See sections 14.1 and 14.2 for definitions. There are graphs of functions where the limit does not exist at (0,0), similar to
the example given in class. See pgs 979-980 (there are some more on pg 982, corresponding to exercises 35, 36).

1) Explain why R?\{(0,0)} (all points in R? except the origin) is an open subset of R2.

2) Calculate the following limits:
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(hint: how does one describe a line through the origin in R3?).

4) Let
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What is this function’s domain? Show that lir% h(z, kx) = 0 for any k € R. Thus, regardless of the line you use to come into
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the origin, you will get 0 as the limit. However, find a path on a parabola for which the limit will be 1, thereby showing that

lim  h(zx,y) does not exist.
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