MATH 461: Some general constructions of metric spaces

Here are two nice ways to construct a metric space. The first is similar to the facts used in class. The
second is a very general approach, employed frequently in analysis.

I. Let (X, d) be a metric space and let f : [0,00) — R be a function. Assume that f(0) =0 and f(z) >0
for x > 0. Assume further that =z <y implies f(z) < f(y) (i.e. f is increasing). Since d : X x X — R we
can compose with f to form a new map Dy : X x X — R given by D¢(x,y) = f(d(z,y)). The conditions
on f ensure that Dy(x,y) > 0 and Dy(z,y) = 0 implies that = y. If we add one further condition we
can make Dy into a metric. That condition is concavity: if a,b are real numbers with a + b = 1 assume
that f(ax + by) > af(x) 4+ bf(y). The graph of such a function lies above any line segment between two
points on the graph. This property allows us to obtain the triangle inequality. With a little effort, you
can prove all this; it’s just a bit tricky at the end.

When f is twice differentiable, f” < 0 for all x implies that f is concave (so it’s what we call con-

cave down in calculus). This allows us to prove that /d(x,y) and 11(;(’;’)2’/) are also metrics. The last is a

bounded metric with diameter 1.

II. In analysis one often encounters the following scenario. Let V be a vector space over R. As a re-
minder, this is a set with two operations: addition of vectors and multiplication by scalars (R in this case)
that mimics the properties of vectors in R3. If you need a more detailed definition, come and ask me. In
analysis, these often come with a map || - || : V' — R with the properties that
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) ||lv|]] >0 forallv eV

2) ||lv|] =0 if and only if v =0

3) [|A-v|| = |A||]v]| for any A € R.

4) |Jvy + ve|| < [|vi]] + ||ve|| for all v1,ve € v

A map satisfying these properties is called a norm and is a generalization of the absolute value function

on R. A pair (V,||-||) is called a normed vector space.
If these properties seem similar to those of a metric, that’s because d(vi,v2) = |[lv1 — va|| will be a
metric when || - || is a norm. The third property of the norm can be interpretted geometrically as saying

that multiplication by X stretches distances by a factor of |A|.

An example of a normed vector space is R™ with ||z||1 = |z1] + |z2| + ... + |zn|. The metric we ob-
tain from this norm is one of the three we discussed in class. Two other norms on R™ are y/> i ; 7 and

max;{|z;|}. These give the other two metrics.

An easy way to get a norm is to use an inner product. There are norms which do not get constructed this
way, but it’s so common its worth mentioning. An inner product is a bilinear map V x V' — R, denoted
(v, w), such that 1) (v,v) > 0 and equals 0 only when v = 0 and 2) (v, w) = (w,v). These properties are
chosen to mimic the dot product from multi-variable calculus. These properties ensure that ||[v|| = \/(v,v)
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is a norm. The fourth property defining a norm is derived from the Cauchy-Schwarz inequality:
(v, w) < |Jol] [Jwl]]
by considering (v + w,v + w) and using the bilinearity. Of the three norms on R" given above, only

\/ Do, @2 is constructed from an inner product.

Here’s an example of the full procedure: Let V' be the continuous functions f : [-1,1] — R. Addi-
tion is defined by (f+g)(z) = f(z)+ g(x), and multiplication by scalars is defined by (A- f)(x) = A(f(x)).
V' is then a vector space. Let’s say you care more about the size of the function near zero than at the
endpoints. We can encode this through the following inner product

1
(f.9) = / @) (1~ a*) da

It requires a little work to see that this is an inner product (but it is). So we would then have a norm

1
1]l = \//_1f(x)2(1 — %) da

! 2
d(f,9) = \//1 (f(@) = g(2))"(1 - 22) d

Note that the distance between the functions is heavily influenced by their difference near 0 and not at
all influenced by their difference at the endpoints since 1 — 2 vanishes at the endpoints regardless of the
values of f and ¢g. Thus we have a metric with the desired property. What function to choose as 1 — 2
depends upon the exact nature of how you wish to weight the influence of each point in [—1, 1].

and a metric

All the examples from lecture so far can be constructed by choosing the right V' and || - ||. Not all
come from an inner product, however.



