

MATH 461: Some general constructions of metric spaces

Here are two nice ways to construct a metric space. The first is similar to the facts used in class. The second is a very general approach, employed frequently in analysis.

I. Let (X, d) be a metric space and let $f : [0, \infty) \rightarrow \mathbb{R}$ be a function. Assume that $f(0) = 0$ and $f(x) > 0$ for $x > 0$. Assume further that $x \leq y$ implies $f(x) \leq f(y)$ (i.e. f is increasing). Since $d : X \times X \rightarrow \mathbb{R}$ we can compose with f to form a new map $D_f : X \times X \rightarrow \mathbb{R}$ given by $D_f(x, y) = f(d(x, y))$. The conditions on f ensure that $D_f(x, y) \geq 0$ and $D_f(x, y) = 0$ implies that $x = y$. If we add one further condition we can make D_f into a metric. That condition is concavity: if a, b are real numbers with $a + b = 1$ assume that $f(ax + by) \geq af(x) + bf(y)$. The graph of such a function lies above any line segment between two points on the graph. This property allows us to obtain the triangle inequality. With a little effort, you can prove all this; it's just a bit tricky at the end.

When f is twice differentiable, $f'' \leq 0$ for all x implies that f is concave (so it's what we call concave down in calculus). This allows us to prove that $\sqrt{d(x, y)}$ and $\frac{d(x, y)}{1+d(x, y)}$ are also metrics. The last is a bounded metric with diameter 1.

II. In analysis one often encounters the following scenario. Let V be a vector space over \mathbb{R} . As a reminder, this is a set with two operations: addition of vectors and multiplication by scalars (\mathbb{R} in this case) that mimics the properties of vectors in \mathbb{R}^3 . If you need a more detailed definition, come and ask me. In analysis, these often come with a map $\|\cdot\| : V \rightarrow \mathbb{R}$ with the properties that

- (1) $\|v\| \geq 0$ for all $v \in V$
- (2) $\|v\| = 0$ if and only if $v = 0$
- (3) $\|\lambda \cdot v\| = |\lambda| \|v\|$ for any $\lambda \in \mathbb{R}$.
- (4) $\|v_1 + v_2\| \leq \|v_1\| + \|v_2\|$ for all $v_1, v_2 \in v$

A map satisfying these properties is called a norm and is a generalization of the absolute value function on \mathbb{R} . A pair $(V, \|\cdot\|)$ is called a normed vector space.

If these properties seem similar to those of a metric, that's because $d(v_1, v_2) = \|v_1 - v_2\|$ will be a metric when $\|\cdot\|$ is a norm. The third property of the norm can be interpreted geometrically as saying that multiplication by λ stretches distances by a factor of $|\lambda|$.

An example of a normed vector space is \mathbb{R}^n with $\|x\|_1 = |x_1| + |x_2| + \dots + |x_n|$. The metric we obtain from this norm is one of the three we discussed in class. Two other norms on \mathbb{R}^n are $\sqrt{\sum_{i=1}^n x_i^2}$ and $\max_i\{|x_i|\}$. These give the other two metrics.

An easy way to get a norm is to use an inner product. There are norms which do not get constructed this way, but it's so common its worth mentioning. An inner product is a bilinear map $V \times V \rightarrow \mathbb{R}$, denoted $\langle v, w \rangle$, such that 1) $\langle v, v \rangle \geq 0$ and equals 0 only when $v = 0$ and 2) $\langle v, w \rangle = \langle w, v \rangle$. These properties are chosen to mimic the dot product from multi-variable calculus. These properties ensure that $\|v\| = \sqrt{\langle v, v \rangle}$

is a norm. The fourth property defining a norm is derived from the Cauchy-Schwarz inequality:

$$\langle v, w \rangle \leq \|v\| \|w\|$$

by considering $\langle v + w, v + w \rangle$ and using the bilinearity. Of the three norms on \mathbb{R}^n given above, only $\sqrt{\sum_{i=1}^n x_i^2}$ is constructed from an inner product.

Here's an example of the full procedure: Let V be the continuous functions $f : [-1, 1] \rightarrow \mathbb{R}$. Addition is defined by $(f + g)(x) = f(x) + g(x)$, and multiplication by scalars is defined by $(\lambda \cdot f)(x) = \lambda(f(x))$. V is then a vector space. Let's say you care more about the size of the function near zero than at the endpoints. We can encode this through the following inner product

$$\langle f, g \rangle = \int_{-1}^1 f(x)g(x)(1 - x^2) dx$$

It requires a little work to see that this is an inner product (but it is). So we would then have a norm

$$\|f\| = \sqrt{\int_{-1}^1 f(x)^2(1 - x^2) dx}$$

and a metric

$$d(f, g) = \sqrt{\int_{-1}^1 (f(x) - g(x))^2(1 - x^2) dx}$$

Note that the distance between the functions is heavily influenced by their difference near 0 and not at all influenced by their difference at the endpoints since $1 - x^2$ vanishes at the endpoints regardless of the values of f and g . Thus we have a metric with the desired property. What function to choose as $1 - x^2$ depends upon the exact nature of how you wish to weight the influence of each point in $[-1, 1]$.

All the examples from lecture so far can be constructed by choosing the right V and $\|\cdot\|$. Not all come from an inner product, however.