy0)] will induce a chain isomorphism from
the homologies defined by one complete set of paths to that defined by the other, although
shifting in the assignment to cosets of Zk/Λ will occur.

Likewise, changing the value of F(x0) shifts the values of the filtration index, and the
assigment to a coset, but does not change any of the homology groups or their relation to
each other in the relatively indexed groups.

5.2. Results on Admissibility. Strong/Weak admissibility can be achieved for all our
diagrams without disrupting the assumptions coming from Γ. We have seen the existence
of such diagrams already. In section 5 of [13] P. Ozsváth and Z. Szabó show how to ensure
that isotopies, handlelsides and stabilizations can be realized through such diagrams. In
each case this is achieved by finding a set {γi}

g
i=1 ⊂ Σ of disjoint, simple closed curves with

the property that #(βi ∩ γj) = δi,j and that Tα ∩ Tγ 6= ∅ (or the same but with the roles
of α and β switched).

We convert, through stabilization, our multi-point diagram into a diagram with an em-
bedded disc. We only need require that w and the entire disc do not intersect the winding
region. However, we may always choose our γ’s to lie in the disc’s complement. If we wish
to wind α’s we can do the same, requiring only that each γi that intersects a meridian does
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so away from the segment in ∂D′. With this arrangement of {γi}
g
i=1 the proofs of lemmas

5.4, 5.6, and 5.7 of [13] carry through.

5.3. Invariance of Complex Structure and Isotopy Invariance. In these cases, we
re-write the chain maps defined in [13] to incorporate the new indices. For example, P.
Ozsváth and Z. Szabó define a chain map for a homotopy of paths of almost complex
structures which we adjust to be, cf. [13]:

Φ∞
Js,t

[x, i j] =
∑

y

∑

φ

#MJs,t(φ)[y, i − nw(φ), j − nz(φ−A(φ))]

where the sum is over all φ with µ(φ) = 0 and the moduli space consists of sutiable holo-
morphic representatives of φ.

Note that in this case, A requires no adjustment, as alteration of the almost complex
structure does not change the homotopy classes of discs. That the filtration relation holds
for all homotopy classes of discs ensures this is still a chain map and that the map preserves
the Γ-sub-complex. When Λ(Y,Γ) ≡ 0 the above map is a filtered chain morphism by the
positivity of nzi

and the absence of the A term.

Similar alterations ensure that the map does induce an isomorphism on homology (we
need to adjust the chain homotopy in [13] which shows that the map has an inverse on
homology). We need only that the trivial homotopy class of discs from x to x has A(φ) = 0
since −φx ∗ φx ∼ 0 in π2(x0,x0). The invariance of the action of H1(Y,Z)/Tors follows as
in [13] adjusting the maps as above and using our previous observations.

For the isotopy invariance, the same argument applies (as the proofs are roughly parallel).
We write the chain map coming from the introduction/removal of a pair of intersection
points as:

ΓΨ[x, i, j] =
∑

y

∑

φ∈πΨ
2 (x,y

#MΨ(φ)[y, i − nw(φ), j − nz(φ−A(φ))]

where we count holomorphic representatives with moving boundary, [13]. Making these
adjustments as necessary, we mimic the proof in [13].

Two new features occur: first, the isotopy may remove x0, and second, new intersection
points need to be included in the complete set of paths. If we must change the basepoint
for the complete set of paths, the homologies will be unalterred. However, the identification
with the cosets of Zk/Λ will alter as the filtration index changes by the constant vector
F(x′

0). This explains why we have only a relatively indexed homology group.
When we have a pair creation, with a fixed basepoint, we get new intersection points in

pairs q+ and q− with an obvious holomorphic disc in π2(q+,q−). The homotopy classes
of discs joining intersection points from the original diagram do not change in this process.
Thus we may extend A by choosing φq+ for each q+ and amalgamating with the newly

created disc to get φq−
. We use the extended A in our definition of ΓΨ as πΨ

2
∼= π′2. This

restricts to the original identification on the homotopy classes for the original intersection
points. For a pair annihilation we do not necessarily have the arrangement of preferred
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paths as we have just described, but we may change the complete set of paths without
changing the homologies to obtain it. This merely changes F(q−) by an element of Λ.

5.4. Invariance under Handleslides. The standard proof for handleslide invariance ap-
plies in this context, using the chain maps induced by a Heegaard triple as in the previous
section. We show below that the element corresponding to Θ+ is still closed and explain
which additive assignment for homotopy classes of triangles will work.

We will describe this solely for the α’s. Away from the curves involved in the handleslide,
the resulting boundary Σγα is the connected sum of genus 1 diagrams for S1×S2. Because
we have not moved a curve across a marked point, the corresponding multi-point diagram
has all the basepoints, w and zi, in the same domain D of Σ− {αi}

g
i=1 − {γi}

g
i=1.

If we calculate the multi-point filtration indices for Σγα we see that 1) Λ ≡ 0 and 2)all
2g representatives of the torsion Spinc structure have filtration index 0. None of the holo-
morphic discs cross any marked points, so the homology is the standard homology for the
connected sum of S1 × S2’s but with generators of the form [Θ+, i, i, . . . , i]. As usual, we
will use the canonical generator Θ+, the maximally graded generator with i = 0. We will
use strongly admissible diagrams for the Spinc structures on the ends of the cobordism.
The cobordism, Xαβγ , is Y × I so each triangle will represent s× I.

As in the proof of handleslide invariance in Heegaard-Floer homology, [13], our diagrams
may be drawn so that each intersection point in Tα ∩ Tβ can be joined to an intersection
point x′ ∈ Tγ ∩ Tβ by a unique holomorphic triangle ψx ∈ π2(x,Θ

+,x′) with domain
contained in the sum of the periodic domains from Σγα.

We choose additive assignments A1 and A2 and their corresponding complete set of paths
on both Σαβ and Σγβ, respectively. We require that x′

0 on Σγβ be the intersection point
abutting ψx0 . Because the handleslide does not cross a meridian we have that nw(ψx0

) =
nzi

(ψx0
) = 0. If we identify π2(x0,x0) with π2(x

′
0,x

′
0) using ψx0 then we implicitly have

an identification H2(Y0) ∼= H2(Y × I) ∼= H2(Y1). Any other triangle representing the same
Spinc structure can be found from this triangle by splicing discs in the boundaries Σαβ and
Σγβ, by splicing doubly periodic domains from Σγα (we always require our triangles include
Θ+), and by adding copies of Σ. If we think of ψ = φ′ ∗ ψx0 ∗ φ

−1 +Pγα + k[S] then, using
the formulas from section 4.1,

AY×I(ψ) = A2(φ
′)−A1(φ) +H(Pγα)

To the handleslide cobordism we associate the multi-point chain map determined by this
additive assignment on Σαβγ . The last term H(P) plays no role in the chain map as the
doubly periodic domains from that boundary contain no marked points in their support.
With these observations the usual proof applies directly.

5.5. Stabilization Invariance. Stabilization changes the surface Σ to Σ′ = Σ#T2 and
adds an additional α and an additional β curve, intersecting in a single point c. Stabi-
lization does not alter H2 nor does it affect the structures of π2(x,y). Given an additive
identification A, we may extend A to the stabilization. Since any intersection point must
involve the additional point c, we need only that A(φ′) = A(φ) and the choice x′

0 = x0× c.
We make the necessary alterations for the gluing result, Theorem 10.4 in [13], to hold.
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This theorem provides the invariance under stabilization in the standard case. Our ex-
tension of the additive identification ensures that the Γ-sub-complex is preserved. Thus,
we have an isomorphism from the homology for (Σ, {αi}

g
i=1, {βi}

g
i=1,x0,A) to that for

(Σ′, {αi}
g
i=1 ∪ αg+1, {βi}

g
i=1 ∪ βg+1,x0 × c,A′). In addition, in [13], P. Ozsváth and Z.

Szabó show that the action of H1(Y,Z)/Tors is invariant under stabilization. That this
also applies to multi-point diagrams follows analgously to the case of the differential.

6. Basic Properties of ĤF (Y, S; s)

6.1. Examples.

Example 1: In Figure 2 we examine the homology of a knot in S1 × S2 which inter-
sects [S2] precisely once. Regardless of the knot, K, we may find a diagram as in the figure.
The intersection points, after handlesliding, giving generators in the chain complex are pre-
cisely Θ± × x, where x is a generator for the Knot Floer homology of K in S3. However,
in the complex, only one of the two homotopy classes from Θ+ to Θ− does not cross the

marked point, z. It is straightforward to verify that ∂̂Θ+ × x = Θ− × x + Θ+ × ∂̂Kx. In
each Spinc structure, the filtration index collapses; however, the differential as above also
produces trivial homology in each Spinc structure.

Example 2: Suppose we have a connected sum of standard genus 1 diagrams for S 3

and S1 × S2. Then the canonical generator for the action of H1 on the Heegaard-Floer

group ĤF (Y, s0), for the torsion Spinc structure, is represented by a single, closed inter-
section point: Θ+. We choose it as the basepoint for the complete set of paths, and choose
a path in each component of the connected sum to θ−. We can use these to connect Θ+ to
any other intersection point. As there are only 2 discs in each component, which we assume
do not cross w and upon which the action of A takes one into the other, these each will
evaluate to the same quantity on the j terms. However, since they evaluate the same way
on j we have seen that [Θ+, 0, 0] and all other Θ’s are closed in the complex CF +. For the

complex ĈF with the additional marked points we will need to make further assumptions.

6.2. Subtracting a Strand. Suppose we remove a component strand of S ⊂ (Y −
B3) to obtain a new string link, S ′. We may use the complex and differential defined
from a Heegaard diagram for S by ignoring zk. Without altering the complete set of
paths or the point x0, the diagram without zk is a Heegaard diagram subordinate to S ′,
and the differential incorporates the same holomorphic discs. When Lk does not alge-
braically intersect any homology class in Y , we can view the last coordinate, jk, as a

filtration on the complex ĈF (Y, S; s) and use the associated spectral sequence with E1

term ⊕rĤF (Y, S; s, [j1, . . . , jk−1], r) to calculate ĤF (Y, S′; s, [j1, . . . , jk−1]). It collapses in
finitely many steps.

Adding or subtracting an unknotted, unlinked, null-homologous component corresponds
to adding or subtracting an index which behaves like i. The Heegaard diagram corresponds
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Figure 2. 0-surgery on an unknot linked with K. The d-base follows the
dashed ard without twisting. The hatched part of the diagram includes the
effect of K on the α (heavy) and β (dashed) curves. The portion shown in
detail describes the linking and the surgery. Note that placing a meridian
instead of the framing curve gives a diagram for K. The intersection points
never use x1 or x2, hence come from intersection points for the knot dia-
gram. Destabilizing the meridian for K produces a diagram where the only
holomorphic discs are those from the complex for K and for S1 × S2

to stabilizing in the region containing w and placing a new point zk+1 across the new α,
but in the same domain as w

6.3. Mirror String Links. Let S ⊂ Y − B3 be a string link in standard form, lying in
the plane which defined the projection of our framed link diagram except in neighborhoods
of the crossings. Let s denote a Spinc structure on this manifold. Let S ′ be the string
link found through reflection in this plane, reflecting the framed components as well and
switching the sign of their framing. Then S ′ is the string link induced by S in −Y under
orientation reversal. Drawing the standard Heegaard diagram for (Y, S), we may fix the
β-curves, and change the α-curves for each crossing and framing to obtain a diagram for
(−Y, S′). The meridians stay in their respective places;however, the marked points for each
are reflected to the “other side” of the strand to give marked points: z ′i. The intersection
points in Tα∩Tβ from the original diagram are in bijection with those of the new diagram.
Each homotopy class φ is carried to a new homotopy class φ′, but to join the same inter-
section points it must map in with reversed multiplicities. All this implies that we may

calculate ĤF ∗(−Y, S
′; s′) by looking at the intersection points for (Y, S) and the differential

for the complex using −Σ. As in Heegaard-Floer homology, this new complex calculates the



32 LAWRENCE P. ROBERTS

co-homology ĈF
∗
(Y, S; s); there is thus an isomorphism ĤF ∗(Y, S; s) → ĤF

∗
(−Y, S′; s′).

(This isomorphism maps absolute degrees as d→ −d if s is torsion). Using the same marked
points, but the image of the basepoint and paths in the complete set of paths we find that
−F will be a filtration index for S ′ when F is for S (Λ(−Y,S′) = −Λ(Y,S) = Λ(Y,S)). In
particular, since each intersection point has fixed image on each meridian, the boundary
of a class φ must contain whole multiples of the meridian and so nzi

(φ) = −nz′i(φ
′) since

the multiplicities reversed, but nz′i(φ
′) = nzi

(φ′). In summary, there is an isomorphism

(including the absolute grading when present):

ĤF
(−d)

∗ (Y, S; s, [j])→ ĤF
∗

(d)(−Y, S
′; s′, [−j])

When Y = S3 and S is a normal string link, then S ′ is the mirror image of S found by
switching all the crossings. The change in indices corresponds to the alteration ti → t−1

i in
the Alexander polynomial (see section 7).

6.4. Three Operations on String Links. Given two string links, S0 and S1, in Y0 and
Y1, there are three simple operations we can perform with two seperate string links, see
Figure 3. We always assume that the strands are oriented downwards. We will analyze the
effects these operations have on the Floer homology.

6.4.1. S1 + S2. We assume, for the first, that we have (Y0,Γ0) and (Y1,Γ1) presented as
string links in framed surgery diagrams in D2 × I. We assume that these have been put
in standard form. This means we arrange that all the meridians, at the bottom of each
diagram, intersect at most two β’s. However, there is only one choice possible for every g-
tuple of intersection points due to the presence of U . Amalgamating the second string link
does not affect this property for the meridians. Alternately, we can wind in the complement
of the star in D2 × {0} and the amalgamation region as their union is contractible in Σ.

Topologically, the amalgamation is a connect sum of Y0 and Y1 where the sums occur
for balls removed outside the region depicted as D2 × I. Thus for two Spinc structures,
s0 and s1, there is a unique s = s0#s1 on the amalgamated picture. Furthermore, H2

∼=
H2(Y0; Z)⊕H2(Y1; Z). If the first string link has k0 strands and the second k1 strands, the
amalgamation has filtration index taking values in Zk0/ΛY0 ⊕ Zk1/ΛY1 .

Counting α’s and β’s from the portion if Y coming from Y0 demonstrates that for an
intersection point we must have an α from Y0 pairing with a β from Y0 and likewise for Y1.
Even if some β’s extend from the Y0 region to the Y1 region (which we can avoid if we like),
this remains true. In particular, the diagrams drawn from projections inD2×I will have one
such β. Therefore, the generators for the new chain group are the product of generators for

the two previous groups: as groups ĈF (Y, S0 +S1; s) ∼= ĈF (Y0, S0; s0)⊗ĈF (Y1, S1; s1). We
may choose filtration indices for both links, choosing basepoints and complete sets of paths.
The amalgamation will have (F 0,F1) as a filtration index for the complete set of paths found
by using the product of the two basepoints and the paths from complete sets for Y0 and Y1.
That the domain containing w corresponds to the outer boundary of D2 × I − (S0 + S1),
and that the same is true for each string link individually, ensures that the paths in each
complete set need not be alterred. Furthermore, this region separates the domains for

classes, φ, used in the differentials in the two complexes; thus ∂̂S0+S1 =
(
∂̂S0⊗I

)
⊕

(
I⊗∂̂S1

)
.

We have verified that
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S0 S1

S0 + S1

S0 · S1 S0(3, S1)

Figure 3. Three Simple Operations on String Links

ĤF (Y, S1 + S2; s, [j0]⊕ [j1])
∼= H∗(ĈF (Y0, S0; s0, [j0])⊗ ĈF (Y1, S1; s1, [j2]))

up to gradings. The grading calculation follows as for connected sums [14]. In particular,
for two torsion Spinc structures on Y0 and Y1, the absolute grading satisfies gr(x ⊗ y) =
grS0(x) + grS1(y), which is all we require for string links in S3. We may also establish
this relation by using the Maslov index calculation for Y0 or Y1, presented as surgery on
a link in S3, found in the absolute gradings section of [16]. Our assumptions include such



34 LAWRENCE P. ROBERTS

presentations for Y0 and Y1 and the connect sum provides one for Y . We may use triangles
with nw = 0 for Y0 and Y1. This allows use to use a product triangle in the calculation for
Y . The first Chern class for the associated Spinc structure will be the sum of those for Y0

and Y1. Since the intersection form splits and the Euler characteristics and signatures of
the cobordisms add, we see that the gradings for the complexes for Y0 and Y1 add to give
that for the complex on Y .

6.4.2. S1 · S2. The second operation is the composition of pure string links, the analog of
composition for braids. The torsion of the composite is the product of the torsions of the
two factors, [8]. We may prove the analogous result the homologies of the string links. For
n = 1 stranded string links composition corresponds to the connect sum of knots.

Again we will work with (Y0, S0) and (Y1, S1) with the assumption that S0 and S1 have
the same number, n, of strands going from top to bottom. In addition, we require each
component of the string links to have one boundary on the top and one boundary on the
bottom of the D2 × I region in their respective manifolds. No closed component is formed
by the stacking operation.

We prove that

ĤF (Y, S0 · S1; s, [k]) =
⊕

[k0]+[k1]=[k]mod Λ

H∗(ĈF (Y0, S0; s0, [k0])⊗ ĈF (Y1, S1; s1, [k2]))

Let Σα0β0 be a weakly admissible Heegaard diagram for (Y0, S0) with marked points
w, z1, . . . , zn and Σα1β1 be a weakly admissible Heegaard diagram for (Y0, S0) with marked
points w′, z′1, . . . , z

′
n. In each case, we use a diagram in standard form. Thus, the region

containing w (or w′) includes all of ∂(D2×I) minus the strands. The diagram α0α1, β0β1 is
formed as in Figure 4, by joining Σ0 and Σ1 with a tube. The end of the tube in S1 should
occur close to w. We have depicted the “star” for S1 by the thin lines emanating from the
tube. As the two w’s now occur in the same domain, we will consider only one w point.
We let α′

i be the small Hamiltonian isotopes of the αi curves, except at the meridians. At
the meridians we choose curves which traverse the tubeand loop around the ith strand in
each diagram, as depicted for the thick curve in Figure 4.

We will analyze the cobordism generated by the triple α0α1, β0β1, and α0α
′
1, where the

occurrence of repeated sets of curves in a diagram indicates using Hamiltonian isotopes in
the standard way. We show a closeup of the meridians in Figure 5. The thick curves should
follow the “star” except that the domain containing z ′i must also abut Θ−.

Each of the ends of this cobordism has 2n marked points, so we will have filtration
indices taking values in Z2n, modulo some lattice. First, we describe the various boundary
components.

Boundary I: α0α1, β0β1

Topologically, this is a connect sum for Y0 and Y1 whose Heegaard diagram is drawn in
the standard way. Each Spinc structure is therfore of the form s0, s1. Inclusion of the
marked points puts us into the previous construction: amalgamation. Thus, the generators
of the complex for s are products of generators from s0 and s1, which we denote x⊗y. We
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Figure 4. Heegaard Diagram for the Composite of String Links

x1

xj−1

x2

xj

Θ+

Θ−

z′i

Figure 5. The region near the ith meridian in the top diagram. The dashed
curves are β’s and the thickest curve is the γ curve which replaces the circular
meridian
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may take the products of our basepoints to be the basepoint for a complete set of paths
formed by the product of paths on the two separate diagrams (since w excludes the tube
joining the two). As in the amalgamation case, we find that ΛI ≡ Λ(Y0,S0) ⊕ Λ(Y1,S1) with

filtration index (F0,F1). We use the previous result to identify

ĈF (Y0#Y1, S0 + S1; s, [j0]⊕ [j1])
∼= ĈF (Y0, S0; s0, [j0])⊗ ĈF (Y1, S1; s1, [j1])

Boundary II: α0α1, α0α
′
1

Topologically, this boundary is a g0 + g1 fold connect sums of S1 × S2’s, which may be
seen by isotoping the new α′

1 components down the strands of S0, across the meridians
found there, and back up the strands. However, with the additional marked points, it is
unclear if the candidate for Θ+

std is closed in this diagram. We can choose Θ+
std as our

basepoint, and use products of topological discs in Σ from each connect sum component as
our complete set of paths. If we denote by ei, the ith basis vector in Z2n, the lattice for
this component will be ΛII ≡ Span { ei − en+i}. We now argue that Θ+

std is indeed closed
for the differential missing all marked points.

There are precisely 2g0+g1 intersection possible for this diagram. We may use our com-
plete set of topological discs to see that Θ+

std has maximal grading. By the Heegaard-Floer

homology theory, we must have that the generator Θ+
std is closed for the differential only

missing w. In particular, a holomorphic disc contributing to this differential cancels with
some other holomorphic disc. Suppose we have two such homotopy classes of discs, φ and
φ′. Splicing the inverse of one to the other, φ−1 ∗ φ′ must produce a periodic domain. This
periodic domain must evaluate to an element of ΛII under the application of nz . However,∑
nzi

(P) = 0 for every periodic domain. Since classes with holomorphic representatives
must have non-negative multiplicities, it must be the case that when nz (φ) = 0 so too
nz(φ

′) = 0. As the differential missing all marked points arises from a subset of the mod-
uli spaces in the Heegaard-Floer differential and adding the extra marked points does not
eliminate one disk in a cancelling pair without eliminating the other, so Θ+

std is still closed

Boundary III: α0α
′
1, β0β1

This diagram represents the result of composition. Topologically, each of the new α ′

curves may be slid down a component of S0 until it reaches a meridian. After sliding across
the meridian, and back up the diagram, we have the connect sum of the diagrams for Y0

and Y1. Again, each Spinc structure on Y is the sum of structures, si, from Y0 and Y1.
Additionally, H2(Y ; Z) ∼= H2(Y0; Z) ⊕ H2(Y1; Z). However, the lattices now combine as
ΛIII ≡

(
ΛY0 + ΛY1

)
⊕ 0, the span of the two original lattices, and z ′i is in the same domain

as w. We required that our original diagrams be weakly admissible for our Spinc structures.
We will see below how to extend periodic domains so that they continue to have positive
and negative multiplicities in the diagram for Y . Thus, the new diagram will be weakly
admissible.

In the diagram for S0 there are g0 α curves and g0 β curves. As we have not changed
these, all the β curves that intersect an alterred α′ in the “lower” diagram must pair with
an α curve from the lower diagram when describing a generator. Hence, the new α’s must
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pair with β’s from the upper diagram. These intersections have precisely the same form as
intersections with the meridians in the original diagram for Y1. This allows us to establish
a one-to-one correspondence between the product of generators for Y0 and Y1 and those of
Y . The chain complex, as an abelian group, is the product of the original chain complexes.
These generators we denote xy.

If we have basepoints for a complete set of paths on Y0 and Y1 for our Spinc structures,
we may choose as our basepoint on Y , the generator corresponding to the product of these
basepoints. To specify the complete set of paths, consider a class φ with nw(φ) = 0 in either
of the original diagrams. If φ is in the lower diagram, we may use φ in the diagram for Y
as the condition on nw implies that the domain of the disc does not extend into the upper
diagram: a small region at the top of each strand lies in the domain containing w in the
diagram for Y0. In φ occurs in the upper diagram, its domain may cross nz′i and include
copies of the meridians in its boundary. In the diagram for Y , we may extend this disc by
following the strand down to the meridian from S0. At crossings, the disc gains a boundary
component and an intersection point, or a copy of a framed component. However, it will
not cross w, and it crosses zi the same number of times as φ crossed z ′i. Periodic domains
will continue to have the same multiplicities in the regions coming from their respective
diagrams.

The class φ0
x may be used to join x0 y to xy for any y coming from the diagram for Y1.

Likewise, φ1
y, when extended, may be used to join xy0 to xy. We use these for the com-

plete set of paths, and extend to get φxy by composing φ1
y ∗φ

0
x. In particular, the filtration

value for x0 y is −nz′(φ
1
y), and the difference in filtration values between xy and x0 y is,

modΛ, −nz(φ
0
x). Thus, given filtration indices on the two diagrams, we can construct a

filtration index on the composite which agrees with the vector sum: F 0 + F1. As we are
only concerned with the “hatted” theory we need only identify the coset.

We now return to the triple α0α1, β0β1, and α0α
′
1. We call the induced four manifold

X. We choose on X the Spinc structure u that is s × I and restricts to the torsion Spinc

structure on the α0α1, α0α
′
1- boundary. We then have ΛX ≡ Λ0 ⊕ Λ1 + ΛII . We use a

homotopy class of triangles to join x0 ⊗ y0, Θ+
std, and x0 y0; a choice made more specific

below as the unique local holomorphic class. As we assign Θ+
std filtration index 0 and this

local class has nw(ψ) = nz(ψ) = 0, we have the following relation for the filtration indices
on generators and for some λ ∈ ΛX :

F(xy) = F 0(x)⊕ 0 + 0⊕F 1(y) + λX

Topologically, the cobordism, once we fill in the second boundary, is Y0#Y1× I. If we take
the quotient modΛX , we recover the filtration index on Y as Z2n/ΛX ∼= Zn/ΛIII and the
filtrations will add correctly. Since z ′i is in the same domain as w in the diagram for Y ,
there is a chain isomorphism preserving filtrations which drops their entries in the filtration

index. Thus, we recover ĈF (Y, S0 ·S1) as a relatively indexed complex (and not, as initially
could happen, a quotient of its index group).

The Heegaard triple will be weakly admissible for the doubly periodic domains, so we
may choose an area form on Σ assigning the periodic domains signed are equal to zero.
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As it stands, this may assign large portions of the diagram small areas because the pe-
riodic domains abutting the old meridians from S1 in the α0α1, α0α

′
1-boundary are quite

substantial. We may address this difficulty by handlesliding the portion of the new α ′’s
down the diagram for S0 until they are close to the meridians for S0. By doing this, we
will have introduced new intersections between individual α and β curves; however, none
of these may occur in a generator. Were we to use one of them, there would be too few
α’s remaining in the upper region of the diagram to pair with the β’s found there, and no
means to ameliorate this deficiency with β’s from the bottom region. Furthermore, nothing
in the previous analysis will be changed by this alteration.

In this new diagram, there are obvious holomorphic triangles abutting each intersection
point x⊗y and Θ+

std. These consist of g0 + g1 disjoint topological triangles embedded in Σ
whose domains are contained in the support of the periodic regions from the α0α1, α0α

′
1-

boundary. The triangles near the meridians for S1 are shown in Figure 5. None of these
triangles intersect a marked point We may make those periodic domains arbitrarily small
in unsigned area, forcing our local triangles to have area smaller than ε. Without the
adjustment in the previous paragraph, we would not be able to ensure that only the triangles
identified above give rise to ε-“small” homotopy classes. Using the induced area filtrations,
the chain map decomposes into a “small” portion, which is an isomorphism, and a “large”
portion (see Appendix ?? for more details about this technique):

F ((x⊗ y)⊗Θ+
std) = ±xy + lower order

We see then that the chain map found by counting triangles not crossing any marked points

induces an injection of ĈF (Y0#Y1, S0 + S1; s, [j0] ⊕ [j1]) into ĈF (Y, S0 · S1; s, [j0 + j1])

and that the map is a chain isomorphism on ⊕ĈF (Y0#Y1, S0 + S1; s, [j
′
0] ⊕ [j

′
1]) where

[j0 + j1] = [j
′
0 + j1] mod ΛIII . Together with our analysis of boundary I, this proves the

result.
Finally, as the small triangles used in the argument each have nw = 0 and µ = 0, and the

cobordism induces the torsion Spinc, the absolute grading for the image will be the sum of
the absolute gradings for the original intersection points, when si are torsion. Since there
are handleslides in the α0α

′
1, β0β1 diagram taking the curves replacing meridians in α′

1 back
to the meridians, and the “small” triangles in each handleslide map link the corresponding
generators, the absolute grading for the generators in this diagram are the same as for Y0

shifted by that of Θ+.

Note: Θ+ has grading gi

2 . But the cobordism has H2 free, with dimension g1 + g2 and
signature equal to zero, so the grading shift formula provides the result.

6.4.3. S1(i, S2). The third operation is a form of string satellite to a string link. This can
be formulated using the Heegaard diagram shown in Figure 6

Once again, for string links in S3, there is only one way to pair meridians with β curves to
achieve an intersection point. Indeed, if we draw α’s as vertices of a graph and β’s as edges,
the meridians and the β’s that intersect them form a tree with one edge not possessing a
vertex on one end. There is only one way to pair edges to end points in such a graph. The
remaining β’s in the diagram can only intersect α’s according to the intersections in the
original diagrams. However, the construction still applies to string links in more general
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β’s

zi

z′1 z′2

Figure 6. The Heegaard Diagram for a String Satellite. This is a cutaway
view of a diagram for S0(i, S1) with the cut through the ith strand of S0.

manifolds, presented as surgery on framed links in D2 × I. A count of α’s and β’s, shows
that generators for this new diagram occur as products of generators from the old diagrams,
even when we have wound to achieve some admissibility and possibly increased the number
of intersections at each meridian. Alternately, we may use the standard form to obtain
diagrams to which the argument from S3 still applies. Once again, the construction is a
connect sum of two three manifolds, and once again the Spinc structures, etc. transfer as
expected.

Thus the chain complex is the product of the chain complexes for the constituent string
links. The filtration indices, however, differ from before. To ease the argument, we note
that we may think of such a string link as the multiplication of one strand in (Y0, S0) n1

times, followed by a composition with (Y1, S1) amalgamated with a trivial string link on n0

strands. We already know the result of composition, hence we need only understand the
string satellite where the inner constituent is an n1 stranded trivial string link in S3. This
has only one intersection point, hence the chain complex, as a group, is the same as that
for (Y0, S0) for each Spinc structure.

Any class φ joining two generators, with nw(φ) = 0 can be extended to the new string
link. It includes the new α and thus goes up the inner string link to the top and back down
to the new meridians. For each time φ crosses zi, each of the new meridians, m′

1, . . . ,m
′
n2

will be in the boundary of the new disc. In the trivial string link picture there is one
generator: u1× ·× un1 with one intersection on each meridian. In particular, the new Λ in
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Zn0+n1−1 is spanned by vectors

v′ = (λ1, . . . , λi, λi, . . . , λi, . . . , λn1)

where λi is repeated n1 times and (λ1, . . . , λn0) is a vector in ΛS0 . We choose the extension
of φx to φx×u1×···×un1

to give our complete set of paths. The filtration index is now measured
by

(F1, . . . ,Fi−1,Fi, . . . ,Fi,Fi+1, . . . ,Fn1)

with n2 copies of Fi.
As a consequence, discs with nzi

(φ) = 0 in the original diagram extend as themselves to
the new diagram. In addition, any disc with nz′i(φ

′) = 0, i = 1, . . . , n2 corresponds to a

disc in the original diagram with nzi
= 0. The differentials ∂̂ and ∂̂′ must be the same, and

count only classes of discs which do not need to be extended.
Putting all this together, if we denote the string satellite found by substituting S1 in the

ith strand of S0 by S0(i, S1) then

ĤF (Y, S0(i, S1); s, [(l1, . . . , ln1+n2−1)] ∼=

⊕
[j

′

]+[k
′

]=[l]mod Λ′
H∗(ĈF (Y0, S0; s0, [j])⊗ ĈF (Y1, S1; s1, [k]))

where j
′
= (j1, . . . , ji−1, ji, . . . , ji, ji+1, . . . , jn1) and k

′
= (0, . . . , 0, k1, . . . , kn2 , 0, . . . , 0) and

Λ′ = Λ + 0⊕ Λ1 ⊕ 0.

We need also to calculate the absolute grading, when appropriate. When we have in-
serted the trivial string link into S0 and a torsion Spinc structure on Y0 we may handleslide
the new α across the new meridians to arrive at a picture for a standard connect sum.
At each handleslide, there is a small µ = 0 homotopy class of triangles with nw = 0 and
admitting holomorphic representative joining each intersection point to the corresponding
point in the new diagram (the product decomposition of generators is unchanged). In the
connect sum picture, the gradings add – the grading of the product generator is the same
as the grading of the generator from S0. In the cobordism induced by the handleslides, the
grading does not change: gr(x× u1 × · × un1) = grY0(x)

7. Alexander Invariants for String Links in D2 × I

Let S be a string link in D2 × I. In this section we relate the Euler characteristic of

ĈF (S; v)⊗Q to classical Alexander invariants built from coverings of D2 × I − S.

7.1. Alexander Invariants for String Links. Let S ⊂ D2× I be a string link; denote a
complement of its tubular neighborhood byX = D2×I−intN(S) andX∩D2×{i} by Ei for
i = 0, 1. By the Meyer-Vietoris sequence we have that H1(X; Z) ∼= Zk and is generated by
the meridians of the strands onD2×{0}. As string links are specialized θk+1-graphs, to con-
struct an Alexander invariant for the string link we replicate the approach of R. Litherland,
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[11], for the Alexander invariants of θk+1-graphs (cf. [8]). Let H be the ring Z[t±1
1 , . . . , t±1

k ];

we will consider the torsion properties of the H-module H1(X̃, Ẽ1; Z) where X̃ is the uni-

versal Abelian cover of X (determined by the Hurewicz map π1(X,x0)→ H1(X,Z) and Ẽ1

is the pre-image of E1 under the covering map.

Note: Taking the lifts to the universal Abelian cover, we consider the long exact sequence

for the pair (X̃, Ẽ1):

−→ H1(Ẽ1) −→ H1(X̃) −→ H1(X̃, Ẽ1) −→ H0(Ẽ1) −→ H0(X̃)

Now, H0(Ẽ1) ∼= Z, and it maps isomorphically onto the next term. However, H1(Ẽ1)

is not generally 0; thus, the invariant derived from H1(X̃, Ẽ1) is not an invariant of the

complement of S alone. (However, for marked knots, i.e. one stranded string links, Ñ is

an infinite strip, and H1(X̃ ; Z) ∼= H1(X̃, Ñ ; Z) as H-modules.)
We may construct a relative cell decomposition for (X,E1). We think of E1, a punctured

disc, as the portion of the boundary ∂X−X ∩ intD2×{0}. Start by constructing a relative
cell complex for (E0, ∂) which consists of k one-cells joining the internal punctures in a
chain to the outer boundary, along the bottom of the projection of S. Then add a two-cell
to construct the disc. This may be extended to the entirety of X by attaching one-cells
at each of the crossings in the projection along the axis of the projection and two-cells for
each face in the projection with the exception of the leftmost one, called U . The two-cells,
R1, . . . , Rk, arising from faces that intersect the 0th level in I must intersect D2×{0} in one
of the one-cells in its decomposition. Otherwise, the two-cells glue to the one-cells at the
crossings with the remainder of their boundaries glued into ∂X according to the projection.
Finally, the complement of this complex is the interior of a three-cell, which we glue in to
complete X.

We may collapse the two-cell in E0 into the union of E1 and the other two-cells by
contracting the three-cell. Likewise we may collapse the one-cells in E0 into the union of
E1 and the other one-cells by contracting R1, . . . , Rk respectively. This leaves a relative
cell complex with an equal number of 1- and 2- cells. We call this cell complex Y . The
homotopy and homology properties of the pair (X,E1) are encompassed in this complex.

However, the chain complex for Ỹ as a relative complex becomes

0 −→ C2(Ỹ )
e∂
−→ C1(Ỹ ) −→ 0

Thus, H1(X̃, Ẽ1) ∼= coker ∂̃, and the matrix, P , for ∂̃ as a presentation of the H-module

H1(X̃, Ẽ1) is square. By taking the homomorphism ε : H → Z, defined by substituting 1
for each variable, we see that ε(P ) is the boundary map for the relative chain complex,Y .
Since H1(X,E1; Z) ∼= 0, as E1 contains meridians of all types, P has non-zero determinant,
which we take to be an Alexander polynomial of the string link.

7.2. Fox Calculus. A standard approach to calculating the homology of covering spaces
is by applying the Fox calculus to the fundamental group of the underlying space. I provide
a quick review, used in the next sub-section, followed by some additional comments about
the case for string links. For a other accounts see [6] or [21] or Fox’s original articles.
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Let X be a finite, connected CW -complex with a single 0-cell, p, with no cells of dimension
3 or greater. Below, we will choose this to be the complement of some embedded 1-complex
in the three sphere. Let G = π1(X, p), be the fundamental group based at p, and presented
as < s1, . . . , sn |R1, . . . , Rm >. Let φ : G → H1(X; Z) be the Hurewicz homomorphism.

We consider the cover X̃ determined by this map, and let X̃0 be the pre-image of p under
the covering map. We choose a specific lift of p, called p̃.

For a path w in the one skeleton of X, there is a lift w̃ to the one skeleton of X̃, starting

at p̃ and defining an element of Z1(X̃, X̃0). If we choose such lifts of the generating paths,
si, and denote them by s̃i, we may write the lift of any other path as

w̃ =
∑

i

ξis̃i

with ξi ∈ H where H is the integral group ring for the first homology group of X. We
also denote the coefficients in such an expansion by ∂w

∂si
. These maps may be extended

linearly to the group ring of the fundamental group and satisfy a property similar to that
of derivations. In particular, in the group ring, ∂m = 0 for m ∈ Z and ∂ g−1 = −g−1 ∂ g.

If we choose representative paths for the relations Rj, we may form the matrix
(
∂Rj

∂si

)
.

This matrix is a presentation matrix for H1(X̃, X̃0) as an H-module. More specifically, we
should consider the Rj as elements of the free group generated by the si, and apply the

maps ∂
∂si

appplied to the free group. Take the resulting matrix and apply to each entry the
quotient maps from the free group to G and from G to the first homology group.

One way to present the fundamental group of the complement X = D2×I−S is to choose
a point in D2 × I − S and loops through faces of the projection as generators. Using the
crossings to provide the relations, we obtain a presentation, similar to the Dehn presentation
for a knot group, with k more generators than relations. For this presentation the Fox
calculus produces a presentation matrix with k more columns than rows. These correspond
to the faces R1, . . . , Rk and collapsing these faces to obtain the cell complex Y corresponds
to eliminating the columns in the presentation matrices for Alexander polynomials of knots
and links.

Furthermore, were we to consider the Heegaard diagrams associated with the string link,
we would have k meridians along D2×{0}. There would only be one choice of intersection
between these meridians and the attaching curves derived from the faces, R1, . . . , Rk, that
could be extended to an intersection of Tα ∩ Tβ. The collapsing of these faces corresponds

to this unique choice and to the use of H1(X̃, Ẽ1) as the appropriate classical analog for
the Floer homology.

This suggests using other presentations of the fundamental group to calculate the Alexan-
der invariant. In [8], P. Kirk, C. Livingston, and Z. Wang calculate the invariant using the
analog of the Wirtinger presentation. There is a projection of a string link (with kinks at
the top of each strand, for example) where the Wirtinger presentation is generated by

m1, . . . ,mk, u1, . . . , us,m
′
1, . . . ,m

′
k

wheremi is the meridian of the ith component inD2×{1} andm′
i is the meridian inD2×{0}.

The kinks ensure that mi 6= m′
i. Applying the Fox calculus to the relations arising from
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the crossings we obtain a matrix (A B C), with entries in H, where the blocks reflect the
division in the generators. It is shown in [8] that (A B) is invertible over F = Q(h1, . . . , hk),
the quotient field of H. They name the determinant, det(A B), the torsion, τ(L), of the
string link and relate it to the Reidemeister torsion of the based, acyclic co-chain complex
C∗(X,E0;F ) with coefficients twisted by the map π1 → Zk. While the particulars: co-
homology vs. homology, twisted coefficients vs. coverings, and E0 vs E1; are different their
torsion, up to these choices, is the Alexander invariant defined for S.

7.3. Heegaard Splittings and Fox Calculus. Here we relate the computation of Alexan-
der polynomials to our Heegaard diagrams. The upshot will be to identify the Euler char-

acteristic of ĈF (S) ⊗Q with the previously defined Alexander invariant of H1(X̃, Ẽ1). In
particular, ∑

v∈Zk

χ(ĤF (S, v; Q)tv11 · · · t
vk

k

is a generator for the order ideal of this module. Various other authors have used much
the same argument in different settings; J. Rasmussen provides a very similar argument for
Heegaard diagrams for three manifolds in [19].

Let S be a string link in D2×I. We consider the standard Heegaard decomposition induced
from a projection described in section 1. Let Hα be the handlebody determined by {αi}

g
i=1,

and Hβ be the handlebody determined by {βi}
g
i=1. We assume that our meridians lie in

D2 × {0}. Take as our basepoint, p0 for π1(X) the 0-cell in Hβ. For each of the faces, we
choose a path fi, the gradient flow line oriented from the basepoint to the critical point cor-
responding to βi which links the core positively in S3. The other gradient line oriented from
the index 1 critical point to 0-cell will be called f i. The loops bi = f i◦fi generate π1(X, p0).

The α’s, not including the meridians, induce the relations for a presentation of π1 corre-
sponding to the Dehn presentation of the fundamental group, [6]. We choose an intersection
point u ∈ Tα ∩ Tβ which corresponds to points ui ∈ ασ( i ) ∩ βi in Σ for some permutation
σ ∈ Sg. Note that the choice along the meridians is prescribed for each such intersection
point: there are k meridians and k + 1 faces intersecting them, but we cast one aside.
This arrangement implies that our only choices occur on non-meridional α’s. For a non-
meridional α, let [ασ( i )] be the path from the basepoint, along fi, through the attaching
disc for βi to ui, and around ασ( i ) with the its orientation, and then back the same way
to the basepoint. Each time [αj ] crosses βi positively, we append a bi to the relation; each

time it intersects negatively we append a b−1
i . The word so obtained is called ai. We derive

this principle by looking at the segments αsj into which the β’s cut αi and flowing them
forwards along the gradient flow. The interior of each segment flows to the basepoint, while
the endpoints flow to critical points in the attaching discs for the β’s. Thus, the path from
one endpoint of the segment, to the critical point corresponding to that βs, then along some

f−1
s or fs, and back along one of ft or f

−1
t , then to the other end of the segment, and back

along the segment, is null homotopic. This allows us to break the α up into the various β’s
it crosses.
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Then
(
∂ aj

∂bi

)
, ignoring the columns corresponding to the faces abutting D2 × {0}, is a

presentation matrix for the H-module H1(X̃, Ẽ1), and hence its determinant will provide
the Alexander invariant.

If we consider the free derivative of aj with respect to a bi we find terms which corre-
spond to each intersection point of αj with βi. The term possesses a minus sign when the
two intersect negatively, otherwise it possesses a positive sign. The terms correspond to
paths from the basepoint through fσ−1(j) to βσ−1(j), through the attaching disc to uσ−1(j),

along αj to the intersection point with βi and then back along f−1
i . This can be rewritten

as a word in the bi’s. Summing over all intersection points with βi equals ∂bi(aj).

Let µ be is the Hurewicz map from the fundamental group to the first homology group.
According to the Fox calculus, the matrix [µ(∂biaj)], is a presentation matrix for the ho-
mology of the cover as an H-module. Again, we ignore the bj’s corresponding to the faces
abutting D2 × {0}. We calculate the Alexander invariant by computing the determinant
of this matrix. Each term in this determinant has the form sgn(σ)(−1)#hρ11 · · · h

ρk

k , where
ρi is the sum of the powers of hi over the terms in the determinant multiplying to this
monomial; we do not allowing any cancellation of terms. This monomial corresponds to
a specific intersection point in Tα ∩ Tβ found from the pairing of rows and columns in
the matrix. Likewise # is the number of negative intersections ασ( i ) ∩ βi in the g-tuple
corresponding to this term.

Let x and y be two intersection points. We will consider the differences

#y −#x ρi(y)− ρi(x)

Since we are considering points in Tα ∩ Tβ for a diagram of S3, there is a homotopy class
of discs φ ∈ π2(x,y).

We place marked points into the diagram corresponding to the strands and according to
the method in section 1. We may measure how many times a 2-chain in X, representing a
homotopy class of discs, φ, intersects the link components by evaluating (nw−nzi

)(φ). We
wish to show that

ρi(y) − ρi(x) = (nw − nzi
)(φ)

The right hand side counts the number of times that that the boundary of D(φ) winds
around the ith meridian. We need only show that the same is true of the left, or, equiva-
lently, that µi, the ith-coordinate of the boundary, equals the left hand side.

In the boundary of the disc we have the α’s oriented from the points in x to those in
y. We can take segments starting at ui and travelling along ασ(i) to xi and yi so that their
difference is the oriented segment of the boundary of φ in αi. We join this to the basepoint
by using paths in the attaching discs for the β’s and the preferred paths fj or f−1

j at each
endpoint. Breaking this up as before, we can convert this path into a word of bi’s and their
inverses. If we look at one of the βi boundary segments in φ, we see that the concatentation
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of the words for the α segments corresponding to the intersection points with βi homotopes
into the α boundary and the β boundary of φ.

Thus µi of the concatenation equals µi of the boundary of D(φ). Furthermore, µi ap-
plied to each word of the concatenation tells us how many more times the segment in one
α corresponding to y, converted into a word of generators, wraps around the ith meridian
than does the segment corresponding to x. Taking µi of the concatenation gives the sum
of these differences, or ρi(y) − ρi(x).

We now consider the difference in # between the two intersection points. The intersec-
tion point determines a permutation σx where xi ∈ ασ( i ) ∩ βi. We orient Tα by the
projection α1 × · · · × αg → Tα, and likewise for Tβ. The orientation of Symg(Σ) is given
by the orientation of Tx1Σ⊕ · ⊕ TxgΣ. Then Tα ∩x Tβ has local sign

sgn(σx)(−1)
g(g−1)

2 · (ασ( 1 ) ∩x1 β1)× · · · × (ασ( g ) ∩xg βg)

or

sgn(σx)(−1)
g(g−1)

2 (−1)#(x)

The difference in sign between y and x is then multiplication by sgn(σy)sgn(σx)·(−1)#y−#x .
This is also the difference in sign between terms in the determinant, and corresponds to
the Z/2Z grading in section 10.4 of [14].

Thus, if we consider those intersection points with ρ(x) = v, for a given vector v, we
recover the intersection points for a given filtration index since ρ satisfies the index rela-
tion. In addition, these each correspond to the term hv11 · · · h

vk

k and occur with sign given by
the Z/2Z grading of the Heegaard-Floer homology, which is also the sign of the correspond-
ing term in the determinant. For rational coefficients, the sum of these generators with
sign is the Euler characteristic of the homology group corresponding to v for this filtration
index.

8. State Summation for Alexander Invariants of String Links in S3

We consider a generic projection of a string link S in D2 × I onto the plane. As in [12],
[5], we can use this projection to draw an ancillary rooted, planar graph. The intersection
points of Tα ∩ Tβ will correspond to a subset of the maximal spanning forests of this
graph, subject to certain constraints imposed by the meridians. From these graphs we
will prescribe a recipe for computing functions, Fi and G, on the intersection points which
satisfy the same relations relative to homotopy classes φ as the exponents and signs of the
Alexander invariants. The Fi will form a filtration index, and G will be the grading of our
chain complexes.

Once we have adapted the spanning tree construction to apply to string links, the argu-
ment is the precise analog of the argument in [12]. We do not need the results of Heegaard-
Floer homology for the filtration calculation, but the discussion of grading will presume
some familiarity with them.
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8.1. Planar Graph Preliminaries. We consider planar graphs in the unit square, I 2.
Choose a number, k, and place k

2 vertices, marked by ∗, along the bottom edge when k is

even (k+1
2 when k is odd). Place additional vertices, labelled by •, along the top edge until

there are k vertices total. Let Γ be a connected, planar graph in I 2 which includes these
vertices, but whose other vertices and all its edges are in the interior of the square. We let
F be a maximal spanning forest for Γ, with a tree component for each ∗ on the boundary,
rooted at ∗, and oriented away from its root.

We may define a dual for Γ by taking its planar dual inside I 2, Γ∗, and placing the
vertices that correspond to faces of I2 − Γ touching ∂I2 on ∂I2. Since Γ is connected, this
choice of arc on the boundary is unambiguous. There is one vertex which corresponds to
the left side of the square. We replace it with an ∗ and continue counter-clockwise, changing
boundary vertices to ∗’s until we have alterred k

2 +1 (or k+1
2 , k odd). This graph must also

be connected.
We say that F admits a dual forest if the edges in Γ∗ corresponding to edges of Γ−F form

a maximal spanning forest, F ∗, with each component rooted at a single ∗. In that case, we
orient the forest away from its roots. Not every F admits a dual forest: a component of
F ∗ may contain two ∗’s. We consider the set F of forests in Γ that are part of a dual pair
(F, F ∗). We will encode F ∗ in the diagram for Γ by inscribing the edges in Γ − F with a
transverse arrow which concurs with the orientation of F ∗.

Now consider a string link, S in D2 × I and a generic projection of S into I2. We
decompose S = S1∪· · ·∪Sl, where each Sj consists of a maximal string link with connected
projection, i.e. one whose projection into I2 forms a connected graph.

Lemma 7. For the Heegaard decomposition of S3 defined by the connected projection of a

string link, S, there is a one-to-one correspondence between the generators of ĈF (S) and
the set of dual pairs, F , for a planar graph Γ ⊂ I2 as above.

Proof: The regions in I2 − p(S) can be colored with 2 colors as the projected graph
is 4-valent. We label the leftmost region with the letter “U” and color it white. We then
alternate between black and white across the edges of the projection. By using vertices
corresponding to the black regions and edges corresponding to crossings where two (not
necessarily distinct) black regions abut, we may form an second planar graph. For those
regions touching the border of I2, the vertex should be place on the boundary.

We replace the vertex of each black region abutting the bottom edge of I 2 with an ∗.
Thus, we have a graph embedded in D2 with k vertices on the boundary, k+1

2 of which are

∗’s when k is odd and k
2 when k is even. An example is given in Figure 7. In particular, Γ

is connected: starting at a vertex of Γ inside a black region of p(S) we can take a path to
p(S) and follow p(S) to a point in the boundary of any other black region. Since any edge
of p(S) touches a black region, we may then perturb the path into the black regions and
find a corresponding path in the graph of black regions. If we place U ’s in all the white
regions abutting the bottom edge of I2, then the graph of white regions is connected and,
replacing U ’s with ∗’s is the dual graph, Γ∗, from above.

Note: The dual of Γ is always connected, but it is not always the graph of white regions.
When both Γ and the graph of white regions are connected, however, the correspondence is
complete. By embedding Γ in the closure of the black regions, we can assign to each white
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Figure 7. An example of the ancillary graph for a simple string link.

region a vertex in Γ∗. If two distinct white regions go to the same vertex, there must be a
path in the closure of the black regions from ∂I 2 to ∂I2 separating the two white regions,
but not intersecting a vertex of p(S) (or else the white regions would not map to the same
vertex of Γ∗). Such a path disconnects the graph of white regions.

Suppose we use the Heegaard decomposition of S3 arising from the diagram for S. Follow-
ing [12], we describe an intersection point in Tα ∩ Tβ by local data at the vertices of p(S).
For each non-meridional α there are four intersection points with {βi}

g
i=1, corresponding

to the four regions in the projection abutting the crossing defined by α. For each meridian
there are one or two intersection points depending upon whether it intersects the region U .
However, there can be only one choice along all the meridians which assigns each meridian
to a distinct β. We will place a • in the quadrant corresponding to the intersection point
at each vertex.
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A sub-graph wholly contained in the face

Figure 8. The clock → and counter-clock ← moves on maximal forests.

Every intersection point corresponds to a pair of dual maximal spanning forests in the
black and white graphs of the projection. The unique choice along the meridians corre-
sponds to the rooting of the forests. We then choose the edges in the black graph which
join two regions through a quadrant marked with a •. As each black region contains a •,
this produces a subgraph, F , containing all the vertices of Γ. We can perform the same
operation in the white graph to obtain a second sub-graph.

Furthermore, all the components of these sub-graphs are trees. A cycle in F would bound
a disc in S2 not containing a region labelled U . Rounding the crossings of p(S) along the
cycle, we find a 4-valent planar graph with Bin crossings and Bin + 1 faces not touching
the cycle. The original intersection point must form a 1− 1 correspondence between these
faces and crossings as all the surrounding faces were consumed by the cycle. There can be
no such identification and thus no cycle in the black graph. Similarly, if the intersection
point does not produce a forest in the white graph there is a contradiction. Thus we have
two maximal spanning forests.

Every component must contain precisely one ∗. It cannot contain more as there is a •
for each edge in the tree and for each root. In order for the number of edges plus roots (the
α’s) to equal the number of β’s there must be precisely one root. Thus the two sub-graphs
are a dual pair of maximal spanning forests for the graphs of black and white regions

Conversely, the arrows on the edges of Γ found from a dual pair (F, F ∗) tell us how to
complete the assignment of α’s to β’s from the unique assignment along the meridians: for
each non-meridional αi we choose the intersection point in αi ∩ βσ( i ) pointed towards by
the arrow on the edge corresponding to the crossing defined by αi. The existence of F ∗

ensures that no arrow contradicts the assignment along the meridians by pointing into a
region labelled with U .

8.2. A Variant of the Clock Theorem. We will now examine the structure of the set
of dual maximal spanning forests. As in [2] we consider two moves performed on the
decorations a dual pair inscribes on Γ: the clock and counter-clock moves. These are moves
interchange the two pictures in Figure 8. There should be a face – not labelled with a U –
of I2 − Γ abutting these two edges at their common vertex. This allows a portion of Γ to
be wholly contained in the interior of the face.

A clock move performed on F in Γ corresponds to a clock move performed on F ∗ in Γ∗.
These moves take dual maximal forest pairs into dual maximal forest pairs. If the edge with
the transverse arrow joins two distinct components of F , then the new oriented sub-graph,
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. . .. . .

Figure 9. Graphs in I2 admitting a unique pair of maximal spanning
forests. In particular, no counter-clock moves can be performed in them.
Furthermore, embedded appropriately in a planar graph with a maximal
tree inscribing the same decorations, no counter-clock move in the planar
graph can alter the decorations in this region. We use the one on the left
when k is even, the one on the right when k is odd.

F ′, of Γ after the clock move is still a forest. The portion of the component through the
vertex beyond the vertex is a tree not containing the other vertex of the transverse edge.
The move merely prunes this section of one component and glues it to another component.
If the edge with transverse arrow joins vertices in the same component of F , it is conceivable
that a cycle could form. However, this can only happen if the arrow on the transverse edge
points out of the disc bounded by this cycle, and thus a root of the dual graph must be
contained in the cycle. Since those roots lie on ∂I 2, this cannot happen.

For a connected, finite planar graph, Γ with only one root, the structure of maximal
spanning trees is already understood, [2]. We require that the root be in the boundary
of U , the unbounded component of R2 − Γ. Pick one of the trees, T . Each additional
edge in Γ, when adjoined to the tree, divides the plane into a bounded and an unbounded
component. Draw an arrow pointing into the bounded component on each of these edges.
This is the decoration inscribed by the dual tree as before.

In [2], Gilmer and Litherland prove Kauffman’s clock theorem:

Theorem 8.1. The Clock Theorem The set T of maximal, spanning trees is a graded,
distributive lattice under the partial order defined by T ≥ T ′ if we can move from T to T ′

solely by using clock-moves.

We will only need that any T ∈ T can be obtained from any other T ′ by making clock and
counter-clock moves. It is shown in [2] that only a finite number of clock (or counter-clock)
moves can be made successively before we reach a tree not admitting another. Furthermore,
this tree is unique for the type of move. We can go from any tree to any other by continually
making clockwise moves until we reach the unique un-clocked tree and then make counter-
clock moves to get to the other tree.

8.2.1. The Clock Theorem for Forests. The vertices on the boundary of I 2 divide the bound-
ary into arcs. We draw an arrow into the the regions labelled by U , across the corresponding
arcs. Place arrows pointing out along the other edges. A dual pair (F, F ∗) for the string
link S extends these arrows in the sense that each face has exactly one arrow pointing into
it.
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We use the arrows on ∂I2 to extend Γ to a planar graph with a single root, so that each
dual pair (F, F ∗) corresponds to a unique maximal spanning tree in the resulting graph.
To do this we consider a new square with the reverse of the decorations on the boundary
of the old square, with the exception that the one on the right edge and the first root from
right to left remain the same. We can then extend these decorations by a graph, Γ ′, and
the dual pair as in Figure 9. By inspection, these are the unique decorations providing a
dual pair of forests in this graph and extending the boundary conditions. (No two arrows
may point into the same white region, if the dual is to be a forest).

We can glue this decorated graph to the one from S to obtain a planar graph where there
is only one U , corresponding to the leftmost edge of S, one ∗, and the pair (F, F ∗) becomes
the decorations from a maximal spanning tree as in the clock theorem. Furthermore, a
maximal spanning tree in the glued graph inscribing the decorations on the Γ ′-portion as
in Figure ?? corresponds to a maximal pair (F, F ∗) in the graph of black regions for S.

Now we perform counter-clock moves until we reach the maximally clocked tree. At no
time do these moves disrupt the decorations in the Γ′-portion. No such move can occur on
a face in Γ′ as there is no vertex with the requisite arrangement of tree edge and transverse
arrow. Furthermore, the Γ′ region can be disrupted from outside only when a counter-clock
move occurs on a face abutting Γ. Noting that the arrows point out of the vertices on
the bottom, and into the vertices on the top, inspection shows that no counter-clock move
can occur on such a face at a vertex from Γ′. This is not true for clock moves, which can
occur on the top left of Γ′. Finally, since the transverse arrows point into the faces that
were formerly labelled by U , and these arrows are never altered, no counter-clock move ever
involves a face formerly labelled with U . However, as any forest pair for S may be extended
to a tree for the new graph and counter-clocked to the maximal clocked tree, there is always
a sequence of counter-clock and clock moves, not involving Γ′, which connect any two pairs
for S.

In short,

Lemma 8. The dual pairs (F, F ∗) for the graph of black regions, Γ, found for a connected
projection of a string link may be converted, one into another, by clock and counter-clock
moves performed on the decorations coming from the rooting of the string link.

8.3. State Summation. Following [12], we will prescribe weights at the crossings of the
string link as in Figure 10, and extend those weights to apply to more than one component.
For each intersection point in Tα ∩ Tβ, we consider the associated dual pair (F, F ∗) and
locally place •’s in the regions abutting each intersection point or merdian according to
the direction of the trees. We sum the weights from the marked region at each crossing
and meridian. This prescribes Fi for the ith strand if it is the thick strand. Crossings not
involving the thick strand contribute nothing to the weight. When we change from the
intersection point obtained from one tree to that obtained from another tree differing by a
clock or counter-clock move, the change in exponent is given by (nw − nzi

)(φ) for any φ in
π2(x,y) that joins these intersection points. We verify that this equals the change in the
weights. As the Heegaard diagram describes S3, an integer homology sphere, such a class φ
must exist. Since the dual pair (F, F ∗) coming from an intersection point can be obtained
from the dual pair for any other intersection point by clock and counter-clock moves, we
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Figure 10. Filtration Weights Depicted for the Thick Strand and the ith

Filtration Value. The meridians do not contribute to the weights.
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Figure 11. Weights for the Absolute Grading

may compute the difference in exponents for any two intersection points by looking at the
difference in the overall weights.

Likewise, there are weights to calculate the grading for each intersection point. See
Figure 11. For each intersection point we add the weights over all the crossings without
considering which strands appear. The meridians do not contribute to the grading.

We now prove that the difference in grading and filtration values between one maximal
forest and the forest that results after a clock or counter-clock move equals the difference
in the weights defined for each tree above. We denote the local contribution to each inter-
section point by placing a • or ◦ at each crossing. We will assume that • and ◦ are identical
for crossings that are not depicted. Following the definitions of maximal trees and clock
and counter-clock moves given above, we can verify that the moves from ◦ to • fulfill our
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Figure 12. Case I: Weights, depicted for the horizontal strand, do not
change under the alteration from ◦ to •. The thin strands do not need to
come from the same component. The thin component on the left receives
weight 0 from these configurations. The thin strand on the right receives
the same weight from ◦ and •. The grading change occurs along the middle
strand, as inspection of the crossings shows.

requirements and exhaust all possible moves. We break the argument up into cases:

Case I: Figure 12 shows the cases where a counter-clock move joins intersection points at
two crossings (not meridians). These correspond to unique discs, namely squares, “atop”
the Heegaard surface. As the squares do not cross any of the multi-points, there will be no
change in exponents corresponding to any of the three strands. This equals the change in the
weights. On the other hand. squares always have a one dimensional space of holomorphic
representatives, so the intersection point ◦ has grading 1 greater than • in Heegaard-Floer
homology. This equals the change in the grading weights.

Case II: Figure 13 shows the same alteration but with a different configuration of under
and over-crossings. The homotopy class we choose is now a “square” with punctures and
handles added to it. In particular, the disc travels off the end of the figure in the direction
of the knot picking up punctures at crossings and joins punctures into handles if it happens
to go through the same crossing twice. It terminates on the meridian corresponding to the
horizontal strand. Thus, the filtrations remain unchanged except in the ith component.
But the “disc” passes over zi once, so Fi(•) − Fi(◦) = (nw − nzi

)(φ) = −1. In [12], P.
Ozsváth and Z. Szabó show that µ(φ) = 1 for such a class, so the grading change equals the
change in grading weights.

Case III: For the other cases with three distinct strands, the strand on the right should
go under the horizontal strand. However, if we rotate the figures in cases (1) and (2) 180◦

using the horizontal strand as an axis, we get precisely those cases. The disc also rotates
and occurs “beneath” the Heegaard diagram. This disc represents a counter- clock move;
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Figure 13. Case II: Weights, depicted for the horizontal strand, reduce by
1 under the alteration from ◦ to •. The same comments as in the caption
for case I apply to the thin strands and the grading.

However, we will still calculate the difference for a clock move from ◦ to •. For this we use
φ−1 with D(φ−1) = −D(φ). The weights on the horizontal strands reflect across the hori-
zontal strand as do the weights for the grading. The weights for the thin strands remain the
same. Thus F IIIi (•) = F IIi (◦) and F IIIi (•)−F IIIi (◦) = −

(
FIIi (•)−F IIi (◦)

)
= +1 for those

configurations in case II. But (nw−nzi
)(φ−1

III) = −(nw−nzi
)(φIII) = −(nw−nzi

)(φII) = +1

as φII and φIII include the ith meridian the same number of times.

Case IV: In the cases where two or more of the above strands are the in the same com-
ponent, we employ the following observations: 1) if the two thin strands belong to the
same link component, then nothing changes, and 2) if the horizontal strand corresponds to
the same component as one of the thin strands (or both), the sum of the weights in each
quadrant differs by the same amount from that quadrant’s weight as a self-crossing. Thus
the difference between intersection points of the sum is the same as the difference of the
self-intersection weights. The grading computations don’t change. Inspecting the values
in Figures 12 and 13, we see that the filtration difference still equals the difference in the
weights for the horizontal strand.

Finally, we have implicitly assumed that the horizontal strand between the two intersec-
tions is locally unknotted. Local knotting alters the topology of the domain D(φ) above.
Take the square in case I. If we knot the horizontal strand, there is still a class φ joining
the two intersection points, but it is a punctured disc with the same four points on its outer
boundary, and one point that is both • and ◦ on each of its other boundaries. These new
boundaries come from the faces in the projection of the local knot, and consist entirely of β
curves. The α curve at each intersection point on such a boundary joins that boundary to
another boundary β, possibly from the square. Together these form a forest with vertices
being β curves, and edges being the α’s that join them. In the Appendix we show that
these still have µ(φ) = 1,which is all we need in the proof.
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Figure 14. The Contradiction in Lemma 9 Arising from a Cycle.

8.4. Heegaard-Floer Gradings and Grading Weights. In the remainder of this sec-
tion we connect the gradings from Heegaard-Floer homology and those from the weights. It
should come as no surprise that they are equal and that the argument in [12] adapts read-
ily. For the grading, we know that gr(y) − gr(x) is the same as the difference in weights.
However, we will show that there is an intersection point for which the sum of the weights
above is the absolute grading obtained from the Heegaard-Floer theory. Thus the sum of
the grading weights will equal the grading for every intersection point since the difference
between these is equal for distinct intersection points. We will need a lemma before we
proceed.

Lemma 9. Let G ⊂ R2 be a finite graph and let Hα be the handlebody that is its regular
neighborhood in S3. Then S3 − Hα is a handlebody with the co-cores of its one-handles
corresponding to the bounded faces of R2 −G. We choose these co-cores to be the {βi}

g
i=1

of a Heegaard diagram for S3. Suppose that {αi}
g
i=1 contains α’s which intersect at most

2 β’s, each geometrically once. Furthermore, assume that each α links exactly one edge of
G. Then there is only one point in Tα ∩ Tβ.

Proof: Supppose x and y are points in Tα ∩ Tβ and x 6= y. Then x = {x1, . . . , xg} and
y = {y1, . . . , yg} where xi ∈ aσ(i) ∩ βi and yi ∈ aψ(i) ∩ βi with σ, ψ ∈ Sn. If x 6= y then

ψ−1 ◦σ is not the identity. It must therefore have a decomposition into cycles with at least
one of length greater than or equal to 2. In the planar graph formed by placing a vertex
in each bounded face of Γ, and an edge between each pair of faces abutted by an α curve,
each non-trivial cycle in the cycle decomposition corresponds to a cycle in the graph. Each
cycle in the graph implies the existence of a collection of α’s that are null-homologous in
Σ, contradicting the Heegaard assumption (see Figure ??). Thus at most one intersection

point exits. Since ĤF (S3) ' Z(0), there is at least one intersection point, x0.

Starting with a string link in S3, we use handleslides to construct a Heegaard diagram
as in the lemma. The intersection point in this Heegaard diagram will correspond to one
in the diagram for the string link. We will ensure that the handleslides do not alter the
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absolute grading. The intersection point for the string link must then have absolute grading
equal to 0. This will also be the value of G(x) for that intersection point. Since we know
that G(y)−G(x) = gr(y)− gr(y), the weights above will give the absolute grading of each
intersection point.

To obtain an acceptable diagram, it suffices that the new α link an edge entering the
crossing defined by the old α before the handlesliding as the weights for the grading only
occur in the quadrant between the two edges exiting a crossing. The unique intersection
point will then correspond to an old intersection point with G(x) = 0. We ignore the points
{z1, . . . , zk} to find a pointed diagram for S3.

We order the crossings in the string link projection by the following conditions. Each
crossing of Lk is larger than any crossing of strands Li and Lj with i, j < k. For any k,
the crossings with Li for i ≤ k are enumerated from largest to smallest by the first time
they are encountered while travelling backwards along Lk from the meridian. We adjust
each crossing in increasing order by starting at that crossing (either for Lj with itself or
between Li and Lj with i ≤ j) and isotoping and handelsliding the α-curve in the direction
of Lj, going over all the α’s along that route. At self-crossings we choose to follow the
edge which exits the crossing and arrives at a meridian without returning to the crossing.
When we arrive at the meridian we handleslide across it, and then repeat the procedure
in reverse. This produces an α linking the penultimate edge through the original crossing.
Furthermore, for each crossing the ordering implies that there is a path to the meridian
along the orientation of one or other strand, along which the crossing does not recur, and
such that none of the α’s encountered have been previously alterred.

The handleslides do not take the α’s across w. By inspecting the standard handleslide
diagram, [13], we can see that the new intersection point is the in the image of one of the
original intersection points, the one with marking in the same quadrant at each crossing,
under the composition of the handleslide maps. The cobordism induced by the handleslides
is S3× I, so the formula calculating the change in absolute grading imples that the grading
does not change. Moreover, since the triangle does not cross w we know that the image is
[x0, 0] which has absolute grading zero. This equals the absolute grading assigned by the
weights.

Note: For a single knot in S3, a string link consists solely in the choice of a point on
the knot. This gives a preferred position for the meridian and the two points w, z used in
[15] to calculate the knot Floer homology. The weights above agree with those of [12].

8.5. Example. In the graph of black regions for Figure 7 we may form dual forests in two
ways, see Figure 15. First, we may have arrows pointing up the segments on the left side of
the graph of black regions. Second, we may have some arrows pointing up that side, then
a transverse arrow, then arrows pointing down the remainder of the segments on the left
side. To join the vertices at top and bottom we have an arrow up the single segment on
the right side.

When all the arrows go up the left side, they place the local intersection points on the
opposite side of L2 from that pointed to by the orientation of L1. Looking at the weights
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. . .
. . .

Figure 15. Examples of dual maximal forests for the graph Γ from Figure 7

indicates that, regardless of the crossing type, such a tree contibutes 0 to the filtration index
for L2 and 0 to the grading weight. On the other hand, when the crossings are positive all
the segments on the left are assigned − 1

2 for the weight on L1. The transverse arrow on the
right will contribute nothing to either sum. A similar analysis for negative linking implies

that this forest contributes h
− lk(L1,L2)
1 to the Euler characteristic.

For the second type of forest, let m be the number of arrows pointing up on the left
side. Then m can vary between m = 0 and m = 2 lk(L1, L2) − 1 = 2L − 1 when the

linking number is positive. The monomial for this state is h−s
1 h−L+s

2 when m = 2 s and

−h−s−1
1 h−L+s

2 when m = 2 s + 1. The minus sign in the latter comes from the generator
having grading −1. Together these imply a polynomial of the form

(
h−L1 + h−L+1

1 h2 + · · ·+ h−L2

)
−

(
h−L1 h−1

2 + · · · h−1
1 h−L2

)

Since the string link is alternating, and the minus signs occur from grading −1, we can
determine the homology for the string link from the above polynomial (see the next section).
It is (v1, v2 ≤ 0)

ĤF (S, (v1, v2)) ∼= Z(0) v1 + v2 = −lk(L1, L2)

ĤF (S, (v1, v2)) ∼= Z(−1) v1 + v2 = −lk(L1, L2)− 1

8.6. Braids and Alternating String Links.

8.6.1. Triviality for Braids. In section 7, we saw that the Euler characteristic of the chain
groups for a string link in S3 produces the torsion of the string link τ(SL) defined in [8].
The torsion is known to be trivial if the string link is a pure braid. Analogously, we may
prove:

Lemma 10. ĤF (SL) ∼= Z0 when SL is a pure braid. Using the weights from the previous
section, the homology is non-trivial only for the index (0, . . . , 0, 0)
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Proof: There are two ways to prove this statement. The first analyzes the combinatorics
of Kauffman states in the diagram. There is only one state: The meridians consume the
first row of β-curves. Each crossing then has three regions already claimed, so it must
use the fourth. This consumes the second set, and we proceed up the diagram. However,
a more conceptual explanation may also be given. We know that the invariant we have
defined does not depend upon how the strands move about on D2 × {1}. We may simply
undo the braid to obtain the trivial string link.

The statement about filtration indices follows from the weights defined in the previous
section and the observation that the unique state assigns its local contributions to the
quadrant between two edges pointing into the crossing as the strands are oriented down
the page.

8.6.2. Vanishing Differential for Alternating String Links. We call a string link, S, alter-
nating if there is a projection of S where proceeding along any strand in S from D2×{0} to
D2×{1} encounters alternating over and under-crossings. In a projection, we may place a
small kink (formed using the first Reidemeister move) in any strand which does not initially
participate in any crossing (self or otherwise) without changing whether the projection is
alternating.

We call the ith strand, si when counting from left to right on D2 × {0} and si when

counting on D2×{1}. If we follow the si from D2×{0} to D2×{1} find that it is sσ(i) for
some permutation σ ∈ Sk.

At each end of D2 × I we may label the strands as u or o for whether the strand is
the over or under strand in the crossing immediately preceding (following) the end of the
strand on D2× {1} (D2 ×{0}). This assigns a k-tuple called the trace of the string link at
that end. We denote the trace at D2×{i} by Ti(S). There is an inversion on such k-tuples
found by interchanging u’s and o’s, which we denote v → v. To compose alternating string
links to have an alternating result requires T1(S1) = T0(S2).

Our goal is to show

Theorem 5. Let S be a string link with alternating projection. Then the chain complex,

ĈF (S, j), arising from the projection Heegaard splitting has trivial differential for every
index j. In fact, all the generators have the same grading.

This generalizes the result in [12] for alternating knots. We will need the knot case for the
general result. The result in [12] is somewhat stronger (by identifying the grading).

Note: We call Morse critical points of index 1 for the projection of si to the I factor
a “cap”. Critical points of index 0 are called “cups”.

Lemma 11. We may draw an alternating projection for S so that 1) Every crossing occurs
with both strands oriented up, 2) No two crossings, caps, or cups occur in the same level in
the I factor.

Proof: Rotate every crossing without the correct orientations so that both strands go
up. This can be done in a small neighborhood of the crossing at the expense of introduc-
ing cups and caps. The second condition is achieved by a small perturbation of the diagram.
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Given a diagram in this form, we proceed with a few combinatorial lemmas. These are
devoted to showing that an alternating string link may be closed up to give an alternating
knot with certain additional properties. At each time t in the parametrization of the ith

strand, let fi(t) be the number of strands strictly to the left of that point on si.

Lemma 12. Let t be a time when si(t) is in a level (in I) not containing any caps or cups,
and not at a crossing. The total number of crossings encountered along the strand si by the
time t is ≡ |fi(t) − i + 1|mod 2 when si is oriented up and ≡ |fi(t) − i|mod 2 when si is
oriented down.

Proof: The number of caps plus the number of cups encountered in the ith strand, by time
t, is even when the strand is oriented up, and odd when the strand is oriented down. fi(t)
changes value by 1 as si(t) goes through a cap, cup or crossing. It changes value by 2 at
levels where a cap or cup occurs to the left of si(t). By reducing modulo 2 we eliminate the
latter variation. Since there are fi(t) strands to the left, having started with i− 1 strands
to the left, the number of cups, caps and crossings must be congruent to |fi(t) − i + 1|
modulo 2. Removing the parity of the number of caps and cups gives the result.

Corollary 2. The total number of crossings encountered by the ith strand is congruent
modulo 2 to |σ(i) − i|.

This lemma has the following consequence:

Lemma 13. Suppose si and sj cross somewhere in S. If T0(si) = T0(sj) then i ≡ j mod 2.
If T0(si) 6= T0(sj) then i ≡ j + 1 mod 2

Proof: Consider the first time that they cross in the ordering on si. Suppose that i < j,
and that there are k strands to the left of the point in si just before the crossing. Then
there must be k± 1 strands to the left of sj. We label each point on the strands, except at
crossings, by a u or an o depending upon whether an over, or under, crossing must occur
next. The labels of the points on the two strands just before the crossing of si and sj
must be different. If si has encountered an even number of crossings prior to this point, it
will have label T0(si), otherwise it has label T0(si). The same will be true of sj. We have
assumed that both strands are oriented up just before the crossing. Thus, the parity of the
number of crossings involving si is that of |fi(ti)− i+1| = |k− i+1| and the same parity for
sj is |fj(tj)− j+1| ≡ |k− j|. If T0(si) = T0(sj), then one strand must have experienced an
even number of crossings, while the other experienced an odd number. This happens when
i ≡ j. Otherwise, both strands must enounter the same parity of crossings and i ≡ j + 1.

We decompose S = S1 ∪ · · · ∪ Sl, where Sj consists of a maximal string link with con-
nected projection. We apply the following lemma to each Sj .

Lemma 14. For a connected, alternating string link T0(S) must be either (u, o, u, . . .) with
alternating entries, or (o, u, o, . . .)

Proof: For si and sj there is a sequence si0 , . . . , sir with si0 = si and sir = sj and where
consecutive entries cross one another. The result follows from induction using the conclu-
sion of the previous lemma, which also proves the base case.
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Since any strand in Sj divides the projection into two parts, we see that each Sj must
consist of consecutive strands in the diagram (along both ends). Furthermore, we have
shown

Lemma 15. For an alternating projection of S, T0(S) = T1(S).

This lemma guarantees that the usual closure of the string link (join si to si for all i) is
alternating.

Proof: We divide S = S1 ∪ · · · ∪ Sl and apply the corollary above to each maximal sub-
string link. By the preceding lemma, we have an alternating trace for the end D2 × {0}.
By the corollary, the other end of si has the same label when σ(i)− i is even, and different
labels when σ(i)− i is odd. The result follows directly.

In fact, a repetition of u or o in T0(S) implies that S = S1 ∪ S2 for an alternating string
link. S1 consists of those strands including and to the left of the first u, and S2 consists of
those strands including and to the right of the second.

Note: Recall that we add kinks by the first Reidemeister move to strands who don’t
cross any other strand (including themselves). This is how they get labelled.

The chain complex of a string link S which decomposes as S1 ∪ · · · ∪ Sl for the index

(j1, · · · , j l) is ĈF (S1, j1) ⊗ · · · ⊗ ĈF (S2, jl) with the standard tensor product differential.
Thus, proving the theorem for connected, alternating string links will prove the general
result. Our strategy is to compare the chain group from out projection to the chain group
of an alternating knot.

We make a few observations about braids. First, their projection Heegaard diagrams pos-
sess only one generator. Second, given the projection of a braid, forgetting over and under
crossings, there is precisely one set of crossing data with T0(B) = (u, o, u, o, . . .). Write the
braid as a product of generators or their inverses. The traces picks out which (generator or
inverse) must occur. Pushing up the diagram, the traces (u, o, u, o, . . .) repeats as T0(B

′)
for the remainder of the braid.
We choose a braid representing a permutation τ such that τ ◦ σ is a cyclic permutation
taking 1 to k. As we have just seen, we may use T0(B) = T1(S) to choose a braid so
that S#B is still an alternating string link. We complete the construction by closing the
new string link as in one of the diagrams in Figure 16. The trace at the bottom of S#B
determines which to use. Due to our assumption about τ , the result is a knot, K.

By construction, the knot is alternating. We draw a Heegaard diagram for this knot by
using m1 from the string link diagram to give a meridian for the knot. This meridian
intersects only one β. It is a basing for the knot in the Kauffman state picture of [12].
We analyze the generators of this knot. In particular, we have seen that a generator x of

ĈF (S, j) extends uniquely to a generator x′ for S#B. We would like to extend x′ to a

generator of ĈF (K). However, when we forget the states on the other meridians, we have
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Figure 16. The closures to construct an alternating knot from an alter-
nating string link. The case for an odd number of strands is similar. The
basing (meridian) for the new knot is shown as a small line across the knot
and intersecting U . Of course, the strands should meet at top and bottom
as for the closure of a braid.
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Figure 17. The Unique Extension of Generators. The shaded regions have
already been assigned to a crossing by the generator in S#B. This corre-
sponds to the extension of dual pairs used to extend the clock theorem to
string links.

that the shaded regions of Figure 17 receive an assignment, but the others do not. There
is a unique way to complete the figure to a generator x′′ in the knot complex, and this
corresponds to a Kauffman state.
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Suppose that there is a φ ∈ π2(x,y) with M̂(φ) 6= ∅ and with nw(φ) = nzi
(φ) = 0 in the

Heegard diagram for S. The condition at the marked points, and that for a string link
there is only one choice of assignment along the meridians, implies that the homotopy class
φ gives a homotopy class φ′′ ∈ π2(x

′′,y′′) in the diagram for K. That there is no variation
on the meridians allows us to alter the generators as in the extension. The marked point
conditions ensure that D(φ) is wholly insulated from the additional braid and the closure
construction. Furthermore, a nighborhood of each meridian is eliminated by the condition
that nzi

(φ) = 0 as φ must contain whole multiples of the meridians in its boundary. There
must then exist two intersection points x′′ and y′′ in the same filtration index for the knot
(since φ doesn’t cross the marked points) but which differ in grading by 1. This contradicts
the statement in [12] that, for an alternating knot, the grading of every Kauffman state
representing the same filtration index is the same (determined by the signature of the knot!).

Hence, all moduli spaces contributin to the differential must be trivial, ∂̂S ≡ 0. The same
argument holds for φ as above with µ(φ) 6= 0, thus all the generators of the chain complex
in a given filtration index in fact lie in the same grading.

8.7. Euler Characteristic Calculations. Let G and Fi be the sums if weights giving
the grading and the filtration indices. To each intersection point in Tα ∩ Tβ assign the

monomial (−1)G(x)h
F1(x)
1 · · · h

Fk(x)
k in Z[h±1

1 , . . . , h±1
k ]. From the description of Alexander

invariants for string links, the Laurent polynomial,

∇S(h1, . . . , hk) = Σx(−1)G(x)h
F1(x)
1 · · · h

Fk(x)
k

is the torsion of the string link. Furthermore, it satisfies the Alexander-Conway skein
relation in hi at self-crossings of Li. The proof is a comparison of the weights assigned
to forests in the projections for the positive, negative, and resolved crossings. In fact, the
three Reidemeister moves also preserve this summation, when we fix the ends of the string
link.

We may ask how this sum, when restricted to a certain strand, Li relates to the Alexander-

Conway polynomial of the knot, L̂i formed by closing the strand. It is shown in [12] that
for 1-stranded string links (marked knots) they are identical. In this section we prove the
following lemma, relating the above multi-variable Laurent polynomial to its single variable
specifications:

Lemma 16. The polynomial ∇S(h1, . . . , hk) evaluates to ∆bLi
, the Alexander-Conway poly-

nomial of L̂i, upon setting hj = 1 for j 6= i.

In [12] the proof of the statement for knots follows from two observations: I) from Kauffman,
that the polynomial formed by the weights at crossings is the Alexander-Conway polyno-
mial, and II) that the polynomial formed by using the first Chern class as the filtration
index is symmetric due to the symmetries of Spinc structures on the three manifold found
from 0-surgery on the knot. Since both schemes assign values to intersection points that
satisfy the filtration relation, and both produce symmetric polynomials under h → h−1,
they must be equal. We do not have at hand an analog of the first observation, and thus
will resort to model calculations.

To prove the lemma, we first observe that
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l24

l23

l12

Figure 18. Reduced Form for a String Link when i = 2. The numbered
boxes indicate the number of full twists between the two strands. Notice
that this is actually a braid.

Lemma 17. Suppose we may interchange

(1) Crossings of Li with itself
(2) Crossings of Lj with Lk when j, k 6= i

Then the string link S may be put in the form of a braid as found in Figure ??.

Proof: By interchanging self-crossings of Li we may arrange for this strand to be un-
knotted. We may then isotope so that it is a vertical strand. Consider D2 × I to be
I2 × I with the ith strand given as ( 1

2 ,
3
4) × I. By isotoping the other strands vertically,

switching crossings where necessary, we can ensure that each is contained in a narrow band
I2 × (aj − ε, aj + ε) except when coming from or going to the boundary, when we assume

that they are vertical. If we look in the band I2 × (aj − ε, aj + ε) for the jth strand, we see

that all the other strands are vertical segments and the j th strand is some strand in a string
link. We may isotope Lj past all the vertical segments except that for Li. By effecting
self-crossing changes in Lj we can make it unknotted. It can then be isotoped so that it
reaches the level I2× aj from the bottom, winds around Li in that plane exactly lk(Li, Lj)
times, and then proceeds vertically to the top. We un-spool this winding veritcally so that
the result is a braid, where all the clasps are once again in I 2×(aj−ε, aj+ε). Doing this to
each of the strands produces a string link with projection as in Figure 18 when we choose
aj < ak if j < k for j, k 6= i.

Consider the closure, L̂i formed by taking the ith strand and joining the two ends in S3 by a
simple, unknotted arc. The intersection points in the Heegaard diagram give rise to Spinc

structures on the three manifold formed by taking 0-surgery on this knot, [15]. Let Pi be
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Figure 19. Local Heegaard diagrams for self-crossings of Li. The thick
curves are the α-curves. The thickest is the longitude, used as a surgery
curve; while the middle thickness depicts the crossing. There is a positive
crossing on the left, and a negative crossing on the right. The multiplicities
are for the band added at the crossing according to Seifert’s algorithm.

the periodic domain corresponding to the Seifert surface in the Heegaard diagram for the
0-surgery manifold. We already know that the sum of the filtration weights assigned to x

by Li differs from 1
2 < c1(s(x),Pi > by a constant, independent of x, but which may depend

upon S. Each of these quantities satisfies the same difference relation for a class φ joining
two distinct intersection points. The crossings of Lj with Lk do not contribute to either
calculation as the periodic domain P does not change topology or multiplicities when we
interchange such crossings. It consists of puctured cylinders arising from the linking of Li
with Lj or Lk and terminating on the meridian for that strand. However, the punctures and
multiplicities remain the same regardless of the type of crossing between Lj and Lk. Since
only the topology and multiplicities contribute to the calculation of the first Chern class for
the intersection points, and the intersection points correspond under crossing changes, the
value of the first Chern class does not change. Nor do the weights change as such crossings
are assigned a weight of 0. As a result, interchanging crossings of Li and Lj does not affect
the value of the constant.

It requires more effort to see that interchanging self-crossings of Li will not alter the con-

stant. But presuming that, we see that the polynomial ∇S(h1, 1, . . . , 1) must be h
Ci(S)
i ∇Li

,
since by [12] the polynomial determined by the first Chern class is the Alexander-Conway
polynomial of the knot. Furthermore, we may calculate Ci(S) by finding the polynomial
assigned to the reduced form above, since it does not change under the moves of Lemma
17. The ith strand is then the unknot, with Alexander-Conway polynomial equal to 1, and
the value of Ci(S) is 0 from our calculation for braids in the previous section.

That Ci(S) does not change when interchanging self-crossings of Li follows by seeing that
the first Chern class calculation changes in the same way as the filtration weights. Notice
that we may do the calculation for the multiplicities shown in Figure 19
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By adding multiples of [Σ] and P we may realize a periodic region with the multiplicities
for the crossing as shown in the figure. We fix the intersection point to be considered.
On the left we have a local contribution to nx of +2 on top, +1 on left and right, and 0
on bottom. We may always pick and intersection point where the longitude pairs with a
β intersecting the meridian, and thus does not incur an additional contribution from any
crossing. On the right, the contribution is −2, −1, and 0, respectively. All other local
contributions are equal as is the value of nw on the periodic region. The only other vari-
ation that can occur will be in the Euler measure, χ̂(P). Outside of the depicted region,
P does not change. Indeed, if we divide P by cutting the corners of the large +1 or −1
region along the dashed lines, we have a disc of multiplicity ±1 and the remainder,R, of
P, which is the same in both diagrams. Then on the left χ̂(P) = χ̂(R) + 1 − 2 while on
the right χ̂(P ′) = χ̂(R) − 1 + 2. The sign changes occur because of the Euler measure; in
the first we add a +1 disc joined along two segments to a +1 region and at two points to
a −1 region, which contributes nothing. In the second case the multiplicities are reversed,
and the Euler measure must be calculated differently. Taking the difference of these, and
adding the difference of the contribution from each quadrant gives +2−(−2)+(−1−1) = 2
on top, +1− (−1) + (−1− 1) = 0 on left and right, and 0− 0 + (−1− 1) = −2 on bottom.
This is −2 times the difference in the weights for these quadrants, but that is precisely the
factor we divide into the first Chern class to get a filtration index. Hence, the weights for
any intersection point before and after a crossing change differ from the first Chern class
calculation for the corresponding intersection point by the same amount. In particular,
Ci(S) does not change.

Implicit in this discussion is the following corollary:

Corollary 3. For the filtration indices, Fi, calculated from the weights

< c1(s(x),Pi >= 2Fi(x)

8.8. Tangles. Recall the definition of a tangle:

Definition 8.2. A tangle, τ , in D2× I is an oriented smooth 1-sub-manifold whose bound-
ary lies in D2 × {0, 1}. Two tangles are isotopic if there exists a self-diffeomorphism of
D2 × I, isotopic to the identity, fixing the ends D2 × {0, 1}, and carrying one tangle into
the other while preserving the orientations of the components.

Suppose we have a tangle with n-components. We will call it m-colored if there is a
function, c, from the components of the tangle, τj, to {1, . . . ,m}. We require our isotopies
to preserve the value of c. We restrict to those tangles for which exactly one component in
c−1(i) is open for each i ∈ {1, . . . ,m}, and this component is oreiented from D2 × {1} to
D2 × {0}. The collection of open components will then form a string link.

To construct a Heegaard diagram we convert the tangle, τ , to an associated string link,
S(τ) in another three manifold. First, connect the components with the same color by
paths in the complement of the tangle so that, with the paths as edges and the components
as vertices, we have a tree rooted at the open component for that color. These paths may
be used to band sum the components together, using any number of half twists in the band
which will match the orientations on components correctly. We then perform 0-surgery on
an unknot linking the band once. The resulting manifold, Y , is a connect sum of s copies of
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S1×S2’s where s is the number of closed components. The image of τ after perfoming the
band sums is a multi-component “string link”, S(τ), in the complement of a ball. We have
a color map c on this string link which we use to index the components. The homology

group for index j for the colored tangle, τ , is defined to be ĤF (Y, S(τ); s0, j) where s0 is
the torsion Spinc structure. Underlying this construction is the following lemma:

Lemma 18. The isotopy class of S(τ) is determined by that of τ

Proof: This follows as for Proposition 2.1 of [15]. It suffices to show that the choices made
in performing the band sums do not affect the isotopy class of S(τ). Once we add the
0-framed handles, the choice of the bands no longer matters. In each band, we may remove
full twists by using the belt trick to replace them with a self-crossing of the band. We may
then isotope the 0-framed circle to the self-crossing and slide one of the strands in the band
across the handle. Done appropriately this will undo a full twist in the band. Furthermore,
by sliding across the 0-framed handles, we may move the bands past each other or any
component in the string link. By using the trick from [15] illlustrated in Figure 20, we
may arrange that all the closed components of the same color are linked in a chain to a
single open component. In addition, we may interchange any two components along the
chain. The combination of these moves provides Heegaard equivalences, not involving the
meridians, between any two ways of joining the closed components in a color to that with
boundary, regardless of the paths for the band sums, or twists in the bands.

8.8.1. Long Exact Sequences.
The tangle formulation where there is one open component for each color permits the
introduction of the skein long exact sequence found in [15] where we may resolve crossings
of components with the same color, but not crossings involving different colors. We should
think of the resolved crossing, arising from 0-surgery on an unknot in the long exact surgery
sequence, in the context of tangles. We let Lc− be a tangle with a negative self-crossing
in color c, Lc+ be the tangle with a positive self-crossing instead, and Lc0 be the tangle
resulting from resolving the crossing. As in [15] there are two sequences. If the crossing is
a self-crossing of a component then

→ ĤF (Lc−, j)→ ĤF (Lc0, j)→ ĤF (Lc+, j)→

whereas if the crossing occurs between different components of the same colot we have

→ ĤF (Lc−)→ ĤF (Lc0)⊗ V → ĤF (Lc+)→

where V = V−1⊕V0⊕V+1 and V−1 consists of a Z in filtration index −1 for the color c and
0 for all others, V0 consists of Z2 with filtration index 0 for all colors, and V+1 consists of
a Z in color c filtration index +1. The maps preserve the filtration indices with the tensor
product index defined as the sum of those on the two factors. The proof is identical to that
in [15].

Note: Since the theory for tangles arises from thinking of them as string links in an
another manifold, the result for composition of string links extends to composition of this
sub-class of tangles. The sub-class condition disallows the formation of new closed compo-
nents when composing.
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Figure 20. Kirby Calculus Interchange of Connecting Paths for a Tangle

Appendix A. Maslov Index Calculation

Let φ ∈ π2(x,y) be a class with a multiplicity 1 domain, D(φ). Then the new class
φ′ ∈ π2(x× c,y × c) in Σ#T 2 found as in Figure 21 has the same maslov index as φ.

First, notice that the intermediary φ′′ in the stabilization, found from the domain
D(φ)#T 2 has the same Maslov index as φ. This follows from the observation that [Σ]− φ
and [Σ#T 2] − φ′′ have the same domain. Splicing this to φ and φ′′ give the class [S] in
each diagram, and this always has Maslov index 2.

We prove this by considering the Heegaard triple represented in Figure ??, where all the
γ’s are small Hamiltonian isotopes of a α except that γ1 is found from the result of sliding
α1 over αg+1. There are small triangles at each intersection between α and β curves in
this triple, joining them to Θ+ and a unique intersection point in Tγ ∩ Tβ. These form
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Figure 21. The diagram on the left shows the original domain in the stabi-
lization and its multiplicities. The diagram on the right shows the stabiliza-
tion and the result after the handlslides (dashed curve). The multiplicities
on the right show are for the new class φ′. Notice that within the region of
the handleslide there is a part of a periodic domain. The other portions of
the Heegaard triple need to be chaecked as well, but the same observations
apply.

homotopy classes of triangles which we denote 4x and 4y for the two intersection points.
Examining multiplicities in the diagram shows that there is some doubly periodic domain
Pγα such that

φ′ ∗ 4x = 4y ∗ φ+ Pγα

However, the homotopy classes of triangles have Maslov index 0, as their domains consist
of g + 1 disjoint triangles, cf. [13], and these have a unique holomorphic representative.
Likewise, the Maslov index of P ∈ π2(Θ

+,Θ+) is 0 since the value of the first Chern class
of the torsion Spinc structure evaluated on [P] is 0. Since the Maslov index is additive we
must have µ(φ) = µ(φ′).

This provides enough for the application in the main body of the test. There we start
with a φ whose domain is a square with µ = 1, since it has holomorphic representatives.
The domain we are interested in is found by repeatedly stabilizing, and then isotoping
the new handles so that their β’s joined by the α’s form a tree joined to the boundary of
the square. Repeated application of the above argument, working up the tree, shows that
µ(φ′) = 1
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[17] P. Ozsváth & Z. Szabó, Absolute Grading Floer Homologies and Intersection Forms for Four-Manifolds

with Boundary. Advances in Mathematics, 173 (2): 179-261, 2003.
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