

For Monday review triple integrals in section 15.4, and read about cylindrical and spherical coordinates in section 15.6.

1) Find the area inside the ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

by integrating $f(x, y) = 1$ over that region. Use the substitution $x = a u$, $y = b v$ to simplify the integral first.

2) Find the Jacobian of the transformation $x = u$, $y = uv$ and sketch the region $1 \leq x, y \leq 2$ in the (u, v) -plane. Use this to evaluate the integral:

$$\int_1^2 \int_1^2 \frac{y}{x} dy dx$$

by making a substitution.

3) Evaluate the integral

$$\int \int_{\mathcal{R}} (2x^2 - xy - y^2) dx dy$$

where \mathcal{R} is the region in the first quadrant bounded by $y = -2x + 4$, $y = -2x + 7$, $y = x - 2$, and $y = x + 1$. (Hint: try factoring the quadratic you are integrating and then using a substitution $u = ax + by$, $v = cx + dy$).