

1) Find the angle between the vectors $\vec{v} = 1\vec{i} + \sqrt{2}\vec{j} - \sqrt{2}\vec{k}$ and $\vec{w} = -1\vec{i} + 1\vec{j} + 1\vec{k}$.

2) Write $-\vec{i} + 2\vec{k}$ as a sum of its projection in the direction of $\vec{w} = \vec{i} + \vec{j} + \vec{k}$ and a vector perpendicular to \vec{w} .

3) Verify that the following two vectors, in \mathbb{R}^2 , are perpendicular unit vectors:

$$\begin{aligned}\vec{u}_1 &= \frac{1}{2}\vec{i} + \frac{\sqrt{3}}{2}\vec{j} \\ \vec{u}_2 &= -\frac{\sqrt{3}}{2}\vec{i} + \frac{1}{2}\vec{j}\end{aligned}$$

Find a and b such that $\vec{i} = a\vec{u}_1 + b\vec{u}_2$.

4) Show that $(\lambda\vec{v}_1 + \vec{v}_2) \bullet \vec{w} = \lambda(\vec{v}_1 \bullet \vec{w}) + (\vec{v}_2 \bullet \vec{w})$ and $\vec{v} \bullet \vec{w} = \vec{w} \bullet \vec{v}$.

5) Let $\vec{v}(t)$ and $\vec{w}(t)$ be two differentiable vector-valued functions. Then the dot product $\vec{v}(t) \bullet \vec{w}(t)$ is a function of t . Write down a formula for

$$\frac{d}{dx} (\vec{v}(t) \bullet \vec{w}(t))$$

using only vectors and their derivatives (first use components, but you need to find a way to suppress them in the end). If $\vec{v}(t)$ has length 1 for every value of t , show that $\vec{v}(t) \bullet \frac{d\vec{v}}{dt} = 0$ for every value of t (hint: differentiate $\|v(t)\|^2$)