Section 5.3

Exercise 5.3.1: Let f : [a,b] — R be differentiable with f’(z) continuous on [a,b]. Since f’(x) is continuous on
[a,b] we know that |f’(x)| is continuous as well, since it is the composition of continuous functions. Since [a, b] is
compact and f’(x) is continuous, there is a point ¢ € [a, b] where |f'(¢)| = M is a maximum. Now, the conditions
on f(x) allow an application of the mean value theorem to f(x) on any interval [d, e] C [a,b]. This tells us there
is another point ¢’ € [d, e] with
f(€) — f(d) _ f/(cl)
e—d

In absolute value, |f/'(¢/)] < M since M is the maximum. But this implies that for any d < e in [a, b] we have

fe) = £(d)
’eﬂfﬁM

Changing the order of e and d will not change the term on the left, so this implies that for any z,y € [a, b] we will
have the desired conclusion (let d = x and e = y). Hence f(z) is Lipschitz.

Exercise 5.3.3: (a) Since h(x) is differentiable on [0, 3] we know that it is also continuous. Thus f(x) = h(z) —x
is continuous as well on that interval. But f(0) = —1, f(1) = —1 and f(3) = 1 using the values in the problem.
By the intermediate value theorem there is a point d € [1, 3] where f(d) = 0 and thus h(d) = d.

(b) The conditions on h(z) allow us to apply the mean value theorem on the interval [0, 3] since the function is
continuous there and differentiable on (0,3) (in fact on a larger set). But A(3) —h(0) =2—-1=1and 3—-0=3.
The mean value theorem on [0, 3] thus ensures us that there is a point ¢ € (0,3) with #/(c) = 3

(¢c) First apply the mean value theorem on [1,3] to find a point e € (1,3) with h'(e) = 0. We know that e # c,
where ¢ is the point found in part b, since the derivative takes different values at these points. Then Darboux’s
theorem tells us that there is a point between e and ¢ where h' must equal i since this value is between h’(e) and

h'(c), and derivatives have the intermediate value property on closed intervals where they are defined.

Exercise 5.3.5: Suppose that f(z) has two fixed points, d and e with d < e, in an interval where f’(z) is
defined and f/(z) # 1. Then f(d) = d and f(e) = e. In addition, f(x) is continuous on [d, e] since it is differen-
tiable on [d, e]. Furthermore, f(z) is differentiable on (d, e) as well. The mean value theorem applies on [d, e] and
guarantees the existence of a point ¢ € (d, e) with

oy fe)—fld) _e—d _
Je) = e—d  e—d
which contradicts that f/(z) # 1 on the interval containing [d, €].

Exercise 5.3.7:(a) Let f : (a,b) — R be an increasing function that is also differentiable on (a,b). If ¢ € (a,b)

then
f/(C) — lim f(m) — f(C)
z—c T —cC
Let x, — ¢ with x, > ¢, then we have that f(z,) — f(c) > 0 since the function is increasing and z, — ¢ > 0.
Since the limit above exists, we must have f’(c) = lim M > 0 since the fraction in this limit is > 0. Thus,
n—oo

n—C
for each point ¢ € (a,b) we must have f'(¢) > 0. Now assume that f’(c¢) > 0 for each ¢ € (a,b). To show that
the function is increasing, we need to know that z < y with z,y € (a,b) implies f(z) < f(y). But f on [z,y] is
differentiable and thus continuous, so we may apply the mean value theorem to conclude that there is a ¢ € (z,y)

with
o= 1W=1

Since ¢ € (z,y) C (a,b) we have, by assumption, that f'(¢) > 0. Furthermore, y > x makes the denominator
positive. Thus the numerator must be > 0, or f(y) > f(x).
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(b) For g(x) in the statement of the problem, we calculate
Z+2?sin (L) -0

. z I 1 4 ozsi 1 1
= =lm-+4zsin|—| ==

x—0 z—0 z—0 2 T 2
Thus ¢’(0) > 0. However, the function is not increasing on any interval (—d,d) containing 0. We see this by
computing the derivative of g(x) on (—o00,0) U (0,00) to get

1 1 1
d(z) = 3 + 2x sin <$> — cos <$>

If this is negative at any point in (—d,d) then the function is not increasing, as shown in the previous part of the
problem. So we choose points where cos (%) is as big as possible, namely equal to 1. This occurs when % = 2km
for k € Z, i.e. for x} = ﬁ If we let k& € N, then we obtain a sequence x — 0 which must then enter (—4,0).

On the other hand, sin (ﬁ) = sin(2kw) = 0 for all £ € N, so the middle term will be 0 for each of these points.
Thus ¢'(z;) = 1 +0— 1= —3 < 0. For k large enough this point will be in (-4, d).

Exercise 5.3.8: Let g : (a,b) — R be differentiable at a point ¢ € (a,b). We assume that ¢'(¢) > 0 (the
case where ¢'(¢) < 0 will be done below). We cannot use the mean value theorem since we only know that the
function is differentiable at a single point. Instead we use the definition of the derivative. Since

0 < ¢'(c) = lim g9(x) —g(c)

T—c T —C

there is an € > 0 such that ¢’(¢) — e > 0 and a 6 > 0 such that 0 < |z — ¢| < ¢ implies

g(.’I})—g(C) —g'(c) <€
T —c
This further implies that
g9(x) —g(c)

x—c
When 0 < x — ¢ < ¢ we have that g(z) > g(c) in order for the fraction to be bigger than 0. When 0 > z — ¢ > —0
we have that g(z) < g(c) so that both numerator and denominator will be negative. In either case, there is a
d-neighborhood of x = ¢ in which g(x) # g(c) for & # ¢. To address the case where ¢'(c) < 0, let h(x) = —g(z).
Then h'(¢) = —¢'(c) > 0. Thus there is a neighborhood of ¢ where —g(x) # —g(c) unless x = ¢. Multiplying by
—1 yields g(x) # g(c) on the same neighborhood.

>g'(c)—e>0

To relate to the previous problem: that ¢'(0) = % in 5.3.7 tells us that there is no other point in a sufficiently
small neighborhood (—4,d) with g(x) = ¢g(0) = 0. In fact, all points with = € (0,d) will have g(x) > 0 and all
points x € (—4,0) will have g(z) < 0. However, there is still room for the function to increase and decrease within
these conditions, as seen from 5.3.7 (b).



