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Abstract. We develop a local regularization theory for the nonlinear inverse autoconvolution
problem. Unlike classical regularization techniques such as Tikhonov regularization, this theory
provides regularization methods that preserve the causal nature of the autoconvolution problem,
allowing for fast sequential numerical solution (O(rN2 − r2N) flops where r ¿ N for the method
discussed in this paper as applied to the nonlinear problem; in comparison, the cost for Tikhonov
regularization applied to a general linear problem is O(N3) flops). We prove the convergence of the
regularized solutions to the true solution as the noise level in the data shrinks to zero and supply
convergence rates for the case of both L2 and continuous data. We propose several regularization
methods and provide a theoretical basis for their convergence; of note is that this class of methods
does not require an initial guess of the unknown solution. Our numerical results confirm effectiveness
of the methods, with results comparing favorably to numerical examples found in the literature for the
autoconvolution problem (e.g., [13] for examples using Tikhonov regularization with total variation
constraints, and [16] for examples using the method of Lavrent’ev); this especially seems to be
true when it comes to the recovery of sharp features in the unknown solution. We also show the
effectiveness of our method in cases not covered by the theory.
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1. Introduction. In this paper we develop a local regularization theory for the
inverse autoconvolution problem of finding x̄ ∈ L2(0, T ) solving

G(x) = f, (1.1)

where G is the nonlinear Volterra operator given by

G(x)(t) =
∫ t

0

x(t− s)x(s) ds, a.e. t ∈ (0, T), (1.2)

and where f ∈ Range(G) ⊆ L2(0, T ). Without loss of generality we will henceforth
let T = 1.

Autoconvolution has been of interest to scientists for decades because of its ap-
plications in various fields. It arises in stochastics where the density function of a
continuous random variable V is reconstructed after observing the density function of
the random variable S = V1 + V2, where V1 and V2 are identically and independently
distributed random variables of V [14]. Another application of autoconvolution occurs
in spectroscopy. Baumeister presents in [1] a reference list of physically motivated pa-
pers concerning this class of problems. He also discusses in detail the mathematical
model of deconvolution of “appearance potential”(AP) spectra to investigate elec-
tronic properties of solids in their surface region. In this context, the density of
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unoccupied states in the surface region of a solid is recovered from the measured
AP-spectrum data.

Properties of the autoconvolution problem have been explored extensively in [11,
12, 13, 14] (to name just a few of the references in this area) and include analysis of
ill-posedness of the problem due to lack of continuous dependence of solutions x̄ on
data f . Indeed, for D(G) ≡ {x ∈ L2(0, 1), x(t) ≥ 0, a.e. t ∈ (0, 1)}, the operator
G : D(G) ⊂ L2(0, 1) 7→ L2(0, 1) is such that the inverse autoconvolution operator
G−1 is discontinuous at every point f in the range of G; i.e., the autoconvolution
equation is locally ill-posed at every point x in D(G). Degrees of ill-posedness for
the autoconvolution equation are discussed in [12] and [14]. In short, we expect
a correlation between the degree of ill-posedness and both the smoothness of the
solution x̄ and the behavior of x̄ at 0.

Various regularization methods have been studied for the autoconvolution equa-
tion. One can utilize Tikhonov regularization theory for nonlinear inverse problems
since the autoconvolution operator G is continuous and weakly closed on D(G) and
G has a compact Fréchet derivative at all x ∈ L2(0, 1) satisfying assumptions needed
to guarantee stability in the nonlinear Tikhonov theory [9, 14, 30]. However, as is
well-known in the case of the linear Volterra problem, classical regularization meth-
ods such as Tikhonov regularization have inherent disadvantages in solving Volterra
problems; indeed, the use of Tikhonov regularization transforms problems that are
structurally causal in nature into non-causal or full-domain problems (see, e.g., [24]
for a discussion of these difficulties). Causal-based methods have advantages because
they are sequential in nature, and we’ll see in Section 5.1 that the cost of the local
regularization algorithm discussed in that section is O(rN2 − r2N) where r ¿ N ,
while the cost for Tikhonov regularization on a general linear problem is O(N3).

In addition, source conditions needed for convergence rates for Tikhonov regular-
ization as applied to the nonlinear problem (1.1) require that x̄ − x? = G′(x̄)?w for
some w ∈ L2(0, 1) [10], where x? is an initial guess for x̄ and x̄ is the true solution
of (1.1). It is not hard to show that the source condition requires that x?(1) = x̄(1);
since x? is part of the Tikhonov algorithm, the method then requires knowledge of
the value of the unknown solution x̄ at t = 1.

In the late 1960’s, J. V. Beck developed a regularization scheme for the discretized
inverse heat conduction problem (IHCP), a linear Volterra inverse problem, which
retains the causal nature of the original problem [2]. Because of its sequential formu-
lation, the numerical implementation of the Beck method is also more efficient than
classical regularization methods. In the mid-1990’s, the second author established the
theoretical basis for the convergence of the sequential local regularization method, and
Beck’s approach was generalized to a wide class of linear first-kind Volterra problems
[17, 18, 19]. While Beck’s method was an approach developed to handle a finite dimen-
sional approximation of the IHCP, the current theory of local regularization methods
can be placed in both finite and infinite dimensional settings. In addition, the theory
has been extended more recently to nonlinear Volterra problems of Hammerstein type,

∫ t

0

k(t− s)g(x(s), s) ds = f(t), a.e. t ∈ (0, T ). (1.3)

In [23], the special structure of this equation was coupled with linear convergence
theory so that local regularization was used to solve

∫ t

0

k(t− s)v(s) ds = f(t) a.e. t ∈ (0, T ),
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v, and then u was recovered as a solution of the nonlinear problem v(t) = g(u(t), t) for
all t ∈ [0, 1]. More recently in [26] this work has been modified so that the nonlinear
equation (1.3) need only be solved on an initial (small) interval [0, ε]; then for t > ε,
the solution x is stably recovered explicitly and sequentially from a local regularization
equation which is an extension of the method found in [23].

In [16], Janno applied the Lavrent’ev regularization method to the autoconvo-
lution equation and provided both theoretical convergence estimates and numerical
examples. The advantage of Lavrent’ev method is that it preserves the causal nature
of Volterra problems and therefore leads to a fast sequential method. The drawback
for the method is that it requires and depends on an initial guess x? of the true so-
lution x̄, and it must be that x?(0) = x̄(0) which means that x̄(0) must be known in
advance (or at least computed using regularized differentiation of noisy data; we note
that in Section 5 we propose an algorithm which approximates x̄(0) in exactly the
same way). Performance of both the Lavrent’ev and Tikhonov methods seem fairly
dependent on the choice of the initial guess x? and of its closeness to x̄.

In this paper, we develop a local regularization theory for the nonlinear auto-
convolution problem of finding x ∈ D(G) ⊂ L2(0, 1) solving equation (1.1) with G
given by (1.2). The result is an effective regularization method which essentially
preserves the casual nature of the problem and does not require an initial guess of
the true solution (such as is needed for the Lavrent’ev method and Tikhonov method).

2. The Regularized Autoconvolution Equation. We will first motivate the
equation which will become the basis for our regularized approximation of the true
solution x̄ of (1.1). We assume that our data and solution are available on an ex-
tended interval [0, 1 + R̄] for some small R̄ ∈ (0, 1] and note that this can always be
accomplished by simply decreasing the size of our original interval slightly. Thus, for
any 0 < R < R̄, x̄ solves

∫ t+ρ

0

x(t + ρ− s) x(s) ds = f(t + ρ), a.e. t ∈ (0, 1), ρ ∈ (0, R).

We split the integral at ρ and t, then change the variable of integration to obtain

2
∫ ρ

0

x(t + ρ− s) x(s) ds +
∫ t

ρ

x(t + ρ− s) x(s) ds = f(t + ρ) (2.1)

for a.e. t ∈ (0, 1), ρ ∈ (0, R). In order to consolidate the local future information
introduced by the variable ρ, we follow the idea of local regularization in the case of
the linear Volterra problem (see, e.g., [17, 18]) and integrate both sides of the equation
(2.1) with respect to a suitable measure η = η(ρ) > 0 (which we will clarify later) on
[0, R], leading to the equation

2
∫ R

0

∫ ρ

0

x(t + ρ− s)x(s) ds dη(ρ) +
∫ R

0

∫ t

ρ

x(t + ρ− s)x(s) ds dη(ρ)

=
∫ R

0

f(t + ρ) dη(ρ), a.e. t ∈ (0, 1). (2.2)

Note that x̄ still satisfies equation (2.2) exactly.
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In reality, instead of having the exact data f , we only have access to some approx-
imation fδ to f . Because of the local ill-posedness of the original problem (1.1), some
form of regularization is needed when the perturbed data fδ is used in place of the
“ideal” data f . The results of regularization differ depending on the smoothness of
the perturbed data, so we will investigate the properties of our method using data fδ

in two different spaces F of functions defined on [0, 1+ R̄]. Our assumption regarding
data will be as follows:

Definition 2.1. We will say the data fδ satisfies the F-data assumption if
fδ ∈ F and

‖fδ − f‖F ≤ δ, (2.3)

for some δ > 0, where either F = C[0, 1 + R̄] or F = L2(0, 1 + R̄).

Returning then to local regularization in the presence of perturbed data fδ, the
method is suggested by the idea of momentarily holding x constant on a small local
interval [t, t + R], i.e., we replace x(t + ρ − s) by x(t) in the first term of equation
(2.2) for values of ρ, s such that ρ− s ∈ [0, R]. Here, the length of this local interval
R serves as the regularization parameter. We then obtain the regularization equation

αR(x)x + FR(x) = fδ
R, (2.4)

where for a.e. t ∈ (0, 1),

αR(x) ≡ 2
∫ R

0

∫ ρ

0

x(s) ds dη(ρ), (2.5)

FR(x)(t) ≡
∫ R

0

∫ t

ρ

x(t + ρ− s)x(s) ds dη(ρ), (2.6)

fδ
R(t) ≡

∫ R

0

fδ(t + ρ) dη(ρ). (2.7)

The R-dependent measure η is defined via

∫ R

0

g(ρ) dη(ρ) ≡
∫ R

0

g(ρ)ω(ρ,R) dρ, g ∈ L2(0, R), (2.8)

where the family {ω(·, R) ∈ L∞(0, R)}R∈(0,R̄] is assumed to be such that there exists
ω, ω̄ > 0 independent of R so that

0 < ω ≤ ω(ρ,R) ≤ ω̄, a.e. ρ ∈ (0, R], (2.9)

for all R sufficiently small. It follows then that for any real m ≥ 0 there exist constants
K(m) > 0 independent of R so that

∫ R

0
ρm dη(ρ)

∫ R

0
ρ dη(ρ)

≤ K(m)Rm−1, (2.10)

for all R > 0 sufficiently small. We note that this class of measures is a special
case of the measures discussed in previous papers on local regularization for linear
Volterra problems (see, e.g., [17, 18, 19, 25, 27, 28, 31]), and that the discrete measures
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discussed in these references are not suitable for use in (2.7) in the case of fδ ∈
L2(0, 1 + R).

Our main results involving the well-posedness of equation (2.4) and the conver-
gence of the solution x of (2.4) to the true solution x̄ of the original autoconvolution
equation will be given in the next section. First we will introduce some additional
spaces and norms which will facilitate further analysis below of the operator FR, as
well as the theory given in Section 3.

We will define a new R-dependent topology on L2(0, 1) via

〈x, y〉σ,R ≡ C2 −1
R

∫ R

0

e−2σtx(t) y(t) dt +
∫ 1

0

e−2σtx(t) y(t) dt, (2.11)

where σ > 0 and C > 1, with further conditions on these constants to be specified
later. We will designate by ‖ · ‖σ,R the usual norm associated with this inner product,
and let Lσ,R

2 (0, 1) denote the space L2(0, 1) coupled with this R-dependent topology.
The closed ball in Lσ,R

2 (0, 1) centered at x0 with radius r will be defined by

B(x0, r) = {z ∈ Lσ,R
2 (0, 1), ‖z − x0‖σ,R ≤ r}. (2.12)

The following lemma provides a technical estimate useful in the theory which
follows.

Lemma 2.2. Let g ∈ L∞(0, 1). Then for σ, C defined above and R ∈ (0, R̄],

‖g‖σ,R ≤ C‖g‖∞. (2.13)

Proof. For any T ∈ (0, 1],
∫ T

0
e−2σt|g(t)|2 dt ≤ T‖g‖2∞ so that

‖g‖2σ,R ≤
(C2 − 1

R
R + 1

)
‖g‖2∞.

Lemma 2.3. The operator FR : Lσ,R
2 (0, 1) → Lσ,R

2 (0, 1) as defined in (2.6) is
Fréchet differentiable with

F ′R(x)(h)(t) = 2
∫ R

0

∫ t

ρ

x(t + ρ− s)h(s) ds dη(ρ), a.e. t ∈ (0, 1), (2.14)

for h ∈ Lσ,R
2 (0, 1). Further, F ′R is uniformly Lipschitz in Lσ,R

2 (0, 1) for all R > 0
sufficiently small, i.e., there exists some constant k > 0, such that

‖F ′R(x1)− F ′R(x2)‖ ≤ k‖x1 − x2‖σ,R

for x1, x2 ∈ Lσ,R
2 (0, 1), where ‖ · ‖ denotes the usual L(Lσ,R

2 (0, 1)) operator norm.

Proof. Standard arguments (e.g., see [8]) give (2.14). To show the Lipschitz
condition, we let x1, x2, h ∈ Lσ,R

2 (0, 1) and define

g(t; R) ≡ 2
∫ R

0

∫ t

ρ

(x1(t + ρ− s)− x2(t + ρ− s))h(s) ds dη(ρ), a.e. t ∈ (0, 1).
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Then

|g(t; R)|

≤ 2
∫ R

0

(∫ t

ρ

e2στe−2στ (x1(τ)− x2(τ))2 dτ

)1/2(∫ t

ρ

e2σse−2σsh2(s) ds

)1/2

dη(ρ)

≤ 2e2σ ‖x1 − x2‖σ,R ‖h‖σ,R

∫ R

0

dη(ρ),

for a.e. t ∈ (0, 1). It follows then from Lemma 2.2 that

‖F ′R(x1)− F ′R(x2)‖ ≤
(

2 Ce2σ

∫ R

0

dη(ρ)

)
‖x1 − x2‖σ,R.

Lemma 2.4. Let v, v1, v2 ∈ B(0, r) ⊆ Lσ,R
2 (0, 1) and x ∈ Lσ,R

2 (0, 1). Then the
remainder

RR(x, v) ≡ FR(x + v)− FR(x)− F ′R(x)v (2.15)

of the Fréchet derivative F ′R(x) satisfies

‖RR(x, v)‖σ,R ≤ e2σ

∫ R

0

dη(ρ) ‖v‖2σ,R (2.16)

and

‖RR(x, v1)−RR(x, v2)‖σ,R

≤ 2 e2σ

∫ R

0

dη(ρ) max{‖v1‖σ,R, ‖v2‖σ,R} ‖v1 − v2‖σ,R, (2.17)

for all R > 0 sufficiently small.

Proof. As in Lemma 1 of [16] and Lemma 2.2 of [8], we may write

RR(x, v) =
∫ 1

0

(F ′R(x + tv)− F ′R(x)) v dt,

RR(x, v1)−RR(x, v2) =
∫ 1

0

(F ′R(x + tv1 + (1− t)v2)− F ′R(x))(v1 − v2) dt,

and then apply the results of Lemma 2.3.

3. Convergence and Well-Posedness Results. Our main convergence results
are stated below. They are immediate consequences of Theorem 3.7 and Corollary
3.8, respectively, which are proved at the end of this section.

Theorem 3.1. Assume fδ satisfies the F-data assumption and let τdata = 1/2
if F = C[0, 1 + R̄] and τdata = 2/5 if F = L2(0, 1 + R̄). Let the measure η be given
satisfying (2.8)–(2.9).

Then there exists C̄ > 0 and κ1 > 0 independent of R such that if the true solution
x̄ ∈ W 2,∞[0, 1 + R̄] of the autoconvolution equation is positive and satisfies

x̄(0) > C̄ ‖x̄′‖∞, (3.1)
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then for R = R(δ) > 0 selected satisfying

κ1δ
τdata ≤ R(δ) ≤ c δp (3.2)

for any c > 0 and p ∈ (0, τdata] (c ≥ κ1 if p = τdata) as δ → 0, it follows that there
is a unique solution xδ

R(δ) of the regularization equation (2.4) associated with data fδ

which depends continuously on fδ ∈ F and which satisfies

‖xδ
R(δ) − x̄‖L2(0,1) = O(δp) (3.3)

as δ → 0, with optimal rate obtained for p = τdata. Thus the optimal convergence
rate for continuous data is O(δ1/2) and the optimal convergence rate for L2 data is
O(δ2/5).

Proof. Let κ1 = k−τdata
1 where k1 is defined in the proof of Theorem 3.7 below.

Then assumption (3.2) becomes δ ≤ k1R
1/(τdata) and with this assumption Theorem

3.7 gives

‖xδ
R − x̄‖σ,R ≤ ĈR,

for all R > 0 sufficiently small. Since

‖xδ
R − x̄‖2L2(0,1) ≤ e2σ

∫ 1

0

e−2σt|xR
δ − x̄|2 dx ≤ e2σ‖xδ

R − x̄‖2σ,R,

the result follows.
Condition (3.1) is an a priori condition or source condition on the true solution x̄,

a sufficient condition needed to obtain the convergence rate (3.3) in theory. We note
that Example 2 in Section 6 below illustrates that this a priori condition is evidently
not always needed in practice. The particular nature of this a priori condition reflects
the fact that the ill-posedness of the original problem increases as x̄(0) approaches
zero; thus if x̄ is such that x̄(0) is close to zero, the a priori condition says that con-
vergence is assured provided x̄ is relatively “flat”. To further explore this restriction,
note that for any y ∈ W 1,∞(0, 1 + R̄),

∫ R

0
y(t + ρ) dη(ρ)
∫ R

0
dη(ρ)

= y(t) (1 +O(R ‖y′‖∞)) , a.a. t ∈ (0, 1),

so that the degree to which, for a given value of R > 0, the measure is able to
recover information about y depends to a large extent on the size of ‖y′‖∞; i.e., “flat”
functions y are handled better under a local averaging process than are functions y
with a lot of local variation. Thus, for very ill-posed autoconvolution problems, the
source condition says that a method based on local averaging will perform better
if the true solution x̄ is relatively flat. It’s worth noting that a condition like this
arises in other areas associated with local regularization; for example, in [4] where a
discrepancy principle is developed for the determination of the appropriate value of
R ∈ (0, R̄] in the case of linear Volterra problems, one needs to have the true data f
satisfy a similar condition on ‖f ′‖∞, a condition which is less restrictive if the value
of R̄ is small and more restrictive if R̄ is relatively large.

As the next corollary shows, we may dispense with the source condition (3.1)
entirely if we have knowledge of the actual value of x̄(0) > 0 (or an approximation
x̂(0; R) to it, as is discussed in Remark 3.3 below), and make use of this information
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in the construction of our measure η. The proof of this result follows immediately
from Corollary 3.8.

Corollary 3.2. Let x̄ ∈ W 2,∞[0, 1 + R̄] be positive. Assume that the perturbed
data fδ satisfies the F-data assumption and let τdata = 1/2 if F = C[0, 1 + R̄] and
let τdata = 2/5 if F = L2(0, 1 + R̄). Assume that the measure η satisfies (2.8)–(2.9)
with ω̄, ω in (2.9) satisfying

ω̄

ω
≤ K̃ x̄(0), (3.4)

for all R > 0 sufficiently small, where K̃ is independent of R and x̄.
Then there exists κ1 > 0 independent of R such that if R = R(δ) > 0 is selected

satisfying

κ1δ
τdata ≤ R(δ) ≤ c δp

for any c > 0 and p ∈ (0, τdata] (c ≥ κ1 if p = τdata) as δ → 0, it follows that there
is a unique solution xδ

R(δ) of the regularization equation (2.4) associated with data fδ

which depends continuously on fδ ∈ F and which satisfies

‖xδ
R(δ) − x̄‖L2(0,1) = O(δp)

as δ → 0, with the optimal rate obtained for p = τdata. Thus the optimal convergence
rate for continuous data is O(δ1/2) and the optimal convergence rate for L2 data is
O(δ2/5).

Remark 3.3. Despite the presence of x̄(0) in condition (3.4) of Corollary 3.2,
it is not necessary to know x̄(0) exactly in order to have such a condition hold. It is
enough to have some basic information about the size of x̄ and to have an approxima-
tion x̂(0; R) of x̄(0) satisfying

|x̄(0)− x̂(0; R)| = O(R) (3.5)

as R → 0. (In the next section we will show that an O(R) approximation to x̄(0) is
easily found.) For example, in the case where it is known that x̄(0) > 1, then for R̂
sufficiently small we have 1 < x̂(0, R̂) < (x̂(0, R̂))2, and we may define

ω = x̂(0, R̂), ω̄ = (x̂(0; R̂))2.

Then
ω̄

ω
= x̂(0, R̂) ≤ 2x̄(0)

for R̂ sufficiently small, so that (3.4) holds with K̃ = 2. Once ω̄ and ω have been
specified, one can always find a suitable R-dependent family of measures η satisfying
(2.8)–(2.9) using these choices of constants; for example, let η be given by (2.8) where
ω(·;R) is the line on [0, R] joining (0, ω) to (R, ω̄).

To begin the arguments needed to prove the main convergence results given above,
we first rewrite equation (2.2) using similar notation to that used in equation (2.4).
That is, the solution x̄ of the original autoconvolution equation satisfies

αR(x̄)x̄ + FR(x̄) = fR + εR, (3.6)
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where

εR(t) ≡ 2
∫ R

0

∫ ρ

0

(x̄(t)− x̄(t + ρ− s)) x̄(s) ds dη(ρ), a.e. t ∈ (0, 1), (3.7)

and αR(x̄), FR(x̄) are defined as in (2.5)–(2.6), here using x̄ instead of x, and fR is
defined as in (2.7) using f instead of fδ.

For h ∈ Lσ,R
2 (0, 1) we define bounded linear operators in Lσ,R

2 (0, 1),

BR(x̄)(h)(t) ≡ 2
∫ R

0

∫ t

0

x̄(t + ρ− s)h(s) ds dη(ρ), (3.8)

DR(x̄)(h)(t) ≡ 2
∫ R

0

∫ ρ

0

x̄(t + ρ− s) h(s) ds dη(ρ), (3.9)

for a.e. t ∈ (0, 1) and note that

F ′R(x̄)(h)(t) = BR(x̄)(h)(t)−DR(x̄)(h)(t), a.e. t ∈ (0, 1). (3.10)

We may then use the expansion of FR(x) in equation (2.4) to write

αR(x)x + FR(x̄) + F ′R(x̄)(x− x̄) +RR(x̄, x− x̄) = fδ
R. (3.11)

Combining equations (3.6) and (3.10) with equation (3.11), we obtain

(αR(x̄)I + BR(x̄))(x− x̄) = fδ
R − fR − εR −RR(x̄, x− x̄)

+ DR(x̄)(x− x̄) + (αR(x̄)− αR(x))x, (3.12)

where I is the identity operator on Lσ,R
2 (0, 1). Let us further denote for v ∈ Lσ,R

2 (0, 1),

ER(x̄, v) = DR(x̄)(v)− αR(v) x̄, (3.13)

where we note that v → ER(x̄, v) is linear. Then equation (3.12) becomes

(αR(x̄)I + BR(x̄))(x− x̄) = fδ
R − fR − εR −RR(x̄, x− x̄)

+ ER(x̄, x− x̄) + (αR(x)− αR(x̄))(x̄− x). (3.14)

The following two lemmas will be used to establish the invertibility of the operator
(αR(x̄)I + BR(x̄)) ∈ L(Lσ,R

2 (0, 1)).

Lemma 3.4. If x̄ ∈ W 2,∞[0, 1 + R̄] and x̄(t) > 0 for t ∈ [0, 1 + R̄], then there
exists σ0 > 0 independent of R > 0, such that the operator BR(x̄) is accretive in
Lσ,R

2 (0, 1) for σ ≥ σ0; i.e.,

〈BR(x̄)v, v〉σ,R ≥ 0 for any v ∈ Lσ,R
2 (0, 1),

where BR is defined using a measure η satisfying (2.8)–(2.9).

Proof. Following the ideas of [16], only now with R-dependent quantities, we
make the definition for t ∈ [0, 1], aR(t) ≡ 2

∫ R

0
x̄(t + ρ) dη(ρ), so that we may write,

for h ∈ Lσ,R
2 (0, 1),

BR(x̄)(h)(t) =
∫ t

0

aR(t− s)h(s) ds, a.e. t ∈ (0, 1). (3.15)
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For all σ sufficiently large, we will first show that the operator Bσ
R(x̄) is accretive

in L2(0, 1), where Bσ
R(x̄) is defined as in (3.15) except that the kernel aR(t) for BR is

replaced by aR[σ](t) = e−σtaR(t). Defining

A0 = min
t∈[0,1+R̄]

x̄(t) > 0, A1 = ‖x̄′‖L∞[0,1+R̄], A2 = ‖x̄′′‖L∞[0,1+R̄],

then

min
t∈[0,1]

aR(t) ≥ 2 A0

∫ R

0

dη(ρ),

‖a′R‖L∞[0,1] ≤ 2 A1

∫ R

0

dη(ρ),

‖a′′R‖L∞[0,1] ≤ 2 A2

∫ R

0

dη(ρ),

and for a.e. t ∈ (0, 1),

aR[σ](t) ≥ e−σt

(
2 A0

∫ R

0

dη(ρ)

)
,

a′R[σ](t) ≤ e−σt 2 (−σA0 + A1)
∫ R

0

dη(ρ),

a′′R[σ](t) ≥ e−σt 2 (σ2A0 − 2σA1 −A2)
∫ R

0

dη(ρ).

For σ ≥ σ0, where

σ0 ≥ A1 +
√

A2
1 + A0A2

A0
, (independent ofR),

we then have from the positivity of η that

aR[σ](t) ≥ 0, aR[σ]′(t) ≤ 0, aR[σ]′′(t) ≥ 0,

for a.e. t ∈ (0, 1).
Therefore, the kernel aR[σ](·) is nonnegative, nonincreasing and convex. Using

Lemma 2 of [16] for σ ≥ σ0, we have Bσ
R(x̄) accretive on L2(0, 1), from which it follows

that BR(x̄) is accretive in L2(0, 1) with a weighted e−2σt-norm. A similar statement
may be made for BR(x̄) using a weighted L2(0, R) norm, from which it follows that
BR(x̄) is accretive in Lσ,R

2 (0, 1) for all σ ≥ σ0.

Lemma 3.5. Let x̄ ∈ C1[0, 1 + R̄] satisfy x̄(0) > 0 and assume that the measure
η satisfies (2.8)–(2.9). Then for R > 0 sufficiently small we have αR(x̄) > 0 and

1
αR(x̄)

≤ 1

x̄(0)
∫ R

0
ρ dη(ρ)

. (3.16)

Proof. We can write

αR(x̄) = 2 x̄(0)
∫ R

0

ρ dη(ρ) [1 + h(R)] ,
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where

h(R) =
1

x̄(0)
∫ R

0
ρ dη(ρ)

∫ R

0

∫ ρ

0

s x̄′(ξ(s)) ds dη(ρ).

for some ξ(s) ∈ [0, R]. But

|h(R)| ≤ 1

x̄(0)
∫ R

0
ρ dη(ρ)

‖x̄′‖∞
∫ R

0

ρ2

2
dη(ρ) ≤ ‖x̄′‖∞K(2)

2 x̄(0)
R,

where K(2) is defined in (2.10), so it follows that

1
αR(x̄)

=
1

2 x̄(0)
∫ R

0
ρ dη(ρ)

(1 +O(R)) as R → 0.

As a consequence of Lemmas 3.4 and 3.5, we have that if x̄ ∈ W 2,∞[0, 1 + R̄]
with x̄(0) > 0, then αR(x̄) > 0 and (αR(x̄)I + BR(x̄))−1 ∈ L(Lσ,R

2 (0, 1)) for all R > 0
sufficiently small; in addition, we have the following estimate (see [33]):

‖(αR(x̄)I + BR(x̄))−1‖ ≤ 1
αR(x̄)

, (3.17)

for ‖ ·‖ the L(Lσ,R
2 (0, 1)) operator norm, and for σ ≥ σ0, where σ0 > 0 is independent

of R.

We are now ready to rewrite our regularized equation (2.4) as

x = HR x, (3.18)

where from (3.14), HR : Lσ,R
2 (0, 1) 7→ Lσ,R

2 (0, 1) is given by

HR x = (αR(x̄)I + BR(x̄))−1[fδ
R − fR − εR −RR(x̄, x− x̄)

+ ER(x̄, x− x̄) + (αR(x)− αR(x̄))(x̄− x)] + x̄. (3.19)

In the next lemma we bound relevant quantities on the right hand side of equation
(3.19).

Lemma 3.6. Let x̄ ∈ C1[0, 1 + R̄] satisfy x̄(0) > 0, let fδ satisfy the F-data
assumption, assume the measure η satisfies (2.8)–(2.9), and let σ > 0. Let x1, x2 ∈
Lσ,R

2 (0, 1). Then

‖fδ
R − fR‖σ,R ≤

{
δ C ω̄ R, if F = C[0, 1 + R̄],
δ C ω̄ R1/2, if F = L2(0, 1 + R̄),

(3.20)

‖ER(x̄, x1 − x2)‖σ,R ≤ C 2eσ,R

√
3
‖x̄′‖∞‖x1 − x2‖σ,R

∫ R

0

ρ3/2 dη(ρ), (3.21)

‖εR‖σ,R ≤ 2 C
√

2
3
‖x̄′‖∞

(
x̄(0)

∫ R

0

ρ2 dη(ρ)+
‖x̄′‖∞√

3

∫ R

0

ρ3 dη(ρ)

)
, (3.22)
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and

|αR(x1)− αR(x2)| ≤ 2 eσR

√
R

C2 − 1
‖x1 − x2‖σ,R

∫ R

0

ρ1/2 dη(ρ). (3.23)

Proof. The bounds in (3.20)–(3.22) each follow from applications of Lemma 2.2
using obvious choices of the function g = g(·;R). Inequality (3.20) is straightforward
in the case of fδ ∈ C[0, 1 + R̄] since

|fδ
R(t)− fR(t)| =

∣∣∣∣∣
∫ R

0

(fδ(t + ρ)− f(t + ρ)) ω(ρ; R) dρ

∣∣∣∣∣
≤ δ ω̄ R.

For the case of fδ ∈ L2(0, 1 + R̄] we observe that fδ
R − fR ∈ L∞(0, 1) since

|fδ
R(t)− fR(t)| ≤

(∫ R

0

|fδ(t + ρ)− f(t + ρ)|2dρ

)1/2(∫ R

0

|ω(ρ;R)|2dρ

)1/2

≤ ‖fδ − f‖L2(0,1+R̄) ω̄ R1/2

for a.a. t ∈ (0, 1 + R̄). The result then follows from Lemma 2.2.
For (3.21) we use the fact that for a.e. t ∈ (0, 1),

|ER(x̄, x1 − x2)(t)|

≤ 2
∫ R

0

∫ ρ

0

|x̄(t + ρ− s)− x̄(t)| |x1(s)− x2(s)| ds dη(ρ)

≤ 2‖x̄′‖∞
∫ R

0

(∫ ρ

0

(ρ− s)2 ds

)1/2 (∫ ρ

0

e2σse−2σs|x1(s)− x2(s)|2 ds

)1/2

dη(ρ).

For (3.22) we observe that for some ξ ∈ (0, R),

|εR(t)| ≤ 2‖x̄′‖∞
∫ R

0

(∫ ρ

0

(ρ− s)2 ds

)1/2 (∫ ρ

0

(x̄(0) ds + x̄′(ξ) s)2 ds

)1/2

dη(ρ)

≤ 2‖x̄′‖∞
∫ R

0

[
ρ3

3
2

(
x̄(0)2 ρ + ‖x̄′‖2∞

ρ3

3

)]1/2

dη(ρ)

≤ 2‖x̄′‖∞
∫ R

0

√
2
3

ρ3/2

(
x̄(0)ρ1/2 + ‖x̄′‖∞ ρ3/2

√
3

)
dη(ρ)

for a.e. t ∈ (0, 1), from which the bound in (3.22) follows.
Finally, using the fact that

|αR(x1)− αR(x2)| ≤ 2
∫ R

0

∣∣∣∣
∫ ρ

0

(x1(s)− x2(s)) ds

∣∣∣∣ dη(ρ)

≤ 2 eσR

(∫ R

0

e−2σt|x1(t)− x2(t)|2 dt

)1/2 ∫ R

0

ρ1/2dη(ρ),

the estimate in (3.23) is obtained.
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We are now ready to state our main convergence results which are given below in
Theorem 3.7 and Corollary 3.8.

Theorem 3.7. Assume that fδ satisfies the F-data condition and let τdata = 1/2
in the case of F = C[0, 1+R̄] and let τdata = 2/5 in the case of F = L2(0, 1 + R̄). As-
sume the measure η(ρ) > 0 satisfies (2.8)–(2.9) and that the autoconvolution problem
(1.1) has a positive solution x̄ ∈ W 2,∞[0, 1 + R̄] satisfying

x̄(0) > 9 b2 e2σ ‖x̄′‖∞ (3.24)

for σ ≥ σ0 and b ≥ 2ω̄/ω, where ω̄, ω are given in (2.8). Then for any C ∈ (1, 9/8],
there exist constants k1 > 0 and Ĉ = Ĉ(C) > 0 independent of R such that if δ =
δ(R) > 0 satisfies

δ ≤ k1R
1/τdata , (3.25)

then for all R > 0 sufficiently small the regularized equation (3.18) has a unique
solution xδ

R ∈ Lσ,R
2 (0, 1) satisfying

‖xδ
R − x̄‖2σ,R ≤ Ĉ2R2,

where ‖ · ‖σ,R is defined from (2.11) using the value of C given above. Further, xδ
R ∈

Lσ,R
2 (0, 1) depends continuously on fδ ∈ F for all R > 0 sufficiently small.

Proof. We will apply the contraction mapping principle to the regularized equa-
tion (3.18) in the ball B(x̄, ĈR). From Lemmas 2.4, 3.5, 3.6, and inequality (3.17) we
have

‖HRx− x̄‖σ,R ≤ 1
α(x̄)

‖fδ
R − fR‖σ,R +

1
α(x̄)

‖RR(x̄, x− x̄)‖σ,R +
1

α(x̄)
‖εR‖σ,R

+
1

α(x̄)
‖ER(x̄, x− x̄)‖σ,R +

|αR(x)− αR(x̄)|
αR(x̄)

‖x− x̄‖σ,R

≤ δ C
x̄(0)

2ω̄

ω
Rp +

e2σ

x̄(0)
2ω̄

ω
R−1 ‖x− x̄‖2σ,R

+2 C
√

2
3
‖x̄′‖∞

(
2ω̄

3ω
R +

‖x̄′‖∞√
3 x̄(0)

K(3) R2

)

+
2 C ‖x̄′‖∞ eσR

√
3 x̄(0)

K( 3
2 ) R1/2 ‖x− x̄‖σ,R

+
2 eσR

x̄(0)
K( 1

2 ) R−1/2 ‖x− x̄‖2σ,R

√
R

C2 − 1
,

for σ ≥ σ0, and where p = −1 for F = C[0, 1+ R̄] and p = −3/2 for F = L2(0, 1+ R̄).
Using assumption (3.25) and the fact that ‖x− x̄‖σ,R ≤ ĈR, we have

‖HRx− x̄‖σ,R ≤ k1C
x̄(0)

2ω̄

ω
R +

e2σ

x̄(0)
2ω̄

ω
Ĉ2R + 2C

√
2
3
‖x̄′‖∞ 2ω̄

3ω
R

+
2
√

2 C‖x̄′‖2∞
3x̄(0)

K(3)R2 +
2 C ‖x̄′‖∞eσR

√
3 x̄(0)

K( 3
2 ) ĈR

3
2 +

2 eσR K( 1
2 )

x̄(0)
Ĉ2R2

√C2 − 1
.
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Therefore to have ‖HRx − x̄‖σ,R ≤ ĈR for some Ĉ > 0 and all R > 0 sufficiently
small, a sufficient condition is that

1
x̄(0)

b k1 C + ‖x̄′‖∞ b C +
e2σ

x̄(0)
b Ĉ2 < Ĉ. (3.26)

If we let

k1 = ‖x̄′‖∞ x̄(0), (3.27)

then equation (3.26) then becomes

L(Ĉ) ≡ e2σ b

x̄(0)
Ĉ2 − Ĉ + 2 b C ‖x̄′‖∞ < 0. (3.28)

It is not hard to see L(Ĉ) = 0 has two distinct positive solutions 0 < Ĉ1 < Ĉ2 by
assumption (3.24) when C ∈ (1, 9/8]. Then for Ĉ satisfying Ĉ1 < Ĉ < Ĉ2, we have
L(Ĉ) < 0, thus ‖HRx− x̄‖σ,R ≤ ĈR for all R > 0 sufficiently small.

To further demonstrate that HR is a contraction on B(x̄, ĈR), we let x1, x2 ∈
B(x̄, ĈR) and note that

‖HR x1 −HR x2‖σ,R

= ‖ (αR(x̄)I + BR(x̄))−1 {RR(x̄, x2 − x̄)−RR(x̄, x1 − x̄) + ER(x̄, x1 − x2)
− [(αR(x1)− αR(x̄))(x1 − x̄)− (αR(x2)− αR(x̄))(x2 − x̄)] } ‖σ,R

≤ TR(x1, x2), (3.29)

where

TR(x1, x2) ≡ 1
αR(x̄)

‖RR(x̄, x2 − x̄)−RR(x̄, x1 − x̄)‖σ,R +
1

αR(x̄)
‖ER(x̄, x1 − x2)‖σ,R

+
1

αR(x̄)
‖(αR(x1)− αR(x̄))(x1 − x̄)− (αR(x2)− αR(x̄))(x2 − x̄)‖σ,R.

Since

1
αR(x̄)

‖(αR(x1)− αR(x̄))(x1 − x̄)− (αR(x2)− αR(x̄))(x2 − x̄)‖σ,R

=
1

αR(x̄)
‖(αR(x1)− αR(x2))(x1 − x̄) + (αR(x2)− αR(x̄))(x1 − x2)‖σ,R

≤ |αR(x1)− αR(x2)|
α(x̄)

‖x1 − x̄‖σ,R +
|αR(x2)− αR(x̄)|

α(x̄)
‖x1 − x2‖σ,R

≤ 2eσR
∫ R

0
ρ

1
2 dη(ρ)

x̄(0)
∫ R

0
ρ dη(ρ)

√
R

C2 − 1
{‖x1 − x2‖σ,R‖x1 − x̄‖σ,R + ‖x2 − x̄‖σ,R ‖x1 − x2‖σ,R}

≤ 4eσRK( 1
2 )ĈR

x̄(0)
√C2 − 1

‖x1 − x2‖σ,R,

we have

TR(x1, x2)

≤
[
2e2σ

x̄(0)
2ω̄

ω
Ĉ

]
‖x1 − x2‖σ,R +

[
2 C ‖x̄′‖∞eσR

√
3x̄(0)

K( 3
2 )R

1
2 +

4eσRK( 1
2 )ĈR

x̄(0)
√C2 − 1

]
‖x1 − x2‖σ,R.
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Thus if we require that

Ĉ <
x̄(0)

2 e2σ b
(3.30)

it follows that

Ĉ <
x̄(0)
2e2σ

ω

2ω̄

and for R > 0 sufficiently small,

‖HR x1 −HR x2‖σ,R ≤ TR(x1, x2) ≤ q ‖x1 − x2‖σ,R

for any x1, x2 ∈ B(x̄, ĈR) with some q < 1. Further we note that
Ĉ1 + Ĉ2

2
=

x̄(0)
2 e2σ b

,

therefore our regularized equation (3.18) has a unique solution xδ
R in B(x̄, ĈR) for Ĉ

satisfying Ĉ1 < Ĉ <
x̄(0)

2 e2σ b
.

Finally, fix R > 0 sufficiently small and let fδ
1 , fδ

2 ∈ F satisfy

‖fδ
i − f‖F ≤ δ ≤ k1R

1/τdata , i = 1, 2,

for the value of k1 given in (3.27), and where F is either C[0, 1+R̄] or L2(0, 1+R̄). Let
Ĉ, C, σ, and q be as specified above and let fδ

R,i and HR,i be defined for i = 1, 2 as in
(2.7) and (3.19), respectively, using fδ

i instead of fδ as data. Then for i = 1, 2 there
exists a unique solution xδ

R,i ∈ B(x̄, ĈR) ⊂ Lσ,R
2 (0, 1) of the equation x = HR,ix.

Further,

‖xδ
R,1 − xδ

R,2‖σ,R = ‖HR,1x
δ
R,1 −HR,2x

δ
R,2‖σ,R

= ‖ (αR(x̄)I + BR(x̄))−1 { (fδ
R,1 − fδ

R,2)

+RR(x̄, xδ
R,2 − x̄)−RR(x̄, xδ

R,1 − x̄) + ER(x̄, xδ
R,1 − xδ

R,2)

−[(αR(xδ
R,1)− αR(x̄))(xδ

R,1 − x̄)− (αR(xδ
R,2)− αR(x̄))(xδ

R,2 − x̄)] } ‖σ,R

≤ 1
αR(x̄)

‖fδ
R,1 − fδ

R,2‖σ,R + TR(xδ
R,1, x

δ
R,2)

≤ C ‖fδ
1 − fδ

2‖F
x̄(0)

2ω̄

ω
Rp + q‖xδ

R,1 − xδ
R,2‖σ,R,

where p = −1 in the case of F = C[0, 1 + R̄] and p = −3/2 in the case of F =
L2(0, 1 + R̄), and where we have used arguments like those needed to verify (3.20) in
the first term above. Therefore

‖xδ
R,1 − xδ

R,2‖σ,R ≤ C b

(1− q)x̄(0)
Rp ‖fδ

1 − fδ
2‖F ,

and continuous dependence of solutions on data is obtained for the regularized equa-
tion (3.18).

Corollary 3.8. Assume that the autoconvolution problem (1.1) has a positive
solution x̄ ∈ W 2,∞[0, 1+R̄] and that the measure η satisfies (2.8)–(2.9) with constants
ω̄, ω in (2.9) satisfying (3.4) for all R > 0 sufficiently small, where K̃ is independent
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of R and x̄. Let fδ satisfy the F-data condition and let τdata = 1/2 in the case of
F = C[0, 1 + R̄] and let τdata = 2/5 in the case of F = L2(0, 1 + R̄).

Then there exist constants k1, Ĉ > 0 independent of R such that if δ = δ(R) > 0
satisfies

δ ≤ k1R
1/τdata , (3.31)

then for all R > 0 sufficiently small the regularized equation (3.18) has a unique
solution xδ

R ∈ Lσ,R
2 (0, 1) satisfying

‖xδ
R − x̄‖2σ,R ≤ Ĉ2R2,

where ‖ · ‖σ,R is defined from (2.11) using the value of C =
√

2. Further, xδ
R ∈

Lσ,R
2 (0, 1) depends continuously on fδ ∈ F for all R > 0 sufficiently small.

Proof. Let C =
√

2 and define b̃ = 2K̃ where K̃, given by (3.4), is independent of
R and x̄. We observe that without loss of generality we may assume that x̄ satisfies

x̄(0)‖x̄′‖∞ <

√
2 e−2σ

16 b̃2
(3.32)

because if this does not already hold, we may rescale equation (1.1) via division by
some κ2 > 1 to obtain a new equation with data f/κ2 and solution ȳ = x̄/κ, where ȳ
satisfies (3.32). Note that a similar rescaling of η will not change the value of K̃, i.e.,
of b̃.

The proof of the corollary follows the proof of Theorem 3.7 with only a few
changes. First we note that if we let b = b̃x̄(0), then b ≥ 2ω̄/ω and equation (3.26)
still holds from the proof of Theorem 3.7. Writing (3.26) in terms of b̃, we then have
the following sufficient condition ensuring that ‖HRx− x̄‖σ,R < ĈR for some Ĉ > 0:

k1b̃ C + ‖x̄′‖∞ x̄(0) b̃ C + e2σ b̃ Ĉ2 < Ĉ. (3.33)

Defining k1 as in (3.27), the inequality in (3.33) now becomes

L(Ĉ) = e2σ b̃ Ĉ2 − Ĉ + 2‖x̄′‖∞ x̄(0) b̃ C < 0.

Under condition (3.32) the quadratic L has two distinct positive roots 0 < Ĉ1 < Ĉ2

so that we may pick Ĉ ∈ (Ĉ1, Ĉ2) to guarantee that L(Ĉ) < 0.
The remainder of the proof of Theorem 3.7 carries over without change; we note

only that the new condition (3.30) on Ĉ in that proof creates no difficulty because

here our roots Ĉ1 and Ĉ2 satisfy
Ĉ1 + Ĉ2

2
=

1
2e2σ b̃

=
x̄(0)
2e2σb

as needed for the proof

of Theorem 3.7.

4. Discretization. In this section, we will consider a discretized version of the
regularized equation (2.4), which leads to a stable method on the interval [0, 1]; the
resulting method is nonlinear and non-sequential on the initial small interval [0, R],
but sequential and linear on the larger interval [R, 1].

We will consider a collocation-based discretization of (2.4) where, for simplicity,
we will assume that the measure η is given by the Lebesgue measure, i.e.,

∫ R

0

g(ρ) dη(ρ) =
∫ R

0

g(ρ) dρ, (4.1)
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and note that condition (2.9) is satisfied in this case. Indeed our numerical results
were so good using this simple measure that there seemed little need to construct
a weighted measure based on an approximate value of x̄(0) as was discussed as a
possibility in Remark 3.3.

Let N = 1, 2, 3, . . . and define

ti = i∆t, i = 0, 1, . . . , N, ∆t = 1/N.

We will also let R = r∆t, where r ∈ {1, 2, . . . , N} is fixed (r ¿ N , in general).
For i = 2, 3, . . . , N , let χi(t) be the indicator function on the interval (ti−1, ti]

and χ1(t) the indicator function on the interval [t0, t1], and define the approximation
space of piecewise constant functions on [0, 1] by SN = span{χi, i = 1, 2, . . . , N}. We
then seek x ∈ SN satisfying the collocation equations

2
∫ R

0

∫ ρ

0

x(s) ds dρ x(ti) +
∫ R

0

∫ ti

ρ

x(ti + ρ− s)x(s) ds dρ =
∫ R

0

fδ(ti + ρ) dρ (4.2)

for i = 1, 2, . . . , N . We will use the rectangular quadrature rule to approximate
integrals on [0, R], i.e.,

∫ R

0

g(ρ) dρ ≈ ∆t

r−1∑

j=0

g(tj),

and incorporate this approximation directly into (4.2). Looking at each term in (4.2)
we then make the following replacements:

∫ R

0

fδ(ti + ρ) dρ ≈ ∆t

r−1∑
q=0

fδ(ti+q),

and letting x(t) =
∑N

p=1 cpχp(t) for t ∈ [0, 1], we have

2
∫ R

0

∫ ρ

0

x(s) ds dρ x(ti) ≈ 2∆t

(∫ 0

0

x(s) ds +
∫ t1

0

x(s) ds + . . . +
∫ tr−1

0

x(s) ds

)
ci

= 2 (∆t)2
(

r−1∑

l=1

l∑
m=1

cm

)
ci,

where we notice that the coefficient of ci involves only c1, c2, . . . , cr−1. The second
term of the left-hand side of (4.2) is more complicated, and, depending on the value
of i in relation to r, we come to different forms for the term. In general, for any fixed
i = 1, 2, . . . , N , we have

∫ R

0

∫ ti

ρ

x(ti + ρ− s)x(s) ds dρ ≈ ∆t

r−1∑

j=0

∫ ti

tj

x(ti+j − s)x(s) ds. (4.3)

Further investigation of equation (4.3) leads us to the following cases.
• If i < r − 1, then

∫ R

0

∫ ti

ρ

x(ti + ρ− s)x(s) ds dρ

≈ (∆t)2
[

i∑
m=1

i∑

l=m

cl ci+m−l −
r−1∑

m=i+1

m∑

l=i+1

cl ci+1+m−l

]
,

which is nonlinear in ci and involves all values of c1, c2, . . . , cr−1.
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• If i = r − 1, then

∫ R

0

∫ ti

ρ

x(ti + ρ− s) x(s) ds dρ ≈ (∆t)2
i∑

m=1

i∑

l=m

cl ci+m−l,

which is also nonlinear in ci and involves all values of c1, c2, . . . , cr−1.
• If i ≥ r, then

∫ R

0

∫ ti

ρ

x(ti + ρ− s) x(s) ds dρ ≈ (∆t)2
r∑

m=1

i∑

l=m

cl ci+m−l,

With this result, we notice that specifically for i = r, (4) is quadratic in cr

once c1, c2, . . . , cr−1 are found. Even better, for i > r, (4) is linear in ci once
c1, c2, . . . , cr are found.

Therefore, to determine the values for ci, i = 1, 2, . . . , N , we solve the following N
equations.

• For i = 1, 2, . . . , r − 2, we have the first r − 2 equations.
(

2(∆t)2
r−1∑

l=1

l∑
m=1

cm

)
ci + (∆t)2

[
i∑

m=1

i∑

l=m

cl ci+m−l −
r−1∑

m=i+1

m∑

l=i+1

cl ci+1+m−l

]

= ∆t

r+1∑
q=0

fδ(ti+q).

Note that all values of c1, c2, . . . , cr−1 are involved in any of these r − 2
equations.

• For i = r − 1, we have the (r − 1)-th equation.
(

2 (∆t)2
r−1∑

l=1

l∑
m=1

cm

)
ci + (∆t)2

i∑
m=1

i∑

l=m

cl ci+m−l = ∆t

r+1∑
q=0

fδ(ti+q).

Note that all values of c1, c2, . . . , cr−1 are also involved in this (r − 1)-th
equation. Since we now have r − 1 equations with r − 1 unknowns, we are
ready to solve c1, c2, . . . , cr−1. We would expect the procedure to this point
to be computationally intensive since we are basically solving a system of
nonlinear equations for c1, c2, . . . , cr−1.

• Once c1, c2, . . . , cr−1 are found, we can solve for cr, . . . , cN sequentially by
(

2 (∆t)2
r−1∑

l=1

l∑
m=1

cm

)
ci + (∆t)2

r∑
m=1

i∑

l=m

cl ci+m−l = ∆t

r+1∑
q=0

fδ(ti+q) (4.4)

for i = r, r + 1, . . . , N . As noted before, we still have to solve a nonlinear
equation for cr since the r-th equation is quadratic in cr. However, once
c1, c2, . . . , cr have already been determined, the remaining N − r equations
can be sequentially solved quickly since the ith equation is linear in ci for
i > r.

Before turning to numerical examples for this discretization, we first examine
whether the method can be modified slightly on [0, R] so that the resulting numerical
algorithm avoids the difficulties seen above for obtaining ci when i = 1, . . . , r.
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5. Alternate Methods on [0, R]. As we have just seen, a standard discretiza-
tion of the regularization method associated with Theorem 3.1 leads to a sequential
numerical method for recovering x(t) for R < t ≤ 1. Unfortunately, for the x(t)
values on the interval 0 ≤ t ≤ R, we have to solve a non-sequential nonlinear system
of equations which can be numerically expensive. This disadvantage motivates us to
look for cheaper alternatives to recover x on the interval 0 ≤ t ≤ R. In this section,
we will propose some alternative methods and give theoretical basis for them.

In what follows we will show that for any function xR sufficiently close to x̄ on
[0, R], we may find a unique x̂δ

R ∈ L2(0, 1) for which

x̂δ
R(t) = xR(t), t ∈ [0, R],

and such that x̂δ
R satisfies equation (2.4) on the restricted interval (R, 1]. That is,

x̂δ
R ∈ L2(0, 1) satisfies

αR(x) x(t) + FR(x)(t) = fδ
R(t), t ∈ (R, 1]. (5.1)

Further, we will see that under suitable conditions on the true solution x̄ and the
choice of R = R(δ), the function x̂δ

R is a good approximation of x̄ for δ small. The
advantage to this new approach is that we are free to find easier ways of determining
an approximation xR to x̄ on [0, R] than that obtained by solving equation (2.4) on
the interval [0, R].

Theorem 5.1. Assume that fδ satisfies the F-data condition and let τdata = 1/2
in the case of F = C[0, 1 + R̄] and let τdata = 2/5 in the case of F = L2(0, 1 + R̄).
Assume that the measure η is given satisfying (2.8)–(2.9), and that the autoconvolution
problem (1.1) has a positive solution x̄ ∈ W 2,∞[0, 1 + R̄]. satisfying

x̄(0) > 13 b2 e2σ ‖x̄′‖∞ (5.2)

for σ ≥ σ0 and b ≥ 2ω̄/ω, where ω̄, ω are given in (2.9) Assume further that
{xR}R∈(0,R̄] is any family of L∞(0, R) functions satisfying

sup
t∈[0,R]

|xR(t)− x̄(t)| ≤ C̃R, (5.3)

for C̃ > 0 satisfying

C̃ ≤ b ‖x̄′‖∞. (5.4)

Then there exist constants k1 > 0 and Ĉ > 0, all independent of R, such that if
δ = δ(R) > 0 satisfies

δ ≤ k1R
1/τdata , (5.5)

then for all R > 0 sufficiently small there exists an unique x̂δ
R ∈ L2(0, 1) with x̂δ

R =
xR(t), t ∈ (0, R], with x̂δ

R satisfying equation (2.4) for t ∈ (R, 1] and for which

‖x̂δ
R − x̄‖2σ,R ≤ Ĉ2R2

where ‖ · ‖σ,R is defined from (2.11) using C ∈ (1, 13
12 ]. Finally, if xR ∈ L∞(0, R)

depends continuously on data fδ ∈ F , then so does x̂δ
R ∈ Lσ,R

2 (0, 1) for all R > 0
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sufficiently small.

Proof. To begin, let Ĉ <
x̄(0)

2 e2σ b
and define a new ball around x̄ by

B̂R(x̄) ≡ {x ∈ Lσ,R
2 (0, 1) : x| [0,R] = xR| [0,R], ‖x− x̄‖σ,R ≤ ĈR}, (5.6)

noting that B̂R(x̄) ⊆ B(x̄, ĈR), where B(x̄, ĈR) was fundamental to the proof of
Theorem 3.7.

Defining the new operator H̄R via

H̄R(x)(t) =

{
x(t) if t ∈ [0, R]
HRx(t) if t ∈ (R, 1],

where HR was defined in (3.19), we will use the contraction mapping theorem to show
that the operator H̄R(x) has a fixed point in the ball B̂R(x̄). Let x ∈ B̂R(x̄). Then
since HRx = x = xR on [0, R] and

∫ R

0

e−2σt (xR(t)− x̄(t))2 dt ≤ C̃2R3 (5.7)

we have

‖H̄Rx− x̄‖2σ,R ≤ C̃2R3

(C2 − 1
R

+ 1
)

+
∫ 1

R

e−2σt (HRx(t)− x̄(t))2 dt

≤ C̃2R2
(C2 − (1−R)

)
+ ‖HR(x)− x̄‖2σ,R

≤ (C̃CR)2 + ‖HR(x)− x̄‖2σ,R

for R > 0 sufficiently small. Using the proof of Theorem 3.7 (in particular, inequality
(3.26)), we find that a sufficient condition for ‖H̄Rx− x̄‖σ,R ≤ ĈR is that

C̃C +
1

x̄(0)
k1b C + ‖x̄′‖∞ b C +

e2σ

x̄(0)
b Ĉ2 < Ĉ, (5.8)

so that letting k1 be defined by (3.27) and using condition (5.4) on C̃, we find that
inequality (5.8) holds if

L(Ĉ) ≡ e2σ b

x̄(0)
Ĉ2 − Ĉ + 3 b ‖x̄′‖∞ C < 0.

In fact, L has two distinct positive real roots 0 < Ĉ1 < Ĉ2 under assumption (5.2) and
C ∈ (1, 13

12 ]. Thus any value of Ĉ in the interval (Ĉ1, (Ĉ1 + Ĉ2)/2) will give L(Ĉ) < 0

and also ensure that Ĉ <
x̄(0)

2 e2σ b
as prescribed at the beginning of the proof. Thus

H̄R takes B̂R(x̄) into itself.
Let x1, x2 ∈ B̂R(x̄). Then

‖H̄R(x1)− H̄R(x2)‖2σ,R = 0 +
∫ 1

R

e−2σt (HR(x1)(t)−HR(x2)(t))2 dt

≤ ‖HR(x1)−HR(x2)‖2σ,R,
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and thus from the proof of Theorem 3.7 we have that the conditions already placed
on Ĉ are sufficient for H̄R to be a contraction in the ball B̂R(x̄).

Finally, we refine our definition of Ĉ further to ensure that the ball B̂R(x̄) is
nonempty. We note from (5.4) and (5.2) that

C̃ ≤ x̄(0)
13 b e2σ

=
2
13

Ĉ1 + Ĉ2

2

so that if we further restrict Ĉ to lie in the (nonempty) intersection of the intervals(
2
13 (Ĉ1 + Ĉ2)/2), (Ĉ1 + Ĉ2)/2

)
and

(
Ĉ1, (Ĉ1 + Ĉ2)/2)

)
we have that

C̃ ≤ Ĉ.

Thus if we define x̂R ∈ Lσ,R
2 (0, 1) via

x̂R =

{
xR(t) if t ∈ [0, R]
x̄(t) if t ∈ (R, 1],

we have from (5.7) that

‖x̂R − x̄‖2σ,R ≤ Ĉ2R2
(C2 − 1 + R)

)
+ 0 ≤ Ĉ2R2 (5.9)

for R > 0 sufficiently small. Thus x̂R ∈ B̂R(x̄).
Continuous dependence of x̂δ

R on data fδ follows arguments similar to those in
Theorem 3.7.

As in Corollary 3.8 we may dispense with condition (5.2) provided that we have
access to an appropriate approximation x̂(0; R) of x̄(0) and that we make use of this
information in the construction of our measure η. See Remark 3.3 for more information
on the construction of such a measure.

Corollary 5.2. Assume that fδ satisfies the F-data condition and let τdata =
1/2 in the case of F = C[0, 1+R̄] and let τdata = 2/5 in the case of F = L2(0, 1 + R̄).
Let the solution x̄ ∈ W 2,∞[0, 1 + R̄] of (1.1) be positive. Assume that the measure η
satisfies (2.8)–(2.9) with ω̄, ω in (2.9) satisfying (3.4) for all R > 0 sufficiently small,
where K̃ is independent of R and x̄. Assume further that {xR}R∈(0,R̄] is any family
of L∞(0, 1) functions satisfying

sup
t∈[0,R]

|xR(t)− x̄(t)| ≤ C̃R, (5.10)

for some C̃ > 0.
Then there exist constants k1 > 0 and Ĉ > 0, all independent of R, such that if

δ = δ(R) > 0 satisfies

δ ≤ k1R
1/τdata , (5.11)

then there exists an unique x̂δ
R ∈ L2(0, 1) with x̂δ

R = xR(t), t ∈ (0, R], with x̂δ
R

satisfying equation (2.4) for t ∈ (R, 1] and for which

‖x̂δ
R − x̄‖2σ,R ≤ Ĉ2R2
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where ‖ · ‖σ,R is defined from (2.11) using C =
√

2 and σ ≥ σ0. Finally, if it
is known that xR ∈ L∞(0, R) depends continuously on data fδ ∈ F , then so does
x̂δ

R ∈ Lσ,R
2 (0, 1), for all R > 0 sufficiently small.

Proof. Define b satisfying both b ≥ 2ω̄/ω and C̃ ≤ b‖x̄′‖∞ and let b̃ = b/x̄(0). As
in Corollary 3.8 we may assume without loss of generality that the original equation
(1.1) has been rescaled so that

‖x̄′‖∞x̄(0) <

√
2 e−2σ

24 b̃2
. (5.12)

Then following the proof of Theorem 5.1, a sufficient condition for ‖H̄Rx−x̄‖σ,R < ĈR
is that

L(Ĉ) ≡ e2σ b̃ Ĉ2 − Ĉ + 3 ‖x̄′‖∞x̄(0) b̃ C < 0,

so for C =
√

2 and under the rescaling in (5.12) we have that L has two distinct
positive roots 0 < Ĉ1 < Ĉ2. The remainder of the proof of Theorem 5.1 then carries
over exactly as before, with the exception that we now have from (5.12)

C̃ ≤ b̃‖x̄′‖∞x̄(0) <

√
2

12
1

2e2σ b̃
=
√

2
12

(
Ĉ1 + Ĉ2

2

)

so that the arguments in the proof of Theorem 5.1 remain valid if we select Ĉ

in the (nonempty) intersection of the intervals
(√

2
12 (Ĉ1 + Ĉ2)/2), (Ĉ1 + Ĉ2)/2

)
and(

Ĉ1, (Ĉ1 + Ĉ2)/2)
)
.

Remark 5.3. The results of Theorem 5.1 and Corollary 5.2 indicate that, as
before, under the a priori conditions on R = R(δ) that

(δ/k1)
τdata ≤ R(δ) ≤ c δp

for any c > 0 and p ∈ (0, τdata] (c ≥ k−τdata
1 if p = τdata) as δ → 0, we obtain

‖xδ
R(δ) − x̄‖L2(0,1) = O (δp) as δ → 0,

with optimal rate obtained for p = τdata. Thus the optimal convergence rate for
continuous data is O(δ1/2) and the optimal convergence rate for L2 data is O(δ2/5).

As mentioned earlier, Theorem 5.1 and Corollary 5.2 provide us the freedom of
finding easier ways of determining an approximation xR to x̄ on [0, R] than that
obtained by solving the local regularization equation (2.4) on the interval [0, R]. One
way to find such an xR (and to find an O(R) approximation x̂(0; R) of x̄(0), which is of
particular use in Corollaries 3.8 and 5.2 via Remark 3.3) is by a standard discretization
of the unregularized problem

G(x)(t) =
∫ t

0

x(t− s)x(s) ds = fδ(t), t ∈ [0, R], (5.13)

(with noisy data fδ) on the interval [0, R]. As is well-known, coarse discretization
is a form of regularization; however the ill-posedness of (5.13) can lead to significant
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errors in xR(t) for large t, even more so when the discretization stepsize is small. It
is for this reason that the standard discretization will only be used on on a small
interval of length R.

We will describe here one simple discretization of (5.13) which is suitable for use
with Theorem 5.1 and Corollary 5.2. Let K = K(R) ≥ 1 be an integer and partition
the interval [0, R] into K equal-length subintervals; i.e., let

ti = i∆t, i = 0, 1, . . . , K, ∆t = R/K.

Defining χi(t) as in the last section (only now for i = 1, 2, . . . , K), we define SK =
span{χi, i = 1, 2, . . . ,K} and seek xR ∈ SK , i.e.,

xR(t) =
K∑

l=1

cl χl(t), (5.14)

satisfying the collocation equations

G(x)(ti) =
∫ ti

0

x(ti − s)x(s)ds = fδ(ti), i = 1, 2, . . . , K, (5.15)

Therefore,

i∑
γ=1

∫ tγ

tγ−1

[
K∑

l=1

cl χl(ti − s)

][
K∑

p=1

cp χp(s)

]
ds = fδ(ti), i = 1, 2, . . . , K,

or

i∑
γ=1

ci−γ+1 cγ =
fδ(ti)
∆t

, i = 1, 2, . . . , K. (5.16)

The collocation equations (5.16) allow us to explicitly solve for ci, i = 1, 2, . . . , K,
provided that fδ(t1) > 0. That is,

c1 =

√
fδ(t1)

∆t
, (5.17)

and if c1, . . . , ci−1 have been found already, ci is determined by

ci =

fδ(ti)
∆t

− (ci−1c2 + . . . + c2ci−1)

2c1
, (5.18)

therefore, c2, c3, . . . , cK can be found uniquely, explicitly, and sequentially from (5.18).

The following result is proved using standard techniques (see the details in [8]). If
the constant C̃ in (5.21) is not too large (a condition needed for Theorem 5.1 only, not
for Corollary 5.2), it follows that the collocation-based approximation xR is suitable
for use in methods based on Theorem 5.1 or Corollary 5.2. That is, we may use xR as
an approximation for x̄ on [0, R] and then use the local regularization equation (2.4)
to find an approximation for x̄ on [R, 1]. We note that the condition K = K(R) ≤ M̃
for all R > 0 sufficiently small is not a serious constraint as we generally expect K ≥ 1
to be a fixed integer so that the stepsize ∆t = R/K decreases as R → 0. However, not
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surprisingly since we are now dealing with a discretization of the original problem, we
do need pointwise values of fδ on [0, R] and we require that they be within O(R2) of
the corresponding values of f on that interval.

Corollary 5.4. Assume the autoconvolution problem (1.1) has a positive solu-

tion x̄ ∈ C1[0, 1]. Let xR =
K∑

l=1

cl χl(t) be the unique solution of the discrete autocon-

volution equation (5.15) on the interval [0,R], where the constants ci, i = 1, 2, . . . , K,
are specified in (5.17) and (5.18) and K = K(R) ≥ 1 is an integer. Then if there ex-
ists a constant M̃ > 0, such that K = K(R) ≤ M̃ uniformly in R, and fδ is piecewise
continuous on [0, R] with

|fδ(t)− f(t)| ≤ δ ≤ k1R
2, t ∈ [0, R], (5.19)

convergence of xR(t) to the true solution x̄(t) for t ∈ [0, R] occurs at the collocation
points as R → 0, i.e.,

|xR(ti)− x̄(ti)| ∼ O(R), for i = 1, 2, . . . ,K, (5.20)

for R sufficiently small. Further, we have a constant C̃ depending on x̄ but indepen-
dent of R such that

|xR(t)− x̄(t)| ≤ C̃R (5.21)

for R sufficiently small and all t ∈ [0, R].

Remark 5.5. It is worth noting that the results of Theorem 5.1 are improved if
we require that xR be an O(Rp) approximation to x̄ on [0, R] for some p > 1 [8]. This
result is of use, for example, if we know both x̄(0) and x̄′(0) so that we form an O(R2)
approximation of x̄ on [0, R] via xR(t) = x̄(0)+ x̄′(0)t. However, as can be seen in [8],
such approximations on [0, R] actually perform worse (locally) in numerical examples
than do approximations based on the simple O(R) collocation-based discretization of
(5.13) given above. The reason for this is likely due to the fact that the approximation
based on a Taylor expansion does not make good use of all of the available data fδ on
[0, R], as does the collocation-based discretization.

5.1. Operation Count for the Alternative Method. If we let r = K in
(5.17)–(5.18), then the cost of computing c1, c2, . . . , cr from (5.17)–(5.18) is O(r2/2)
flops. The remaining steps in the alternative approach require the sequential solution
of (4.4) for cr+1, . . . cN . We can rewrite equation (4.4) for ci as

(D1 + D2)ci + D3(i) = D4(i), i = r + 1, . . . , N,

where Dj , j = 1, . . . , 4 are constants which independent of i in the case of D1 and
D2,

D1 =

(
2

r−1∑

l=1

l∑
m=1

cm

)
, D2 = 2

r∑
m=1

cm

D3(i) =
r∑

m=1

i−1∑

l=m+1

cl ci+m−l, D4(i) =
1

∆t

r+1∑
q=0

fδ(ti+q).
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The computation of D1 and D2 require one-times costs of order O(r) flops each,
while the cost of D3(i) and D4(i) are O(2ir − r2 − 3r) and O(r) flops respectively,
computations which are done for i = r + 1 to i = N . Thus the total cost of the
alternative method described in this section (assuming r ¿ N) is O(rN2 − r2N).

Operation counts for the Lavrent’ev method are likely to be similar to those found
above (i.e., O(cN2) for some constant c > 0), however fairly accurate knowledge of
the value of x̄(0) is of importance if one is to make use of this method; in addition, one
requires an initial guess x? for implementation of Lavrent’ev. For comparison with
methods which do not preserve the causal nature of the nonlinear autoconvolution
problem, we have been unable to find operation counts for Tikhonov regularization
applied to this nonlinear problem (and of course there are many different approaches
– methods using Newton or Levenberg-Marquardt, descent methods such as steepest
descent, etc. – that one might take to solve the nonlinear Tikhonov problem). Without
a suitable comparison, we’ll simply note that cost for a direct implementation of
Tikhonov regularization on a general linear problem is O(N3) flops [10]. Some actual
computational costs (in seconds) are provided in Examples 3 and 4 below.

6. Numerical Results. The examples in this section provide evidence of the
effectiveness of the local regularization methods applied to the autoconvolution equa-
tion. The local regularization methods have advantages over existing methods in that
they do not require an initial guess x? and they maintain the causal nature of the
problem at least for the majority of the domain, leading to very rapid solution meth-
ods. One drawback, of course, is that the theory requires that true solutions x̄ should
not cross the t-axis. However, as Examples 3 and 4 below illustrate, the method
appears to perform perfectly well in this situation.

Henceforth we will refer to Method 1 as the collocation-based discretization
derived in Section 4 for the local regularization equation (2.4), i.e., a discretization of
the continuous local regularization method which is rigorously justified by Theorem
3.7. Recall that Method 1 which requires solving non-sequential nonlinear equations
for c1, . . . , cr, and sequential linear equations for cr+1, . . . , cN .

In contrast, Method 2 will refer to the method of determining c1, . . . , cr via
(5.17)–(5.18) (where we set K = r) and cr+1, . . . , cN via (4.4). In Method 2, all
coefficients are found using a procedure that’s fully sequential and linear in the un-
known coefficient at each step. This algorithm is a discretization of the continuous
local regularization method which is rigorously justified by Theorem 5.1. It is inter-
esting to note in our numerical examples below that that the fully sequential linear
Method 2, which is significantly easier to implement and considerably faster in terms
of computational times, actually performs as well as the (slower) partly-nonlinear
Method 1.

In order for easy comparison with numerical tests in the literature for existing
methods (a Tikhonov regularization approach using total variation constraints in [13]
and a Lavrent’ev approach in [16]), we demonstrate the recovery of both a continuous
x̄ and a discontinuous x̄ using Methods 1 and 2 above. We select our true solution
x̄ ahead of time, then generate the data function f by integration, f(t) =

∫ t

0
x̄(t −

s)x̄(s) ds, for t ∈ [0, 1]. The perturbed data fδ was then produced by adding uniformly
distributed noise from the interval [−δf(t), δf(t)] to the discrete values of f(t) for
t = ti, where i = 1, 2, . . . , N . Each example within the same noise-level δ was found
using the same sampled data fδ.

In the figures below we display the recovered solution against the true solution x̄,
first without any special regularization (except for that due to discretization alone),
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and then with regularization using Methods 1 and 2. In all figures presented below,
the true solution x̄ is plotted as a dashed line, while the solid line expresses the
approximate solution computed according to the specified method. The regularized
solutions end before reaching t = 1 in Examples 1 and 2 because we have chosen
not to extend our data past the interval [0, 1] in those examples; to have regularized
solutions on all of [0, 1] one needs to make use of data fδ on [0, 1 + R].

6.1. Example 1: Continuous true solution x̄. The true solution in this
example is a continuous function x̄(t) = 1− 3(t− 1/2)2, 0 ≤ t ≤ 1, with the true data
then given by f(t) = 3

10 t5− 3
2 t4 + t3 + 3

4 t2 + 1
16 t, for 0 ≤ t ≤ 1. For Figures 6.1–6.3, we

use relative noise level δ = 10−3, N = 100 and r = 4 for the regularized problems. In
Figure 6.1, we show the unregularized numerical solution while in Figures 6.2–6.3 we
show the regularized solution using Methods 1 and 2 as introduced in the last section.

For Figures 6.4–6.6, we repeat the above example using a larger relative noise
level δ = 10−2, N = 100 and using r = 4 for Method 1 and r = 6 for Method 2. (We
selected the value of r, small, which gave the best results in each case visually.)

6.2. Example 2: Discontinuous true solution x̄. In this example, we will
use a step function as our true solution; x̄ and true data f are given by

x̄(t) =





0.5 if t ∈ [0, 0.5],
0.25 if t ∈ (0.5, 0.8],
0.75 if t ∈ (0.8, 1],

f(t) =





0.25t if t ∈ [0, 0.5],
0.125 if t ∈ (0.5, 0.8],
0.5t− 0.275 if t ∈ (0.8, 1].

For all the figures shown in this example, we use relative noise level δ = 10−3, N = 200
and r = 4 for the regularized problem. In Figure 6.7, we show the solution without
any special regularization, while Figures 6.8-6.9 show the regularized solution using
Methods 1 and 2. The results for both methods are much better than was presented
in [13, 16]. It is worth noting that the true solution x̄ here does not satisfy the
assumptions of Theorem 3.7 (which are only sufficient conditions for convergence
anyway).

For comparison with local regularization, we show in Figure 6.10 the results of
Tikhonov regularization and Lavrent’ev regularization applied to this same problem.
In each case, regularization parameters were selected as those providing the best visual
fit between approximate and true solutions. For our implementation of Lavrent’ev,
the true value of x̄(0) was incorporated into the approximating equation, and the
regularization parameter α = .01555 was used. For Tikhonov regularization, we
used the parameter α = 10−22 with starting guess of x(t) =

√
fδ(t1)/∆t; for more

information about our implementation of the nonlinear Tikhonov scheme, refer to
Example 3 below.

6.3. Example 3: Nonpositive true solution x̄. Although the theory devel-
oped here requires that x̄ be strictly positive (resp. strictly negative), in practice the
numerical methods developed in this paper can still be applied to situations where
the unknown x̄ crosses the t-axis. We illustrate with an example where the true so-
lution is given by x̄(t) = sin 8t + (1/4), 0 ≤ t ≤ 1, and the associated true data is
f(t) = 5

80 (1 + t − cos 8t + sin 8t) − 1
2 t cos 8t, 0 ≤ t ≤ 1. We use a relative noise level

δ = .01 and N = 100, and in Figures 6.11–6.12 show the results of no regulariza-
tion as well as those for Tikhonov regularization, Lavrent’ev regularization, and local
regularization, all applied to the same data fδ.

In the case of local regularization we use Method 2 and r = 7, and in so doing
make use of data on the extended interval [0, 1.07]; for a fair comparison, we also
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Fig. 6.1. Example 1. Solution without regularization, δ = 10−3, N = 100
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Fig. 6.2. Example 1. Solution obtained by Method 1, δ = 10−3, N = 100, r = 4
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Fig. 6.3. Example 1. Solution obtained by Method 2, δ = 10−3, N = 100, r = 4
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Fig. 6.4. Example 1. Solution without regularization, δ = 10−2, N = 100
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Fig. 6.5. Example 1. Solution obtained by Method 1, δ = 10−2, N = 100, r = 4
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Fig. 6.6. Example 1. Solution obtained by Method 2, δ = 10−2, N = 100, r = 6
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Fig. 6.7. Example 2. Solution without regularization, δ = 10−3, N = 200
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Fig. 6.8. Example 2. Solution obtained by Method 1, δ = 10−3, N = 200, r = 4

0 0.2 0.4 0.6 0.8 1

0.4

0.6

0.8

1

Fig. 6.9. Example 2. Solution obtained by Method 2, δ = 10−3, N = 200, r = 4
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Fig. 6.10. Example 2, continued. Left: Tikhonov solution. Right: Lavrent’ev solution.

allow Tikhonov regularization to make use of the same extended interval for its com-
putations; however, only the results on [0, 1] are displayed for both methods. We note
that the Lavrent’ev method is solved sequentially without the use of future data, so
additional data past the interval [0, 1] does not change its result. For the Tikhonov
and Lavrent’ev methods we use the regularization parameters α = 10−6 and α = 0.4,
respectively, incorporating the true value of x̄(0) into the Lavrent’ev approximating
equation. Minimization of the nonlinear Tikhonov regularization functional (with reg-
ularization term α‖x‖2) is accomplished in these examples using the Matlab function
fminunc with initial guess provided by the constant function x(t) = c1, where c1 is
the first value of the approximation found in Method 2 for local regularization, i.e.,
c1 =

√
fδ(t1)/∆t. The regularization parameters used for all methods are the best

ones found by visual comparison with the true solution.
We note that Lavrent’ev provides a shifted approximation; decreasing α does

reduce the shift, but at the same time causes large distortions in the shape of the
solution. The fact that Tikhonov method gives a smoother solution than local regu-
larization can be expected due to the global vs local smoothing associated with the
two methods. The computing time for Lavrent’ev and local regularization is about
the same as that for the unregularized solution (0.01 sec on a 2.21 GHz dual core ma-
chine), while Tikhonov regularization requires 166 times that much computing time
(1.66 sec).

6.4. Example 4: Nonpositive true solution x̄. In this example we take the
true x̄ from Example 1 above and shift it down so that it crosses the t-axis in two
places. That is, we use x̄(t) = (1/2) − 3(t − 1/2)2 for 0 ≤ t ≤ 1, with true data
f(t) = 3

10 t5 − 3
2 t4 + 2t3 − 3

4 t2 + 1
16 t, for 0 ≤ t ≤ 1. In this example we use a relative

noise level δ = .015 and N = 200, and in Figures 6.15–6.16 we again show the results
of no regularization, Tikhonov regularization, Lavrent’ev regularization, and local
regularization, for the same data fδ.

The true data f is graphed in Figure 6.14. The difference between the data f in
Example 3 (Figure 6.13) and the data f in Figure 6.14 for this example is important
in understanding the difference between the way Tikhonov regularization and local
regularization perform in this particular case. Note that here the true data f is
nearly zero for the first third to half of the interval. This means that with even
small amounts of added error, the signal-to-noise ratio is likely to be so small as to
make the solution unrecoverable if only the data from the first third of the interval
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Fig. 6.11. Example 3 with nonpositive true solution, δ = 10−2 and N = 100.
Left: unregularized solution (computing time: 0.01 sec). Right: Tikhonov solution (1.66 sec).
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Fig. 6.12. Example 3, continued. Left: Lavrent’ev method (computing time 0.01 sec).
Right: Local regularization (Method 2) with r = 7 (0.01 sec).

is used. Now Tikhonov regularization uses all the data to compute its regularized
approximation, while local regularization constructs a sequential method making use
of future data only on the interval [t, t+r∆t] to compute the value of the approximate
solution at t. Thus r will need to be large enough to allow for meaningful information
about the data to be obtained in the case of local regularization. In this case, a
value of r = 65 (nearly 1/3 of the interval) is used in order to get good results with
local regularization. In contrast, the data in Example 3 does not exhibit this same
difficulty with small signal-to-noise data ratios over large regions, so a small value of
r (r = 7) is acceptable for that example. Fortunately, the need for large r can be
determined by a simple inspection of the given (perturbed) data fδ prior to use of
the local regularization method.

Note further that the Lavrent’ev approximation, also found sequentially, uses no
future data information in order to compute the value of the approximation at the
current time t. Thus Lavrent’ev can be expected to fail badly in situations where the
signal-to-noise ratio is small over large regions of the domain.

As in Example 3, we allow Tikhonov regularization to make use of the same
extended data set as that for local regularization, i.e., of data on the interval [0, 1.325].
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Fig. 6.13. Example 3. True data f .
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Fig. 6.14. Example 4. True data f .

Although the starting value for Tikhonov is the constant function x(t) = c1, where
now c1 = −

√
fδ(t1)/∆t (since x̄(0) < 0 in this case), Tikhonov regularization actually

finds the negative solution −x̄ for this problem. (Recall that there are two solutions,
x̄ and −x̄ for every autoconvolution problem; by specifying a positive or negative
starting value for each method, we are giving some indication of which of the two
solutions to find.)

As expected from the data, Lavrent’ev performs quite poorly in this example. It
is possible that the approximation is that for the negative solution of the autoconvo-
lution equation, although the results aren’t very convincing. On the other hand, local
regularization performs quite well provided r is large enough to get a meaningful local
sample of the data. We note that for r ≤ 58, the local regularization approximation
blows up at about t = 1/3, while acceptable results are found for a large range of val-
ues of r ≥ 59. Thus, a simple inspection of the noisy data is very important in order
to obtain information about the smallest of r which is likely to gain any meaningful
information from data on an interval of length [t, t + r∆t].

It is worth observing that, with the large value of r used in this example (r =
65), the computing time (.03 sec) for local regularization becomes about 10 times
that for the unregularized problem and for Lavrent’ev regularization (.003 sec each);
on the other hand, the computing time for Tikhonov regularization (at 5.43 sec) is
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Fig. 6.15. Example 4 with nonpositive true solution, δ = 1.5 × 10−2 and N = 200.
Left: unregularized solution (computing time: 0.003 sec). Right: Tikhonov solution (5.43 sec) finds
an approximation of the negative solution −x̄ (both positive and negative true solutions are graphed
with dotted lines above).
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Fig. 6.16. Example 4, continued. Left: Lavrent’ev method (computing time 0.003 sec).
Right: Local regularization (Method 2) with r = 65 (0.03 sec).

about 180 times that of local regularization. Such differences in computational times
become important if discrepancy principles are to be used in the determination of the
correct regularization parameters, since such methods require repeated solution of the
approximation for different choices of the parameters.

7. Selection of the Regularization Parameter. One of the most commonly
asked questions with regard to the local regularization methods is how one picks the
regularization parameter r (or R in the continuous version of the regularized equa-
tion). This question has been answered for the linear convolution problem with the
development of a modified discrepancy principle [3, 4], but remains an open problem
(other than the need for minimal values of r in some cases, as discussed in Example
4 above) for nonlinear problems, including the nonlinear autoconvolution equation
under study here.

The discrepancy principle is one of the most successful criteria in determining the
regularization parameter α for the method of Tikhonov regularization. To summarize
the discrepancy principle on the Hilbert space F , we assume that the perturbed data
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fδ has an absolute noise level δ̂, i.e., ‖fδ−f‖F ≤ δ̂. The Tikhonov theory states that
for every choice of α > 0, the unique solution uδ

α of the Tikhonov problem (see, e.g.,
[10]) associated with the perturbed data fδ is such that the discrepancy

δd ≡ ‖Auδ
α − fδ‖F

is monotone in α; here A denotes a linear integral operator. The discrepancy principle
is then used to pick α so

δd = τ δ̂

with τ ≥ 1 some constant. In practice, τ is often picked as
√

2. Development of the
discrepancy principle for Tikhonov regularization of nonlinear operator equations can
be found in [30, 32].

In the following, we use the discrepancy principle to select an “optimal” r for a
given relative noise level δ and fixed discretization parameter N . Method 2 is used for
all numerical experiments that follow. For local regularization the discrepancy δd is
not exactly a monotone increasing function of the regularization parameter r. There-
fore, we modified the principle to select the smallest r > 0 for which the discrepancy
δd exceeds the absolute data noise δ̂.

r δ̂ δd

4 .00270788 .00265035
• 5 .00269173 .00371632

6 .00262241 .00508314
7 .00261181 .00663777
8 .00249610 .00821011

r δ̂ δd

8 .0249610 .0188627
9 .0236252 .0182476
10 .0231554 .0194804
11 .0226741 .0197377
12 .0226101 .0211548

• 13 .0219453 .0228909
14 .0219144 .0182378

Table 7.1
Example 1a with δ = 10−3 and δ = 10−2, respectively.

7.1. Example 1a: A repeat of Example 1, now using the discrepancy
principle to select r. In Table 7.1 we illustrate how the modified discrepancy prin-
ciple can be used to determine r for the two numerical tests (associated with the two
different noise levels, δ = 10−3 and δ = 10−2) from Example 1 in the last section. We
see that r = 5 is selected for the case of δ = 10−3 while r = 13 is selected for the
case of δ = 10−2. As expected, the suggested value of r increases as the noise level
in the data increases. We show in Figure 7.1 the outcome when using the predicted
r = 13 at noise level of δ = .01; indeed, in comparing with Figure 6.6 (where r = 6 was
used), the relative root-mean-square (rms) error of the reconstructed x is 0.0258251
with r = 13, which is just about half of the rms error (0.0502236) using r = 6, when
the same set of noisy data is used. We note also that the predicted r = 13 gives
R = 1.3×10−1, a value which might be seen as more in line with the suggestion made
by Theorem 3.1 than the values of R used in Example 1.

7.2. Example 2a: A repeat of Example 2, now using the discrepancy
principle to select r. We show in Table 7.2 the results of applying the modified
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r δ̂ δd

2 0.00133155 0.00113062
• 3 0.0013285 0.00202835

4 0.00131227 0.00308485

Table 7.2
Example 2a with relative noise level δ = 10−3, N = 200 and discontinuous x̄
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Fig. 7.1. Example 1a. Solution obtained for Example 1 using Method 2 with δ = 10−2 N = 100,
r = 13 . For comparison, see Figure 6.6.
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Fig. 7.2. Example 2a. Solution obtained for Example 2 using Method 2 with δ = 10−3,
N = 200, r = 3. For comparison, see Figure 6.9.

discrepancy principle to Example 2 of the last section; here the value r = 3 is selected
by the principle and the associated numerical solution is shown in Figure 7.2. While
Figure 7.2 looks quite similar to Figure 6.9 (where r = 4 was used), we can quantita-
tively conclude r = 3 is a better choice since the relative rms error is 0.072, which is
slightly better than the rms error (0.086) in the case of r = 4 when the same set of
noisy data is used.

Other examples of the use of the modified discrepancy principle for the local
regularization of the autoconvolution problem can be found in [8].

8. Conclusion. In this paper we have developed a local regularization theory for
the autoconvolution equation, an ill-posed nonlinear Volterra problem. Several local
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regularization methods have been established, all of which provide stable solutions
for the autoconvolution problem. The methods also preserve the causal nature of the
autoconvolution equation, allowing for numerically fast sequential solution.

Using the underlying idea of local regularization, we formulated the local regu-
larized equation for the autoconvolution problem and proved the convergence of the
solution produced by this regularized equation to the true solution of the autoconvo-
lution equation as the noise level in the data shrinks to zero. The convergence rate
of O(δ2/5) that we obtain for L2 data is not as good as that O(δ1/2) obtained by
Tikhonov regularization and Lavrent’ev regularization. Only with continuous data
are we able to reach the O(δ1/2) rate of these methods. However, in contrast to these
other methods, the theory for local regularization does not rely on an a priori guess
for the value of the true solution or of the solution’s value at t = 0, although a source
condition does require a particular relationship between x̄(0) and ‖x̄′‖∞. The the-
ory for both the local regularization and the Lavrent’ev methods requires a positive
true solution x̄, a condition not needed for Tikhonov regularization. However, as was
shown in Examples 3 and 4, local regularization still performs quite well in numer-
ical testing with nonpositive x̄ provided a simple inspection of the noisy data has
been made in order to determine a minimal suitable value of the local regularization
parameter.

We have also presented two discretization algorithms which illustrate the theory
developed in this paper; one algorithm involves the solution of non-sequential nonlin-
ear equations on [0, R]; the second algorithm is an improvement in both speed and
ease of implementation in that the approximate solution can be determined in a (lin-
ear) sequential manner for the entire interval [0, 1]. The cost for the second algorithm
is O(rN2 − r2N) where r ¿ N , so that it is of the order of the cost of solving the
autoconvolution problem without any regularization whatsoever.

Finally, we have shown numerical results which provide evidence that the local
regularization methods developed in this work compare favorably to the other numer-
ical methods for the autoconvolution equation in the literature [13, 16], especially in
capturing sharp features in the solution. In fact, the numerical results confirm the
effectiveness of local regularization methods even in cases not completely falling under
the assumptions of the general theory we developed here. Numerical examples also
seem to confirm the feasibility of a modified discrepancy principle for the selection of
the regularization parameter r. The theoretical analysis of this principle is currently
under study.
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