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Many inverse problems of practical interest are ill-posed in the sense that solutions do not depend continuously on data. To effectively
solve such problems, regularization methods are typically used. One problem associated with classical regularization methods is that
the solution may be oversmoothed in the process. We present an alternative “local regularization” approach in which a decomposition
of the problem into “local” and “global” parts permits varying amounts of local smoothing to be applied over the domain of the
solution. This allows for more regularization in regions where the solution is likely to be more smooth, and less regularization in
regions where sharp features are likely to be present. We illustrate this point with several numerical examples.

1 A Volterra Inverse Problem

We consider here the inverse problem of finding v €
L5(0,1) solving

Au(t) = f(t), a.a.te€(0,1), (1)

where A is a Volterra operator given by

t
Au(t) = /0 Kt —Du(r)dr, te(0,1),  (2)

and where the kernel % is assumed to be uniformly Holder
continuous on the interval [0,1], k(¢) > 0 for ¢t € (0,1].
We also assume that f is Holder continuous on [0, 1] and
is such that u uniquely solves problem (1).

It is well-known that (1) is an ill-posed problem due
to lack of continuous dependence of the solution uw on
data f € L2(0,1). Thus, in the usual case where only
a measured or computed approximation f° to f is avail-
able, with ||f® — f|| < 6, some kind of regularization or
stabilization method is required in order to obtain a rea-
sonable approximation % to u. In the above, ||-|| denotes
the usual L3(0,1) norm.

Classical Tikhonov regularization is based on finding
u‘; solving the minimization problem

: Au — 5112 L 2
_min|l4u— £ + o L] 3)

where L is a densely defined closed operator on L, (0,1)
and a > 0 is known as the Tikhonov regularization pa-
per. Standard regularization theory guarantees that a
choice of @ = a(d) may be made such that «(§) — 0 and
“i(a) —uasd—0.

One problem associated with classical regularization
methods such as the Tikhonov method above is that the
regularized solution ud is usually oversmoothed in the
process. This is due to the fact that smoothing occurs
globally (via a shift in the spectrum of A*A) and is con-
trolled by a single scalar parameter a.

As an alternative, the author has developed a fam-
ily of “local regularization methods” for Volterra prob-
lems which lead to fast numerical methods and addition-
ally allow for locally-controlled smoothing of the solu-
tion. The methods are based on a decomposition of A
into t-dependent “global” and “local” parts, where, for
0 < r « 1, the local operator acts on functions with
support on a small subinterval (¢,t + r) of (0,1). The
idea is to impose regularization locally on each subin-
terval and to use a (local) regularization parameter «
to control the amount of smoothing on each subinterval.
Proofs of convergence of these methods and of various
types of finite-dimensional discretizations have been pro-
vided elsewhere. 1:2:3:4

In more recent work?® the author has extended
this theory to handle the case of variable r = r(¢) and
a = a(t). Thus these functional regularization parame-
ters allow for local, variable control of the regularization
process, i.e., one may impose more smoothing on some
parts of the domain of u and less smoothing elsewhere in
the domain.

In this paper we will investigate the degree to which
these variable parameters can be used to control smooth-
ing via the examination of a several numerical examples.
For fixed r = r(t) we will also discuss selection of the op-
timal regularization parameter o = «(¢). This discussion
will take place in a discrete framework.

2 Discrete Formulation of the Inverse Problem
We assume that the matrix equation in u® € R”,
Au® = (4)

represents a discrete form of problem (1), where f in (1)
has been replaced by its perturbed counterpart f9, and
fo ¢ R™ is a discretized form of f%. We assume that
the discretization method generates A € R™*™ which is
lower-triangular and Toeplitz (because the original oper-
ator A is Volterra and of convolution type), with A given



by
ay 0 ... 0
as a1 ... 0
A= s (5)
Qp Gp—1 ... Q1
where a; > 0fori=1,...,n.

2.1 Duscrete Tikhonov Regularization

Standard (discrete) Tikhonov regularization applied to
(4) finds the solution ué, € R™ of the following mini-

(84
mization problem, which is a discrete analog of (3),

: A _f5 2 L 2
l{ggﬂ{” u—f°l° + a||Lul® }, (6)

where o > 0 is a given Tikhonov regularization parame-
ter, ||-|| denotes the usual R™ norm, and L is a discretized
version of L. In the case of L the n x n identity, problem
(6) represents 0th order (discrete) Tikhonov regulariza-
tion; if L is a discrete analog of the differentiation op-
erator, then (6) becomes st order (discrete) Tikhonov
regularization.

There are several methods for determining the op-
timal regularization parameter a to use in solving the
discrete Tikhonov problem (6). One classical way is via
a discrete Morozov discrepancy principle”, where the op-
timal parameter « is found through the criterion

Awg, £ = gd|>, (7)

where d = (f{ — fi,...,f3 — fu)T € R™ is the discrete
noise vector, u}, € R™ is the solution of (6) for given a,
and 8 = 1. (In practice, 8 is often taken to be a fixed
constant in the interval [1,2].) The optimal «a is then
found using (7) and a line search or simple optimization
procedure. We will use this principle below to determine
an optimal scalar a for standard Oth order and 1st order
Tikhonov regularization in several examples.

2.2 Discrete Local Regularization

As an alternative to Tikhonov regularization, we now
describe a (discrete) local regularization method that is a
variation of that developed by Lamm and Eldén*. The
method is a sequential variation of discrete Tikhonov reg-
ularization which allows for fast regularized solution of
Volterra problems of the form (1); here we generalize the
approach in Lamm and Eldén* by considering the pos-
sibility of variable regularization parameters defined by
r=(ry,re,...,7y) and a = (1,02, ...0qy). In this case,
a; > 0 and integers r; satisfy 1 < r; < n with the added
restriction that i +7; —1 < n (needed to ensure that local
subintervals do not extend beyond the interval [0, 1]).

Given a priori values of the vector regularization pa-
rameters r and a, the basic local regularization algorithm
is as follows. Assume that wui,us,...,u;—1 have already
been found. Then at the it step, we determine u; by
first finding the vector bf,i,ai € R, which solves the
reduced-dimension Tikhonov problem

i — {2 b2
jmin {l1Ab—BOP +ailblP ), (®)

where A, is the leading r; Xr; block of A and ||-|| denotes
the R™ norm. Here h® € R™ with h(") = (f§,..., f2)7T
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and h® = ({9 B RNT for i > 2, where

i—1
h;l) = lé-l-P—l —Zai+p_j’l,l/j, p=1,...,7. (9)
Jj=1

1

i Qg
the first component of the vector b

remaining components of bf‘i,ai'

After determining b in this way, we take u; to be

3

7,000 discarding all

Thus the approximation is a type of “moving lo-
cal Tikhonov problem” where a small (future) Tikhonov
problem is solved at each step, with the size of the local
problem (and future interval) determined by r; and the
local Tikhonov parameter given by «; > 0. The param-
eters r; and «; are thus local regularization parameters,
and changing these parameters for each i allows for vary-
ing amounts of regularization over the discretized interval
[0,1]. Convergence of the finite-dimensional approxima-
tion has been established for the case of constant r; = r,
a; =a,fori=1,...,n% A discrete convergence theory
in the case of variable r (with the restriction i+r;+1 < n)
and variable a will be considered elsewhere.

Below we present several numerical examples and
compare the results of standard Tikhonov regulariza-
tion with that of the local regularization method for
fixed r (i.e., r is selected a priori as a fixed n-vector).
The regularization parameter controlling smoothing is
then the vector-valued a = (aq,a2,...,a,). In our
examples below, we find the optimal a; at the ith se-
quential step using a local Morozov principle. That is,
assuming we have already determined solution compo-
nents uy,us,...,u;—1 and positive regularization param-
eters ai,as,...a;—1, we find the optimal local regular-
ization parameter o; solving the reduced-dimension Mo-
rozov principle (a reduced-dimension version of (7))

||A7‘ibf‘i7ai - h(i)”2 = /6||d7‘i 27 (10)

where bﬁhai € R" is the solution to (8) given r;, ay;
dTi = (ff — fia- ey Z§+7‘i—1 - fH_n_l)T € R" is the ith
noise vector; and the fixed constant § is as in (7).



3 Numerical Examples

In each example below, we specify the k appearing in (2)
and a true solution u for (1). The true data f is defined
via (1) from w, and the perturbed data is determined
by the addition of random noise uniformly distributed in
[—7,7], where ~ is selected so that the relative error in
f? is a desired level (specified in each example below).

Throughout we use a uniform discretization of [0, 1]
into n = 40 subintervals, and form the approximation (4)
via collocation of (1) over the space of piecewise constant
functions, with collocation occurring at n gridpoints.* In
addition, we shall always take r € R" to be fixed and of
the form r = (r,r,...,r,r — 1L,r — 2,...,1), where the
value of integer r > 2 is specified in the examples below.

For each example we consider both Oth order and 1st
order standard (discrete) Tikhonov regularization, using
the Tikhonov regularization parameter o determined by
the Morozov discrepancy principle (7). These (more clas-
sical) results are then compared to the results for local
regularization (both Oth order and 1st order local meth-
ods) for various values of r. The vector regularization
parameter a = (ayq,...,a,) needed for the local method
is determined by a sequence of local Morozov discrep-
ancy principles (10), as described earlier. We note that
in (10) we do not take the entries in the local noise vec-
tor d,, to be the actual values, since in practice one
typically does not know pointwise noise values. Instead
we compute d = mean{|f’ — f;|,i = 1,...,n} and use
d,, = (d,d,...,d)T € R". Other definitions of d may
be possible, but we do not investigate this here.

Finally, although the original problem (1) is defined
on the interval [0, 1], we only present results for the inter-
val [0, .8]. The reason for this is that, due to the nature of
the Volterra problem (1), it is impossible to perfectly re-
cover the solution near the end of the interval (regardless
of the method used).

3.1 Ezxample 3.1

Here we take the kernel k to be k(t) =1, ¢t € [0,1], and
we pick a continuous u as shown in dashed lines in Fig-
ures 1-4. We use random error to construct £ so that
the relative error in data is approximately 4%, and use
8 = 2 in the Morozov discrepancy principles (7) and (10).
In Figures 1-4 we show our numerical findings for stan-
dard Tikhonov Oth order regularization, local Oth order
regularization (using a fixed value of r = 4), standard
Tikhonov 1st order regularization, and local 1st order
regularization (r = 4), respectively. In all cases, ap-
proximations are graphed using solid curves. As Table
1 shows, the relative error in approximations is slightly
better for standard (0th and 1st order) Tikhonov than it
is for the local regularization results, however, this is not

Table 1: Example 3.1 - Relative Errors in Approximate Solutions

Method O0th Order 1st Order
Relative Error | Relative Error
Std. Tikhonov 0.1511 0.1114
Local r =2 0.1812 0.1644
Local r =3 0.1672 0.1410
Localr =14 0.1618 0.1325
Local r =5 0.1531 0.1400
Local r =6 0.1514 0.1427
Local r =7 0.1576 0.1301
Local r =8 0.1611 0.1274
Local r =9 0.1627 0.1300

surprising given that the true u we are seeking is already
smooth.

It is interesting to compare the regularization param-
eters a and a found for this example. For standard 0th
order Tikhonov regularization, the optimal « is given by
a = O(10™*) while the vector-valued regularization pa-
rameter a = (a,...,a4) for local Oth order regulariza-
tion (r = 4) satisfies

-3 s
ai:{@(lo Y,i=1,...,10 (11)

0(10™),i=11,...,40.

Thus «; decreases at a point corresponding to £ = .25 in
the interval (0, 1); more regularization occurs before this
point, and less after. This is quite reasonable when one
considers the graph of the original solution.

The results are even more dramatic for 1st order reg-
ularization. For standard Tikhonov regularization, the
optimal «a is given by a = O(10~7) while the vector-
valued regularization parameter a for local 1st order reg-
ularization (r = 4) satisfies

+2 .
ai:{O(lO Y,i=1,...,10 (12)

O(107%), i =11,...,40

with the decrease in a; corresponding to a (sharp) de-
crease in regularization at approximately ¢ = .25.

3.2 Example 3.2

For this example we again take k() = 1, t € [0,1],
however we now pick a sharply discontinuous u which
is shown in dashed lines in Figures 5-8. (We note that
in order to better display the graphs of u and its approx-
imations, we have artificially connected all jumps using
line segments.) As in the last example, the relative error
in perturbed data is approximately 4% and we use 8 = 2
in the Morozov principles (7) and (10).

In Figures 5-6 we illustrate the results of standard
0th order Tikhonov regularization and local Oth order
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Figure 1: Example 3.1 - Standard 0th Order Tikhonov Regulariza-
tion
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Figure 2: Example 3.1 - Local 0th Order Regularization (r = 4)
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Figure 3: Example 3.1 - Standard 1st Order Tikhonov Regulariza-
tion
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Figure 4: Example 3.1 - Local 1st Order Regularization (r = 4)

regularization for the case of r = 2. In Figures 7-8 we
repeat these examples, instead using 1st order regulariza-
tion throughout. The improvement of local regulariza-
tion over standard Tikhonov regularization (which over-
smooths solutions here) is illustrated in Table 2 where we
give the relative error in solutions for standard Oth order
and 1st order Tikhonov regularization and for local reg-
ularization (Oth order and 1st order, for various values
of r). From these tables we see that the best results are
obtained using local regularization with r = 2.

Table 2: Example 3.2 - Relative Errors in Approximate Solutions

Method O0th Order 1st Order
Relative Error | Relative Error
Std. Tikhonov 0.4399 0.4891
Local r =1 0.2905 0.2905
Local r =2 0.2094 0.2049
Local r =3 0.2131 0.2241
Localr =14 0.2189 0.2243
Local r =5 0.2473 0.2613
Local r =6 0.2715 0.2891
Local r =7 0.2737 0.2916
Local r = 8 0.2889 0.3069
Local r =9 0.2946 0.3229

3.3 Example 3.3

Here we repeat Example 2 except that we now define
k(t) = t, t € [0,1]. This example is considerably more
ill-posed than Example 2, and thus we only perturb the
data so that the relative error is approximately 0.5%.
Because of the increased ill-posedness, it is not surprising
that the results are not as good as they were for Example
3.2, regardless of the method applied.

In Figures 9-11, we show 0th order regularization
(standard Tikhonov, local with r = 4, and local with
r = 5) using § = 2. In Figure 12, we repeat the local Oth
order regularization using r = 4, this time with 8 = 1.44.
(The smaller 8 serves to damp the noise at the end of the
interval, but also to damp the size of the jumps found by
the approximation.) In Figures 13-16 we show the same
results, but with 1st order regularization throughout.

In all cases the local regularization method finds the
discontinuous jumps better than the standard Tikhonov
regularization methods and does better overall on the in-
terval [0, .8]. However, local regularization tends to per-
form worse toward the end of the interval as the propa-
gated error in the sequential solution method begins to
accumulate.
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Figure 8: Example 3.2 - Local 1st Order Regularization (r = 2)



Figure 9: Example 3.3 - Standard 0th Order Tikhonov Regulariza-
tion
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Figure 10: Example 3.3 - Local 0th Order Regularization (r = 4,
f=2)
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Figure 11: Example 3.3 - Local 0th Order Regularization (r = 5,
B=2)
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Figure 12: Example 3.3 - Local 0th Order Regularization (r = 4,
B = 1.44)

Figure 13: Example 3.3 - Standard 1st Order Tikhonov Regular-
ization
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Figure 14: Example 3.3 - Local 1st Order Regularization (r = 4,
B=2)
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Figure 15: Example 3.3 - Local 1st Order Local Regularization
(r=58=2)
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Figure 16: Example 3.3 - Local 1st Order Regularization (r = 4,
B =1.44)



