
MATH 461: Some general constructions of metric spaces

Here are two nice ways to construct a metric space. The first is similar to the facts used in class. The
second is a very general approach, employed frequently in analysis.

I. Let (X, d) be a metric space and let f : [0,∞) → R be a function. Assume that f(0) = 0 and f(x) > 0
for x > 0. Assume further that x ≤ y implies f(x) ≤ f(y) (i.e. f is increasing). Since d : X ×X → R we
can compose with f to form a new map Df : X ×X → R given by Df (x, y) = f(d(x, y)). The conditions
on f ensure that Df (x, y) ≥ 0 and Df (x, y) = 0 implies that x = y. If we add one further condition we
can make Df into a metric. That condition is concavity: if a, b are real numbers with a + b = 1 assume
that f(ax + by) ≥ af(x) + bf(y). The graph of such a function lies above any line segment between two
points on the graph. This property allows us to obtain the triangle inequality. With a little effort, you
can prove all this; it’s just a bit tricky at the end.

When f is twice differentiable, f ′′ ≤ 0 for all x implies that f is concave (so it’s what we call con-
cave down in calculus). This allows us to prove that

√
d(x, y) and d(x,y)

1+d(x,y) are also metrics. The last is a
bounded metric with diameter 1.

II. In analysis one often encounters the following scenario. Let V be a vector space over R. As a re-
minder, this is a set with two operations: addition of vectors and multiplication by scalars (R in this case)
that mimics the properties of vectors in R3. If you need a more detailed definition, come and ask me. In
analysis, these often come with a map || · || : V → R with the properties that

(1) ||v|| ≥ 0 for all v ∈ V
(2) ||v|| = 0 if and only if v = 0
(3) ||λ · v|| = |λ| ||v|| for any λ ∈ R.
(4) ||v1 + v2|| ≤ ||v1||+ ||v2|| for all v1, v2 ∈ v

A map satisfying these properties is called a norm and is a generalization of the absolute value function
on R. A pair (V, || · ||) is called a normed vector space.

If these properties seem similar to those of a metric, that’s because d(v1, v2) = ||v1 − v2|| will be a
metric when || · || is a norm. The third property of the norm can be interpretted geometrically as saying
that multiplication by λ stretches distances by a factor of |λ|.

An example of a normed vector space is Rn with ||x||1 = |x1| + |x2| + . . . + |xn|. The metric we ob-

tain from this norm is one of the three we discussed in class. Two other norms on Rn are
√∑n

i=1 x2
i and

maxi

{
|xi|

}
. These give the other two metrics.

An easy way to get a norm is to use an inner product. There are norms which do not get constructed this
way, but it’s so common its worth mentioning. An inner product is a bilinear map V × V → R, denoted
〈v, w〉, such that 1) 〈v, v〉 ≥ 0 and equals 0 only when v = 0 and 2) 〈v, w〉 = 〈w, v〉. These properties are
chosen to mimic the dot product from multi-variable calculus. These properties ensure that ||v|| =

√
〈v, v〉

1



2

is a norm. The fourth property defining a norm is derived from the Cauchy-Schwarz inequality:

〈v, w〉 ≤ ||v|| ||w||
by considering 〈v + w, v + w〉 and using the bilinearity. Of the three norms on Rn given above, only√∑n

i=1 x2
i is constructed from an inner product.

Here’s an example of the full procedure: Let V be the continuous functions f : [−1, 1] → R. Addi-
tion is defined by (f +g)(x) = f(x)+g(x), and multiplication by scalars is defined by (λ ·f)(x) = λ(f(x)).
V is then a vector space. Let’s say you care more about the size of the function near zero than at the
endpoints. We can encode this through the following inner product

〈f, g〉 =
∫ 1

−1
f(x)g(x)

(
1− x2

)
dx

It requires a little work to see that this is an inner product (but it is). So we would then have a norm

||f || =

√∫ 1

−1
f(x)2

(
1− x2

)
dx

and a metric

d(f, g) =

√∫ 1

−1

(
f(x)− g(x)

)2(1− x2
)
dx

Note that the distance between the functions is heavily influenced by their difference near 0 and not at
all influenced by their difference at the endpoints since 1− x2 vanishes at the endpoints regardless of the
values of f and g. Thus we have a metric with the desired property. What function to choose as 1 − x2

depends upon the exact nature of how you wish to weight the influence of each point in [−1, 1].

All the examples from lecture so far can be constructed by choosing the right V and || · ||. Not all
come from an inner product, however.


