

To compute certain double integrals, it helps to convert to polar coordinates. Recall that we use the substitution $x = r \cos \theta$ and $y = r \sin \theta$. This allows us to think of x and y as functions of (r, θ) . I said in class that

$$\int \int_{\mathcal{R}} f(x, y) dA = \int \int_{\mathcal{R}} f(r \cos \theta, r \sin \theta) r dr d\theta$$

where we will write the limits for \mathcal{R} in terms of r and θ . See section 15.3

1) Verify that $\frac{\partial(x, y)}{\partial(r, \theta)} = r$ where

$$\frac{\partial(x, y)}{\partial(u, v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}$$

What happens if we use $x = r \sin \theta$, $y = r \cos \theta$ instead?

2) What region of (x, y) pairs corresponds to $1 \leq r \leq 1.1$ and $0 \leq \theta \leq 0.1\pi$ under the maps $x = r \cos \theta$ and $y = r \sin \theta$. Compare the area of this (x, y) -region to the area of the region of (x, y) pairs corresponding to $100 \leq r \leq 100.1$ (which is also of length 0.1) and $\pi \leq \theta \leq 1.1\pi$ (the same θ width).

3) Compute the volume of the solid whose between $z = 0$ and $z = \frac{\tan^{-1}(\frac{y}{x})}{\sqrt{x^2 + y^2}}$ and sitting over the region $0 \leq r \leq 1 + \frac{1}{2} \cos \theta$, $-\frac{\pi}{4} \leq \theta \leq \frac{\pi}{4}$.

4) Find the area of the region enclosed by the positive x -axis and the points (r, θ) such that $r = \frac{4}{3}\theta$, $0 \leq \theta \leq \frac{\pi}{2}$ (hint: draw a picture, and recall that a double integral of the function $F(x, y) = 1$ gives the area of the region of integration).

5) Change the integral to polar coordinates and compute its value:

$$\int_{-1}^0 \int_{-\sqrt{1-x^2}}^0 \frac{2}{1 + \sqrt{x^2 + y^2}} dy dx$$

6) Compute the following integral

$$\int_0^\infty \int_0^\infty e^{-(x^2 + y^2)} dx dy$$