

In all cases, draw a sketch of the region of integration!.

1) Re-write

$$\int_0^1 \int_{-x^2}^0 \int_0^{y^2} f(x, y, z) dz dy dx$$

as an integral using the orders $dy dz dx$ and $dx dz dy$.

2) Compute

a)

$$\int_1^e \int_1^e \int_1^e \frac{1}{xyz} dx dy dz$$

b)

$$\int_0^\pi \int_0^\pi \int_0^\pi \cos(u + v + w) du dv dw$$

3) Find the volume of the region cut from the cylinder $x^2 + y^2 = 4$ by the planes $z = 0$ and $x + z = 3$.

4) Compute the Jacobian $\frac{\partial(x, y, z)}{\partial(\rho, \phi, \theta)}$ for the spherical coordinates change of variables:

$$\begin{aligned} x &= \rho \sin \phi \cos \theta \\ y &= \rho \sin \phi \sin \theta \\ z &= \rho \cos \phi \end{aligned}$$

and verify that it equals $\rho^2 \sin \phi$.

5) Find the volume of the region above $z = x^2 + y^2$ and below $x^2 + y^2 + z^2 = 2$ by evaluating a triple integral in *cylindrical coordinates*.

6) Describe the region, \mathcal{R} , where $x^2 + y^2 + z^2 \leq 4$, $z \geq 0$, and $3z^2 \leq x^2 + y^2$ in terms of spherical coordinates. Use this to compute the integral

$$\int \int \int_{\mathcal{R}} \frac{3}{1 + (x^2 + y^2 + z^2)^{\frac{3}{2}}} dV$$