
IOP PUBLISHING INVERSE PROBLEMS

Inverse Problems 23 (2007) 1611–1633 doi:10.1088/0266-5611/23/4/014

Local regularization for n-dimensional integral
equations with applications to image processing

Changjun Cui1, Patricia K Lamm2 and Thomas L Scofield3

1 Deloitte & Touche LLP, Suite 600, 600 Renaissance Center, Detroit, MI 48243-1895, USA
2 Department of Mathematics, Michigan State University, E Lansing, MI 48824-1027, USA
3 Department of Mathematics and Statistics, Calvin College, Grand Rapids, MI 49546, USA

E-mail: ccui@deloitte.com, lamm@math.msu.edu and scofield@calvin.edu

Received 27 February 2007, in final form 31 May 2007
Published 6 July 2007
Online at stacks.iop.org/IP/23/1611

Abstract
We examine the method of local regularization for the solution of linear first-
kind integral equations on R

n. We provide a theoretical analysis of the method
and prove that the regularized solutions converge to the true solution as the
level of error in perturbed data goes to zero. We also develop an iterative
numerical algorithm based on this theory and describe its implementation.
Our testing with a number of examples shows that local regularization tends
to perform better than a classical method we call Tik-CG (a method based
on a conjugate gradient algorithm with stopping criteria applied to standard
Tikhonov regularization) when performance is measured in terms of relative
error in solutions and/or in perceived sharpness of images. Unfortunately, this
improvement can come at a cost as testing shows that the local regularization
algorithm tends to be slower than the Tik-CG approach when applied to 2D
images. As we illustrate with our numerical results, however, a compromise
can be found by using the converged Tik-CG image as the starting value for
the iterative local regularization method.

1. Introduction

In this paper we consider the problem of finding u solving the equation

Au = f (1.1)

where for � = [0, 1]n ⊂ R
n,A is the bounded linear operator on L2(�) given by

Au(x) =
∫

�

k(x, s)u(s) ds, a.a. x ∈ �, (1.2)

with k ∈ L∞(� × �) satisfying

|k(x, s) − k(y, s)| � Lk(s)‖x − y‖µk a.a. x,y, s ∈ �, (1.3)

0266-5611/07/041611+23$30.00 © 2007 IOP Publishing Ltd Printed in the UK 1611

http://dx.doi.org/10.1088/0266-5611/23/4/014
mailto:ccui@deloitte.com
mailto:lamm@math.msu.edu
mailto:scofield@calvin.edu
http://stacks.iop.org/IP/23/1611

1612 C Cui et al

for µk > 0 and Lk ∈ L2(�). Here ‖·‖ denotes the Euclidean norm in R
n. We assume that

equation (1.1) has solutions and let ū ∈ L2(�) denote its (unique) minimum norm solution.
Clearly f ∈ L∞(�); we will further assume that ū ∈ L∞(�).

Equation (1.1) can be used as a mathematical model of an inverse problem, i.e., given
data f which represent a desired or an observed effect in real world problems, determine the
cause which is represented by a physically relevant solution (often a generalized solution) ū

of equation (1.1).
Although a number of important inverse problems are covered by our theory, here we will

be particularly interested in the blurred image reconstruction problem (see, e.g., [2, 5], and
the references therein). That is, let ū(x) represent grey-level values of an image at location
x = (x1, x2) ∈ �, where � = [0, 1] × [0, 1] ⊂ R

2. One model of image blurring is given by
equation (1.1) with operator A in (1.2) defined using the Gaussian (convolution) kernel

k(x,y) = β

π
e−β‖x−y‖2

, (1.4)

for β > 0 a blurring parameter. The image reconstruction problem then is to approximate ū

(the exact image) solving (1.1) given an estimate of β and data f, where f denotes the blurred
image grey level subject to observational and measurement errors.

For A with a non-closed range, problem (1.1) is an ill-posed problem due to the fact that
A−1 (or the generalized inverse A+) is unbounded [13]. In a practical setting this means that in
the usual situation where our data are imprecisely measured, the approximation ūδ = A−1f δ

(or ūδ = A+f δ) may be far from the desired solution ū even if the perturbed data f δ satisfy
‖f −f δ‖ � δ, for δ > 0 small. Regularization methods overcome this difficulty by providing
an alternate method for the construction of ūδ from perturbed data f δ, ensuring that ūδ → ū

as the noise level δ → 0 and that ūδ depends continuously on data.
Classical regularization techniques such as Tikhonov regularization can produce an overly

smooth solution in situations where sharp or discontinuous features in the true solution are
precisely those of interest (such as occurs in the image reconstruction problem). Alternative
regularization methods, e.g., bounded variation regularization [1, 4, 11, 12, 25], have been
proposed to improve upon Tikhonov regularization in such situations; however these methods
come with their own drawbacks. One problem is that the methods often are derived by
replacing the usual Tikhonov penalty term with a nondifferentiable penalty function. This leads
to nontrivial difficulties in practical implementation because standard optimization packages
cannot be used. Thus regularization methods of this type can be costly and associated with slow
speeds of convergence. Other approaches add a (nonquadratic) penalty term in an appropriate
norm in a Besov space, and couple the analysis with wavelet expansions [9, 10].

An alternative approach is the method of local regularization, a differentiable
optimization-based method (as will be seen in the next section). We will briefly motivate
this idea by defining a local regularization parameter r = (r1, r2, . . . , rn) where ri ∈ (0, 1

2

)
,

and by considering a translated version of equation (1.1),

Aū(x + ρ) = f (x + ρ), (1.5)

for a.a. x, ρ satisfying

ρ = (ρi)
n
i=1, ρi ∈ [−ri, ri] and x = (xi)

n
i=1, xi ∈ [ri, 1 − ri]. (1.6)

That is, for a.a. x, ρ satisfying (1.6), we have∫
B(x,r)

k(x + ρ, s)ū(s) ds +
∫

�\B(x,r)

k(x + ρ, s)ū(s) ds = f (x + ρ), (1.7)

Local regularization for n-dimensional integral equations 1613

where B(x, r) ⊂ � is the rectangular cube centred at x defined by

B(x, r) = {y = (yi)
n
i=1 ∈ R

n||yi − xi | � ri

}
.

Making a change of integration variable in the first term in (1.7) we obtain, for a.a. x, ρ
satisfying (1.6),∫

B(0,r)

k(x + ρ,x + s)ū(x + s) ds +
∫

�\B(x,r)

k(x + ρ, s)ū(s) ds = f (x + ρ), (1.8)

where we note that each term on the left-hand side of equation (1.8) represents the action
of the operator A on the x-dependent ‘local part’ and the ‘global part’ of ū, respectively.
This idea suggests a decomposition of the operator A into ‘global’ and ‘local’ parts, for each
x ∈ �. This splitting of A is the basis of the local regularization method and allows us to
apply specific regularization strategies using only the local part of A.

It is worth noting that, in addition to the possibility of a better reconstruction of localized
or sharp features in the true solution, a variation of the local regularization method motivated
above leads to a fast sequential numerical algorithm when applied to a Volterra equation such
as ∫ t

0
k(t, s)u(s) ds = f (t), a.a. t ∈ (0, 1).

Indeed local regularization is well-known for its ability to retain the causal structure of the
original Volterra problem, in contrast to classical methods such as Tikhonov regularization
[7, 8, 17–19, 21–24].

The subject of this paper is the solution of the non-Volterra problem (1.1), and in this
case an iterative local regularization procedure is needed rather than a sequential method.
Intuitively the procedure works like this: an initial guess is made for the solution on the
entire domain, then the solution is iteratively updated on small subdomains by solving a local
regularization problem while assuming the solution off the small subdomain (i.e. the global
part) is fixed at its previously set value.

Such an iterative local regularization method was first introduced in [20] for one-
dimensional non-Volterra problems, although with a slightly different structure. In [20]
the translated equation (1.5) was defined for all x in the interior of �; however, in order for
the resulting equation to make sense, the value of r had to depend on x with r decreasing
as x approached the boundary of �. While such an approach does allow for a variable
regularization parameter throughout the entire domain � (which has some benefits), this idea
does not easily extend to n-dimensional problems because of difficulties at corners. Instead,
we have taken a different approach here with a constant regularization parameter r associated
with a given fixed size of the local regularization region; we have allowed for variable local
regularization through the use of a second (variable) regularization parameter α which controls
the amount of regularization being imposed on each local region.

Although the underlying structure of the theory we introduce here differs from that of
[20], some of the convergence arguments carry over with little change. To abbreviate our
presentation we will outline the main points of the construction and convergence theory in
sections 2 and 3 below, referring the reader to [6] for complete details. Finally, in sections 4
and 5 we illustrate how numerical methods suggested from the theory can be used to solve some
sample 2D image reconstruction problems. We compare our findings to a classical iterative
regularization method (i.e., the conjugate gradient method with stopping criteria, applied to
classical Tikhonov regularization). For 2D problems we find that the local regularization
method is slower than the classical method but that in many cases it does a better job of
resolving sharp features in images.

1614 C Cui et al

2. Basic definitions

We will make clear the local regularization ideas motivated above by defining the required
spaces, operators and regularization parameters.

We will let r = (ri)
n
i=1 ∈ R

n, for ri ∈ (
0, 1

2

)
, denote the regularization parameter

associated with the size of the local regularization region, with

‖r‖ ≡ max
i=1,2,...,n

ri,

and make the definitions

[r, 1 − r] = {x ∈ R
n|ri � xi � 1 − ri, for i = 1, 2, . . . , n},

[−r, r] = {ρ ∈ R
n| − ri � ρi � ri, for i = 1, 2, . . . , n},

and define the r-dependent product space Ωr ⊂ � × (− 1
2 , 1

2

)n
via

Ωr = {(x, ρ)|x ∈ [r, 1 − r], ρ ∈ [−r, r]}.
We will also use α to designate a second regularization parameter,

α ∈ � ≡ {α ∈ L∞(�)|αmin ≡ inf
x∈�

α(x) > 0}.
This parameter will control the amount of regularization applied in local regularization regions,
with the dependence on x allowing for the possibility of more or less regularization in different
parts of the domain �.

In order to better handle the translated variables f and ū in equations (1.5) and (1.8) we
make the following definitions. Let

Fr(x)(ρ) = f (x + ρ), Ur(x)(ρ) = ū(x + ρ), a.a. (x, ρ) ∈ Ωr.

Then for f, ū ∈ L∞(�), it follows that Fr, Ur ∈ Xr, where

Xr = L2((r, 1 − r);L2(−r, r))

is a Hilbert space with the weighted norm

‖ϕ‖2
r ≡ 1

2nr1r2 · · · rn

∫
[r,1−r]

∫
[−r,r]

|ϕ(x)(ρ)|2 dρ dx,

ϕ ∈ Xr, and associated inner product. Given α ∈ � we will sometimes use an equivalent
norm for ϕ ∈ Xr,

‖ϕ‖2
r,α ≡ 1

2nr1r2 · · · rn

∫
[r,1−r]

α(x)

∫
[−r,r]

|ϕ(x)(ρ)|2 dρ dx.

It will also be useful to define F̄r, Ūr ∈ Xr via

F̄r(x)(ρ) = f (x), Ūr(x)(ρ) = ū(x), a.a. (x, ρ) ∈ Ωr,

and to define F δ
r and F̄ δ

r ∈ Xr in the expected way from f δ . It is not hard to show that

‖Ur‖ � ‖ū‖∞, ‖Ūr‖ � ‖ū‖∞,

with similar bounds for the other quantities defined above [6].
Eventually we will be looking at the behaviour of regularized solutions as the

regularization parameter r approaches 0, a fact which makes the use of parameter-dependent
spaces Xr somewhat problematic. It will be convenient to have a reference (parameter-free)
space, X ≡ L2(�;X), to which these spaces may be mapped. Here X = L2((−	,)n) for
some fixed 	 > 0, with usual norm |·|X and usual inner product 〈·, ·〉X; throughout we will
simplify computations by taking 	 = 1. The norm on X is the expected one,

‖ϕ̃‖2
X ≡

∫
�

|ϕ̃(x)|2X dx =
∫

�

∫
(−	,)n

|ϕ̃(x)(ρ)|2 dρ dx,

for ϕ̃ ∈ X , with the associated inner product 〈·, ·〉X .

Local regularization for n-dimensional integral equations 1615

To move from the parameter-dependent space Xr to X we will use the mapping Er, where
for ϕ ∈ Xr, ρ ∈ [−	,]n and x ∈ �, we have Erϕ ∈ X with

Erϕ(x)(ρ) ≡
{
ϕ(x)(ρ1r1, ρ2r2, . . . , ρnrn), x ∈ (r, 1 − r), ρ ∈ (−	,)n,

0, otherwise.

It follows that ‖Erϕ‖2
X = 2n‖ϕ‖2

r, for ϕ ∈ Xr.
The decomposition of the operator A into x-dependent ‘local’ and ‘global’ parts is

accomplished in part by the operators Ar and Br, respectively. We define Ar : Xr 	→ Xr and
Br : L2(�) 	→ Xr by

Arϕ(x)(ρ) =
∫

[−r,r]
k(x + ρ,x + s)ϕ(x)(s) ds, a.a. (x, ρ) ∈ Ωr,

Brη(x)(ρ) =
∫

�\[x−r,x+r]
k(x + ρ, s)η(s) ds, a.a. (x, ρ) ∈ Ωr,

for ϕ ∈ Xr and η ∈ L2(�). Both operators are bounded linear, with operator norms satisfying

‖Ar‖ � 2nr1r2 · · · rn‖k‖∞, ‖Br‖ � ‖k‖∞,

respectively [6]. To complete the decomposition of A we define Cr : Xr 	→ Xr via

Cr ≡ Ar + BrTr, (2.1)

where the operator Tr assumes the role of mapping quantities in Xr into variables defined on
the original domain �. An example of the operator Tr particularly well-suited for numerical
computations may be found in section 4. (See, for example, equation (4.3) and the discussion
following it.) To precisely define Tr here, we let � ∈ X∗ be fixed and normalized so that
�(1) = 1, where 1 ∈ X is given by 1(ρ) = 1 for a.a. ρ ∈ (−	,)n. We will denote by γ�

that unique nonzero element of X satisfying

�(v) = 〈v, γ�〉X, v ∈ X,

where the construction of � gives
∫

[−	,]n γ�(ρ) dρ = 1. We then define T ∈ L(X , L2(�))

for ϕ̃ ∈ X by

T ϕ̃(x) ≡ �(ϕ̃(x)), a.a. x ∈ �,

and Tr ∈ L(Xr, L
2(�)) via

Tr ≡ T Er,

where the operator norms of Tr and T satisfy ‖Tr‖ �
√

2n‖T ‖. It is worth noting that for
x ∈ �,

TrŪr(x) =
{
ū(x), x ∈ (r, 1 − r),

0, otherwise,

so that

‖TrŪr − ū‖2
L2(�) =

∫
�\(r,1−r)

|ū(x)|2 dx � (3n − 1)‖r‖∞‖ū‖2
∞.

Finally, from the properties of Ar, Br and Tr, we have that Cr defined by (2.1) satisfies
Cr ∈ L(Xr).

1616 C Cui et al

2.1. The local regularization problem Pδ
r,α

Definition 2.1. Let f δ ∈ L∞(�) be given satisfying ‖f − f δ‖∞ < δ, and let r and α be
defined as above. Problem Pδ

r,α is that of finding ϕδ
r,α ∈ Xr such that

ϕδ
r,α = arg min

ϕ∈Xr

{∥∥Crϕ − F δ
r

∥∥2
r

+ ‖ϕ‖2
r,α

}
.

The following theorem follows from the classical Tikhonov regularization theory.

Theorem 2.1. Let r, α and f δ satisfy the conditions stated in definition 2.1. Then there exists
a unique solution ϕδ

r,α ∈ Xr of problem Pδ
r,α . Both ϕδ

r,α and ηδ
r,α ≡ Trϕ

δ
r,α ∈ L2(�) depend

continuously on F δ
r ∈ Xr and thus on data f δ ∈ L∞(�).

3. Convergence

Our main convergence result is as follows:

Theorem 3.1. Let {δk}∞k=1 ⊆ R
+ with δk → 0 as k → ∞. Let {rk}∞k=1 and {αk}∞k=1 ⊂ � be

given such that ‖rk‖ ∈ (0, 1
2

)
and ‖rk‖, ‖αk‖∞ → 0 as k → ∞. Assume further that there

is M > 0 such that

(i) δ2
k/αk,min → 0,

(ii) ‖rk‖n/δk � M,

(iii) ‖αk‖∞/αk,min → 1,

as k → ∞. For each k = 1, 2, . . . , let fδk
∈ L∞(�) be given with ‖f − f δk‖ < δk, let

ϕδk
rk ,αk

∈ Xrk
denote the solution of problem Pδk

rk ,αk
associated with f δk , and let

ηk ≡ Trk
ϕδk

rk ,αk
. (3.1)

Then

ηk → ū in L2(�),

as k → ∞, where ū is the solution of the original problem (1.1).

Remark 3.1. We note that, as in [20], assumptions (i) and (ii) in the main convergence theorem
above correspond to similar conditions in the classical regularization theory in requiring that
the regularization parameters rk and αk converge to zero at a rate relative to the level δk of
noise in the problem. For assumption (iii) we observe that αk may be spatially varying as
long as there is noise in the problem (i.e., when δk > 0); however as δk nears zero and k is
sufficiently large, αk is very close to its max and min values, both of which are approaching
zero as k → ∞.

We will simplify notation henceforth by writing ϕk ≡ ϕδk
rk ,αk

,Pk ≡ Pδk
rk ,αk

,Xk ≡ Xrk
,

Fk ≡ Frk
, F δ

k ≡ F δk
rk

, Uk ≡ Urk
, Ūk ≡ Ūrk

, Ek ≡ Erk
, Ak ≡ Ark

, and so on. The proof of
theorem 3.1 requires the following intermediate lemma.

Lemma 3.1. Let {δk}∞k=1 ⊆ R
+ and {αk}∞k=1 ⊆ �. Let {rk}∞k=1 satisfy ‖rk‖ ∈ (0, 1

2

)
and

assume that there exists M > 0 such that

(i) δ2
k

/
αk,min � M,

(ii) ‖rk‖n/δk � M,

(iii) ‖αk‖∞/αk,min � M,

Local regularization for n-dimensional integral equations 1617

as k → ∞. For each k = 1, 2, . . . , let f δk ∈ L∞(�) be given with ‖f − f δk‖∞ < δk, and
let ϕk ∈ Xk denote the solution of Problem Pk associated with f δk , with ηk ≡ Tkϕk ∈ L2(�).

Let ϕ̃k ≡ Ekϕk ∈ X . Then there is ϕ̃ ∈ X and a subsequence of {ϕ̃k} which converges
weakly in X to ϕ̃. That is, relabelling the subsequential indices,

ϕ̃k ⇀ ϕ̃ in X as k → ∞.

In addition, η ∈ L2(�) defined by

η ≡ T ϕ̃

is such that (using the same relabelling of indices as above)

ηk ⇀ η in L2(�) as k → ∞.

Further, if δk → 0, ‖rk‖ → 0, and ‖αk‖∞ → 0 as k → ∞, then η is a solution of Au = f

and ϕ̃ is a solution of Ãψ = f, for Ã ∈ L(X , L2(�)) defined by Ã = AT .

Proof. Making only straightforward changes [6] in lemma 2.1 in [20], we have that∥∥Ckϕk − F δ
k

∥∥2
rk

+ ‖ϕk‖2
rk ,α

� C
[(

r2
k1r

2
k2 · · · r2

kn‖k‖2
∞ + ‖αk‖∞

)‖ū‖2
∞ + δ2

k

]
,

for some C > 0 independent of rk, αk and δk . Then

‖Ekϕk‖2
X � 2n

αk,min

(∥∥Ckϕk − F δ
k

∥∥2
rk

+ ‖ϕk‖2
rk ,αk

)
� 2nC

αk,min

[(
r2
k1r

2
k2 · · · r2

kn‖k‖2
∞ + ‖αk‖∞

)‖ū‖2
∞ + δ2

k

]
,

so that ‖ϕ̃k‖X = ‖Ekϕk‖X is uniformly bounded for all k = 1, 2, The statements of the
lemma regarding the weak subsequential convergence of ϕ̃k and ηk follow from the fact that X
is a Hilbert space and from the observation that ηk = Tkϕk = T Ekϕk = T ϕ̃k for k = 1, 2,

We now define Āk ∈ L(L2(�),Xk) for k = 1, 2, . . . via

Āku(x)(ρ) = Au(x), a.a. (x, ρ) ∈ Ωrk

for A the original operator defined in (1.2) and u ∈ L2(�). Then

‖Ākη − F̄k‖2
rk

= 1

2nrk1rk2 · · · rkn

∫
[rk ,1−rk]

∫
[−rk ,rk]

|Aη(x) − f (x)|2 dρ dx

→
∫

�

|Aη(x) − f (x)|2 dx = ‖Aη − f ‖L2(�) as k → ∞,

where it remains to show that ‖Ākη− F̄k‖rk
→ 0 as k → ∞ in order to conclude that η solves

Au = f . But

‖Ākη − F̄k‖rk
�

5∑
i=1

T k
i

where

T k
1 = ∥∥Akϕk + BkTkϕk − F δ

k

∥∥
rk

, T k
2 = ‖Akϕk‖rk

,

T k
3 = ‖Ākη − BkTkϕk‖rk

, T k
4 = ‖F δ

k − Fk‖rk
, T k

5 = ‖Fk − F̄k‖rk
.

Arguments like those in the proof of lemma 3.2 of [20] may be used to argue T k
i → 0 as

k → ∞ for i = 1, 2, 4 and 5. In what follows we show that T k
3 → 0 as k → ∞. We have that

T k
3 = ‖Ākη − Bkηk‖rk

� ‖Āk(η − ηk)‖rk
+ ‖(Āk − Bk)ηk‖rk

, (3.2)

1618 C Cui et al

where the first term in (3.2) satisfies

‖Āk(η − ηk)‖2
rk

=
∫

[rk ,1−rk]
|A(η − ηk)(x)|2 dx

� ‖A(η − ηk)‖2
L2(�) → 0,

as k → ∞ from the compactness of A on L2(�). For the second term in (3.2), we have for
a.a. (x, ρ) ∈ Ωrk

,

|(Āk − Bk)ηk(x)(ρ)|2 =
∣∣∣∣
∫

�

k(x, s)ηk(s) ds −
∫

�\B(x,rk)

k(x + ρ, s)ηk(s) ds

∣∣∣∣
2

� 2

∣∣∣∣
∫

�

(k(x, s) − k(x + ρ, s))ηk(s) ds

∣∣∣∣
2

+ 2

∣∣∣∣
∫

B(x,rk)

k(x + ρ, s)ηk(s) ds

∣∣∣∣
2

� 2‖ηk‖2(‖ρ‖2µk‖Lk‖2 + 2n‖k‖2
∞rk1rk2 · · · rkn),

and thus

‖(Āk − Bk)ηk‖2
rk

� ‖ηk‖2
(
2‖Lk‖2‖rk‖2µk + 2n+1rk1rk2 · · · rkn‖k‖2

∞
)
,

where ηk is uniformly bounded since ‖ηk‖ = ‖Tkϕ̃k‖ �
√

2n‖T ‖‖ϕ̃k‖. �

Proof of theorem 3.1. In what follows we will show that ϕ̃ = Ũ where ϕ̃ is given in
lemma 3.1 and Ũ ∈ X is defined by

Ũ (x)(ρ) = ū(x)γ�(ρ)

|γ�|2X
, a.a. ρ ∈ [−	,]n, x ∈ �. (3.3)

Indeed, using arguments similar to those in the proof of theorem 3.1 in [20] it is not difficult to
see that Ũ is the minimum norm solution of Ãψ = f . If we can then show that ‖φ̃‖X � ‖Ũ‖X ,

it will follow that ϕ̃ = Ũ . In fact, since φ̃k = Ekφk, it follows that

‖φ̃k‖2
X � 2n

αk,min

(∥∥Ckφk − F δ
k

∥∥2
rk

+ ‖φk‖2
rk ,αk

)
� 2n

αk,min

(∥∥CkṼ k − F δ
k

∥∥2
rk

+ ‖Ṽ k‖2
rk ,αk

)
, (3.4)

where Ṽ k ∈ Xk is given for (x, ρ) ∈ �rk
by Ṽ k(x)(ρ) = Ũ (x)(ρ1/rk1, ρ2/rk2, . . . , ρn/rkn),

with

‖Ṽk‖2
rk

� 1

2n|γ�|2X

∫
[rk ,1−rk]

ū2(x) dx. (3.5)

Thus

TkṼ k(x) =
∫

[−	,]n
EkṼ k(x)(ρ)γ�(ρ) dρ

=
{
ū(x), x ∈ (rk, 1 − rk),

0, otherwise,

and ∥∥CkṼ k − F δ
k

∥∥2
rk

= ‖AkṼ k + BkTkṼ k − F δ
k ‖2

rk

� 4‖Ak(Ṽ k − Uk)‖2
rk

+ 2‖Fk − F δ
k ‖2

rk

� 8‖Ak‖2
(‖Ṽ k‖2

rk
+ ‖Uk‖2

rk

)
+ 2δ2

k

� C
(
r2
k1r

2
k2 · · · r2

kn + δ2
k

)
,

Local regularization for n-dimensional integral equations 1619

for C = C(ū, k) independent of r; here we have used the fact that ‖AkUk +BkTkṼ k −Fk‖2
rk

=
‖AkUk + Bkū − Fk‖2

rk
= 0 [6]. We thus have

‖φ̃‖2
X � lim inf ‖φ̃k‖2

X (3.6)

� lim sup
2n

αk,min

[
C
(
r2
k1r

2
k2 · · · r2

kn + δ2
k

)
+

‖αk‖∞
2n|γ�|2X

∫
[rk ,1−rk]

ū2(x) dx

]
= ‖ū‖2

L2(�)/|γ�|2X
= ‖Ũ‖2

X , (3.7)

under the assumptions of the theorem, so that ‖φ̃‖X � ‖Ũ‖X . By uniqueness of the minimum
norm solution of Ãψ = f, it follows that φ̃ = Ũ .

All inequalities between (3.6) and (3.7) must then be equalities, so

‖φ̃k‖X → ‖φ̃‖X as k → ∞,

and in fact the weak convergence of φ̃k to φ̃ is strong convergence. In addition,

ηk = T φ̃k → T φ̃ = T Ũ = ū, as k → ∞,

so that η = ū. Standard arguments can be used to extend the subsequential convergence to
full sequential convergence. This completes the proof of theorem 3.1. �

4. Numerical implementation

In this section we develop a discrete implementation of the local regularization method
presented in the previous sections, and describe several numerical examples. The algorithms
have been developed in n � 1 dimensions; specific examples are provided in the case n = 2.

4.1. The discrete local regularization problem

Let N ∈ N and assume � is divided into Nn ‘cells’, where each cell has edges of length
h = 1

N
. A more general mesh through �, where N1 subintervals are used along the first axis,

N2 along the second and so on, is also possible and does not significantly alter what follows.
We define mesh points x(j) = (x(j)

1 , . . . , x
(j)
n

) = hj, for each j in the set J = {0, 1, . . . , N}n.
We further define midpoints x̂(j) = x(j)−(h/2)1, for j ∈ {1, . . . , N}n, ρ(�) = h�, for � ∈ Z

n,

and ρ̂(�) = ρ(�) + (h/2)1, for � ∈ Z
n, where 1 = (1, 1, . . . , 1). In our discretization we will

employ indicator functions in the various cells, given by

χj(x) =
{

1, if x
(j−1)

k < xk � x
(j)

k , for each 1 � k � n,

0, otherwise,

and

χ̂�(ρ) =
{

1, if ρ̂
(�−1)
k < ρk � ρ̂

(�)
k , for each 1 � k � n,

0, otherwise.

The regularization parameter α(x) is replaced with a discrete approximation

α(x) =
∑
j∈J

αj · χj(x), x ∈ �.

The other regularization parameter r is chosen as r = hir + (h/2)1, where ir = (i1, . . . , in)

(fixed) has integer components such that 1 � ik < N/4 for each k.

1620 C Cui et al

We also need a discrete approximation of the space Xr. We first define the sets

Jr = {j = (j1, . . . , jn)|ik + 1 � jk � N − ik, an integer}, (4.1)

and

Lr = {� = (�1, . . . , �n)| − ik � �k � ik, an integer}. (4.2)

Then let

XN
r =


ϕ : ϕ(x)(ρ) =

∑
j∈Jr

∑
�∈Lr

cj�χj(x)χ̂�(ρ)


 .

If g ∈ Xr, then for j ∈ Jr, g(x̂(j))(·) ∈ L2(−r, r), and

‖g(x̂(j))‖2
2 =

∫
[−r,r]

|g(x̂(j))(ρ)|2 dρ

=
∑
�∈Lr

∫
[ρ̂(�−1),ρ̂(�)]

|g(x̂(j))(ρ)|2 dρ

.=
∑
�∈Lr

|g(x̂(j))(ρ̂(�))|2hn.

Setting Rj = [x(j−1),x(j)] ∩ [r, 1 − r] for j ∈ Jr, we have

‖g‖2
r = 1

2nr1 · · · rn

∫
[r,1−r]

∫
[−r,r]

|g(x)(ρ)|2 dρ dx

= 1

2nr1 · · · rn

∫
[r,1−r]

‖g(x)‖2
2 dx

= 1

2nr1 · · · rn

∑
j∈Jr

∫
Rj

‖g(x)‖2
2 dx

.= 1

2nr1 · · · rn

∑
j∈Jr

‖g(x̂(j))‖2
2m(Rj)

.= hn

2nr1 · · · rn

∑
j∈Jr

m(Rj)
∑
�∈Lr

|g(x̂(j))(ρ̂(�))|2,

where m(·) denotes the ‘volume’ (n-dimensional Lebesgue measure) of a region in R
n. In

fact, when g ∈ XN
r this is a strict equality (i.e., no approximations), and thus we define norms

on XN
r via

‖ϕ‖2
N,r = hn

2nr1 · · · rn

∑
j∈Jr

m(Rj)
∑
�∈Lr

|ϕ(x̂(j))(ρ̂(�))|2, and

‖ϕ‖2
N,r,α = hn

2nr1 · · · rn

∑
j∈Jr

m(Rj)
∑
�∈Lr

|ϕ(x̂(j))(ρ̂(�))|2α(x̂(j)).

Now we need to calculate the operators Tr, Ar and Br. For 0 < c � 1, let

γl(ρ) =
{

1
cn , if ρk ∈ (−c, 0) for each k,

0, otherwise.
(4.3)

Local regularization for n-dimensional integral equations 1621

Then, for ϕ ∈ XN
r ,x ∈ [r, 1 − r], and c ∈ (0, 1) small enough so that maxk crk � h/2, we

have

Trϕ(x) = T Erϕ(x)

=
∫

(−	,)n
γl(ρ) · ϕ(x)(ρ1r1, . . . , ρnrn) dρ

= 1

cn

∫ 0

−c

· · ·
∫ 0

−c

ϕ(x)(ρ1r1, . . . , ρnrn) dρ

= 1

cnr1r2 · · · rn

∫ 0

−cr1

· · ·
∫ 0

−crn

ϕ(x)(ρ) dρ

= 1

cnr1 · · · rn

∫ 0

−cr1

· · ·
∫ 0

−crn

∑
j∈Jr

∑
�∈Lr

cj� χj(x) χ̂�(ρ) dρ

=
∑
j∈Jr

cj0 χj(x)

= ϕ(x)(0). (4.4)

To calculate Ar:XN
r → XN

r , we fix j ∈ Jr and � ∈ Lr. Then

Arϕ(x̂(j))(ρ̂(�)) =
∫

[−r,r]
k(x̂(j) + ρ̂(�), x̂(j) + s)ϕ(x̂(j))(s) ds

=
∫

[−r,r]
k(x(j+�), x̂(j) + s)


∑

p∈Jr

∑
q∈Lr

cpq χp(x̂
(j))χ̂q(s)


 ds

=
∑
q∈Lr

cjq

∫
[−r,r]

k(x(j+�), x̂(j) + s) χ̂q(s) ds

=
∑
q∈Lr

cjq

∫
[ρ̂(q−1),ρ̂(q)]

k(x(j+�), x̂(j) + s) ds

=
∑
q∈Lr

cjq

∫
[x(j+q−1),x(j+q)]

k(x(j+�),v) dv

=
∑
q∈Lr

cjq	j+�,j+q, (4.5)

where

	p,q =
∫

[x(q−1),x(q)]
k(x(p),v) dv. (4.6)

The identity in (4.5) shows that our discretization leads to a finite-dimensional linear (matrix-
like) representation of the operator Ar. For instance, in the case n = 1 (where we adopt the
convention of writing xj instead of x(j)), let i be the one-dimensional analogue of the vector
i, and i + 1 � j � N − i,−i � � � i. Then

Arϕ(x̂j)(ρ̂�) = (Aj · cj)�, (4.7)

1622 C Cui et al

where we define the matrix Aj and the vector cj as:

Aj = (j+�1,j+�2

)
−i��1,�2�i

=




	j−i,j−i 	j−i,j−i+1 · · · 	j−i,j+i

	j−i+1,j−i 	j−i+1,j−i+1 · · · 	j−i+1,j+i

...
...

. . .
...

	j+i,j−i 	j+i,j−i+1 · · · 	j+i,j+i




(2i+1)×(2i+1)

,

cj = (cj,−i cj,−i+1 · · · cj,i

)T ∈ R
2i+1.

Cases in which n > 1 are essentially the same, though it would be more natural to think of
expression (4.5) as something like a tensor product. This is because, for each fixed p, (p,q)

is a n-dimensional array. To get to a matrix expression like (4.7), we arrange the 	p,q

(fixed p) as a single row in Aj, and treat the components of cj similarly.
Now we calculate BrTr:XN

r → XN
r . According to the definition of Br and (4.4), we

have, for j ∈ Jr and � ∈ Lr,

BrTrϕ(x̂(j))(ρ̂(�)) =
∫

�\B(x̂(j),r)

k(x̂(j) + ρ̂(�), s)Trϕ(s) ds

=
∑
µ∈Jr

cµ0

∫
�\B(x̂(j),r)

k(x(j+�), s) χµ(s) ds. (4.8)

While, as in the case of Arϕ(x̂(j))(ρ̂(�)), such values may be described via matrix
multiplication, because of the hole in the region of integration, any generic description of
the matrix necessarily is broken up by the presence of zeroed entries. For instance, in the case
n = 1 we have, for i + 1 � j � N − i and −i � � � i,

BrTrϕ(x̂j)(ρ̂�) =
(∫ xj −(i+1)h

0
+
∫ 1

xj +ih

)
k(x̂j + ρ̂�, s) ·


 N−i∑

µ=i+1

cµ0χµ(s)


 ds

=
N−i∑

µ=i+1

∫ xj−i−1

0
k(xj+�, s)cµ0χµ(s) ds +

N−i∑
µ=i+1

∫ 1

xj+i

k(xj+�, s)cµ0χµ(s) ds

=
j−i−1∑
µ=i+1

∫ xj−i−1

0
k(xj+�, s)cµ0χµ(s) ds

+
N−i∑

µ=j+i+1

∫ 1

xj+i

k(xj+�, s)cµ0χµ(s) ds, (4.9)

where a summation whose lower index exceeds the upper one is to be interpreted as zero. The
case n = 1, then, has three subcases, depending on the value of j :

Case 1. If j < 2(i + 1), then 0 � j − i − 1 < i + 1, making the first sum vacuous. Hence

BrTrϕ(x̂j)(ρ̂�) =
N−i∑

µ=j+i+1

∫ 1

xj+i

k(xj+�, s)cµ0χµ(s) ds

=
N−i∑

µ=j+i+1

∫ xµ

xµ−1

k(xj+�, s)cµ0 ds

=
N−i∑

µ=j+i+1

cµ0	j+�,µ. (4.10)

Local regularization for n-dimensional integral equations 1623

In this case, if we define the vector c̄ as

c̄ = (ci+1,0 ci+2,0 · · · cN−i,0
)T ∈ R

N−2i ,

then

BrTrϕ(x̂j)(ρ̂�) = (Bj · c̄)�, (4.11)

where Bj is the (2i + 1) × (N − 2i) matrix given by

Bj = (0(2i+1)×j | (j+�,µ)(2i+1)×(N−2i−j))

=




0 · · · 0 	j−i,j+i+1 	j−i,j+i+2 · · · 	j−i,N−i

0 · · · 0 	j−i+1,j+i+1 	j−i+1,j+i+2 · · · 	j−i+1,N−i

...
...

...
...

...

0 · · · 0 	j+i,j+i+1 	j+i,j+i+2 · · · 	j+i,N−i


 . (4.12)

Case 2. If 2(i + 1) � j � N − 2i − 1, then from (4.9) we get

BrTrϕ(x̂j)(ρ̂�) =
j−i−1∑
µ=i+1

∫ xµ

xµ−1

k(xj+�, s)cµ0 ds +
N−i∑

µ=j+i+1

∫ xµ

xµ−1

k(xj+�, s)cµ0 ds

=

j−i−1∑

µ=i+1

+
N−i∑

µ=j+i+1


 cµ0	j+�,µ. (4.13)

Here (4.11) holds with

Bj = (Sj |0(2i+1)×(2i+1)|Tj), (4.14)

where

Sj =




	j−i,i+1 · · · 	j−i,j−i−1

	j−i+1,i+1 · · · 	j−i+1,j−i−1

...
...

	j+i,i+1 · · · 	j+i,j−i−1


 and

Tj =




	j−i,j+i+1 · · · 	j−i,N−i

	j−i+1,j+i+1 · · · 	j−i+1,N−i

...
...

	j+i,j+i+1 · · · 	j+i,N−i




are (2i + 1) × (j − 2i − 1) and (2i + 1) × (N − 2i − j) matrices respectively.

Case 3. If j > N − 2i − 1, then j + i + 1 > N − i. Dropping the vacuous second sum in
(4.9), we get

BrTrϕ(x̂j)(ρ̂�) =
j−i−1∑
µ=i+1

cµ0	j+�,µ. (4.15)

In this case, (4.11) holds with

Bj = ((j+�,µ)(2i+1)×(j−2i−1) | 0(2i+1)×(N−j+1))

=




	j−i,i+1 	j−i,i+2 · · · 	j−i,j−i−1 0 · · · 0
	j−i+1,i+1 	j−i+1,i+2 · · · 	j−i+1,j−i−1 0 · · · 0

...
...

...
...

...

	j+i,i+1 	j+i,i+2 · · · 	j+i,j−i−1 0 · · · 0


 . (4.16)

1624 C Cui et al

We note that for the discrete algorithms developed below we will require, for a general
(non-convolution) kernel,

∏n
k=1 N(N −2ik) = O(N2n) (possibly) different 	p,q values. Even

in n = 2 dimensions this is too costly for current computers when N is of reasonable size.
For kernels of convolution type k(x,y) = K(x − y), however, there are many repeat values.
In the case n = 2, for instance, the matrix of 	p,q-values has a block Toeplitz with Toeplitz
blocks structure and, following [26], we exploit this structure in our algorithms in order to
reduce the number of computed 	p,q-values to (2N − 1)2 = O(4N2) from O(N4).

The last quantity we require is FN,δ
r , our discrete data. By definition,

FN,δ
r (x̂(j))(ρ̂(�)) = f δ(x̂(j) + ρ̂(�)) = f δ(x(j+�)), for j ∈ Jr, � ∈ Lr.

For fixed j in the n = 1 case, we are led naturally to define the vector

f̄j = (f δ(xj−i) f δ(xj−i+1) · · · f δ(xj+i))
T ∈ R

2i+1. (4.17)

When n > 1, it would be more natural to think of our data as a multidimensional array
in R

(2i1+1)×···×(2in+1). Nevertheless, to stay within a matrix-multiplication framework, we
‘straighten out’ the contents of that array into a single (column) vector, much in the same
way Matlab does when a multi-indexed array array(:, :, . . . , :) is accessed with just one index
array(:).

Finally we can define the discrete format of the local regularization problem Pδ
r,α given

in definition 2.1: for ϕ ∈ XN
r∥∥Arϕ + BrTrϕ − FN,δ

r

∥∥2
N,r

+ ‖ϕ‖2
N,r,α = hn

2nr1 · · · rn

∑
j∈Jr

m(Rj)
∑
�∈Lr

(|ϕ(x̂(j))(ρ̂(�))|2α(x̂(j))

+
∣∣Arϕ(x̂(j))(ρ̂(�)) + BrTrϕ(x̂(j))(ρ̂(�)) − FN,δ

r (x̂(j))(ρ̂(�))
∣∣2)

= hn

2nr1 · · · rn

∑
j∈Jr

m(Rj)
∑
�∈Lr

(|(Aj · cj + Bj · c̄ − f̄j)�|2 + (cj�)
2α(x̂(j)))

= hn

2nr1 · · · rn

∑
j∈Jr

Hj(cj; c̄), (4.18)

where Hj(cj; c̄) is defined as

Hj(cj; c̄) = m(Rj)
∑
�∈Lr

(|(Aj · cj + Bj · c̄ − f̄j)�|2 + (cj�)
2α(x̂(j))).

In order to describe the relaxation type of minimization method we are going to use to solve
our discrete regularization problem, we introduce the following notations. Fix m ∈ Jr, and
define

Jm(cm) = Hm(cm; c̄).

For j �= m ∈ Jr, note that Hj(cj; c̄) depends on cm only through the component cm0 in c̄.
So it is valid to define

Ĵm(cm0) =
∑

j∈Jr,j �=m

Hj(cj; c̄).

Then
2nr1 · · · rn

hn

(∥∥Arϕ + BrTrϕ − FN,δ
r

∥∥2
N,r

+ ‖ϕ‖2
N,r,α

) = Jm(cm) + Ĵm(cm0).

Using notations Jm(cm) and Ĵm(cm0), we introduce the following iterative relaxation-type
minimization algorithm for the discrete regularization problem:

Local regularization for n-dimensional integral equations 1625

Local regularization algorithm 1

(1) Initialize vectors cj, j ∈ Jr.
(2) Do for m ∈ Jr:

(a) Holding the previously determined values of cj, j �= m, find β̄ ∈ R
2i1×···×2in solving

min{Jm(β) + Ĵm(β0) : β = (β�)�∈Lr
∈ R

2i1×···×2in}.
(b) Set cm = β̄.

(3) Go to step 2.

Local regularization algorithm 1 is that which comes directly from a discretization of the
integral equations in sections 2 and 3. In practice it has been observed that nearly identical
results are obtained if the algorithm is simplified considerably. Such simplifications (given
in the local regularization algorithms 2 and 3 below) lead to significantly faster numerical
computations.

Local regularization algorithm 2

(1) Initialize numbers cj, j ∈ Jr.
(2) Do for m ∈ Jr:

(a) Holding the previously determined values of cj, j �= m, find β̄ ∈ R
2i1×···×2in solving

min{Jm(β) : β = (β�)�∈Lr
∈ R

2i1×···×2in},
or, equivalently, solving

min
β∈R

2i1×···×2in

‖Am · β + Bm · c̄ − f̄m‖2 + α(x(m))‖β‖2,

where c̄ is composed of the numbers cj, j ∈ Jr.
(b) Set cm = β̄0.

(3) Go to step 2.

Each time step 3 is reached in algorithm 2, one might say that c̄ represents a new iterate,
a new approximation to the true solution of (1.1) and (1.2). To be more explicit, going into
step 2 there is a state c̄old, and we reach step 3 having made adjustments to each cm,m ∈ Jr

in order to reach a new state c̄new. Let ε = c̄new − c̄old, the vector containing only these
adjustments. Before entering step 2 again, one can set c̄old equal to c̄new and ε = 0. Then, as
we step through the m ∈ Jr, ε fills up sequentially with nonzero entries.

As we shall see in the next subsection, algorithm 2 is costly (O(N4)) to implement. By
far the greatest cost comes from computing the matrix–vector product (Bm · c̄) which, for
each m ∈ Jr, is O(N2). If we let the matrix A denote the full, unregularized matrix operator
that results from discretizing the operator in (1.2)—a matrix whose pth row consists of the
	pq with q running through all elements of J = {1, 2, . . . , N}n—then one can fairly easily
extract out the product (Bm · c̄) for any given m ∈ Jr from the product (A · c̄). To see this,
let Lm denote the operator that extracts the (2ir + 1)-width neighbourhood surrounding entry
m. Then

Am · Lm(c̄) + Bm · c̄ = Lm(A · c̄).

Note that there is an abuse of notation here in that, as we have defined it, c̄ is not of the
appropriate size for the product (A · c̄) to make sense. Our practice is to pad c̄ with zeros in the
‘border entries.’ (It is possible to pad these entries with local solution values; see [20] for this
type of approach.) For instance, in n = 1 dimension with N = 8 and i = 2, if c̄ = (3, 1, 2, 5)

then in order to make a well-defined product (A · c̄) we first pad c̄ with i = 2 zeros at each
end to get the vector (0, 0, 3, 1, 2, 5, 0, 0). So, our equation above really should be written as

Am · Lm(c̄) + Bm · c̄ = Lm(A · P(c̄)),

where P is this padding operator (linear).

1626 C Cui et al

Now, let m ∈ Jr be fixed, designating an intermediary stage of carrying out step 2 of
algorithm 2. Let the changes made thus far to the previous iterate c̄old up to stage m be
contained in ε, and let c̄ be the currently-developing iterate, so c̄ = c̄old + ε. Then

Bm · c̄ = Lm(A · P(c̄)) − Am · Lm(c̄)

= Lm(A · P(c̄old)) − Am · Lm(c̄old) + Bm · ε. (4.19)

Note that one can compute A · P(c̄old) before entering into step 2. Employing the block Toeplitz
with Toeplitz blocks (BTTB) structure of A, this computation is O(N2 log N). Computing
(Bm · c̄) via (4.19) would not represent any savings, however, as (Bm · ε) is roughly the same
cost to compute as (Bm · c̄). But knowing that the entries of (Bm · c̄) nearest to the local region
surrounding entry m are the most influential in determining the solution of the minimization
problem of Step 2, we replace (Bm · ε) with a reduced calculation. Namely, we fix an integer
L > 1, and keep only the parts of ε in an (2Lir + 1)-width neighbourhood of m along
with the corresponding parts of Bm which act on these parts of ε. The algorithm using
this approximation of (Bm · c̄) will be called local regularization algorithm 3. In principle,
it seems the size of L might have to grow with N. In practice we have found L � 3 to be
generally sufficient for most problems, at least when N is small enough that the problem itself
does not get out of hand for today’s computers. This means that the products (Bm · c̄) are
dominated by the O(N2 log N) calculation of (A · P(c̄)), and may continue to be as N grows.

4.2. Operation counts in two dimensions

As we saw in the last section, for each m ∈ Jr, algorithm 2 calls for the solution to the
minimization problem

min
β

‖Am · β + Bm · c̄ − f̄m‖2
2 + α(x̂(m))‖β‖2

2. (4.20)

As is well known (see, for instance, [13]), the solution to this minimization problem is

argmin
β

‖Dmβ − gm‖2
2,

where

Dm =
(

Am√
α(x̂(m)) I

)
, gm =

(
f̄m − Bm · c̄

0

)
,

and, in the case n = 2, I represents the (2i1 +1)(2i2 +1)×(2i1 +1)(2i2 +1) identity matrix, and
0 a zero vector of length (2i1 + 1)(2i2 + 1). One approach to solving this least-squares problem
is to apply Gaussian elimination (LU -decomposition) to the associated normal equations

D∗
mDmβ = D∗

mgm. (4.21)

(In general, one would solve (4.20) via more stable methods like those of Householder
or Givens—see, e.g., chapter 9 of [13]—but given the relatively small dimension of the
system, the direct solution of the normal equations (4.21) by elimination should not introduce
instabilities. The operation counts for these other methods are of the same order.) Since

D∗
mDm = A∗

mAm + α(x̂(m))I,

and Am is constant (not varying with m) for convolution kernels, it is the case that the
computation of A∗

mAm, which represents most of the work in computing D∗
mDm, is performed

only once (not once for each m ∈ Jr). For algorithm 2, we use standard operation counts
from linear algebra to get the following breakdown for those subprocesses which are carried
out anew for each m ∈ Jr, assuming ik � N for all k:

Local regularization for n-dimensional integral equations 1627

Subprocess Flops (leading order term)

Compute f̄j − Bj · c̄ 2(2i1 + 1)(2i2 + 1)N2

Compute D∗
jgj = A∗

j (f̄j − Bj · c̄) 2(2i1 + 1)2(2i2 + 1)2

Decompose D∗
jDj into LU (2/3)[(2i1 + 1)(2i2 + 1)]3

Solve Ly = D∗
jgj by forward substitution [(2i1 + 1)(2i2 + 1)]2

Solve Uβ = y by backward substitution [(2i1 + 1)(2i2 + 1)]2

If each ik � N, then the most significant term above is the calculation of f̄j − Bj · c̄, which
(to leading order) requires O(8i1i2N

2) floating point operations. Considering that during one
iteration of the local Tikhonov method such a calculation takes place for each j ∈ Jr, which
in the case n = 2 has (N − 2i1)(N − 2i2) elements, this means that each local Tikhonov
iteration requires O(8i1i2N

4) floating point operations. By comparison, algorithm 3 employs
O(N2 log N) floating point calculations.

The above represents a big savings over standard Tikhonov regularization, for which
the computational work is of order O(N6) operations in general, and O(N4) if the Toeplitz
structure is taken into account (see p 233 of [13], and the references therein).

As a computational savings, Tikhonov regularization can be coupled with an iterative
method such as the conjugate gradient method, with a regularized stopping criterion. We
will henceforth refer to this numerical approach as Tik-CG. Following [26], the assumption
of a convolution kernel means that the Tikhonov matrix A has special structure. This fact
may be exploited so that matrix–vector products involving (A∗A + αI), which account for the
greatest cost in Tik-CG, may be carried out using two-dimensional fast Fourier transforms at
a much greater efficiency than standard matrix–vector products. In the case n = 2 this means
O(N2 log2(N)) floating point operations (to leading order) as opposed to O(N4).

Comparing the estimates for Tik-CG with those for our local Tikhonov method, Tik-CG is
potentially less costly (and, in practice, this is borne out). In n = 1 dimension one is unlikely
to notice the difference. Even in n = 2 dimensions, we think our examples in the next section
demonstrate that the regularization properties of the local Tikhonov method may, at least some
of the time, warrant using the method over Tik-CG. And, local Tikhonov offers the possibility
of varying the amount of regularization throughout different regions of the domain, by letting
α(·) vary over grid points. A few ad hoc examples with variable regularization appear in
[6, 20] in a one-dimensional setting, but this remains a direction for future research.

4.3. Numerical examples

We display numerical examples in n = 2 dimensions. (For examples in one dimension, see
[6].) The Gaussian kernel function k is given by (1.4) and the corresponding operator A
represents the blurring operator. Several choices of β are used. In each case, a true solution
ū was pre-selected, and the noisy data f δ used in the regularization process are a random
perturbation of f = Aū, with the latter computed using quadrature. All calculations are
conducted using Matlab.

In all cases the original image ū takes values in [0, 1] (after rescaling of the functional
representation of ū, if needed). Approximations of ū via local regularization or the conjugate
gradient approach to Tikhonov regularization may actually take values outside [0, 1], however,
so we display the approximate graphical images in the same way that a camera would, i.e.,
by setting values smaller than 0.0 to 0.0 (compression of blacks) and larger than 1.0 to 1.0
(blowing-out of whites). When looking at the actual values of the approximate solutions in

1628 C Cui et al

the examples which follow, we frequently observed that the local regularization method
demonstrated significantly less compression and/or blow-out than the classical method,
suggesting that local regularization appears to exert tighter controls over the overall image.

We make comparisons between local regularization and the coupling of Tikhonov
regularization with the conjugate gradient method (Tik-CG). It is perhaps desirable to make
a comparison also with edge-sharpening methods such as bounded variation (BV) methods,
but since local Tikhonov and Tik-CG both reside in the class of differentiable optimization
techniques (and BV methods do not), the comparison between the two seems more apt. In
all examples below, we have run numerous tests with different values of the regularization
parameters α (for Tik-CG) and r and α (for local regularization) to determine which parameters
were ‘best’ in the sense of providing an approximate solution with smallest relative error. In
what follows we only present the results obtained with these ‘best’ parameters in our findings
for both Tik-CG and local regularization. Tik-CG solutions are computed employing block
circulant extension preconditioning as described in [26], and indicated in that reference as being
similar to the Toeplitz approximate inverse conditioners of [15], and using code adapted from
routines made available by C Vogel at his website4. For the local regularization solutions,
algorithm 3 is employed, generally cycling through until the relative error changed little
between iterates. In the case of local Tikhonov, relative error is really meaningful only on
the (N − 2i1) × (N − 2i2) subarray. So, the stated relative errors for both Tik-CG and local
Tikhonov solutions have been computed on this subarray. Because the values off this subarray
have been set (arbitrarily) to 0.0 for local regularization, a black border appears around each
image. Alternatively, the values could have been set to 1.0 around the border (giving a better
visual presentation for most examples); however, testing showed that values of the solution on
the internal subarray changed little in this case.

Example 4.1. The true solution, a grey box on a white background, is displayed at top left
in figure 1, along with the blurred u containing 15% noise, the Tik-CG and local Tikhonov
solutions. Here, our blurring operator has kernel (1.4) with β = 100. For the Tik-CG solution,
we have displayed the method’s 4th iterate with the ‘best’ value of α = 0.1, which required
approximately 0.34 s of computation time. For the local Tikhonov solution, ‘best’ parameters
were found to be α = 0.0075 (constant), L = 1, and ir = [2 2]. In this case, the third
iterate is displayed, which took 7.24 s of computation time. Roughly the same local Tikhonov
solution is found in a single iteration (1.99 s) when the Tik-CG solution is taken as the initial
state.

Example 4.2. Here the true solution consists of vertical black stripes on a white background.
The blurred u comes from a Gaussian kernel (1.4) with β = 175, and contains 10% relative
error. These are displayed in figure 2 along with the Tik-CG and local Tikhonov solutions.
For the Tik-CG solution, the ‘best’ parameter is α = 0.105; the resulting fourth iterate is
displayed, requiring 0.31 s of computation time. For the local Tikhonov solution, the best
parameters are α = 0.0075, L = 1 and ir = [2 2]. The third iterate is displayed, which took
7.27 s of computation time. Roughly the same local Tikhonov solution is found in a single
iteration (2.48 s) when the Tik-CG solution is taken as the initial state.

Example 4.3. Here the true solution consists of a diagonal cross on a white background,
where a grey stripe passes over a black one. In figure 3(a), N = 64, β = 100, and the blurred
u contains 10% relative error. The Tik-CG solution once again is the fourth iterate, coming
from the best parameter value α = 0.095. In the local Tikhonov solution, the best parameters

4 See http://www.math.montana.edu/∼ vogel/Book/Codes/Ch5.

Local regularization for n-dimensional integral equations 1629

Figure 1. Example 4.1.

Figure 2. Example 4.2.

are α = 0.0075 (constant), L = 4, and ir = [2 2]. The third iterate is displayed, and the
computation times are roughly the same as in examples 4.1 and 4.2.

In figure 3(b), N = 128 and β = 250. The blurred u contains 15% relative error. For
the Tik-CG solution, the best parameter value is α = 0.1 and, again, we display the fourth
iterate. For the local Tikhonov solution, the best parameter values are α = 0.005, L = 1 and

1630 C Cui et al

Figure 3. Example 4.3. (a) N = 64, β = 100, δ = 10%. (b) N = 128, β = 250, δ = 15%.

ir = [2 2]. For both Tik-CG and local Tikhonov, computation times are a little more than
doubled over those of figure 3(a). In the case that a Tik-CG solution was used as an initial
state for local Tikhonov iteration, the single computation took 8.16 s.

Example 4.4. In this case we have constructed a true solution like the simulated satellite
image found in [26]. In [26], this image was blurred in a manner that models the atmospheric
distortion found in images from outer space taken with ground-based telescopes. Such
realism comes at the price of producing blurs using a discretized blurring operator and matrix
multiplication, so we have chosen instead to generate blurred data f δ using the integral
operator and Gaussian kernel, as was done in all prior examples. In figure 4(a) β = 100, and
relative noise of 10% has been added to this 64-by-64 image. For Tik-CG we have graphed
the 23rd iterate, employing best α = 0.004, which took about 0.6 s of computation time. For
local Tikhonov, the computation time was about 25 s to get through the fourth iterate (shown),
using best parameters α = 0.002, L = 4 and ir = [3 3].

The true image in figure 4(b) is 128-by-128. Here, β = 250 was used in the blurring
operator.

In all but example 4.4, it seems that local Tikhonov outperforms Tik-CG, often quite
markedly, at a cost of requiring greater computation time. The image of example 4.4 is
somewhat different from the others in that it has a black background. Nevertheless, local
Tikhonov performs almost as well. Example 4.3 is interesting in that it is not visually obvious
from the blurred image that the background should be white instead of grey. In figure 3(b) it
may be argued that Tik-CG does a better job in restoring the background to white (which it
does by blowing-out white values), but local Tikhonov produces the more visually satisfying
rendering of the original.

Example 4.5. Finally, in this example we illustrate the a priori parameter choice rule given
in theorem 3.1 as applied to the image given in example 4.1. Using δ̂ = 85, α̂ = .032, and
r̂ = (4, 4), we define the sequences

δk = 2−kδ̂, αk = 2−kα̂, rk = 2−k/2r̂, for k = 0, 1, . . . ,

Local regularization for n-dimensional integral equations 1631

Figure 4. Example 4.4. (a) N = 64, β = 100, δ = 10%. (b) N = 128, β = 250, δ = 10%.

Figure 5. Example 4.5.

so that δk, ‖rk‖, αk → 0 as k → ∞. Further, as required by theorem 3.1, we have δ2
k

/
αk → 0

as k → 0 and ‖rk‖2/δk remains bounded as k → ∞. In the top row of figure 5 we show the
blurred images f δk for k = 0, 1, . . . , 5 (left to right), where ‖f − f δk‖ ≈ δk . In the bottom
row of figure 5 we show the results of local regularization applied to the noisy data f δk using
regularization parameters αk, rk, for k = 0, 1, . . . , 5 (left to right). As in example 1, we use
β = 100 and N = 64 in each case; the true image may be found in figure 1. The black border
around the deblurred images decreases as k increases and rk decreases, and is more evident
in this example because of our choice to set unregularized areas to the value 0.0 (black); as
discussed earlier, an alternate choice would have given less obvious bordering.

Finally, because of the discretization, the regularization parameter rk in this example
must be transformed (via rounding) to the integer pair irk

, with the limitation (again due to
the discretization) that irk

= [1 1] for k � 4. This limitation means that over-regularization
actually occurs in the discretizations of images for k > 5 since irk

= [1 1] is too large for its
non-integer counterpart rk . (In fact, this over-regularization is already starting to be seen in
the bottom right image in figure 5, the case of k = 5.)

1632 C Cui et al

5. Conclusion

We have extended the ideas of [20] for the local regularization of 1D integral equations in
such a way as to facilitate a theory of local regularization for general 2D integral equations.
Our convergence theory shows that regularized solutions converge to the true solution of the
original problem with appropriate choices of the regularization parameters r and α as the level
δ of noise goes to zero. Numerical implementation illustrates that in many examples local
regularization out-performs other regularization methods based on differentiable optimization
schemes when it comes to relative errors in solutions and perceived sharpness/resolution of
images. Future extensions of this work include the problem of selection of regularization
parameters, a difficult problem in local regularization. Indeed, only recently has this question
been answered for the problem of selection of the parameter r in the 1D Volterra problem [3],
so there is hope for the extension of these ideas to the 2D non-Volterra problem. Even more
challenging is the subject of the selection of a variable regularization parameter α, also the
subject of future study.

Acknowledgments

This work was supported for the second author in part by the National Science Foundation
under contract numbers NSF DMS-0104003 and DMS-0405978. Parts of the research were
undertaken while the second author was in residence at the Institute for Pure and Applied
Mathematics (IPAM) at UCLA and the third author was in residence at the Institute for
Mathematics and its Applications (IMA) at the University of Minnesota. We wish to thank
both institutes for providing the financial support and hospitable environment conducive to
productive research. Finally, the third author wishes to acknowledge the support of Calvin
College for a research fellowship which greatly facilitated the completion of this work.

References

[1] Acar R and Vogel C R 1994 Analysis of bounded variation penalty methods for ill-posed problems Inverse
Problems 10 1217–29

[2] Bertero M and Boccacci P 1998 Introduction to Inverse Problems in Imaging (Bristol: Institute of Physics
Publishing)

[3] Brooks C D and Lamm P K 2007 A discrepancy principle for parameter selection in the local regularization of
linear Volterra inverse problems Preprint

[4] Chambolle A and Lions P-L 1997 Image recovery via total variation minimization and related problems Numer.
Math. 76 167–88

[5] Chalmond B 2003 Modeling and Inverse Problems in Imaging Analysis (Applied Mathematical Sciences
vol 155) (New York: Springer)

[6] Cui C 2005 Local regularization methods for n-dimensional first-kind integral equations PhD Thesis Department
of Mathematics, Michigan State University

[7] Cinzori A and Lamm P K 2000 Future polynomial regularization of ill-posed Volterra equations SIAM J. Numer.
Anal. 37 949–79

[8] Dai Z and Lamm P K 2007 Local regularization for the nonlinear autoconvolution equation SIAM J. Numer.
Anal. submitted

[9] Daubechies I, Defrise M and De Mol C 2004 An iterative thresholding algorithm for linear inverse problems
with a sparsity constraint Commun. Pure Appl. Math. 57 1413–57

[10] De Mol C and Defrise M 2002 A note on wavelet-based inversion algorithms Contemp. Math. 313 85–96
[11] Dobson D C and Vogel C R 1997 Convergence of an iterative method for total variation denoising SIAM J.

Numer. Anal. 34 1779–971
[12] Dobson D C and Santosa F 1996 Recovery of blocky images from noisy and blurred data SIAM J. Appl.

Math. 56 1181–98
[13] Engl H W, Hanke M and Neubauer A 1996 Regularization of Inverse Problems (Dordrecht: Kluwer)

http://dx.doi.org/10.1088/0266-5611/10/6/003
http://dx.doi.org/10.1007/s002110050258
http://dx.doi.org/10.1137/S0036142998347358
http://dx.doi.org/10.1002/cpa.20042
http://dx.doi.org/10.1137/S003614299528701X
http://dx.doi.org/10.1137/S003613999427560X

Local regularization for n-dimensional integral equations 1633

[14] Groetsch C W 1984 The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind (Boston,
MA: Pitman)

[15] Hanke M and Nagy J G 1994 Toeplitz approximate inverse preconditioner for banded Toeplitz matrices Numer.
Algorithms 7 183–99

[16] Hansen P C Manual for Regularization Tools Version 3.1, a MATLAB package for analysis and solution of
discrete ill-posed problems (http://www2.imm.dtu.dk/∼pch/Regutools/)

[17] Lamm P K 2000 A survey of regularization methods for first-kind Volterra equations Surveys on Solution
Methods for Inverse Problems ed D Colton, H W Engl, A Louis, J R McLaughlin and W Rundell (New
York: Springer) pp 53–82

[18] Lamm P K 2005 Full convergence of sequential local regularization methods for Volterra inverse problems
Inverse Problems 21 785–803

[19] Lamm P K 1995 Future-sequential regularization methods for ill-posed Volterra equations: Applications to the
inverse heat conduction problem J. Math. Anal. Appl. 195 469–94

[20] Lamm P K 2003 Variable-smoothing local regularization methods for first-kind integral equations Inverse
Problems 19 195–216

[21] Lamm P K and Dai Z 2005 On local regularization methods for linear Volterra equations and nonlinear equations
of Hammerstein type Inverse Problems 21 1773–90

[22] Lamm P K and Eldén L 1997 Numerical solution of first-kind Volterra equations by sequential Tikhonov
regularization SIAM J. Numer. Anal. 34 1432–50

[23] Lamm P K and Scofield T L 2000 Sequential predictor-corrector methods for the variable regularization of
Volterra inverse problems Inverse Problems 16 373–99

[24] Lamm P K and Scofield T L 2001 Local regularization methods for the stabilization of linear ill-posed problems
of Volterra type Numer. Funct. Anal. Opt. 22 913–40

[25] Rudin L I, Osher S and Fatemi E 1992 Nonlinear total variation based noise removal algorithms Physica
D 60 259–68

[26] Vogel C 2002 Computational Methods for Inverse Problems (Philadelphia, PA: SIAM) pp 65–92

http://dx.doi.org/10.1007/BF02140682
http://www2.imm.dtu.dk$/$$sim pch/$Regutools$/$
http://dx.doi.org/10.1088/0266-5611/21/3/001
http://dx.doi.org/10.1006/jmaa.1995.1368
http://dx.doi.org/10.1088/0266-5611/19/1/311
http://dx.doi.org/10.1088/0266-5611/21/5/016
http://dx.doi.org/10.1137/S003614299528081X
http://dx.doi.org/10.1088/0266-5611/16/2/308
http://dx.doi.org/10.1016/0167-2789(92)90242-F

	1. Introduction
	2. Basic definitions
	2.1. The local regularization

	3. Convergence
	4. Numerical implementation
	4.1. The discrete local regularization problem
	4.2. Operation counts in two dimensions
	4.3. Numerical examples

	5. Conclusion
	Acknowledgments
	References

