
Regularized Inversion of

Finitely Smoothing Volterra Operators:

Predictor-Corrector Regularization Methods
∗

Patricia K. Lamm

Department of Mathematics

Michigan State University

East Lansing, MI 48824-1027

Revised, October 1996

Abstract

We present a “predictor-corrector” type of regularization method for in-
verse problems modeled by first-kind Volterra integral equations and extend
the convergence/regularization theory developed in [6] to the case where the
integral kernel satisfies general ν-smoothing conditions. The theoretical ba-
sis for this method comes from replacing the original first-kind equation by
a related second-kind equation which is constructed using “future values” of
the original kernel and the data on a small interval of length ∆r > 0. In
practical implementation this method takes the form of a sequential regular-
ization scheme in which one first predicts a rigid (regularized) solution over a
small interval and then, before moving forward in the sequential process, one
makes a correction of the solution in order to avoid over-regularization and
to improve accuracy.

In addition to the convergence theory developed for noise-free data, we
show how selection of the regularization parameter ∆r as a function of the
level δ of error present in the data serves to facilitate convergence in the case
of noisy data. Finally, to further examine the extent to which ∆r improves

∗This research was supported in part by the U. S. Air Force Office of Scientific Research and
by the Clare Boothe Luce Foundation, NY, NY.



stability, we show how an increase in ∆r serves to decrease the condition num-
ber of the matrices associated with a discretization of the original problem.
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1. Introduction.

We consider an inverse problem modeled by a first-kind Volterra integral equation

of the form ∫ t

0

k(t− s)u(s) ds = f(t), t ∈ [0, 1], (1.1)

where it will be assumed that data f and convolution kernel k are such that (1.1)

has a unique solution u ∈ L2(0, 1) [4].

As an example of such a problem, consider the “inverse heat conduction problem”

(IHCP) with kernel k in (1.1) given by

k(t) =
1

2
√

π t3/2
exp

(
− 1

4t

)
, k(0) = 0.

This problem arises when one wishes to determine the time-varying heat source u(t)

being applied to the boundary x = 0 of a semi-infinite bar, using measurements f(t)

obtained at the internal spatial location x = 1. First-kind equations of the form (1.1)

are known to be ill-posed in the sense that solutions do not depend continuously on

data f ∈ L2(0, 1) or L∞(0, 1). In fact, the IHCP is so severely ill-posed that stability

is not restored even if one requires that perturbations in f be close, for example, in

a Hp(0, 1) sense, for any p ≥ 0.

The severe instability of the IHCP is due to the fact that the kernel k for this

problem belongs to C∞[0, 1] and satisfies k(n)(0) = 0 for n = 0, 1, . . .. Improved

stability occurs if k does not degenerate so badly at x = 0. For example, we will

say that the kernel k satisfies “ν-smoothing conditions” (for some integer ν ≥ 1) if

k ∈ Cν(0, 1) and k satisfies

k(0) = k′(0) = . . . = k(ν−2)(0) = 0 (1.2)

kν−1(0) 6= 0. (1.3)

Under such conditions, differentiation of equation (1.1) ν times (for sufficiently

smooth f) leads to a well-posed second-kind Volterra equation. Thus, if k satisfies

the ν-smoothing conditions for finite ν, the original problem enjoys greater stability

than does a problem like the IHCP. (Applications for which the underlying model

(1.1) has a kernel satisfying ν-smoothing conditions may be found, for example, in

[3, 4, 15].)

However, problems such as (1.1) with ν-smoothing kernels k are still sufficiently

unstable as to cause most numerical solutions to be unacceptable, even for ν very

small. For example, we shall see in Section 3 how the condition number of the matrix
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corresponding to a standard discretization of (1.1) grows from a size of O(101) for

ν = 1, to O(104) for ν = 2, and O(1012) for ν = 3, etc. Thus, in the majority of

the cases with ν-smoothing k, some sort of regularization is still needed in order to

obtain acceptable solutions of (1.1).

A standard stabilization method such as Tikhonov regularization (see, e.g. [5])

serves to stabilize (1.1) but destroys the Volterra (or causal) nature of the problem;

indeed, in order to find a Tikhonov-regularized solution at any given time t, it is

necessary to use the values of the data f on both the past interval [0, t) and on

the entire future interval [t, 1]. In [6], an alternative “local regularization” method

was given for the solution of (1.1) which has a number of advantages over Tikhonov

regularization. The “local regularization” method described in [6] requires data on

the past intervals [0, t) and on a very small future interval [t, t+∆r], for some ∆r > 0

small; in addition, standard numerical implementations of this “local” approach lead

to a (rapid) sequential “predictor-corrector” method of solution which has potential

for real-time use, in contrast to standard Tikhonov regularization.

The idea behind this alternative regularization method is to define an approxi-

mating (well-posed) second-kind Volterra equation using a small amount of “future”

information from the various quantities in the original first-kind equation. The ap-

proach leads to a second-kind equation of the form∫ t

0

k̃(t− s; ∆r)u(s) ds + α(∆r)u(t) = f̃(t; ∆r), t ∈ [0, 1], (1.4)

where α(∆r) is a constant given by

α(∆r) =

∫ ∆r

0

∫ ρ

0

k(ρ− s)ds dη
∆r

(ρ), (1.5)

and k̃(t; ∆r) and f̃(t; ∆r) are constructed using values of k and f , respectively, on

the interval [t, t + ∆r], i.e., for t ∈ [0, 1],

k̃(t; ∆r) =

∫ ∆r

0

k(t + ρ) dη
∆r

(ρ), (1.6)

f̃(t; ∆r) =

∫ ∆r

0

f(t + ρ) dη
∆r

(ρ). (1.7)

Here, η
∆r

is a Borel-Stieltjes measure on the Borel subsets of R and ∆r is the length

of the “future interval”. Note that we must assume that both k and f are available

slightly past [0, 1], or else be content to solve (1.4) on a shortened interval in t.

For examples of the measure needed to construct equation (1.4), one might

consider η
∆r

defined for φ ∈ C[0, ∆r] via∫ ∆r

0

φ(ρ) dη
∆r

(ρ) =

∫ ∆r

0

φ(ρ) ω(ρ) dρ, (1.8)
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where 0 < ω(ρ) ≤ ω for a.a. ρ ∈ [0, ∆r]. Another example of practical interest is a

discrete version of (1.8), namely,∫ ∆r

0

φ(ρ) dη
∆r

(ρ) =
K∑

i=1

si φ(τi∆r), (1.9)

where K ≥ 2 is an integer, si > 0 for i = 1, . . . , K, and 0 ≡ τ1 < τ2 < . . . < τ
K
≡ 1.

[Note that using this example with K = 1, s1 > 0, and τ1 ≡ 0 means that (1.4)

reduces to (1.1) in the case of smooth k, f .]

Existing results about the approximation/regularization properties of (1.4) are

as follows. It was shown in [6] that, for k satisfying certain conditions, most notably

k(0) 6= 0 (i.e., k is 1-smoothing), the solution u(·; ∆r) of (1.4) converges to the

solution u of (1.1) as ∆r → 0. A similar result was obtained for the case of noisy

data provided one selects ∆r to be a suitable function of the level δ of noise present

in the data. In [7], a discrete form of (1.4) was considered (this discretization will

be discussed in some detail below), and convergence of the discrete approximations

was also found, again for the case of k(0) 6= 0.

The goal of the present paper is twofold. First we will be concerned with con-

vergence of the solution u(·; ∆r) of (1.4) to the solution u of (1.1) for problems

with general ν-smoothing kernels k, for ν = 1, 2, . . ., both in the case of noise-free

and noisy data. Then, in the second half of the paper, we address some questions

associated with numerical approximations of (1.1) and (1.4); in particular, we give

theoretical justification for the observed growth, with increasing ν, of the condition

number of matrices associated with discretization of (1.1), and show how this condi-

tion number then decreases when a discretization of equation (1.4) is instead used,

with the regularization parameter ∆r > 0.

1.1. Predictor-Corrector Regularization

It is worth a momentary digression to describe a standard discretization of both (1.1)

and (1.4) in order to show how the latter leads to an efficient, sequential, “predictor-

corrector” type of regularization for the former. One natural way to attempt to ap-

proximate the solution of (1.1) is via collocation over piecewise-continuous approxi-

mation spaces, as such a method preserves the Volterra (and convolution) structure

of the original problem. For example, let N = 1, 2, . . . , be fixed and define a

gridsize of ∆t = 1/N with equally-spaced gridpoints on [0, 1] given by tj ≡ j∆t,

j = 0, 1, . . . , N . For simplicity, we shall restrict our consideration to the space of

piecewise-constant approximations given by SN = span{φj}N
j=1, where φj(t) = 1
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on the interval (tj−1, tj], φj(t) = 0 otherwise on [0, 1]. We then seek uN ∈ SN for

which equation (1.1) is exactly satisfied at collocation points tj, for j = 1, 2, . . . , N ;

writing uN ∈ SN via uN(t) =
∑N

j=1 αjφj(t), the collocation procedure determines a

linear system in αN = (α1, α2, . . . , αN)>,

ANαN = fN , (1.10)

where the lower-triangular, Toeplitz matrix AN is given by

AN =


∆1 0 0 . . . 0

∆2 ∆1 0 . . . 0

∆3 ∆2 ∆1 . . . 0
...

...
...

. . .
...

∆N ∆N−1 ∆N−2 . . . ∆1

 , (1.11)

with

∆i =

∫ t1

0

k(ti − s) ds,

for i = 1, . . . , N , and fN = (f(t1), f(t2), . . . , f(tN))>. If k and η
∆r

are such that

∆1 6= 0, there is a unique solution to (1.10) found sequentially via forward substitu-

tion. It is evident how the conditioning of system (1.10) grows worse with decreasing

values of ∆1 =
∫ ∆t

0
k(∆t− s) ds; thus one expects the conditioning to deteriorate for

large N if the kernel is smooth and if k and one or more of its derivatives is zero at

t = 0.

In order to later compare the discretization of (1.1) with that of (1.4), we note

that the solution of (1.10) is equivalent to the sequential least-squares problem of

solving, for i = 1, . . . , N ,

Ji(αi) = min
αi∈R

Ji(αi) (1.12)

where

Ji(αi) ≡
∣∣∣∣∫ ti

0

k(ti − s) [α1φ1(s) + . . . αi−1φi−1(s) + αiφi(s)] ds− f(ti)

∣∣∣∣2 ,

and α1, . . . , αi−1 have been determined in the earlier sequential steps. The vector

(α1, . . . αN) resulting from this process is the same as the solution of (1.10).

Now let us use the same collocation procedure and finite-dimensional spaces

SN to approximate the regularized equation (1.4); in this case the resulting linear

system becomes

AN
r αN

r = fN
r (1.13)
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where αN
r = (α1,r, α2,r, . . . , αN,r)

>, fN
r is a prescribed vector in RN and AN

r is again

lower-triangular and Toeplitz, with entries in fN
r and AN

r depending on the choice of

η
∆r

and ∆r. A particularly simple scheme for (1.13) results if we take ∆r = (r−1)∆t

for some integer r ≥ 2 and let η
∆r

be given by (1.9) where we use the parameters

K ≡ r,

si =

∫ ti
0

k(ti − s) ds∫ t1
0

k(t1 − s) ds
, i = 1, . . . , r,

and τi =
(i− 1)

(r − 1)
, i = 1, . . . r. With these values of ∆r and η

∆r
, the collocation-

based discretization (1.13) may be viewed as a “predictor-corrector” scheme for the

regularized solution of (1.10), seen most clearly in the context of the sequential

steps given by (1.12) for the solution of (1.10). That is, we let uN
r =

∑N
j=1 αj,r φj be

defined as before and now let α1,r, α2,r, . . ., αN,r be found sequentially as follows: In

the first predictor step, we select α1,r minimizing a discrete localized least-squares

criterion J1,r = J1,r(α1,r), where

J1,r(α1,r) ≡
∣∣∣∣∫ t1

0

k(t1 − s)α1,rφ1(s) ds− f(t1)

∣∣∣∣2
+

∣∣∣∣∫ t2

0

k(t2 − s)α1,r ( φ1(s) + φ2(s) ) ds− f(t2)

∣∣∣∣2 + . . .

+

∣∣∣∣∫ tr

0

k(tr − s)α1,r ( φ1(s) + . . . + φr(s) ) ds− f(tr)

∣∣∣∣2 .

That is, α1,r is the optimal value one would use if forced to predict a single value for

the present basis coefficient as well as for r − 1 future basis coefficients, in a least

squares fit to 1 present and r − 1 future data points. After computing the optimal

α1,r, we retain this value as the basis coefficient for uN
r on the interval (0, t1]; but

now, in the corrector step, we do not make use of this value for uN
r on [t1, t2] (or on

[t1, tr] for that matter). Instead we next choose α2,r minimizing J2,r(α2,r), where

J2,r(α2,r) ≡
∣∣∣∣∫ t2

0

k(t2−s) [α1,rφ1(s) + α2,rφ2(s)] ds− f(t2)

∣∣∣∣2
+

∣∣∣∣∫ t3

0

k(t3−s) [α1,rφ1(s) + α2,r ( φ2(s) + φ3(s)) ] ds− f(t3)

∣∣∣∣2 + . . .

+

∣∣∣∣∫ tr+1

0

k(tr+1−s) [α1,rφ1(s) + α2,r ( φ2(s) + . . . + φr+1(s)) ] ds− f(tr+1)

∣∣∣∣2 ,

and retain α2,r as the basis coefficient for uN
r (t) associated with the interval [t1, t2]

(only); and so on. Solving for α1,r, α2,r, . . . , αN,r sequentially in this manner, one
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obtains the same solution as would have been found had one solved the regularized

system (1.13) directly for αN
r .

As can be seen, a very simple sequential routine results. In each part of the

sequential process, the predictor step acts to regularize, while the corrector step

serves to avoid excessive rigidity in the solution and thus to improve accuracy. The

discretized equations (1.10) and (1.13) will be analyzed in more detail in Section

3. We note that discretizations of (1.10), (1.13), using other measures η
∆r

lead to

generalized “predictor-corrector” algorithms for the approximation/regularization of

(1.1). A different point of view may also be considered, one in which an application

of Tikhonov regularization occurs at each sequential step; see [8] for a convergence

theory for this discretized procedure in the case of k(0) 6= 0.

The method developed in [6] and studied in more detail here, was motivated by

the “function specification” regularization method developed by J. V. Beck for the

IHCP [1]; indeed, Beck’s method may be viewed as a special case of the generalized

framework represented by equation (1.4). However, despite the well-documented

success of this popular approach for stabilizing the IHCP, as of yet no complete the-

ory of convergence/regularization exists for Beck’s method, or for the generalization

of Beck’s method given in (1.4) above. Steps in this direction have been taken in

[11, 12] for finite-dimensional discretizations of the IHCP, but it still must be said

that certain relevant (and difficult) conjectures remain to be proven.

Below we turn to questions regarding the infinite dimensional problem (1.1)

and its regularized approximation (1.4), and to issues regarding discretizations of

these equations. First we give conditions guaranteeing convergence of the solution

u(·; ∆r) of (1.4) to the solution u of (1.1) as ∆r → 0, in the case of ν-smoothing

kernels. In this we extend the work of [6] in which convergence was proven for

1-smoothing kernels. In addition, we consider the problem of perturbed data f δ,

arguing convergence in this case via a selection of the regularization parameter ∆r

as a function of the amount δ of noise present in the problem. We then turn to

the discretization of this method described earlier in this section and examine the

way in which numerical examples and computed condition numbers of the matrices

governing the discrete equations depend on ν, ∆r, and N . In particular, for ν

large, we give theoretical basis for the expectation that an increase in ∆r leads to a

decrease in the condition number.
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2. Convergence Theory for ν-Smoothing Kernels

We assume throughout that k and f are defined on the interval [0, 1 + ∆R], where

∆R > 0 is small, and that u solves (1.1) on the extended interval as well. Throughout

we shall use the notation ‖g‖∞ ≡ sup0≤t≤1+∆R
|g(t)|, for suitable g.

Let 0 < ∆r < ∆R. In order to prove that (1.4) has a unique solution u(·; ∆r)

for all ∆r > 0 sufficiently small, and that u(·; ∆r) → u as ∆r → 0, the following

standing hypotheses on η
∆r

will be needed, for some fixed integer ν ≥ 1.

Hypothesis 2.1: For j = 0, 1, . . . , ν, there is a real constant s and

constants cj > 0 independent of ∆r such that∫ ∆r

0

ρ j dη
∆r

(ρ) = ∆r
s+j (cj +O(∆r))

as ∆r → 0.

As will be seen in Section 3, this particular hypothesis is satisfied by many η
∆r

of practical interest; however, as is also seen in Section 3, the following additional

hypotheses is more difficult to check, especially for large ν:

Hypothesis 2.2: All ν roots of the polynomial

p(x) =
ν∑

j=0

1

j!
cj xj

have negative real part, where cj, j = 0, 1, . . . , ν, are defined in Hypoth-

esis 2.1.

In the absence of noisy data, we have the following convergence theorem.

Theorem 2.1 Let ν ≥ 1 be a given integer and let ∆R > 0. Assume that k ∈
Cν [0, 1 + ∆R] satisfies the ν-smoothing conditions (1.2), (1.3), and that u satisfies

(1.1) on [0, 1 + ∆R], with u ∈ Cν [0, 1 + ∆R].

Then for η
∆r

a Borel-Stieltjes measure satisfying Hypothesis 2.1, there is a unique

solution u(·, ∆r) of (1.4) for each ∆r ∈ (0, ∆R] sufficiently small. If in addition, η
∆r

satisfies Hypothesis 2.2, there is M > 0 independent of ∆r such that if ‖k(ν)‖∞ ≤ M ,

we have

u(t, ∆r) → u(t)

as ∆r → 0, uniformly in t ∈ [0, 1].
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We note that a unique solution u(·; ∆r) of (1.4) exists under more general

conditions than Hypothesis 2.1; indeed, all one needs are conditions guaranteeing

α(∆r) 6= 0 for all ∆r sufficiently small.

In the presence of perturbed data, the following theorem obtains:

Theorem 2.2 Assume the conditions of the last theorem and that f δ : [0, 1 + ∆R] 7→ R
is given satisfying ‖f δ − f‖∞ ≤ δ. Let uδ(·; ∆r) denote the solution of (1.4) using

f δ in place of f . Then there exists a choice of ∆r = ∆r(δ) > 0 such that

∆r(δ) → 0

and

uδ(·; ∆r(δ)) → u in L2(0, 1)

as δ → 0.

2.1. Proofs of Convergence.

In order to prove Theorems 2.1 and 2.2, we first require a technical lemma which

follows from Theorem 8 of [10]. In what follows, we denote by C[0,∞; Rν) the space

of all continuous functions x : [0,∞) → Rν with the topology of uniform convergence

on compact subsets of [0,∞), and let ‖x‖t = max{‖x(s)‖ : 0 ≤ s ≤ t}, where

‖ · ‖ is the usual Rν norm. In addition, we say that a continuous function P :

[0,∞) × C[0,∞; Rν) → Rν is locally Lipschitz continuous in x uniformly in t if,

for any ε > 0, there exists a constant L = L(ε) > 0 such that for all t ≥ 0,

‖P(t,x(·))−P(t, z(·))‖ ≤ L‖x−z‖t, whenever x, z ∈ C[0,∞; Rν) with ‖x‖t, ‖z‖t ≤
ε.

Lemma 2.1 Let A be a real ν × ν matrix, the eigenvalues of which each have

negative real part. In addition, let D ∈ L1(0,∞; Rν×ν) and assume that the zero

solution of the equation

y′(t) = Ay(t) +

∫ t

0

D(t− s)y(s) ds, t > 0, (2.1)

is uniformly asymptotically stable. Further, assume that P is continuous on

[0,∞)× C[0,∞; Rν) into Rν and locally Lipschitz continuous in x, with P also

satisfying ‖P(t,x(·))‖ ≤ γ ε on the set {(t,x) ∈ [0,∞) × C[0,∞; Rν) : ‖x‖t ≤ ε}
and for γ = λ2

min/(64 λ3
max). Here λmin (resp. λmax) is the smallest (resp. largest)

eigenvalue of Â ≡
∫∞

0
(eAt)>(eAt) dt. Then, for any ε > 0, there exists η1 > 0 such
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that whenever ‖yp(0)‖ ≤ η1, it follows that ‖yp(t)‖ ≤ ε for all t ≥ 0, where yp is

the solution on [0,∞) of the perturbed problem

y′p(t) = Ayp(t) +

∫ t

0

D(t− s)yp(s) ds + P(t,yp(·)), t > 0. (2.2)

Proof: The matrix Â defined in the statement of the lemma is symmetric and

positive definite, and the functional V (t,x(·)) : [0,∞)×C[0,∞; Rν) → R defined by

V (t,x(·)) = x(t)>Âx(t) (V = V (x(·)) is a Liapunov function for the unperturbed

problem and satisfies the following ([3], p. 35–36):

• V (t,x(·)) is locally Lipschitz continuous in x ∈ C[0,∞; Rν), uniformly in t,

with Lipschitz constant L = 2 λmax ε when ‖x(·)‖t ≤ ε;

• V (t,0) = 0;

• V (t,x(·)) ≥ ω0(‖x(t)‖), where ω0(s) ≡ λmin s2 for s ≥ 0;

• The derivative of V along solutions of equation (2.1) satisfies V̇ (t,x(·)) =

−ω1 (‖x(t)‖), where ω1(s) = s2.

Then V has the requisite properties as a Liapunov function that are required for

the proof of Theorem 8 of [10]. In that proof, the following definitions are needed.

Let m ≡ ω0(ε) = λmin ε2, η1 ≡ min{ε/2, m/2L} = min{ε/2, λmin ε/4 λmax} =

λminε/4 λmax, α ≡ ω1(η1) = (λ2
min ε2)/(16 λ2

max), η2 ≡ α/2L = (λ2
min ε)/(64 λ3

max).

Then, from the proof of Theorem 8 in [10], we have that whenver ‖y(0)‖ ≤ η1

and ‖P(t,x(·))‖ ≤ η2 on the set {(t,x) ∈ [0,∞) × C[0,∞; Rν) : ‖x‖t ≤ ε}, the

solution yp of equation (2.2) satisfies ‖yp(t)‖ ≤ ε for all t ≥ 0. Therefore the proof

of the lemma is complete. 2

Proof of Theorem 2.1:

We first show that, under the conditions of the theorem, equation (1.4) has a unique

solution u(·; ∆r) for every ∆r ∈ (0, ∆R] sufficiently small; using the theory of second-

kind Volterra theory (see, e.g., [4]), it suffices to show that α(∆r) 6= 0 for all ∆r > 0

sufficiently small. Using the assumptions on k we may write

k(`)(t) = k(ν−1)(0)
tν−`−1

(ν − `− 1)!
+ k(ν)(ξ

`
(t))

tν−`

(ν − `)!
, (2.3)

for some ξ
`
(t) ∈ (0, t) and ` = 0, . . . , ν − 1; without loss of generality, we henceforth

take k(ν−1)(0) ≡ 1. Then, using Hypothesis 2.1 and (1.5),

α(∆r) =

∫ ∆r

0

∫ ρ

0

(ρ− s)ν−1

(ν − 1)!
ds dη

∆r
(ρ) +

∫ ∆r

0

∫ ρ

0

k(ν)(ξ0(ρ− s))
(ρ− s)ν

ν!
ds dη

∆r
(ρ)
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= (1 +O(∆r))

∫ ∆r

0

ρν

ν!
dη

∆r
(ρ)

= (1 +O(∆r))
cν

ν!
∆r

s+ν (2.4)

as ∆r → 0. Thus α(∆r) > 0 for all ∆r > 0 sufficiently small and there is a unique

solution u(·; ∆r) of (1.4) for such ∆r.

Next we show that u satisfies an equation similar to equation (1.4), for any given

∆r ∈ (0, ∆R]. In fact, for any t ∈ [0, 1], u satisfies∫ ∆r

0

(∫ t+ρ

0

k(t + ρ− s)u(s) ds

)
dη

∆r
(ρ) =

∫ ∆r

0

f(t + ρ) dη
∆r

(ρ), t ∈ [0, 1].

or∫ t

0

(∫ ∆r

0

k(t + ρ− s) dη
∆r

(ρ)

)
u(s) ds +

∫ ∆r

0

(∫ ρ

0

k(ρ− s)u(s + t) ds

)
dη

∆r
(ρ)

=

∫ ∆r

0

f(t + ρ) dη
∆r

(ρ), t ∈ [0, 1]. (2.5)

Subtracting (2.5) from (1.4), the error y(t) = u(t; ∆r)− u(t) satisfies∫ t

0

k̃(t−s; ∆r)y(s) ds+α(∆r)y(t) =

∫ ∆r

0

∫ ρ

0

k(ρ−s)[u(s+t)−u(t)] ds dη
∆r

(ρ), (2.6)

for t ∈ [0, 1], or

y(t) = − 1

α(∆r)

∫ t

0

k̃(t− s; ∆r)y(s) ds + F (t; ∆r), t ∈ [0, 1], (2.7)

where

F (t; ∆r) =

∫ ∆r

0

∫ ρ

0
k(ρ− s)[u(s + t)− u(t)] ds dη

∆r
(ρ)∫ ∆r

0

∫ ρ

0
k(ρ− s) ds dη

∆r
(ρ)

.

An inspection of equation (2.7) shows that y is ν-times differentiable, due to the

assumed smoothness of k and u; repeated differentiation of (2.7) then yields

y(j)(t) = − k̃(0; ∆r)

α(∆r)
y(j−1)(t)− k̃′(0; ∆r)

α(∆r)
y(j−2)(t)− . . .

. . .− k̃(j−1)(0; ∆r)

α(∆r)
y(t)−

∫ t

0

k̃(j)(t− s; ∆r)

α(∆r)
y(s) ds + F (j)(t; ∆r)

for j = 1, . . . , ν, so that

∆r
νy(ν)(t) = −

ν−1∑
j=0

ej(∆r) ∆r
j y(j)(t)

−∆r
ν

∫ t

0

k̃(ν)(t− s; ∆r)

α(∆r)
y(s) ds + ∆r

νF (ν)(t; ∆r), (2.8)

11



for t ∈ [0, 1], where

ej(∆r) ≡ ∆r
ν−j k̃(ν−1−j)(0; ∆r)

α(∆r)
, for j = 0, 1, . . . , ν − 1.

But, for j = 0, 1, . . . , ν − 1,

k̃(ν−1−j)(0; ∆r) =

∫ ∆r

0

k(ν−1−j)(ρ) dη
∆r

(ρ)

=

∫ ∆r

0

ρj

j!
dη

∆r
(ρ) +

∫ ∆r

0

k(ν)(ξ
ν−1−j

(ρ))
ρj+1

(j + 1)!
dη

∆r
(ρ)

=
cj

j!
∆r

s+j(1 +O(∆r))

as ∆r → 0. Therefore, for all ∆r sufficiently small,

ej(∆r) =
ν!

j!

cj

cν

+O(∆r), j = 0, 1, . . . , ν − 1,

where we have used (2.4) and the Banach Lemma to compute 1/α(∆r).

We make a change of variables in (2.8) for given ∆r > 0 by defining v(t) = y(∆rt),

0 ≤ t ≤ 1
∆r

. Then v = v(·; ∆r) satisfies

v(ν)(t) = −
ν−1∑
j=0

ej(∆r)v
(j)(t)−∆r

ν+1

∫ t

0

k̃(ν)(∆r(t− s); ∆r)

α(∆r)
v(s) ds (2.9)

+ G(t; ∆r)

where G(t; ∆r) ≡ ∆r
νF (ν)(∆rt; ∆r). Since |F (ν)(t; ∆r)| ≤ 2‖u(ν)‖∞, for all t ∈ [0, 1]

and ∆r ∈ (0, ∆R], it follows that |G(t; ∆r)| ≤ 2∆r
ν‖u(ν)‖∞ for all 0 ≤ t ≤ 1/∆r. But

(2.9) may be rewritten, using v(t; ∆r) ≡ (v(t; ∆r), v
′(t; ∆r), . . . , v

(ν−1)(t; ∆r))
> ∈ Rν

as follows,

v′(t; ∆r) = B(∆r)v(t) +

∫ t

0

C(t− s; ∆r)v(s) ds + G(t; ∆r), (2.10)

for 0 < t ≤ 1
∆r

, where ν × ν matrices B(∆r) and C(·; ∆r) are given by

B(∆r) =


0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

−e0(∆r) −e1(∆r) −e2(∆r) · · · −eν−1(∆r)

 ,
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C(t; ∆r) = −∆r
ν+1



0 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0
k̃(ν)(∆rt ;∆r)

α(∆r)
0 · · · 0


,

and G(t; ∆r) = (0, 0, . . . , 0, G(t; ∆r))
>. In this case initial conditions for v(·; ∆r)

are determined from those on y, using (2.7), (2.8), and the fact that v(j)(0; ∆r) =

∆r
jy(j)(0; ∆r), i.e., v(0; ∆r) = F (0; ∆r) and

v(j)(0; ∆r) = −ej(∆r) v(j−1)(0)− ej−1(∆r)v
(j−2)(0)

− . . .− e1(∆r) v(0) + ∆r
jF (j)(0; ∆r),

for j = 1, . . . , ν − 1. Since v(0; ∆r) = O(∆r), it follows that v(j)(0; ∆r) = O(∆r) as

∆r → 0, for j = 0, . . . , ν − 1.

Let ε > 0. Our goal is to show that |y(t; ∆r)| ≤ ε for all ∆r sufficiently small and

for t ∈ [0, 1]. Since y(t; ∆r) = v(t/∆r; ∆r), it suffices to show that |v(t; ∆r)| ≤ ε for

all ∆r sufficiently small, uniformly in t ∈ [0,∞). We do so by noting that equation

(2.10) in v is a ∆r-dependent perturbation of the ordinary differential system in

w(t) ∈ Rν ,

w′(t) = B0w(t), 0 < t ≤ 1

∆r

, (2.11)

w(0) = 0,

where

B0 =


0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

−ν!
0!

c0
cν

−ν!
1!

c1
cν

−ν!
2!

c2
cν

· · · − ν!
(ν−1)!

cν−1

cν

 .

We show that the conditions of Lemma 2.1 hold for equation (2.11) and its pertur-

bation (2.10), and that under the hypotheses of the theorem, the solution v(t) of

(2.10) is within ε of the solution w = 0 of (2.11), for all ∆r sufficiently small.

To this end, it is clear that equation (2.11) is of the form (2.1) with A = B0,

D ≡ 0, and that the zero solution of (2.11) is uniformly asymptotically stable under

13



Hypothesis 2.2. Further, the perturbed equation (2.10) is of the form of (2.2), with

P(t,x(·)) = (B(∆r)−B0)x(t) +

∫ t

0

C(t− s; ∆r)x(s) ds + G(t; ∆r), t ≥ 0,

(where we have extended both C and G continuously to all of [0,∞), without

increasing their ‖ · ‖∞ norms and such that the support of each new function lies

in [0, (1/∆r) + 1] ). Then it is not difficult to see that P = P(∆r) so defined is

continuous on [0,∞)×C[0,∞; Rν), and locally Lipschitz continuous in x, uniformly

in t ≥ 0. In order to show that P satisfies the required bound, we note that the first

and third terms of P may be made as small as possible for ∆r sufficiently small. That

is, the nonzero entries in B(∆r)−B0 are O(∆r), while ‖G(t, ∆r)‖ ≤ 2∆r
ν‖u(ν)‖∞.

Further, the integral term in P(t,x(·)) is given, for t ≥ 0 and ∆r sufficiently small,

by ∥∥∥∥∫ t

0

C(t− s; ∆r)x(s) ds

∥∥∥∥
≤ ∆r

ν+1

∫ t

0

|k̃(ν)(∆r(t− s); ∆r)| |x1(s)|
α(∆r)

ds

≤ ∆r
ν+1 ‖k̃(ν)‖∞

α(∆r)
‖x‖t

1

∆r

≤ 2ν!
c0

cν

‖k(ν)‖∞‖x‖t

for ∆r sufficiently small, where x1 denotes the first component of x and where

we have used (2.4). Let M > 0 be defined by M = (γ cν)/(4 ν! c0) where γ is

given in Lemma 2.1, here using the eigenvalues of
∫∞

0

(
eB0t

)> (
eB0t

)
dt. Then if

‖k(ν)‖∞ ≤ M and for all ∆r small we have∥∥∥∥∫ t

0

C(t− s; ∆r)x(s) ds

∥∥∥∥ ≤ γ

2
ε

for all (t,x) satisfying t ≥ 0, ‖x‖t ≤ ε. Thus, under these conditions, P satisfies

the needed bound for Lemma 2.1, namely, ‖P(t,x(·))‖ ≤ γ ε for ‖x‖t ≤ ε and all

t ≥ 0. Finally, ‖v(0; ∆r)‖ = O(∆r), so that ‖v(0; ∆r)‖ ≤ η1 for ∆r sufficiently

small. It thus follows that |v(t; ∆r)| ≤ ‖v(t; ∆r)‖ ≤ ε, uniformly in t ∈ [0,∞), and

the theorem is proved. 2

Proof of Theorem 2.2:

It suffices to construct ∆r = ∆r(δ) such that ∆r(δ) → 0 as δ → 0, and

‖u(·; ∆r(δ))− uδ(·; ∆r(δ))‖ → 0 as δ → 0, (2.12)
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where ‖ · ‖ denotes the L2(0, 1) norm. Here u(·; ∆r) and uδ(·; ∆r) are the solutions

of (1.4) using data f and f δ, respectively. If (2.12) holds, then an application of the

triangle inequality and the results of Theorem 2.1 yield the statement of Theorem

2.2. We note that, in the proof of (2.12), we avoid using arguments similar to

those used in the proof of Theorem 2.1 because such an approach would require the

differentiation of the perturbed (noisy) data f δ.

Let y(t) = uδ(t; ∆r)− u(t; ∆r). Then

y(t) +

∫ t

0

k̃(t− s; ∆r)

α(∆r)
y(s) ds =

1

α(∆r)

∫ ∆r

0

(
f δ(t + ρ)−f(t + ρ)

)
dη

∆r
(ρ), (2.13)

for t ∈ [0, 1]. For any second kind equation of the form

x(t) +

∫ t

a

κ(t, s)x(s) ds = g(t), t ∈ [a, b],

with L∞ kernel on [a, b]× [a, b] and g ∈ L2(a, b), one standardly employs a Neumann

series to obtain L1 estimates of the following type

‖x‖
L1(a,b)

≤ ‖g‖
L1(a,b)

e(b−a)‖κ‖∞

(see, for example [13], pp 145–7). It is not difficult to modify these estimates to

obtain L2-type bounds, obtaining in this case,

‖x‖ ≤ ‖g‖ (1 + (b−a)‖κ‖∞) e(b−a)‖κ‖∞ .

Applying this estimate to equation (2.13), we find that

‖y‖ ≤

∥∥∥∥∥
∫ ∆r

0

(
f δ(·+ ρ)−f(·+ ρ)

)
α(∆r)

dη
∆r

(ρ)

∥∥∥∥∥
(

1 +
‖k̃(·; ∆r)‖∞

α(∆r)

)
exp

(
‖k̃(·; ∆r)‖∞

α(∆r)

)
,

where, using estimates similar to those in the proof of Theorem 2.1,

‖k̃(·; ∆r)‖∞
α(∆r)

≤ 2 ‖k‖∞ ∆−ν
r ν!

c0

cν

,

for ∆r sufficiently small. Further,∥∥∥∥∫ ∆r

0

(
f δ(·+ ρ)−f(·+ ρ)

)
dη

∆r
(ρ)

∥∥∥∥2

≤ ‖f δ − f‖2
∞ c2

0 ∆2s
r (1 +O(∆r))

so that ∥∥∥∥∥
∫ ∆r

0

(
f δ(·+ ρ)− f(·+ ρ)

)
α(∆r)

dη
∆r

(ρ)

∥∥∥∥∥ ≤ 2 δ ∆−ν
r ν!

c0

cν

,
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for all ∆r sufficiently small. Thus

‖y‖ ≤ 2 δ ∆−ν
r ν!

c0

cν

(
1 + 2 ‖k‖∞ ∆−ν

r ν!
c0

cν

)
exp

(
2 ‖k‖∞ ∆−ν

r ν!
c0

cν

)
,

for all ∆r sufficiently small.

In order to complete the proof of the theorem, it is necessary to show that a

choice of ∆r = ∆r(δ) may be found such that

(i) ∆r(δ) → 0 as δ → 0, and

(ii) δ ·(∆r(δ))
−2ν exp

(
2 ‖k‖∞ ∆−ν

r ν!
c0

cν

)
→ 0 as δ → 0,

from which the desired convergence in (2.12) is obtained. For (ii), we note that

δ ∆−2ν
r exp

(
2 ‖k‖∞ ∆−ν

r ν!
c0

cν

)
= 2 δ

(∆−ν
r )

2

2!
exp

(
2 ‖k‖∞ ∆−ν

r ν!
c0

cν

)
≤ 2 δ exp

(
∆−ν

r

[
1 + 2 ‖k‖∞ ν!

c0

cν

])
≤ 2δ ·δp−1,

where p ∈ (0, 1) is fixed, provided ∆r = ∆r(δ) is given by

∆r(δ) =

1 + 2 ‖k‖∞ ν!
c0

cν

(1− p) [− log δ]


1/ν

,

for δ ∈ (0, 1). It is easy to see that ∆r(δ) > 0 for all δ ∈ (0, 1), and that this choice

of ∆r(δ) gives ∆r(δ) → 0 as δ → 0 and ‖u(·; ∆r(δ)) − uδ(·; ∆r(δ))‖ = O(δp) as

δ → 0. The proof of the theorem is thus complete. 2

2.2. Convergence Theory Applied to Specific Measures.

We now consider two particular measures η
∆r

and verify that Hypotheses 2.1 and

2.2 hold in these cases for various values of ν. Throughout it will be assumed that k

is ν-smoothing, satisfying (1.2), (1.3) for given ν; without loss of generality we take

k(ν−1)(0) ≡ 1. In what follows, φ ∈ C[0, ∆r].

Example 2.1: For this example we define η
∆r

to be the discrete measure defined

in Section 1, with parameters corresponding to the practical application from that
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section. That is, η
∆r

is defined via (1.9) where, for some integer r ≥ 2,

K = r,

τi =
(i− 1)

(r − 1)
, i = 1, . . . , r + 1,

si =

∫ τi+1∆r

0
k(τi+1∆r − s) ds∫ τ2∆r

0
k(τ2∆r − s) ds

, i = 1, . . . , r.

In order to verify Hypothesis 2.1, we use (2.3) to estimate∫ τi+1∆r

0

k(τi+1∆r − s) ds =
τ ν
i+1

ν!
∆ν

r (1 +O(∆r)) , i = 1, . . . , r,

so that si = iν (1 +O(∆r)) , i = 1, . . . , r, as ∆r → 0. Therefore it follows that

∫ ∆r

0

ρ j dη
∆r

(ρ) =


r∑

i=1

iν(1 +O(∆r)), j = 0,(
∆r

r − 1

)j r∑
i=1

iν(i− 1)j (1 +O(∆r)), j = 1, . . . , ν,

as ∆r → 0, so that Hypothesis 2.1 holds for this example with s = 0 and

cj =


r∑

i=1

iν , j = 0,(
1

r − 1

)j r∑
i=1

iν(i− 1)j, j = 1, . . . , ν.

Example 2.2: We also consider a continuous version of the last example, which is

a special case of (1.8). Let η
∆r

be defined via∫ ∆r

0

φ(ρ) dη
∆r

(ρ) =

∫ ∆r

0

φ(ρ) ω
∆r

(ρ) dρ,

where ω
∆r

(ρ) is given by

ω
∆r

(ρ) =

∫ ρ+ε

0
k(ρ + ε− s) ds∫ ε

0
k(ε− s) ds

, ρ ∈ [0, ∆r],

and ε ≡ c ∆r for some c ∈ (0, 1]. In the verification of Hypothesis 2.1, we first note

that ∫ ρ+ε

0

k(ρ + ε− s) ds =
(ρ + ε)ν

ν!
(1 +O(∆r)) ,

so that

ω
∆r

(ρ) =
(
1 +

ρ

ε

)ν

(1 +O(∆r)) , (2.14)
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for ∆r sufficiently small. Thus∫ ∆r

0

ρ jω
∆r

(ρ) dρ = (1 +O(∆r))

∫ ∆r

0

ρ j
(
1 +

ρ

ε

)ν

dρ

= (1 +O(∆r))
ν∑

k=0

(
ν

k

)
1

εk

∆k+j+1
r

k + j + 1
,

for j = 0, 1, . . . , ν. But ε = c∆r gives∫ ∆r

0

ρ jω
∆r

(ρ) dρ = (1 +O(∆r)) ∆r
j+1

ν∑
k=0

(
ν

k

)
1

ck(k + j + 1)
,

so that Hypothesis 2.1 is also satisfied for this example, using s = 1 and

cj =
ν∑

k=0

(
ν

k

)
1

ck(k + j + 1)
, j = 0, 1, . . . , ν.

We summarize these findings in the following lemma.

Lemma 2.2 Let k satisfy the ν-smoothing conditions (1.2), (1.3), for any ν =

1, 2, . . .. Then Hypothesis 2.1 holds for the measures η
∆r

given in Examples 2.1 and

2.2.

We turn next to finding conditions guaranteeing that Hypothesis 2.2 holds for

these examples. In each case we will examine the roots of p̃(x) =
∑ν

j=0 d̃jx
j, where

d̃j =
ν!

j!

cj

cν

, j = 0, 1, . . . , ν.

The Routh-Hurwitz criterion (see, for example, [9], p. 480) states that all roots of

p̃ have negative real parts if and only if D` > 0 for ` = 1, 2, . . . , ν. Here D` is the

`× ` determinant given, for ` = 1, . . . , ν, by

D1 = d̃ν−1, D2 =

∣∣∣∣∣ d̃ν−1 d̃ν−3

1 d̃ν−2

∣∣∣∣∣ , . . . , D` =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

d̃ν−1 d̃ν−3 d̃ν−5 · · · d̃ν−2`+1

1 d̃ν−2 d̃ν−4 · · · d̃ν−2`+2

0 d̃ν−1 d̃ν−3 · · · d̃ν−2`+3

0 1 d̃ν−2 · · · d̃ν−2`+4

...
...

... · · · ...

0 0 · · · · · · d̃ν−`

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, . . . ,
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where d̃j ≡ 0 for j < 0. In fact, since the coefficients d̃j are positive for j = 0, . . . , ν,

the simpler Liénard-Chipart criterion ([9], p. 486) is applicable. The Liénard-

Chipart criterion states that all roots of the polynomial p̃ have negative real parts

if and only if D` > 0 for ` even, 1 ≤ ` ≤ ν; or, equivalently, if and only if D` > 0 for

` odd, 1 ≤ ` ≤ ν. These conditions are used in the proof of the following theorem.

Theorem 2.3 Let k satisfy the ν-smoothing conditions (1.2), (1.3), for integer ν,

1 ≤ ν ≤ 4, and let η
∆r

be given by Example 2.1, or by Example 2.2 with c ∈ (0,.6)

in the case of ν = 3. Then Hypothesis 2.2 holds in either case, guaranteeing that

the conclusions of Theorem 2.1 and Theorem 2.2 apply whenever ‖k(ν)‖∞ satisfies

the bound in those theorems.

Proof: Because D1 = d̃ν−1 > 0 for both Examples 2.1 and 2.2, the Liénard-Chipart

criterion guarantees that Hypothesis 2.2 is automatically satisfied for both examples

in the case of ν = 1 and ν = 2. In the case of ν = 3 for either example, all roots

of p̃ have negative real parts if and only if D2 > 0, i.e., if and only if d̃1d̃2 > d̃0.

For the case of ν = 4, we automatically have D1 > 0, and thus all roots of p̃ have

negative real part for either Example 2.1 or Example 2.2 precisely when D3 > 0; in

this particular case,

D3 =

∣∣∣∣∣∣∣
d̃3 d̃1 0

1 d̃2 d̃0

0 d̃3 d̃1

∣∣∣∣∣∣∣ . (2.15)

The verification of D2 > 0 (for ν = 3) and D3 > 0 (for ν = 4) for Examples 2.1

and 2.2 follows. As the calculations become quite involved for these cases, we make

use of Mathematica software to derive the expressions for D3 below, omitting some

intermediate steps.

For Example 2.1 and ν = 3,

d̃0 = 3! (r − 1)3

∑r
i=1 i3∑r

i=1 i3(i− 1)3
,

d̃j =
3!

j!
(r − 1)3−j

∑r
i=1 i3(i− 1)j∑r
i=1 i3(i− 1)3

, j = 1, 2, 3,

so that we have in this case that d̃2d̃1 > d̃0 if and only if

3!

(
r∑

i=1

i3(i− 1)2

)(
r∑

i=1

i3(i− 1)

)
> 2!

(
r∑

i=1

i3

)(
r∑

i=1

i3(i− 1)3

)
. (2.16)

Since
∑r

i=1(i − 1)j =
∑r−1

i=1 ij for j ≥ 1, we have from standard estimates that∑r
i=1(i − 1) = r(r − 1)/2,

∑r
i=1(i − 1)2 = r(r − 1)(2r − 1)/6, and

∑r
i=1(i − 1)3 =
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r2(r − 1)2/4. Substituting these values into (2.16) we have d̃2d̃1 > d̃0 if and only if

h(r) > 0, where

h(r) = − 1

150
− 6r

175
− 17r2

600
+

91r3

600
+

7r4

150
− 107r5

600
− 3r6

200
+

9r7

140
.

We note that

h′(r) =

(
91r2

200
− 6

175

)
+ r

(
14r2

75
− 17

300

)
+ r4

(
9r2

20
− 9r

100
− 107

120

)
,

where each of the three terms in h′(r) is positive for r ≥ 2. Since h(2) > 0 it follows

that d̃2d̃1 − d̃0 > 0 for all r ≥ 2. The case of ν = 3 for Example 2.1 is complete.

In the case of ν = 4 for Example 2.1, one may show that D3 = D3(r) is given by

D3 =
567(r − 1)5(−896 + 11296 r − 18128 r2 − 23712 r3 + 204632 r4)

(−24 + 116 r2 − 115 r4 + 35 r6)3 +

+
567(r − 1)5(182458 r5 − 339731 r6 − 293959 r7 + 271035 r8 + 180880 r9)

(−24 + 116 r2 − 115 r4 + 35 r6)3 +

+
567(r − 1)5(−168795 r10 − 83845 r11 + 50075 r12 + 24850 r13)

(−24 + 116 r2 − 115 r4 + 35 r6)3

for r = 2, 3, . . ., and that, by extending D3 continuously to the real interval [2,∞),

we have D3 differentiable with D′
3(r) > 0 for r ≥ 3. But D3(r) > 0 for r = 2 and 3

so it follows that that D3(r) > 0 for all r = 2, 3, . . . and the result of the theorem

follows for Example 2.1 with ν = 4.

For Example 2.2 and ν = 3, we have for c ∈ (0, 1],

d̃j =
3!

j!

c3

j + 1
+

3c2

j + 2
+

3c

j + 3
+

1

j + 4

c3

4
+

3c2

5
+

3c

6
+

1

7

, j = 0, 1, 2, 3.

A sufficient condition for d̃2d̃1 > d̃0 is the condition that c ∈ (0, 1] satisfies

(1 + c)6/5 > (1 + c)7/8 or that c < 3
5
. Thus, for the case of ν = 3 and for arbitrary

c ∈ (0, .6), we have that ω
∆r

(ρ) as given in Example 2.2 satisfies Hypothesis 2.2. In

fact, numerical evidence gives that D2 = d̃2d̃1 − d̃0 > 0 for all c ∈ (0, 1]. See Figure

2.1 below.

In Example 2.2 and the case ν = 4, one may show that for c ∈ (0, 1], the 3 × 3

determinant D3 = D3(c) satisfies

D3(c) =
9072(12425 + 167925 c + 1037790 c2 + 3862910 c3 + 9577125 c4

(70 + 315 c + 540 c2 + 420 c3 + 126 c4)3 +
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Figure 2.1: D2(c) for c ∈ [.001, 1] for Example 2.2 (ν = 3)

+
9072(16465500 c5 + 19713356 c6 + 15858780 c7 + 7533540 c8

(70 + 315 c + 540 c2 + 420 c3 + 126 c4)3 +

+
9072(913080 c9 − 1179360 c10 − 705600 c11 − 132300 c12)

(70 + 315 c + 540 c2 + 420 c3 + 126 c4)3 ,

which may be extended to a C1 function in c on [0, 1]. With this extension, we

may compute D′
3 and see that it is continuous, strictly decreasing on [0, 1], and that

D′
3(0) > 0 and D′

3(1) < 0. Using the fact that D3(c) > 0 for c = 0, 1, it follows that

D3(c) > 0 for all c ∈ (0, 1]. Thus Hypothesis 2.2 holds for this example with ν = 4. 2

Remark 2.1: The theoretical condition c ∈ (0, .6) needed for Example 2.2 in the

case of ν = 3 is not especially restrictive in practice if we recall from Section 1 that

c∆r plays the role that ∆t plays in the discrete version of η
∆r

and thus ∆r ∼ (r−1)∆t

means that c ∼ 1
r−1

. Therefore the condition c ∈ (0, .6) is equivalent to the condi-

tion on r (in the discrete case) that r > 8
3

or that integer r satisfies r > 2; this is

a slight modification of the original condition r ≥ 2. And, as noted in the proof,

numerical evidence appears to show that c ∈ (0, 1] is allowed, in which case the

original condition r ≥ 2 is restored.

Remark 2.2: For either of Example 2.1 or 2.2, a necessary condition for the result

to hold is that D3 > 0, where

D3 =

∣∣∣∣∣∣∣
d̃ν−1 d̃ν−3 d̃ν−5

1 d̃ν−2 d̃ν−4

0 d̃ν−1 d̃ν−3

∣∣∣∣∣∣∣ .
Unfortunately, a Mathematica computation determines that D3 < 0 in the case of
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ν = 5 for either example (using c = .5, for instance, in Example 2.2). Thus the

conditions of Theorems 2.1 and 2.2 do not hold for these cases. Even so, convergence

of u(·; ∆r) to u as ∆r → 0, may still occur; in fact, we have yet to find a numerical

example where (numerical) convergence appears to fail.

Remark 2.3: One may also show that Hypotheses 2.1 and 2.2 hold for other

examples of η
∆r

and for various values of ν ≥ 1, although we do not supply the

details of this analysis here. For the case of η
∆r

given by a measure such as that in

Example 2.1, but instead with constant si, i.e.,

si = s > 0, i = 1, . . . , r,

or for η
∆r

given by a measure such as that in Example 2.2, but instead with ω
∆r

(ρ)

constant-valued, i.e.,

ω
∆r

(ρ) = ω > 0, ρ ∈ [0, ∆r],

one may show for both new examples that Hypothesis 2.1 holds for all ν = 1, 2, . . .,

while Hypothesis 2.2 holds for ν = 1, 2, 3, failing for ν = 4.

Thus, if we use as a goal the satisfaction of the conditions of Hypothesis 2.2, then

these new examples perform less well according to that criterion than do Examples

2.1 and 2.2. (This criterion may not the best way to evaluate a choice of measures,

because convergence of u(·; ∆r) to u may still obtain even when Hypothesis 2.2

fails. However, since convergence is guaranteed under Hypothesis 2.2, the condition

can serve as a useful measuring stick.) It is tempting to conjecture that “better

performance” with respect to Hypothesis 2.2 is obtained for the original Examples

2.1 and 2.2 in the case of ν = 4, because the η
∆r

for those examples was constructed

so that
∫ ∆r

0
φ(ρ) dη

∆r
(ρ) more heavily weights “future values” of φ, that is, values of

φ toward the right end of the interval [0, ∆r]. If that is the case, then one might take

the analysis one step further. For example, a measure similar to that in Example

2.2 may be defined, but now with ω
∆r

(ρ) given by

ω
∆r

(ρ) =
(
1 +

ρ

ε

)µν

(1 +O(∆r)) ,

for µ ∈ [1,∞) and ε = c∆r, c ∈ (0, 1). Then µ = 1 corresponds to (2.14) for ω
∆r

(ρ)

in Example 2.2 (for which we have seen in Remark 2.2 that Hypothesis 2.2 fails for

ν = 5 and c = .5). Increasing µ to 1.25 (and thus, more heavily weighting “future

values”) serves to move all roots of p̃ to the left half of the complex plane for the

case of c = .5; thus Hypothesis 2.2 holds for the case of ν = 5 for Example 2.2 with

this new ω
∆r

(ρ) and c = .5.
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The idea of more heavily weighting the future values of φ was successful in es-

tablishing Hypothesis 2.2 for some examples, but not for others. Nevertheless, the

results of this section suggest that the notion of constructing η
∆r

precisely so that

both Hypotheses 2.1 and 2.2 hold for all ν ≥ 1, may lead to better choices of these

measures than those given in Examples 2.1 and 2.2. These ideas are the subject of

current study.

3. Numerical Approximation and Conditioning

In this section we present relevant numerical findings and explore the stability prop-

erties of the numerical discretization (1.10) of (1.1) described in Section 1, for various

values of ν; in addition, we show how the use of (1.13) (the discretized version of

(1.4)) serves to regularize and improve the conditioning of the underlying discrete

linear equations. An analysis of convergence of the discrete approximations will be

presented elsewhere. Throughout we will be looking at canonical kernels k satisfying

the ν-smoothing conditions (1.2), (1.3); that is, k will be given henceforth by

k(t) =
tν−1

(ν − 1)!
. (3.1)

for ν = 1, 2, . . ..

3.1. Numerical Results

We first present some findings for the discretization scheme described in Section 1 for

the solution of the original integral equation (1.1). As was seen in that section, this

discretization leads to the linear system (1.10) in the unknown αN , with discretized

solution of (1.1) given by uN(t) =
∑N

i=1 αiφi(t).

In Figure 3.1 below we graph the results of solving (1.10) for αN and constructing

uN =
∑N

i=1 αiφj (graphed with a solid line) with N = 16 and kernels k satisfying

(3.1) for ν = 1, 2, 3. In each case the true u is given by u(t) = sin 4t (graphed with

a dashed line) and the true f is given by f(t) ≡
∫ t

0
k(t − s)u(s) ds. Before solving

(1.10) we added uniformly-distributed random noise to f with max error in the

perturbation not exceeding (.01) sup0≤t≤1 |f(t)|.
As is obvious from Figure 3.1, one cannot expect useful results using an approx-

imation of the form (1.10) for ν ≥ 2 in the absence of some kind of regularization;

further, as Example 3.1 below shows, the same is true for the case ν = 1 when N is
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increased to N = 20. In fact, these findings are not surprising if we note the values

of the condition number cond∞(AN) for AN for these same ν and for N = 16. These

values are given in Table 3.1 below.

Table 3.1: cond∞(AN), for ν = 1, 2, 3, 4 and N = 16

ν cond∞(AN)

1 3.20000 101

2 1.53600 104

3 4.66331 1012

4 1.03389 1020

In the above we have used the notation

cond∞(BN) ≡ ‖B‖∞‖B−1‖∞

for given N × N nonsingular matrix BN = (bij), where ‖ · ‖∞ denotes the matrix

norm ‖BN‖∞ ≡ max1≤i≤N

∑N
j=1 |bij|.

We now observe how the situation changes when a discretized version of (1.4)

is used in place of the discretized version of (1.1). Using ∆r = (r − 1)∆t and the

discrete η
∆r

described in Section 1 (note that this η
∆r

is the same as that described

in Example 2.1 in Section 2), the discretization of (1.4) described in Section 1 leads

to equation (1.13), where in that equation,

AN
r =



s1∆̃1+. . .+sr∆̃r 0 0 0

s1∆2+. . .+sr∆r+1 s1∆̃1+. . .+sr∆̃r 0 0

s1∆3+. . .+sr∆r+2 s1∆2+. . .+sr∆r+1
. . . 0

...
...

. . .
...

s1∆N +. . .+sr∆N+r−1 s1∆N−1+. . .+sr∆N+r−2 . . . s1∆̃1+. . .+sr∆̃r


,

and

fN
r =


s1f(t1) + s2f(t2) + . . . + srf(tr)

s1f(t2) + s2f(t3) + . . . + srf(tr+1)
...

s1f(tN) + s2f(tN+1) + . . . + srf(tN+r−1)

 ,

with ∆̃i = ∆1 + . . . + ∆i for i = 1, . . . , r. In the case of r = 1, equation (1.13)

reduces (as expected) to (1.10), with AN
1 = AN , fN

1 = fN .
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Figure 3.1: Solution of (1.10) using k given by (3.1) for ν = 1, 2, 3.
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We repeat the above numerical experiments for various values of ν, using the

same f and u as above, again with 1% uniformly-distributed random error added

to f ; this time, however, we use (1.13) as the approximating equations with N = 20

and use the regularization parameter ∆r = (r − 1)∆t, for r = 1, 2, 3, . . .. The un-

regularized approximation for each example is given by the r = 1 result.

Example 3.1: Here we take k defined by (3.1) with ν = 1. Although the original

unregularized approximating equation (1.10) (i.e., the r = 1 case) gives errors in the

solution in this case, the errors are sufficiently small as to be damped out using only

one future interval for regularization, that is, using r = 2. The results are graphed

in Figure 3.2.

Example 3.2: Here we take k given by (3.1) with ν = 2. The instability of the

ill-posed problem is beginning to be quite evident as it now takes r ≥ 4 to effectively

regularize the solution. See Figure 3.3.

Example 3.3: Now we take k defined by (3.1) with ν = 3. In this case the insta-

bility worsens with the increased ill-posedness of the original problem. See Figure

3.4.

We also list in Tables 3.2 – 3.5 below the condition numbers cond∞
(
AN

r

)
for the

matrices AN
r used in Examples 3.1–3.3 above, for various r and N . In Table 3.4 we

list the condition numbers for the matrix AN
r in the case of ν = 31. All values were

obtained precisely using Mathematica. It appears in all these cases that, for fixed

N and ν, an increase in r leads to a decrease in condition number, and that the

decrease in condition number is greater, the larger the value of N .

3.2. Condition Number Analysis

We now turn to an examination of the conditioning of the unregularized and regu-

larized approximating equations set up by (1.10) and (1.13), respectively, and derive

theoretical inequalities which provide comparisons of condition numbers of the ma-

trices appearing in these problems. The following theorem is central to these ideas.

In the statement of the theorem we emphasize the dependence of AN
r on ν through

the use the notation AN
r,ν ≡ AN

r , and again note that AN
1,ν ≡ AN where AN is the

matrix appearing in equation (1.10) for given N and ν.
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Figure 3.2: Results from Example 3.1.

Table 3.2: Condition numbers cond∞
(
AN

r

)
for ν = 1.

r N = 2 N = 4 N = 8 N = 16 N = 32

1 4.0000 100 8.0000 100 1.6000 101 3.2000 101 6.4000 101

2 2.5600 100 5.4208 100 1.0391 101 2.0000 101 3.9200 101

3 4.1449 100 7.9204 100 1.4855 101 2.8571 101

4 3.4074 100 6.4715 100 1.1986 101 2.2666 101

...
...

...
...

8 3.8963 100 7.0959 100 1.2925 101

...
...

...

16 4.1614 100 7.4374 100

...
...

32 4.2997 100

27



0.2 0.4 0.6 0.8 1

r=1

-1.5

-1

-0.5

0.5

1

1.5

0.2 0.4 0.6 0.8 1

r=3

-1.5

-1

-0.5

0.5

1

1.5

0.2 0.4 0.6 0.8 1

r=4

-1.5

-1

-0.5

0.5

1

1.5

0.2 0.4 0.6 0.8 1

r=6

-1.5

-1

-0.5

0.5

1

1.5

Figure 3.3: Results from Example 3.2.
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Figure 3.4: Results from Example 3.3.
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Table 3.3: Condition numbers cond∞
(
AN

r

)
for ν = 2.

r N = 2 N = 4 N = 8 N = 16 N = 32

1 1.6000 101 1.9200 102 1.792 103 1.5360 104 1.2697 105

2 5.5363 100 1.8494 101 6.7980 101 2.4865 102 9.4743 102

3 1.0568 101 3.5327 101 1.2146 102 4.4321 102

4 7.7632 100 2.2359 101 7.5255 102 2.6494 102

...
...

...
...

8 9.3255 100 2.5358 101 8.2149 101

...
...

...

16 1.0262 101 2.7234 101

...
...

32 1.0778 101
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Table 3.4: Condition numbers cond∞
(
AN

r

)
for ν = 3.

.
r N = 2 N = 4 N = 8 N = 16 N = 32

1 6.4000 101 9.7280 103 1.5487 107 4.6633 1012 5.2837 1022

2 1.1876 101 9.1318 101 6.5353 102 4.6474 103 3.4350 105

3 2.7378 101 1.7370 102 1.1695 103 8.1552 104

4 1.5578 101 8.6209 101 5.2755 102 3.5306 104

...
...

...
...

8 1.9602 101 9.6875 101 5.5669 102

...
...

...

16 2.2190 101 1.0463 102

...
...

32 2.3699 102

Table 3.5: Condition numbers cond∞
(
AN

r

)
for ν = 31.

r N = 2 N = 4 N = 8 N = 16 N = 32

1 4.6116 1018 4.5659 1046 4.3161 1071 6.5892 1087 2.2703 10102

2 8.2729 1010 4.8923 1028 2.4497 1056 1.0010 1072 8.3332 1082

3 6.5664 1020 7.9374 1042 1.5294 1062 8.9166 1072

4 1.6519 1016 3.2781 1033 1.2856 1055 3.4600 1065

...
...

...
...

8 1.3963 1016 1.9594 1031 8.3007 1047

...
...

...

16 4.3259 1016 1.3897 1031

...
...

32 6.4610 1016
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Theorem 3.1 Let N = 2, 3, . . . be fixed. Then there exists V = V (N) > 0 such

that for all integer ν ≥ V and all r = 1, 2, . . . , N ,

cond∞(AN
r,ν) ≤ U(r, ν, N)

where

U(r, ν, N) ≡ 2N ν

N−1∑
i=1

(
r + 1

r

)iν

,

decreases with increasing r. Further, under the same conditions,

cond∞(AN
1,ν) ≥ 2N ν

N−1∑
i=1

2i(ν−1),

so that

cond∞(AN
r,ν) < cond∞(AN

1,ν) (3.2)

for all r = 2, 3, . . . , N . Finally, for all ν ≥ V ,

cond∞(AN
r,ν) ≤ η(r)2(N−1)cond∞(AN

1,ν), (3.3)

where

η(r) =
1√
2

(
1 +

1

r

)
satisfies η(r) < 1 for r ≥ 3, and η is decreasing in r.

In fact, the bounds for AN
1,ν = AN given in this theorem appear to be quite good

when compared to the actual values given in Table 3.4 for ν = 31; the upper bounds

for AN
r,ν for r ≥ 2 are less tight.

Before turning to the proof of the theorem, some preliminary observations are

needed. To this end, we note that for each r = 1, 2, . . ., and N = 1, 2, . . ., the

matrix inverse (AN
r )−1 is both lower triangular and Toeplitz, and thus the inverse

is easily computed once we determine its first column [2]. That is, let x ∈ RN , x =

(x1, x2, . . . , xN)> denote the unique solution of AN
r x = e1, where e1 = (1, 0, . . . , 0)>.

Then (AN
r,ν)

−1 is given by

(AN
r,ν)

−1 =



x1 0 0 . . . 0 0

x2 x1 0 . . . 0 0

x3 x2 x1 . . . 0 0
...

...
. . . . . .

...
...

xN−1 xN−2 xN−3
. . . x1 0

xN xN−1 xN−2 . . . x2 x1


.
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Furthermore, it is easy to see that ‖(AN
r,ν)

−1‖∞ = ‖x‖1, where the vector norm ‖·‖1 is

defined by ‖x‖1 =
∑N

i=1 |xi|. Similarly, ‖AN
r,ν‖∞ = ‖c‖1, where c = (c1, c2, . . . , cN)>

denotes the first column of AN
r . Thus,

cond∞(AN
r,ν) = ‖c‖1‖x‖1,

for c and x so defined.

Given a canonical ν-smoothing kernel k of the form (3.1) for ν = 1, 2, . . ., the

entries of AN
r,ν are easily obtained for given N and r using the quantities

∆i ≡
∫ ∆t

0

k(i∆t− s) ds

=
∆tν

ν!
(iν − (i− 1)ν) , i = 1, . . . , N + r − 1,

∆̃i ≡
i∑

j=1

∆i =
∆tν

ν!
iν , i = 1, . . . , r,

si ≡ ∆̃i

∆̃1

= iν , i = 1, . . . , r.

The leading column in AN
r,ν is therefore given by

c(N, r, ν) =
∆tν

ν!


1νd1 + 2ν(d1 + d2) + . . . + rν(d1 + . . . + dr)

1νd2 + 2νd3 + . . . + rνdr+1

1νd3 + 2νd4 + . . . + rνdr+2

...

1νdN + 2νdN+1 + . . . + rνdN+r−1

 , (3.4)

where

di = iν − (i− 1)ν .

Instead defining

ÃN
r,ν =

ν!

∆tν
AN

r,ν ,

the first column of ÃN
r,ν is given by

c̃(N, r, ν) =


1 + 22ν + . . . + r2ν

1νd2 + . . . + rνdr+1

1νd3 + . . . + rνdr+2

...

1νdN + . . . + rνdN+r−1

 , (3.5)
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and it follows that

cond∞(AN
r,ν) = cond∞(ÃN

r,ν),

for all r, ν, N .

Our first lemma provides bounds on ‖ÃN
r,ν‖∞, needed in estimates of cond∞(AN

r,ν).

Lemma 3.1 Let N = 1, 2, . . ., r = 1, 2, . . ., and ν = 1, 2, . . .. Then

‖ÃN
r,ν‖∞ ≤ D(r, ν)N ν

where D(r, ν) = 1 + 22ν + 32ν + . . . + r2ν. Further, for r = 1, the precise estimate

‖ÃN
1,ν‖∞ = N ν

holds.

Proof: From (3.4) it is easy to see that

‖ÃN
r,ν‖∞ = 1ν(d1 + d2 + . . . + dN) + 2ν(d1 + d2 + . . . + dN+1) + . . .

+rν(d1 + d2 + . . . + dN+r−1)

= N ν + 2ν(N + 1)ν + . . . + rν(N + r − 1)ν .

=

[
1 + 2ν

(
1 +

1

N

)ν

+ . . . + rν

(
1 +

r − 1

N

)ν]
N ν

≤ D(r, ν) N ν ,

from which we obtain the first half of the lemma. The second half of the lemma is

obvious. 2

Lemma 3.2 Let N = 2, 3, . . . be fixed. Then there exists V = V (N) > 0 sufficiently

large such that for all r = 1, 2, . . . , N , and all ν ≥ V ,

‖(ÃN
r,ν)

−1‖∞ ≤ 2

D(r, ν)

N−1∑
i=1

(
r + 1

r

)iν

where D(r, ν) is given in the last lemma. Further, for r = 1 and all ν ≥ V , one has

the lower bound

‖(ÃN
1,ν)

−1‖∞ ≥ 2
N−1∑
i=1

2i(ν−1).
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Proof: Defining x̃(r, ν) as the solution of ÃN
r,ν x = e1, we have from earlier argu-

ments that ‖(ÃN
r,ν)

−1‖∞ = ‖x̃(r, ν)‖1. In what follows we compute x̃(N, r, ν) =

(x̃1(N, r, ν), x̃2(N, r, ν), . . . , x̃N(N, r, ν))>, suppressing the (N, r, ν) notation where

no confusion exists.

From the definitions of ÃN
r,ν in (3.5), we have x̃1 = 1/D(r, ν) ≡ 1/D, and x̃2 =

−(1νd2 + 2νd3 + . . . rνdr+1)x̃1/D. Thus

|x̃2| =
(2ν − 1ν) + 2ν(3ν − 2ν) + . . . + rν((r + 1)ν − rν)

D2

=
2ν + (2 · 3)ν + (3 · 4)ν + . . . (r · (r + 1))ν

D2
− 1

D

≤ 1

D

(
r(r + 1)

r2

)ν [(
2

r(r + 1)

)ν

+

(
2 · 3

r(r + 1)

)ν

+ . . . +

(
(r − 1)r

r(r + 1)

)
+ 1

]
− 1

D
,

where we have used the fact that r2ν ≤ D. Therefore, for all ν sufficiently large we

have that

|x̃2| ≤
1

D

(
r + 1

r

)ν (
1 +

1

2N−1

)
− 1

D
.

We show in what follows that, for j = 2, 3, . . . , N and ν sufficiently large,

|x̃j| ≤
1

D

(
r + 1

r

)(j−1)ν (
1 +

1

2N−1
+ . . . +

1

2N−j+1

)
. (3.6)

The claim is clearly true for the case j = 2. Assuming the claim is true for j =

2, 3, . . . , i− 1, we have that

x̃i = − 1

D

i−1∑
`=1

(1νdi−`+1 + 2νdi−`+2 + . . . + rνdi−`+r)x̃`.

Using the fact that 1νdµ + 2νdµ+1 + . . . + rνdµ+r−1 > 0 for µ = 1, . . . , N , and that

1νdµ + 2νdµ+1 + . . . + rνdµ+r−1

= (µν − (µ− 1)ν) + 2ν ((µ + 1)ν − µν) + . . . + rν ((µ + r − 1)ν − (µ + r − 2)ν)

= −(µ− 1)ν + µν(1− 2ν) + (µ + 1)ν(2ν − 3ν) + . . .

+ . . . + (µ + r − 2)ν((r − 1)ν − rν) + rν(µ + r − 1)ν

≤ rν(µ + r − 1)ν ,

for ν = 1, 2, . . ., it follows that

|x̃i| ≤ 1

D

i−1∑
`=1

rν(i + r − `)ν |x̃`|
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≤ 1

r2ν

[
(r(i + r − 1))ν 1

D

+
i−1∑
`=2

(r(i + r − `))ν 1

D

(
r + 1

r

)(`−1)ν (
1 +

1

2N−1
+ . . . +

1

2N−`+1

)]

≤ 1

D

(
r + 1

r

)(i−1)ν [(
r(i−2)(i + r − 1)

(r + 1)i−1

)ν

+
i−1∑
`=2

(
ri−`−1(i + r − `)(r + 1)`−1

(r + 1)i−1

)ν (
1 +

1

2N−1
+ . . . +

1

2N−`+1

)]
.

A simple argument gives that ri−`−1(i + r − `)(r + 1)`−1 is increasing in ` for ` =

1, . . . , i− 1, i = 2, . . . , so for ν sufficiently large,

|x̃i| ≤
1

D

(
r + 1

r

)(i−1)ν (
1 +

1

2N−1
+ . . . +

1

2N−i+1

)
.

Thus (3.6) holds, and

‖x̃(r, ν)‖1 ≤ 1

D
+

[
1

D

(
r + 1

r

)ν (
1 +

1

2N−1

)
− 1

D

]
+

N∑
i=3

1

D

(
r + 1

r

)(i−1)ν (
1 +

1

2N−1
+ . . . +

1

2N−i+1

)

≤ 2

D

N−1∑
i=1

(
r + 1

r

)iν

,

for all ν sufficiently large. The proof of the first half of the lemma is complete.

For the second half of the lemma, we note that r = 1 implies that D = 1, x̃1 = 1

and, for each i = 2, 3, . . . , N , x̃i = −(dix̃1 + di−1x̃2 + . . . + d2x̃i−1). Therefore,

x̃2 = −(2ν − 1). We claim that for j = 3, 4, . . ., and all ν sufficiently large,

|x̃j| ≥ 2(j−1)ν

(
1− 1

2
− . . .− 1

2j−2

)
, (3.7)

|x̃j| ≤ 2(j−1)ν

(
1 +

1

2
+ . . . +

1

2j−2

)
. (3.8)

For j = 3 we see that x̃3 = − [(3ν − 2ν) + (2ν − 1)(1− 2ν)] = 4ν
[
1−

(
3
4

)ν − (2
4

)ν
+
(

1
4

)ν]
so that for ν sufficiently large, 4ν(1 − 1/2) ≤ |x̃3| ≤ 4ν(1 + 1/2), and the result is

true for j = 3.

Now assume that relationships (3.7) and (3.8) hold for j = 3, 4, . . . , i− 1. Then

|x̃i| =

∣∣∣∣∣
i−1∑
`=1

[(i− ` + 1)ν − (i− `)ν ] x̃`

∣∣∣∣∣
= |2ν x̃i−1 + Hi(ν)|,
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where

Hi(ν) = −x̃i−1 +
i−2∑
`=1

[(i− ` + 1)ν − (i− `)ν ] x̃`,

so that

|Hi(ν)| ≤ |x̃i−1|+
i−2∑
`=1

(i− ` + 1)ν |x̃`|

≤ iν + (i− 1)ν2ν +
i−2∑
i=3

(i− ` + 1)ν2(`−1)ν

(
1 +

1

2
+ . . . +

1

2`−2

)
+2(i−2)ν

(
1 +

1

2
+ . . . +

1

2i−3

)
= 2(i−1)ν

[(
i

2i−1

)ν

+

(
i− 1

2i−2

)ν

+
i−2∑
`=3

(
i− ` + 1

2i−`

)ν (
1 +

1

2
+ . . . +

1

2`−2

)
+

(
1

2

)ν (
1 +

1

2
+ . . . +

1

2i−3

)]
.

But one has µ/2(µ−1) < 1 for all µ = 3, 4, . . . , i, so for ν sufficiently large, |Hi(ν)| <
2(i−1)ν 1

2i−2 for all i = 3, . . . , N . Therefore,

|x̃i| ≤ 2ν |x̃i−1|+ 2(i−1)ν 1

2i−2

≤ 2(i−1)ν

(
1 +

1

2
+ . . . +

1

2i−2

)
where we have used the induction hypothesis. Similarly,

|x̃i| ≥ 2ν |x̃i−1| − 2(i−1)ν 1

2i−2

and (3.7) is valid. Finally,

‖(ÃN
1,ν)

−1‖∞ = ‖x̃‖1

≥ 1 + (2ν − 1) +
N∑

i=3

2(i−1)ν

(
1− 1

2
− . . .− 1

2i−2

)

= 2ν +
N∑

i=3

2(i−1)ν2−(i−2)

= 2
N∑

i=2

2(i−1)(ν−1)

and the second half of the lemma is proved. 2
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Finally we turn to the proof of the main result of this section.

Proof of Theorem 3.1:

We need only prove (3.2) and (3.3). It is clear that inequality (3.2) is true whenever

ν and r are such that
(

r+1
r

)ν
< 2ν−1. A simple computation shows that this estimate

holds for all r provided that ν ≥ 3. In order to prove (3.3), we note that

cond∞(AN
r,ν) ≤ 2N ν

(
r+1

r

)Nν −
(

r+1
r

)ν(
r+1

r

)ν − 1

and

cond∞(AN
1,ν) ≥ 2N ν 2N(ν−1) − 2ν−1

2ν−1 − 1

so that

cond∞(AN
r,ν) ≤ η̃(r, N, ν) cond∞(AN

1,ν)

where

η̃(r, N, ν) =

(
r+1

r

)(N−1)ν − 1

1−
(

r
r+1

)ν 1−
(

1
2

)ν−1

2(N−1)(ν−1) − 1

≤
(

r+1
r

)(N−1)ν

1−
(

r
r+1

) 1

2(N−1)(ν−1) − 1

≤ 2(r + 1)

(
r + 1

r

)(N−1)ν (
1

2

)(N−1)(ν−1)

= 2(r + 1)

(
r + 1

2r

)(N−1)(ν−2)(
r + 1√

2r

)2(N−1)

.

Defining p = ln(2(r + 1))/ ln
(

2r
r+1

)
> 0, we have p ≤ ln(2(N + 1))/ ln(4/3), so that

if ν is selected as in the previous lemmas and such that

ν ≥ 2 +
ln(2(N + 1))

(N − 1) ln
(

4
3

)
it follows that (N − 1)(ν − 2) ≥ p, and thus that

η̃(r, N, ν) ≤
(

r + 1

2r

)(N−1)(ν−2)−p(
r + 1√

2r

)2(N−1)

≤
(

r + 1√
2r

)2(N−1)

.

The statement of Theorem 3.1 thus holds. 2

As an aside, we note that a lower bound for the condition number of the

unregularized problem may have also been be estimated using the ideas of [14];
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however the estimates in that paper are not useful for obtaining condition num-

bers for the regularized problem we consider here. We also note that because

‖BN‖∞ = ‖BN‖1 for any lower-triangular, Toeplitz, N × N matrix BN = (bij)

(where ‖BN‖1 ≡ max1≤j≤N

∑N
i=1 |bij|), all of the above results equivalently apply to

the the 1-norm condition number cond1(AN
r,ν) of AN

r,ν .

4. Conclusion.

To summarize the major results of this paper, we have extended the work of [6]

and given general conditions for the convergence/stabilization of the solution of

the regularization equation (1.4) to the solution of the original Volterra integral

equation (1.1), in the case of kernels with ν-smoothing properties. The sufficient

conditions for convergence involve properties of the particular measure η
∆r

used to

define the approximating equation (1.4). These conditions were checked for small ν

in the case of two standard measures, one of which has been used successfully for

years in applications such as the inverse heat conduction problem. On-going work

in this area involves using the sufficiency conditions for convergence/stabilization

to construct measures η
∆r

satisfying these conditions for all ν, in hopes that this

approach will lead to better choices of these measures.

In addition, we have examined properties of discretized versions of the original

problem (1.1) and the new regularized problem (1.4), and have given theoretical

estimates showing how the condition number (associated with the matrices for each

discretized problem) depends on N , ν, and, for the regularized problem, on the

discrete regularization parameter r. Estimates were given illustrating the way in

which the condition number decreases with corresponding increases in the size of r.
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