

See sections 14.1 and 14.2 for definitions. There are graphs of functions where the limit does not exist at $(0, 0)$, similar to the example given in class. See pgs 979-980 (there are some more on pg 982, corresponding to exercises 35, 36).

1) Explain why $\mathbb{R}^2 \setminus \{(0, 0)\}$ (all points in \mathbb{R}^2 except the origin) is an open subset of \mathbb{R}^2 .

2) Calculate the following limits:

$$\lim_{(x,y) \rightarrow (2, -3)} \ln(1 + x^2 y^2)$$

$$\lim_{(x,y) \rightarrow (0,0), xy \neq 0} \frac{\sin(xy)}{xy}$$

$$\lim_{(x,y) \rightarrow (2,2), x+y \neq 4} \frac{x+y-4}{\sqrt{x+y}-2} \text{ (hint: difference of squares)}$$

$$\lim_{(x,y) \rightarrow (0,0)} x \cos \frac{1}{y} \text{ (hint: squeeze theorem, a.k.a. sandwich theorem)}$$

3) Show that

$$\lim_{\vec{x} \rightarrow \vec{0}} g(\vec{x})$$

does not exist when

$$g(x, y, z) = \frac{xy^2 z}{x^4 + y^4 + z^4}$$

(hint: how does one describe a line through the origin in \mathbb{R}^3 ?).

4) Let

$$h(x, y) = \begin{cases} 0 & y > x^2, y < \frac{x^2}{3} \\ 1 & \frac{x^2}{3} \leq y \leq x^2 \end{cases}$$

What is this function's domain? Show that $\lim_{x \rightarrow 0} h(x, kx) = 0$ for any $k \in \mathbb{R}$. Thus, regardless of the line you use to come into the origin, you will get 0 as the limit. However, find a path on a parabola for which the limit will be 1, thereby showing that $\lim_{(x,y) \rightarrow (0,0)} h(x, y)$ does not exist.