
Section 5.3
Exercise 5.3.1: Let f : [a, b] → R be differentiable with f ′(x) continuous on [a, b]. Since f ′(x) is continuous on
[a, b] we know that |f ′(x)| is continuous as well, since it is the composition of continuous functions. Since [a, b] is
compact and f ′(x) is continuous, there is a point c ∈ [a, b] where |f ′(c)| = M is a maximum. Now, the conditions
on f(x) allow an application of the mean value theorem to f(x) on any interval [d, e] ⊂ [a, b]. This tells us there
is another point c′ ∈ [d, e] with

f(e)− f(d)
e− d

= f ′(c′)

In absolute value, |f ′(c′)| ≤ M since M is the maximum. But this implies that for any d < e in [a, b] we have∣∣∣∣f(e)− f(d)
e− d

∣∣∣∣ ≤ M

Changing the order of e and d will not change the term on the left, so this implies that for any x, y ∈ [a, b] we will
have the desired conclusion (let d = x and e = y). Hence f(x) is Lipschitz.

Exercise 5.3.3: (a) Since h(x) is differentiable on [0, 3] we know that it is also continuous. Thus f(x) = h(x)−x
is continuous as well on that interval. But f(0) = −1, f(1) = −1 and f(3) = 1 using the values in the problem.
By the intermediate value theorem there is a point d ∈ [1, 3] where f(d) = 0 and thus h(d) = d.
(b) The conditions on h(x) allow us to apply the mean value theorem on the interval [0, 3] since the function is
continuous there and differentiable on (0, 3) (in fact on a larger set). But h(3)− h(0) = 2− 1 = 1 and 3− 0 = 3.
The mean value theorem on [0, 3] thus ensures us that there is a point c ∈ (0, 3) with h′(c) = 1
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(c) First apply the mean value theorem on [1, 3] to find a point e ∈ (1, 3) with h′(e) = 0. We know that e 6= c,
where c is the point found in part b, since the derivative takes different values at these points. Then Darboux’s
theorem tells us that there is a point between e and c where h′ must equal 1

4 since this value is between h′(e) and
h′(c), and derivatives have the intermediate value property on closed intervals where they are defined.

Exercise 5.3.5: Suppose that f(x) has two fixed points, d and e with d < e, in an interval where f ′(x) is
defined and f ′(x) 6= 1. Then f(d) = d and f(e) = e. In addition, f(x) is continuous on [d, e] since it is differen-
tiable on [d, e]. Furthermore, f(x) is differentiable on (d, e) as well. The mean value theorem applies on [d, e] and
guarantees the existence of a point c ∈ (d, e) with

f ′(c) =
f(e)− f(d)

e− d
=

e− d

e− d
= 1

which contradicts that f ′(x) 6= 1 on the interval containing [d, e].

Exercise 5.3.7:(a) Let f : (a, b) → R be an increasing function that is also differentiable on (a, b). If c ∈ (a, b)
then

f ′(c) = lim
x→c

f(x)− f(c)
x− c

Let xn → c with xn > c, then we have that f(xn) − f(c) ≥ 0 since the function is increasing and xn − c > 0.
Since the limit above exists, we must have f ′(c) = lim

n→∞
f(xn)−f(c)

xn−c ≥ 0 since the fraction in this limit is ≥ 0. Thus,

for each point c ∈ (a, b) we must have f ′(c) ≥ 0. Now assume that f ′(c) ≥ 0 for each c ∈ (a, b). To show that
the function is increasing, we need to know that x < y with x, y ∈ (a, b) implies f(x) ≤ f(y). But f on [x, y] is
differentiable and thus continuous, so we may apply the mean value theorem to conclude that there is a c ∈ (x, y)
with

f ′(c) =
f(y)− f(x)

x− y

Since c ∈ (x, y) ⊂ (a, b) we have, by assumption, that f ′(c) ≥ 0. Furthermore, y > x makes the denominator
positive. Thus the numerator must be ≥ 0, or f(y) ≥ f(x).
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(b) For g(x) in the statement of the problem, we calculate

g′(0) = lim
x→0

x
2 + x2 sin

(
1
x

)
− 0

x− 0
= lim

x→0

1
2

+ x sin

(
1
x

)
=

1
2

Thus g′(0) > 0. However, the function is not increasing on any interval (−δ, δ) containing 0. We see this by
computing the derivative of g(x) on (−∞, 0) ∪ (0,∞) to get

g′(x) =
1
2

+ 2x sin

(
1
x

)
− cos

(
1
x

)
If this is negative at any point in (−δ, δ) then the function is not increasing, as shown in the previous part of the
problem. So we choose points where cos

(
1
x

)
is as big as possible, namely equal to 1. This occurs when 1

x = 2kπ

for k ∈ Z, i.e. for xk = 1
2kπ . If we let k ∈ N, then we obtain a sequence xk → 0 which must then enter (−δ, δ).

On the other hand, sin
(

1
xk

)
= sin(2kπ) = 0 for all k ∈ N, so the middle term will be 0 for each of these points.

Thus g′(xk) = 1
2 + 0− 1 = −1

2 < 0. For k large enough this point will be in (−δ, δ).

Exercise 5.3.8: Let g : (a, b) → R be differentiable at a point c ∈ (a, b). We assume that g′(c) > 0 (the
case where g′(c) < 0 will be done below). We cannot use the mean value theorem since we only know that the
function is differentiable at a single point. Instead we use the definition of the derivative. Since

0 < g′(c) = lim
x→c

g(x)− g(c)
x− c

there is an ε > 0 such that g′(c)− ε > 0 and a δ > 0 such that 0 < |x− c| < δ implies∣∣∣∣g(x)− g(c)
x− c

− g′(c)
∣∣∣∣ < ε

This further implies that
g(x)− g(c)

x− c
> g′(c)− ε > 0

When 0 < x− c < δ we have that g(x) > g(c) in order for the fraction to be bigger than 0. When 0 > x− c > −δ
we have that g(x) < g(c) so that both numerator and denominator will be negative. In either case, there is a
δ-neighborhood of x = c in which g(x) 6= g(c) for x 6= c. To address the case where g′(c) < 0, let h(x) = −g(x).
Then h′(c) = −g′(c) > 0. Thus there is a neighborhood of c where −g(x) 6= −g(c) unless x = c. Multiplying by
−1 yields g(x) 6= g(c) on the same neighborhood.

To relate to the previous problem: that g′(0) = 1
2 in 5.3.7 tells us that there is no other point in a sufficiently

small neighborhood (−δ, δ) with g(x) = g(0) = 0. In fact, all points with x ∈ (0, δ) will have g(x) > 0 and all
points x ∈ (−δ, 0) will have g(x) < 0. However, there is still room for the function to increase and decrease within
these conditions, as seen from 5.3.7 (b).


