

1) Find the length and direction of the vector whose base is $(0, 1, -1)$ and whose terminal point is $(-2, 3, 1)$. Express this vector as $a\vec{i} + b\vec{j} + c\vec{k}$.

2) All our vectors will be based at origin! Two distinct vectors \vec{v} and \vec{w} determine a line between their terminal points. Find a vector whose terminal point is one-third of the way along the segment from \vec{v} to \vec{w} . Hint: consider the vector $\vec{w} - \vec{v}$. How do you adjust this to point to any fraction of the way between \vec{v} and \vec{w} ?

3) Let $\vec{r}(t) = f_1(t)\vec{i} + f_2(t)\vec{j} + f_3(t)\vec{k}$ be a function $\mathbb{R} \rightarrow \mathbb{R}^3$, expressed as in terms of vectors based at the origin. We defined in class

$$\vec{r}'(t) = \lim_{h \rightarrow 0} \frac{\vec{r}(t+h) - \vec{r}(t)}{h}$$

when the limit exists. Find an expression for $\vec{r}'(t)$ in terms of $f_1(t)$, $f_2(t)$, $f_3(t)$. Use this to find $\vec{r}'(t)$ for $\vec{r}(t) = \cos 2t \vec{i} + \sin t \vec{j} + t^2 \vec{k}$.