

For Wednesday, read section 16.6

1) Calculate the (outward) flux and (counter-clockwise) circulation for the vector field $\vec{F} = (x+y)\vec{i} - (x^2+y^2)\vec{j}$ on the triangle formed by $y = 0$, $x = 1$, and $y = x$.

2) Suppose $f(x, y)$ is a function on \mathbb{R}^2 with continuous partial derivatives of all orders. Furthermore, for each pair of a simple closed curve C and a region \mathcal{R} bounded by C , we have

$$\oint_C \frac{\partial f}{\partial y} dx - \frac{\partial f}{\partial x} dy = 0$$

In class, we saw that this is minus the flux integral for ∇f . Compute $\nabla \bullet (\nabla f)$ by using the expression for $\nabla \bullet \vec{F}$ as a limit of flux integrals given at the end of class. Write out the result in terms of partial derivatives (instead of ∇ 's).

3) Suppose $\vec{F}(x, y)$ is the velocity vector field for a planar fluid flow on a simply connected region \mathcal{R} . A streamline for \vec{F} is the path of an individual particle in the fluid (i.e. it's tangent vector at \vec{u} is $\vec{F}(\vec{u})$). Suppose that $\nabla \bullet \vec{F} > 0$ at every point in \mathcal{R} . Show that there is no closed streamline in \mathcal{R} (hint: what can you compute for closed curves in \mathcal{R} ?). This is called *Bendixson's criterion*. Interpret the result by explaining what the condition $\nabla \bullet \vec{F} > 0$ says at each point of \mathcal{R}