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Abstract. We survey continuous and discrete regularization methods
for first-kind Volterra problems with continuous kernels. Classical regu-
larization methods tend to destroy the non-anticipatory (or causal) na-
ture of the original Volterra problem because such methods typically
rely on computation of the Volterra adjoint operator, an anticipatory
operator. In this survey we pay special attention to particular regular-
ization methods, both classical and nontraditional, which tend to retain
the Volterra structure of the original problem. Our attention will pri-
marily be focused on linear problems, although extensions of methods to
nonlinear and integro-operator Volterra equations are mentioned when
known.

1 Introduction

Consider the Volterra equation of first kind∫ t

0

k(t, s)u(s) ds = f(t), t ∈ [0, T ], (1)

where the kernel k is a continuous function on [0, T ]× [0, T ]. If k is a convolution
kernel, then k(t, s) = κ(t− s) for some continuous function κ on [0, T ].

We will assume throughout that the data f is such that there exists a unique
solution ū ∈ U ≡ L2(0, T ) of equation (1), and, in particular, we require that
f(0) = 0. For simplicity we will consider all quantities to be real-valued. Addi-
tional regularity on f , k, and ū may be required in the results which follow.

It will often be useful to write equation (1) in the form

Au = f, (2)

where the operator A is defined for u ∈ U by

Au(t) :=
∫ t

0

k(t, s)u(s) ds, a.e. t ∈ [0, T ]. (3)
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Then A ∈ L(U), the space of continuous linear operators from U to U .
If the kernel k is non-degenerate, then the rangeR(A) of A is non-closed in U .

This means that equation (1) is ill-posed , which has serious implications in the
usual case where we only have available an approximation fδ ∈ U of f ; here fδ

satisfies ‖f−fδ‖ ≤ δ for some δ > 0, where throughout ‖·‖ will denote the usual
norm on U = L2(0, T ). The ill-posedness means that the solution uδ of Au = fδ

(when such a solution exists) may be arbitrarily far from the solution ū of the
unperturbed problem (1). Therefore, some kind of regularization procedure will
be needed to solve the problem in the case of perturbed data fδ.

1.1 Degree of Ill-Posedness of First-Kind Volterra Problems

For sufficiently smooth f and k, we may differentiate equation (1) with respect
to t to obtain

k(t, t)u(t) +
∫ t

0

∂

∂t
k(t, s)u(s) ds = f ′(t), t ∈ [0, T ]. (4)

If k(t, t) 6= 0, for t ∈ [0, T ], division of equation (4) by k(t, t) yields a standard
Volterra equation of the second kind which is known to be a well-posed problem.
In particular, the solution of equation (4) depends continuously on the “data”
in (4), which (for the new equation) is the function f ′.

If k(t, t) = 0, t ∈ [0, T ], then we may repeat the process by differentiating
the equation once again, this time resulting in a second-kind Volterra equation
(with “data” f ′′) provided ∂k(t, t)/∂t 6= 0 for t ∈ [0, T ]. We generalize this idea
with the following where, without loss of generality, we will normalize k.

Definition 1. We will say that the Volterra operator A is ν-smoothing for in-
teger ν ≥ 1 if the kernel k is such that

(
∂`k/∂t`

)
(t, t) = 0, for 0 ≤ t ≤ T and

` = 0, . . . , ν − 2, and such that
(
∂ν−1k/∂tν−1

)
(t, t) = 1, for 0 ≤ t ≤ T , with

∂νk/∂tν continuous on [0, T ]× [0, T ].
We will say that the Volterra problem Au = f is a ν-smoothing problem if

the operator A is a ν-smoothing operator and f ∈ Cν [0, T ].

Thus, if (1) is a ν-smoothing problem, we may differentiate equation (1)
ν times to obtain

u(t) +
∫ t

0

∂ν

∂tν
k(t, s)u(s) ds = f (ν)(t), t ∈ [0, T ], (5)

an equivalent problem to equation (1) in this case (provided f(0) = f ′(0) =
· · · = f (ν−1)(0) = 0 ).

Definition 2. We will say that the Volterra operator A is infinitely-smoothing
if

(
∂`k/∂t`

)
(t, t) = 0, for 0 ≤ t ≤ T and all ` = 0, 1, 2, . . ..

We will say that the Volterra equation Au = f is an infinitely-smoothing
problem if the operator A is a infinitely-smoothing operator.
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Of course, not all equations of the form (1) fall into precisely one of the above
classes of problems. Nevertheless, these definitions serve to characterize a wide
class of Volterra problems and begin a discussion on the “degree” of ill-posedness
of particular first-kind problems.

Among the class of problems defined above, a one-smoothing problem is the
least ill-posed since it requires only one differentiation of the data (which, in
general, is an ill-posed operation itself since perturbations fδ of f need not be
differentiable). In fact, the canonical one-smoothing convolution problem is the
“differentiation problem” u = f ′, or the problem of finding u solving the equation∫ t

0

u(s) ds = f(t), t ∈ [0, T ]. (6)

for sufficiently smooth f . The jth singular value σj of the operator A in this case
satisfies σj = O(1/j) as j →∞.

Similarly, the canonical ν-smoothing convolution problem is associated with
the convolution kernel κ(t) = tν−1/(ν − 1)! , for which the associated Volterra
operator has singular values σj = O(1/jν) as j → ∞. Thus, the degree of
ill-posedness of ν-smoothing problems increases with increasing ν. See [4] for
general information about degree of ill-posedness. See also [5, 6] for a discussion
of singular values for ν-smoothing Volterra operators and the way in which these
singular values are representative (asymptotically) of a class of more general
ν-smoothing problems of convolution type.

A classic example of an infinitely-smoothing problem is the inverse heat con-
duction problem (IHCP), or sideways heat equation, one formulation of which
is as follows. Given an insulated semi-infinite bar on the non-negative x-axis, an
unknown heat source u = u(t) is applied to the end of the bar at x = 0. The
goal is to determine the value of u, given measurements f = f(t), 0 ≤ t ≤ T , of
the temperature at position x = 1 of the bar. The unknown heat source u is the
solution of the first-kind equation (1), where the kernel k is of convolution type,
k(t, s) = κ(t− s), with

κ(t) =
1

2
√
π t3/2

e−1/4t, t ∈ [0, T ].

Because we can rarely obtain f exactly, the solution of the IHCP with perturbed
data fδ is a severely ill-posed problem.

Remark 1. A number of the regularization methods we describe below will be
suitable for application to the IHCP. However, the specialized nature of the prob-
lem also suggests other particularly effective methods, some taking advantage
of its equivalent formulation as an partial differential equation problem with
overspecified data. As our focus here will be on methods applicable to more
general Volterra equations of the form (1), a discussion of methods specific to
the IHCP is beyond the scope of this paper. Instead, the reader is encouraged
to consult surveys by Beck, Blackwell, and St. Clair, Jr. [16], Eldén [17] (as
well as other papers in the collection [19]), Murio, [81], Alifanov [15], Hào and
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Reinhardt [22], Kurpisz and Nowak [25], and the many references found therein.
More recent contributions (not likely to be found in the above) include, for ex-
ample, wavelet-based methods and analyses [27, 31, 32], updates on mollification
methods [28–30, 35, 36], as well as the recent papers [18, 20, 21, 23, 24, 26, 33, 34].

In this paper we survey continuous and discrete regularization methods for
first-kind Volterra problems of the form of (1). In particular, we pay specific
attention to regularization methods which tend to retain the Volterra structure
of the original problem. We have tried to pick methods which are especially
representative of this idea and which also have a substantial theoretical basis.
Certainly there will be errors in omission, particularly so since there is a large
body of untranslated Russian literature on this subject.

In addition, although we will primarily be concerned with the linear problem,
some of what will be said below also applies to nonlinear equations of the form∫ t

0

k(t, s, u(s)) ds = f(t), t ∈ [0, T ], (7)

and to Volterra operator equations of the form (1) where in this case u(t) ∈ H,
for some Hilbert space H, and k(t, s) is a two-parameter family of continuous
operators from H to H (see, for example, the discussion of Volterra integro-
operator equations in Section 6.8 of [9]).

Finally, a discussion of first-kind Volterra problems with weakly singular
kernels is beyond the scope of this paper. This is an important class of problems
which includes the Abel integral equation as a special case (and for which the
Abel integral operator might be considered “half-smoothing” in the terminology
of this section). Although a number of the methods we discuss are applicable
to the Abel equation, we will not in general attempt a comprehensive study of
regularization methods for this problem.

2 Classical Regularization and Volterra Problems

The classical theory of regularization is well-developed for linear ill-posed prob-
lems. For example, given the equation Au = f on a Hilbert space U , with
A ∈ L(U), and given a perturbation fδ of f , the method of Tikhonov regular-
ization determines uδ

α solving

min
u∈U

‖Au− fδ‖2 + α‖u‖2,

or, equivalently, as the solution of the normal equations on U ,

(A∗A+ αI)u = fδ. (8)

where A∗ ∈ L(U) is the (Hilbert) adjoint operator associated with A. Standard
Tikhonov regularization theory (which is applicable to first-kind Volterra prob-
lems) gives well-known conditions on the selection of α = α(δ) so that uδ

α(δ) → ū
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in U as δ → 0. A posteriori discrepancy principles facilitate the selection of α for
a particular perturbation fδ and given value of δ. For more information on these
topics, see, for example, [4, 8]. We note that the first application of Tikhonov
regularization specifically to general first-kind Volterra problems was evidently
due to Schmaedeke in 1968 [14].

2.1 Regularization Methods of “Volterra Type”

An observation relevant to the objectives of this paper is the following. The orig-
inal Volterra operator A in (3) is non-anticipatory , or causal ; as a consequence,
if we wish to determine the values of the solution ū of the original Volterra
problem (1) on the interval [0, τ ] (for any τ > 0), we need only make use of the
values of data f on the same interval. In contrast, the adjoint operator A∗ of
the Volterra operator is given by

A∗u(t) =
∫ T

t

k(s, t)u(s) ds, a.e. t ∈ [0, T ], (9)

which is an anticipatory operator. So if, for any τ > 0, we wish to determine the
values of the solution uδ

α of the regularized equation (8) on the interval [0, τ ],
we will need to make use of both past and future values of the data fδ, i.e., we
require knowledge of fδ on all of [0, T ].

This point is especially clear when the two equations (1) and (8) are dis-
cretized. Typical numerical realizations of the Volterra operator A lead to a
lower-triangular (or nearly lower-triangular) matrix AN , so that the solution of
a discretization of (1) may be handled by efficient, sequential methods (often in
near real time). In contrast, (AN )>AN is typically a full matrix and, in general,
more poorly conditioned than the original matrix AN .

Like Tikhonov regularization, numerous classical regularization methods are
based on the computation of gα(A∗A), where gα is appropriately defined [4]. As
a consequence, such methods do not generally retain the Volterra structure of
the original problem. In this paper we will focus on regularization methods which
specifically preserve the non-anticipatory nature of the original problem, refer-
ring to such approaches as regularization methods of “Volterra type”. Where
possible, we’ll indicate convergence results and state whether rates of conver-
gence are known to be order-optimal (see, for example, [4]).

There is, unfortunately, a price associated with limiting our discussion to
regularization methods which avoid use of the adjoint operator A∗. While meth-
ods based on the operator gα(A∗A) are generally associated with well-developed
convergence theories (because such theories can make use of the spectral prop-
erties of the operator A∗A), the same is not true in general for methods based
on the Volterra operator A. Quite often this means that theoretical results for
regularization methods of “Volterra type” are limited to one-smoothing prob-
lems, or to ν-smoothing problems for ν small; other methods may require the
assumption that A have special properties (such as the assumption that A is
accretive). These are often only theoretical limitations, however, and do not in
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general mean that the method may not be applicable to a larger class of Volterra
problems.

3 Continuous Regularization Methods of “Volterra
Type”

3.1 A Singular Perturbation Approach

The early theoretical development of a singular perturbation approach for regu-
larizing first-kind Volterra problems is generally attributed to Sergeev [53] and
Denisov [41] in the early 1970’s, following the ideas of Lavrent′ev [51]. For this
reason, the method is often referred to as Lavrent′ev’s classical method , or the
small parameter method . The ideas have seen numerous extensions to vector,
nonlinear, integro-operator, and other types of Volterra equations, with contri-
butions made by Asanov, Imanaliev, Imomnazarov, and Magnickĭı, [39, 44–47,
52], to mention just a few of the names important in the historical development
of this approach. More recent applications of this method may be found in [40,
42, 43, 48, 74].

As motivation for the method, we recall from Section 2 that most reasonable
finite-dimensional approximations of equation (1) lead to a linear system gov-
erned by a lower-triangular matrix AN . Generally, such a matrix has very small
entries along the diagonal (due to the ill-posedness of the original problem), and
thus a natural way to stabilize such a system would be to augment the values
on the diagonal. In the infinite-dimensional setting, the analog of this process is
to add a term of the form αu(t) to the values of Au(t), for α > 0 small. Thus,
when noisy data fδ is used in place of f , the approach is to consider a perturbed
version of equation (2), namely,

(αI +A)u = fδ, (10)

where I is the identity operator on U . That is, we consider

αu(t) +
∫ t

0

k(t, s)u(s) ds = fδ(t), t ∈ [0, T ], (11)

which is a (well-posed) second-kind Volterra equation and, as such, has a unique
solution uδ

α depending continuously on data.
The regularized convergence theory for this problem is well-understood in

the case of one-smoothing kernels. For example, the following result is obtained
after making a slight variation in the theoretical arguments found in Section 3.4
of [1].

Theorem 1. [1] (Lavrent′ev’s classical method) Let ū ∈ C[0, T ] be the
solution of the original problem (1) associated with data f , and assume that (1)
is a one-smoothing problem. Let uδ

α be the solution of (11) associated with data
fδ, where |f(t)− fδ(t)| < δ, t ∈ [0, T ].
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Then if α = α(δ) is selected satisfying δ/α(δ) → 0 as δ → 0, it follows that

uδ
α(δ) → ū as δ → 0,

uniformly on [0, T ] provided ū(0) = 0; the convergence is uniform on [a, T ], for
any a > 0, in the case of ū(0) 6= 0.

The lack of uniform convergence near t = 0 in the case of ū(0) 6= 0 is
unfortunate, but not surprising if one observes that equation (11) gives that
uδ

α(0) = fδ(0)/α = (fδ(0)−f(0))/α, so that the selection of α = α(δ) as pre-
scribed in Theorem 1 guarantees uδ

α(0) → 0 6= ū(0) as δ → 0. Thus, in the
case of ū(0) 6= 0, there is a boundary layer near t = 0 where the solution uδ

α

of (11) must exhibit rapid change for α small [37]. This means that if (11) is
to form the basis of a regularization method for the stable solution of (1), one
must employ numerical methods for singularly perturbed Volterra equations, a
class of “stiff” Volterra second-kind equations that has received little attention
by the numerical analysis community to date [49]. (Asymptotic analysis of such
singularly perturbed equations may be found, for example, in [37, 38, 49], and
the papers cited therein.)

To correct for the difficulty of the rapidly-varying nature of the solution uδ
α of

(11), several authors have suggested a modification of the regularization equation
as follows (e.g., see [44, 52], and the references therein):

α[u(t)− ū(0)] +
∫ t

0

k(t, s)u(s) ds = fδ(t), t ∈ [0, T ]. (12)

Although this formulation avoids the singularly perturbed nature of (11) when
ū(0) 6= 0, the main drawback is that one must know the value of the true solution
ū at t = 0. We note that for one-smoothing problems, equation (4) gives that
ū(0) = f ′(0), so we must either have knowledge of the exact value of f ′ at 0,
or else we must perform a differentiation of the perturbed data fδ (a process
itself requiring regularization). In a related paper by Sergeev [53], similar ideas
were put forward for general ν-smoothing kernels, but, using the approach taken
there, one must have knowledge of ū(0) as well as higher order derivatives of
ū(t) at t = 0 in order to avoid facing the boundary layer phenomenon [50].

We note that although Theorem 1 tells how to select α = α(δ) asymptotically
as δ → 0, it does not provide a principle for selecting α when we are only given
one value of δ > 0 and a particular perturbation fδ of f . In fact, discrepancy
principles do exist for this method in the case of a particular class of Volterra
problems, although they are not the classical (Morozov) discrepancy principles.
We will postpone a discussion of these modified principles until Section 3.3 where
Lavrent′ev’s m-times iterated method (a generalization of Lavrent′ev’s classical
method) is considered; see, in particular, Remark 2 of that section.

3.2 “Local Regularization” Methods

Local regularization methods for Volterra problems share common features with
the singular perturbation approach described above in that a second-kind equa-
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tion similar to (11) is constructed; here, however, equation (11) takes the special
form

α(t; r)u(t) +
∫ t

0

k̃(t, s; r)u(s) ds = f̃δ(t; r), t ∈ [0, T ], (13)

where α(·; r) is now a prescribed function involving a (new) regularization pa-
rameter r > 0, and k̃(·; r), f̃(·; r) are given r-dependent approximations of k and
fδ (all of which will be defined shortly).

To motivate equation (13), we let r > 0 be a small fixed constant and assume
that equation (1) holds on an extended domain [0, T + r] (which can always be
accomplished by simply decreasing the size of T ). Then ū satisfies∫ t+ρ

0

k(t+ ρ, s)u(s) ds = f(t+ ρ), t ∈ [0, T ], ρ ∈ [0, r],

or, splitting the integral at t and making a change of integration variable,∫ t

0

k(t+ ρ, s)u(s) ds+
∫ ρ

0

k(t+ ρ, t+ s)u(t+ s) ds (14)

= f(t+ ρ), t ∈ [0, T ], ρ ∈ [0, r].

For each t ∈ [0, T ], the ρ variable serves to advance the equation slightly into
the future. One way to consolidate this future information is to integrate both
sides of the equation with respect to ρ ∈ [0, r], i.e.,∫ t

0

∫ r

0

k(t+ ρ, s) dρ u(s) ds+
∫ r

0

∫ ρ

0

k(t+ ρ, t+ s)u(t+ s) ds dρ (15)

=
∫ r

0

f(t+ ρ) dρ, t ∈ [0, T ],

where we have made a change of order of integration in the first integral above.
We note that the true solution ū satisfies equation (15); when f is replaced

by fδ, a regularized form of this equation is needed and we obtain this new
equation by replacing u(t + s) by u(t) in the second integral term. That is, for
fixed t, it is as if u is (temporarily) assumed to be constant on the small local
interval [t, t + r]; the length r of this local interval becomes the regularization
parameter. The “local regularization equation” which results is given by (13),
where in that equation we make the definitions, for 0 ≤ s ≤ t ≤ T ,

α(t; r) :=
∫ r

0

∫ ρ

0

k(t+ ρ, t+ s) ds dρ, (16)

k̃(t, s; r) :=
∫ r

0

k(t+ ρ, s) dρ, f̃δ(t; r) :=
∫ r

0

fδ(t+ ρ) dρ. (17)

It is clear that this method is similar to the singular perturbation approach
discussed earlier because the coefficient α(t; r) of u(t) in (13) can be made small
by decreasing r. However, in contrast to the singular perturbation approach,
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there is never a boundary layer phenomenon for the local regularization equation.
That is, one does not require ū(0) = 0 (or knowledge of ū(0), if nonzero) in order
to obtain uniform convergence on [0, T ] of the solution uδ(·; r) of (13) to ū as
r, δ → 0 in a coordinated way. Thus, one may apply standard numerical schemes
to the solution of the local regularization equation (13) without having to worry
about the difficulty of resolving rapidly varying solutions near t = 0 (such as was
necessary for the singular perturbation approach in the absence of information
about ū(0)).

A regularization theory for this method was developed in [56, 57] (for con-
volution kernels) and [61] (for nonconvolution kernels), and is summarized in
the next theorem. An open problem concerns the development of a discrepancy
principle for the selection of r = r(δ, fδ) in the case of fixed fδ, δ.

Theorem 2. [61] (Local regularization method) Let r̄ > 0 be small and
assume that ū ∈ C1[0, T + r̄] satisfies (1) on [0, T + r̄] where it is assumed that
(1) is a one-smoothing problem. For 0 < r ≤ r̄, let uδ(·; r) denote the solution
of (13) associated with fδ, where |f(t)− fδ(t)| ≤ δ for t ∈ [0, T + r̄].

Then if r = r(δ) is selected satisfying δ/r(δ) → 0 as δ → 0, we have

uδ(·; r(δ)) → ū as δ → 0

uniformly on [0, T ], with optimal convergence rate δ1/2 for r(δ) = Cδ1/2, C > 0.

The local regularization theory described above may be generalized so that
integration with respect to ρ in (16)–(17) is replaced by integration with respect
to a suitable Borel measure ηr on [0, r] [56, 57, 61]. In particular, a choice of a
discrete ηr (such as

∫ r

0
g(ρ) dηr(ρ) =

∑K
i=1 sig(τi), for si > 0, i = 1, . . . ,K, and

0 ≤ τ1 < τ2 < . . . < τK = r) is particularly useful in numerical implementations
of this method. This idea will be revisited in Section 4.3.

We note that, although the above theorem is stated for one-smoothing prob-
lems, conditions guaranteeing convergence for general ν-smoothing problems
may be found in [57] for convolution kernels. Verification of these conditions
is not easy, but convergence has been demonstrated in the case of 1 ≤ ν ≤ 4 for
classes of Borel measures ηr of practical use [57]. The theory for the local reg-
ularization method described above does not yet extend to infinitely-smoothing
problems, but, as will be discussed in Section 4.3, a particular discretized ver-
sion of (13) (with a fixed discrete measure ηr) has been used for over 30 years in
practical solution of the infinitely-smoothing IHCP. Indeed, it was this numerical
method due to Beck [16] for the IHCP that motivated the development of the
local regularization methods described in this section and in Section 4.3. (As a
final comment regarding local regularization and infinitely smoothing problems,
we note that it was shown in [58] that a particular variation of the method
described above can be shown to converge for infinitely-smoothing problems,
however this alternate approach can no longer be considered a regularization
method of “Volterra type”.)

Theorem 2 was extended in [61] to include the possibility of a variable regu-
larization parameter (r = r(t)), a generalization which allows for variable local
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regularization of equation (1) (i.e., more regularization in some regions of [0, T ]
and less in others). Variable regularization has been shown to be helpful in nu-
merical examples where the true solution ū is not smooth.

A disadvantage of the local regularization method described above is the need
for data slightly beyond the initial interval [0, T ], or, equivalently, one must be
satisfied with approximating ū on a slightly smaller interval [0, T − r̄]. However,
this is not a serious shortcoming as it is well-known that one cannot expect to
adequately determine solutions of Volterra problems near the end of the interval
[0, T ] when using data on the same interval.

3.3 Lavrent′ev’s m-times iterated method.

For fixed integer m ≥ 1 and given regularization parameter α > 0, Lavrent′ev’s
m-times iterated method determines uδ

α ∈ U via

(αI +A)un = αun−1 + fδ, n = 1, 2, . . .m, (18)
uδ

α := um, (19)

starting from u0 = 0. For m = 1, it is clear that the method (18)–(19) reduces to
Lavrent′ev’s classical method of Section 3.1; for m > 1, corrections are applied
to further stabilize the problem. Because typical discretizations of the operator
(αI + A) lead to lower triangular matrix representations, the calculation of uδ

α

in (18)–(19) is easily accomplished via backward substitution in (18); as before,
the addition of the term αun (for α > 0 small) serves to stabilize the numerical
process. We note that because m ≥ 1 is fixed, the approach is considered a
parametric regularization method and not an iterative one.

In contrast to Lavrent′ev’s classical method for first-kind Volterra equations,
where the theoretical development is available for one-smoothing problems (and
for general ν-smoothing problems using the approach of Sergeev [53]), the the-
oretical analysis of Lavrent′ev’s m-times iterated method for Volterra problems
appears to be limited at present to accretive operators, i.e., to those operators
A ∈ L(U) (for a general Hilbert space U , here over a complex or real scalar field)
satisfying

<〈Au, u〉 ≥ 0, u ∈ U,

where 〈·, ·, 〉 denotes the usual inner product on U , and <z denotes the real part
of z ∈ C.

Accretive Volterra operators include those with convolution kernels k(t, s) =
κ(t− s) that are completely monotone, i.e.,

<L[κ](z) ≥ 0, <z > 0,

where L[κ] denotes the Laplace transform of κ. (For more details about com-
pletely monotone kernels, see, for example, Gripenberg, Londen, and Staffans
[7], or Nohel and Shea [12].) Among this class of convolution kernels are κ
which are positive, decreasing, and convex [12]. Another example of an accretive
Volterra operator is the generalized Abel integral operator (where U must be
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interpreted to denote L2(0, T ) with an associated weighted inner product). Fur-
ther, the Volterra operator associated with the IHCP is evidently not accretive
in U = L2(0, T ), without the use of a weighted inner product [67].

We describe here some of the basic theoretical results for Lavrent′ev’sm-times
iterated method, assuming throughout the remainder of this section that A is an
accretive Volterra operator. In [63], Plato showed that the method is convergent
in the case of exact data f in (18)–(19), i.e.,

uα → ū as α→ 0.

In the case of perturbed data fδ, the definition of a classical discrepancy principle
provides a way of selecting α = α(δ) so that regularized convergence is obtained
as δ → 0. The following theorem involves the use of a classical discrepancy
principle, but is valid only for the case of m ≥ 2.

Theorem 3. [64, 65] (Lavrent′ev’s m-times iterated method, I)
Let A ∈ L(U) be an accretive Volterra operator and let ū ∈ R(A) solve the
original equation Au = f . Let uδ

α denote the solution of the Lavrent′ev’s m-times
iterated method (18)–(19) for m ≥ 2, with fδ in place of f and ‖f − fδ‖ < δ for
some δ > 0.

Then if α = α(δ) > 0 is selected satisfying the discrepancy principle,

b0δ ≤ ‖Auδ
α − fδ‖ ≤ b1δ (20)

(for fixed constants b0, b1, with b1 ≥ b0 > 1, b1δ < ‖fδ‖ ), it follows that
δ/α(δ) → 0, and

‖uδ
α(δ) − ū‖ → 0,

as δ → 0. Moreover, under additional smoothness assumptions on ū (and with
some restrictions), order-optimal convergence rates are obtained.

Remark 2. Plato showed that the (classical) discrepancy method given by (20)
in Theorem 3 is divergent for the case of m = 1 (i.e., for Lavrent′ev’s classical
method considered Section 3.1) when applied to accretive Volterra operators with
nondegenerate kernels (cf. Prop. 3.2.4 of [63]). Although this result is restricted to
accretive operators, it matches a similar finding for symmetric, positive definite
operators in L(U) and thus does not give much hope that a discrepancy principle
of this type will be useful for general ν-smoothing Volterra problems.

Fortunately, in the accretive operator case there are modified discrepancy
principles that are convergent (and lead to “pseudo-optimal” choices of α = α(δ),
in the terminology of [69]) for m ≥ 1. Thus, provided that A is accretive, these
modified discrepancy principles apply to Lavrent′ev’s classical method described
in Section 3.1. One such modified discrepancy principle is given below.

Theorem 4. [64, 69] (Lavrent′ev’s m-times iterated method, II)
Let A ∈ L(U) be an accretive Volterra operator and let ū ∈ R(A) solve the
original equation Au = f . Let uδ

α denote the solution of the Lavrent′ev’s m-
times iterated method (18)–(19) for any fixed m ≥ 1, with fδ in place of f ,
‖f − fδ‖ < δ.
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Then if α = α(δ) > 0 is selected satisfying the discrepancy principle,

b0δ ≤ ‖α(A+ αI)−1(Auδ
α − fδ)‖ ≤ b1δ (21)

(for fixed constants b0, b1, with b1δ < ‖fδ‖, b1 ≥ b0 > τ0, for suitable τ0 > 0), it
follows that δ/α(δ) → 0, and

‖uδ
α(δ) − ū‖ → 0,

as δ → 0, with order-optimal convergence rates under additional smoothness
assumptions on ū.

Plato and Hämerik considered a second convergent parameter choice in [69]
for the m-times iterated method in the case of m ≥ 1. Both modified discrepancy
principles extend (to accretive Volterra operators) analogous results for symmet-
ric operators on a Hilbert space [13] and similar results for normal equations [3].
It was also shown in [69] that an alternate parameter selection method based on
an extrapolation strategy is convergent for m = 1 and m = 2; the question is
unresolved for m > 2.

3.4 Iterative Methods of “Volterra Type”

Classical iterations such as Landweber, conjugate gradient, ν-methods, and it-
erated Tikhonov regularization, generally rely on the computation of the antic-
ipatory operator A∗ and thus will not be considered here. For a discussion of
classical iterative regularization, see, for example, [4].

A few simple iterations do, however, fit our notion of a regularization method
of “Volterra type”.

Richardson Iteration. Starting from an initial guess of u0, the Richardson
iteration is a simple explicit method which defines a sequence {uδ

n} of functions
satisfying

un = un−1 − βn(Aun−1 − fδ), n = 1, 2 . . . , (22)

starting from a suitable initial guess u0 ∈ U .
In the case of noise-free data (fδ = f , uδ

n = un), Vasin obtained the following
result concerning convergence of the iteration under quite general conditions on
the original problem (1) (in particular, equation (1) need not be ν-smoothing),
with results applicable to certain nonlinear Volterra problems [70, 71].

Theorem 5. [70, 71] (Richardson iteration with noise-free data)
Assume the kernel k ∈ C1 in (1) is such that k(t, s) ≥ 0 and ∂

∂tk(t, s) ≥ 0 for
0 ≤ s, t ≤ T . Let un denote nth Richardson iterate defined by (22) for noise-
free data f . Then, for sufficiently smooth initial guess u0 and for βn ≥ β > 0
sufficiently small, the iterates un converge to ū as n→∞.
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The convergence of the Richardson iteration in the case of noisy data is a
more difficult problem as this particular iteration seems quite sensitive to noise
in the data, even for ν-smoothing problems with ν small. Of course, when per-
turbed data fδ is used in place of f in (22), we cannot expect convergence as
n→∞. Instead (as with all iterative methods for ill-posed problems), we ex-
pect to see “semiconvergence” (see, e.g., [4] or [11]), meaning that the error
‖uδ

n − ū‖ decreases for some initial iteration steps, but eventually begins to in-
crease. Therefore, in the presence of noisy data one must determine a stopping
criterion, or method of selecting a stopping point n = n(δ) in the iteration pro-
cess, for which we have regularized convergence of the iterates as δ → 0. That
is, we require that n(δ) →∞ and

‖uδ
n(δ) − ū‖ → 0,

as δ → 0.
Vasin discussed a stopping criteria in [70], however simple numerical examples

suggest that the Richardson method may be most effective for only moderately
ill-posed problems. For example, Plato and Hämarik [69] provided a thorough
analysis of a stopping criteria for the Richardson iteration based on classical
discrepancy principles, but the theory they provided was limited to a restricted
class of operators (strictly sectorial operators) which include the classical Abel
operator. The Abel problem is only moderately ill-posed and, indeed, it is an
open question as to whether the Richardson iteration is better suited for such
problems than for general ν-smoothing (or infinitely-smoothing) problems. In ad-
dition, in [64], Plato noted that generally Lavrent′ev’s m-times iterated method
is superior to Richardson iteration (and also superior to an implicit scheme given
in (23) below) for strictly sectorial operators.

Other Iterative Methods There are additional iterative methods, which when
applied to equation (1), take full advantage of the Volterra nature of the problem.
Among these we mention an implicit iteration,

(I + βA)un = un−1 + βfδ, n = 1, 2 . . . , (23)

and an alternating directions iteration,

un−1/2 = un−1 −
β

2
(Aun−1 − fδ),

(I +
β

2
A)un = un−1/2 +

β

2
fδ, n = 1, 2, . . . ,

both for fixed β > 0 and for suitable initial u0 ∈ U . Rigorous analysis of these
iterations (and their connections to Cauchy’s method), along with theoretically-
sound stopping criteria, may be found in Plato [63, 65, 66] and Plato and Hämerik
[69]. However, the convergence theory for these iterations as applied to Volterra
problems is apparently limited at present to only moderately ill-posed equations
such as the classical Abel equation (and other Volterra equations with strictly
sectorial operator A), so an open question concerns their applicability to the
more general problems under consideration in this paper.
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3.5 Differentiation and Mollification

For ν-smoothing problems, we know that the original first-kind equation (1) is
equivalent (via ν differentiations) to a second-kind Volterra equation (5). How-
ever, since we typically only have available a non-smooth perturbation fδ of f ,
the differentiation of fδ is not a well-posed process. In the usual case of perturbed
data, one approach is to replace (5) by

u(t) +
∫ t

0

∂ν

∂tν
k(t, s)u(s) ds = Lαf

δ(t), t ∈ [0, T ], (24)

where the operator Lα is constructed to satisfy Lαf
δ → f (ν) (in an appropriate

sense) as δ → 0, provided the selection of α is coordinated with that of δ.
There are many ways of selecting Lα, with different theoretical arguments

required for each, so we will only indicate some of the possibilities here. For
example, Murio [81] considered the one-smoothing differentiation problem (6)
and took as Lαf

δ the approximate derivative of a particular mollification (a
convolution with a Gaussian kernel) of fδ. Magnicki [80] and Srazhidinov [82]
considered the general ν-smoothing problem and viewed Lα as a type of mollified
differentiation operator, while Kabanikhin [74] employed a difference operator
approach. (In both [82] and [74], theoretical results were given for nonlinear
Volterra equations.) A further variation on these ideas may be found in Sergeev
[53]. We note that although the above approaches are simple, they suffer if k
is not known precisely (since derivatives of k must also be taken); further, the
method cannot be extended to infinitely-smoothing problems.

Murio (cf. [81] and the references therein) considered specific mollification
approaches for solving a number of applied problems. For example, he used
mollification to solve a Volterra equation of Abel type, in this case applying
the inverse Abel transform (which requires the differentiation of data, under
an integral) to a construction of Lαf

δ similar to that described above for the
differentiation problem. He also applied mollification techniques to the IHCP.

Louis and Maaß [79] developed an abstract formulation of the mollification
problem for bounded linear operators A on Hilbert spaces, and Louis extended
the overall analysis further in [75–78]. The ideas in [77] will be discussed more
fully in the next paragraph. Háo took a general approach through the use of
a one-parameter class of mollification operators defined on Banach spaces. His
treatment included applications to numerical differentiation and the ICHP, gen-
eralizing a number of existing theories (see [72] and the references therein).
Hegland and Anderssen [73] provided a general Hilbert space analysis, defining
“range mollifications” and “domain mollifications” for an operator A. In appli-
cations to numerical differentiation and the Abel equation, they made use of
translation operator representations to give estimates of the mollification error.

In what follows we sketch the approach taken by Louis in [77] as it pertains to
a first-kind Volterra problem of the form (1); for more complete details, see [76,
77]. The idea is to define a one-parameter family {eα} of mollifiers, eα = eα(t, s),
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for which Eαu ∈ U given by

Eαu(t) :=
∫ T

0

eα(t, s)u(s) ds, t ∈ [0, T ],

is a suitable approximation of u ∈ U for α > 0 small. The initial task is to find
ψα = ψα(t, s) satisfying ψα(t, ·) ∈ U and

A∗ψα(t, ·) ' eα(t, ·), t ∈ [0, T ], (25)

a computation which can be made prior to receiving any data. Using the per-
turbed data fδ of f , the mollified approximation uδ

α to ū is then given by

uδ
α(t) =

∫ T

0

ψα(t, s)fδ(s) ds, t ∈ [0, T ], (26)

and, under suitable assumptions, it can be shown that α = α(δ) may be selected
guaranteeing uδ

α → ū as δ → 0, with order-optimal rate of convergence, under
additional conditions (cf. [76, 77]).

Although the adjoint operator A∗ plays a role in this regularization method,
in the case of certain specific Volterra operators A (in particular, those for which
(A∗)−1 is easily evaluated), it is possible to pick eα so that ψα determined by
(25) has support which is optimal with regard to the Volterra problem, i.e., so
that this particular ψα leads to a reconstruction of uδ

α in (26) which essentially
reduces to

uδ
α(t) =

∫ t+ε(t)

0

ψα(t, s)fδ(s) ds, t ∈ [0, T ], (27)

for some ε = ε(t, α) ≥ 0 small. Louis gave an example of such an eα for the
derivative problem (6) in [77] and for a Volterra problem of Abel type in [78],
which, for both examples, leads to the “Volterra-type” construction (27). (We
note that the constructions of uδ

α for these two particular cases are also related to
the “local regularization” ideas discussed in Section 3.2.) The goal of using these
mollification ideas to obtain a Volterra-type regularization method for general
equations of the form (1) is considerably more difficult because (A∗)−1eα is not
so easily evaluated in the general case.

4 Discrete Regularization Methods of “Volterra Type”

Discrete approximation methods provide another way to regularize the original
problem (1). In this case the regularization parameter is the discretization pa-
rameter (or stepsize), and a coordination between this parameter and the amount
of noise δ in the problem is required in order to obtain good approximations
in the presence of noise. This is sometimes known as the “self-regularization”
property of discretizations. An important issue is whether self-regularization is
sufficient for the kinds of problems we consider here. In the general case it can
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be said that further regularization will be required in order to obtain acceptable
approximations in the presence of perturbed data.

In this section we describe numerical methods that have been developed
over the past few decades for solution of the first-kind Volterra problem (1),
focusing in particular on those methods that are of “Volterra type” and for
which something can be said about the “self-regularization” properties of the
algorithms. We note that most often the theory is limited to one-smoothing
problems. We begin the discussion with the case of exact data.

4.1 Standard Numerical Discretizations with Exact Data f

As described in survey papers by Brunner [85, 88], the idea of approximating
Volterra equations (admittedly, of second kind) in a finite-dimensional setting
actually originated with Volterra himself in the late 1800’s. Evidently the first
application of similar ideas to first-kind equations was given by Huber [101]
in 1939 [88], and it was in the 1960’s that researchers (notably Jones [103],
Kobayasi [105], and Linz [108, 109]) began to look closely at the theoretical
issues associated with adapting traditional numerical integration techniques to
the approximate solution of first-kind Volterra equations [88, 114].

Discretizations Based on Numerical Integration Rules. The idea behind
numerical methods based on integration rules is quite straightforward. The in-
tegral in (1) is replaced by a numerical quadrature, and then it is required that
the resulting equation be satisfied exactly at a finite number of points in [0, T ].

For example, consider the rectangular integration rule, given for integer
N ≥ 1 and h = T/N by ∫ ti

0

ϕ(t) dt ≈ h
i−1∑
j=0

ϕ(tj),

i = 1, . . . N , for continuous ϕ. Throughout we will make the definition tj = jh,
for j = 0, 1, . . . N . Replacing the integral in equation (1) by a sum such as given
above, one obtains the Euler method for approximate solution of (1),

h
i−1∑
j=0

k(ti, tj)uj = f(ti), i = 1, 2, . . . , N, (28)

where ui is an approximation for u(ti). Equivalently, making the definitions
fN = (f(t1), . . . , f(tN ))>, uN = (u0, . . . , uN−1)> ∈ IRN , we obtain the matrix
equation

ANuN = fN (29)

where AN is a lower-triangular N × N matrix with entries depending on h
and the kernel k. It is easy to see that, under one-smoothing assumptions, the
diagonal entries of AN are nonzero for all h > 0 sufficiently small; thus the Euler
approximation algorithm may be solved sequentially for a unique approximation
vector uN .
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Theorem 6. [107] (Euler Method) Let ū be the solution of equation (1),
where it is assumed that (1) is a one-smoothing problem, with k, f , ū sufficiently
smooth. Let uN = (u0, . . . , uN−1)> ∈ IRN be determined by the Euler method
(28) using exact data f .

Then
max

0≤i≤N−1
|ū(ti)− ui| → 0 as h→ 0,

with order of discrete convergence equal to 1; that is, p = 1 is the largest such
number for which

max
0≤i≤N−1

|ū(ti)− ui| ≤Mhp

for some M independent of h.

Similarly, the composite midpoint integration rule,∫ ti

0

ϕ(t) dt ≈ h
i−1∑
j=0

ϕ(tj+1/2),

i = 1, . . . , N , where tj+1/2 = tj + h/2, leads to the midpoint method for the
approximate solution of (1),

h
i−1∑
j=0

k(ti, tj+1/2)uj+1/2 = f(ti), i = 1, 2, . . . , N, (30)

also generating a triangular matrix system of the form (29), uniquely solvable
for all h > 0 sufficiently small.

Theorem 7. [107] (Midpoint Method) Let ū be the solution of equation
(1), where (1) is assumed to be a one-smoothing problem and k, f , and ū are
sufficiently smooth. Let uN = (u1/2, . . . , uN−1/2)> ∈ IRN be determined by the
midpoint method (30) using exact data f .

Then
max

0≤i≤N−1
|ū(ti + h/2)− ui+1/2| → 0 as h→ 0,

with order of discrete convergence equal to 2.

Obviously, one could continue applying higher order integration rules to the
integral in (1), but the fact is that the midpoint and Euler methods are the
only reasonable approaches that result from the use of standard quadrature
rules. For example, the trapezoidal rule results in a method that is convergent
of order 2, but which is also considered to be numerically unstable [106, 107].
(We note that the notion of numerical instability is separate from that of ill-
conditioning. Ill-conditioning is an inherent feature of the original problem, while
numerical instability refers to undesirable aspects of the numerical difference
scheme. The idea of numerical stability for Volterra equations is similar to that
used in analyzing numerical methods to solve ordinary differential equations.)
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It was first observed by Linz [111] (for some representative quadrature rules)
and later confirmed by Gladwin and Jeltsch [100] that all of the standard higher
order Gregory methods and Newton-Cotes integration rules (such as Simpson’s
rule and the three-eights rule) lead to unstable numerical methods for solv-
ing equation (1) [106]. This is in sharp contrast to numerical approximation of
second-kind Volterra equations (where all “reasonable” integration rules lead
to “reasonable” numerical approximation methods for (1), with complications
due mainly to “stiffness” associated with the particular case of singularly per-
turbed problems), and is an example of the way in which the ill-posedness of (1)
influences numerical implementation even when one is using perfect data. [107]

In summary, of the standard integration-type methods the midpoint method
is generally the best choice for the approximate solution of (1) in the presence
of noise-free data; we note also that the accuracy of the midpoint method may
be improved further using Richardson extrapolation [107].

Collocation-Based Discretization Methods. In spite of the undesirable sit-
uation for discretizations based on standard integration rules, in fact arbitrarily
high order numerical methods for the solution of equation (1) do exist (under
conditions of additional smoothness on the kernel k and true solution ū). There
are several different types of these methods (see the end of this section), and we
describe here the class of collocation-based methods. As in the case of methods
based on integration rules, the theoretical analysis for collocation methods is
typically restricted to one-smoothing problems.

One commonly seen implementation of collocation is as follows. Given inter-
vals σi = (ti−1, ti], i = 2, . . . , N , σ1 = [t0, t1], we seek an approximate solution
uN in the space of piecewise polynomials S (−1)

m−1 (N),

S
(−1)
m−1 (N) = {u : u|σi

∈ Πm−1, i = 1, . . . N},

where Πk denotes the space of real polynomials of degree not exceeding k. Since
dimS

(−1)
m−1 (N) = Nm, one must impose the same number of conditions on the

approximate solution in order to obtain the solution uniquely. To this end we
define Nm collocation points,

Xm(N) = {ti,j = ti−1 + cjh, j = 1, . . .m, i = 1, . . . N},

where the {cj} are “collocation parameters” selected satisfying

0 < c1 < . . . < cm ≤ 1,

and we impose the condition that uN ∈ S
(−1)
m−1(N) must satisfy equation (1)

precisely at each collocation point in Xm(N), i.e.,

AuN (ti,j) = g(ti,j), ti,j ∈ Xm(N). (31)

This leads to a system of equations of the form (29) where now the Nm-square
matrix AN is block-triangular (with N diagonal m×m blocks, each nonsingular
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for h > 0 sufficiently small provided the problem is one-smoothing), leading to
a block-sequential solution method. The following convergence result is due to
Brunner [87].

Theorem 8. [87–90] (Method of Collocation) Let the original problem (1)
be one-smoothing and assume that k and f are sufficiently smooth to guarantee
that ū ∈ Cm. Let uN be given by the collocation procedure described above using
exact data f .

Then uN converges uniformly to ū (with discrete convergence of order m) if
and only if the quantity ξm =

∏m
j=1

1−cj

cj
satisfies

ξm ≤ 1, if m is odd, and ξm < 1, if m is even.

In addition, “local superconvergence” at certain discrete interior points of σi is
achievable under additional conditions.

Thus, even though convergence does not occur for all choices of collocation
parameters, the particular choice of cm = 1 (i.e., collocation occurs at each of
the original gridpoints tj , j = 1, . . . N) assures uniform convergence of order m.

In addition, Eggermont showed how the superconvergence (at selected points)
indicated in the above theorem may be improved via a postprocessing of the
collocation solution. See, for example, [97, 99]. Finally, Kauthen and Brunner
considered analogous results for the case of continuous collocation approximation
spaces S(0)

m−1(N) in [104]; methods based on splines with full continuity and of
degree exceeding one are known to be divergent [102].

To illustrate the simplicity of the collocation algorithm, we briefly consider
collocation in the space S (−1)

0 (N) of piecewise constants. In this case, for i =
1, . . . , N , let χi be the usual characteristic function on σi (i.e., χi(t) = 1, for
t ∈ σi, and χi(t) = 0, otherwise). Then the collocation solution uN is given by

uN (t) =
N∑

i=1

uiχi(t), t ∈ [0, T ],

where the coefficients u1, . . . , uN satisfy

i∑
j=1

uj

∫ tj

tj−1

k(ti, s) ds = f(ti), i = 1, . . . , N (32)

(again, a system of the form (29) with AN lower-triangular). From the last
theorem we know that equation (32) generates a piecewise constant uN that
converges uniformly to ū at a rate of O(h).

For simple kernels k, the moment integrals
∫ tj

tj−1
k(ti, s) ds appearing in (32)

(and in the more general problem (31)) may be evaluated analytically, however,
more commonly they will need to be evaluated using a discrete quadrature rule.
In [87], Brunner provided an analysis of the coordination of the particular in-
tegration rule with m so that the overall order of discrete convergence is not
lost.
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In addition, Brunner showed that a number of other high order methods
developed independently for use in solving first-kind Volterra equations (methods
such as the block-by-block approach considered in the early 1970’s by de Hoog
and Weiss [92, 93] and some product integration methods studied, for example,
by Young [124], Weiss and Anderssen [121], Linz [110], and McAlevey [113]), can
be obtained via collocation if a particular numerical quadrature scheme is used
to approximate the moment integrals [86]. Further, collocation appears to offer
some flexibility in the approximation of (1) in that specially-selected quadrature
rules can be used to construct the moment integrals in the case of a singular,
nonsmooth, or rapidly-varying kernel.

Other Higher Order Methods. A comprehensive discussion of higher or-
der methods for first-kind Volterra equations would take us beyond the scope
of this paper. Instead we will only mention a few of the many methods avail-
able, including linear multistep methods (see, for example, McKee [115] and the
references in his survey [114]), generalized linear multistep methods (van der
Houwen and te Riele [120]), inverted differentiation formulas (Taylor [119]), re-
ducible quadrature (Wolkenfelt [123]), product integration rules (e.g., see the
references given above), and multilag methods [122]. A comprehensive list of ref-
erences is not possible here. A “unified” convergence theory was given for many
of these methods (including collocation) in the case of both linear and nonlinear
Volterra problems of the first kind in papers by Scott (née Dixon), McKee, and
Jeltsch (see, e.g., [94, 95, 117, 118]).

Discretizations of ν-Smoothing Problems for ν > 1. Those numerical
methods described above which rely heavily on the use of discrete evaluations
of the kernel along the “diagonal” (i.e., k(t, t) ) will no longer be of use for
ν-smoothing problems for ν > 1 since, in this case, k(t, t) = 0. Further, as men-
tioned above, the vast amount of theoretical analysis for standard methods is
restricted to one-smoothing Volterra problems. Among the exceptions are a con-
vergence analysis for collocation methods (Eggermont, [98]) and for linear mul-
tistep methods (Andrade, Franco, and McKee [83]), in the case of two-smoothing
Volterra problems. Of interest in this regard is a comment in [83] that the origi-
nal goal of the authors was to consider ν-smoothing problems for general ν ≥ 2.
In fact, they were successful only in the case of ν = 2, and found that even in
this case, the stability properties of the method were quite different from the
stability of the same methods applied to one-smoothing problems. Thus, from a
theoretical point of view, the analysis of standard discretization methods when
applied to general ν-smoothing Volterra problems (in the case of ν bigger than
one or two) remains an open problem.

For a more comprehensive view of numerical methods for first-kind Volterra
equations in the presence of noise-free data, see, for example, [84, 88, 89, 91, 106,
107, 114], survey papers written at different times over the last 25 years of study
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on this subject. In recent years, many of these numerical methods have been
extended to nonlinear first-kind Volterra problems.

4.2 Standard Numerical Discretizations with Perturbed Data fδ:
“Self-Regularization”

We now consider the use of one of the above numerical methods for the solution
of equation (1) in the case where f has been replaced by fδ. In this situation
we are interested in the convergence of numerical approximations (constructed
using fδ) to the true solution ū as both the amount δ of noise in the data and
the discretization parameter h go to zero. As δ → 0 we may let h → 0, but, in
general, we cannot let h get as small as we might like for a given value of δ > 0.

Natterer [10] gave a general mathematical context in which to evaluate the
regularizing properties of numerical methods such as those given the last section,
in particular, those methods which can be formulated as projection methods. In
keeping with the ideas of [10], we will say that a discrete numerical method is
“robust” for one-smoothing problems if the magnification of data error by the
method is of order δ/h as h→ 0. (Compare, for example, with Richter [116].)

Linz [107, 112] investigated the handling of error for the midpoint method
and found that the method was robust for one-smoothing problems. Eggermont
extended the analysis to higher-order numerical methods (such as cyclic lin-
ear multistep and reducible quadrature methods) and, using a projection-type
analysis, showed that under reasonable circumstances these methods were also
robust for one-smoothing problems [96]. In addition, the same results hold for
one-smoothing problems when collocation is coupled with certain quadrature
methods for moment integrals [96, 99].

Thus, for any of the above methods, we are assured of optimal error han-
dling of the method provided that the original problem is one-smoothing. A
very important question is whether this error handling is sufficient when the
same method is applied to a ν-smoothing problem for ν > 1, or to an infinitely-
smoothing problem such as the IHCP. Practical experience indicates that stan-
dard numerical methods alone (of the form described in the last section) are not
sufficient to handle the more ill-conditioned problems (and, in fact, often give
meaningless results) without the use of additional regularization techniques.

4.3 Combined “Volterra-Type” Discretization and Regularization

Effective discretized regularization techniques for Volterra problems involve the
pairing of a discretization method of “Volterra type” (such as one of the methods
described in Section 4.1) with a continuous regularization method which also
preserves the Volterra structure of the original problem (cf. Section 3).

Discretization and Mollification. An approach taken by Linz [112] was to
smooth or filter the data first before applying a standard numerical method
to (1). In [73], Hegland and Anderssen combined mollification with projection
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methods. Their analysis provided for theoretical error estimates for mollified
finite difference techniques as applied to the differentiation problem and the
Volterra equation of Abel type.

Discretization of Lavrent′ev’s m-times iterated method. In [67, 68],
Plato combined a Galerkin method for approximating (1) with Lavrent′ev’s
m-times iterated method in the case of an accretive Volterra operator A (see
Section 3.3). Plato showed that the numerical realization AN is lower Hessen-
berg; efficient solution methods exist for equations governed by such matrices.
Order-optimal convergence rates for the combined discretization-regularization
method were obtained.

Discretization of the Local Regularization Method. The analysis of a
collocation method paired with the ideas of “local regularization” (cf. Section
3.2) was first considered in [56] where it was shown that collocation of the second-
kind local regularization equation (13) (with a specific choice of discrete measure
ηr) over the space of piecewise constant functions leads to a particularly simple
discrete regularization procedure (known as “Beck’s method” when applied to
the IHCP). See [16] and the references therein for practical application of this
procedure to the IHCP. We briefly describe this discrete process in what follows.

Let h = T/N and let r = γh denote the discrete regularization parameter
(indicating the length of the local regularization interval) for a fixed integer
γ ≥ 1. Then, given u1, . . . , ui−1 (corresponding to the regularized solution u at
t1, . . . , ti−1), we determine ui by first “predicting” an optimal constant-valued
(i.e., over -regularized) solution û on the interval (ti−1, ti−1 + γh], where û is
constructed via a least squares fitting to the data at points ti, ti+1, . . . , ti + γh.
We next “correct” for over-regularization by retaining only the value of û at the
position ti; i.e., we set ui := û. Then the procedure is repeated, until all ui have
been determined in this sequential process. For obvious reasons, the discretized
local method is often called a predictor-corrector regularization method.

In [55], a convergence theory was given for this discrete method for the one-
smoothing convolution problem, and convergence was shown to be of optimal
order. An analysis of the conditioning of the discretized ν-smoothing problem
(and the dependence of condition numbers on ν, γ, and h) was discussed in
[57]. More recently these regularization ideas were extended in [62] to variable
r (i.e., variable γ) and nonconvolution problems, with the addition of an op-
tional penalty term. The ideas were generalized in a different direction in [54],
where there one seeks an optimal degree-d polynomial, for integer d ≥ 0, in the
“prediction” step.

In [60], the discrete local regularization approach was modified further, form-
ing the basis for the method of sequential Tikhonov regularization for Volterra
convolution problems. In this case, a local Tikhonov regularization is performed
at each sequential step and, again, only the first component of the local solution
is retained at each step. The cost of each local Tikhonov problem is reduced sub-
stantially using an efficient algorithm of Eldén [2], one which employs orthogonal
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transformations and takes advantage of the Toeplitz structure of discretizations
of Volterra convolution problems. Although the convergence theory is again lim-
ited to one-smoothing problems (with optimal convergence rates), numerical
examples in [60] were used to illustrate that the method works well when ap-
plied to the (infinitely-smoothing) IHCP. In addition, a preliminary numerical
study of discrepancy principles to pick local Tikhonov regularization parameters
was undertaken in [59], where it appears that variable regularization of solutions
(effectively finding steep/sharp areas of solutions) is possible using these ideas.

5 Conclusion

We have reviewed some representative continuous and discrete regularization
methods for first-kind Volterra problems with continuous kernels, paying partic-
ular attention to those methods which which tend to retain the Volterra struc-
ture of the original problem. As seen in the previous sections, there are many
interesting open problems in this research area. In particular, the extension of
methods and theoretical results to problems which are infinitely-smoothing, or
even ν-smoothing for large ν, remains an important issue.
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