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Abstract

We prove a point-wise and average bound for the number of incidences between
points and hyper-planes in vector spaces over finite fields. While our estimates are,
in general, sharp, we observe an improvement for product sets and sets contained in
a sphere. We use these incidence bounds to obtain significant improvements on the
arithmetic problem of covering Fq, the finite field with q elements, by A ·A+ · · ·+A ·A,
where A is a subset Fq of sufficiently large size. We also use the incidence machinery we
develope and arithmetic constructions to study the Erdős-Falconer distance conjecture
in vector spaces over finite fields. We prove that the natural analog of the Euclidean
Erdős-Falconer distance conjecture does not hold in this setting due to the influence of
the arithmetic. On the positive side, we obtain good exponents for the Erdős -Falconer
distance problem for subsets of the unit sphere in F

d
q and discuss their sharpness. This

results in a reasonably complete description of the Erdős-Falconer distance problem in
higher dimensional vector spaces over general finite fields.
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1 Introduction

Let Fq denote a finite field with q elements, where q, a power of an odd prime, is viewed
as an asymptotic parameter. In a special case when q = p is a prime, we use the notation
Zp. Let F

∗
q denote the multiplicative group of Fq. How large does A ⊂ Fq need to be to

make sure that
dA2 = A2 + · · · + A2

︸ ︷︷ ︸
d times

⊇ F
∗
q?

Define

A2 = A · A = {a · a′ : a, a′ ∈ A} and A + A = {a + a′ : a, a′ ∈ A}.

It is known (see e.g. [9]) that if d = 3 and q is prime, this conclusion holds if the

number of elements |A| ≥ Cq
3
4 , with a sufficiently large constant C > 0. It is reasonable

to conjecture that if |A| ≥ Cǫq
1
2
+ǫ, then 2A2 ⊇ F

∗
q . This result cannot hold, especially in

the setting of general finite fields if |A| =
√

q because A may in fact be a subfield. See also
[2], [4], [8], [7], [11], [14], [19], [20] and the references contained therein on recent progress
related to this problem and its analogs. For example, Glibichuk, [8], proved that

8A · B = Zp,

p prime, provided that |A||B| > p and either A = −A or A ∩ (−A) = ∅. Glibichuk and
Konyagin, [9], proved that if A is subgroup of Z

∗
p, and |A| > pδ, δ > 0, then

NA = Zp
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with
N ≥ C4

1
δ .

The above-mentioned results were achieved by methods of arithmetic combinatorics.
One of the goals of this paper is to use the geometry of the vector space F

d
q , where q

is not necessarily a prime number, to deduce a good lower bound on the size of A that
guarantees that dA2 ⊇ F

∗
q .

The second aim of this paper is directly related to the finite field version of the Erdős-
Falconer distance problem. The Erdős distance conjecture says that if E is a finite subset

of R
d, d ≥ 2, then |∆(E)| ≥ Cǫ|E| 2d−ǫ, where ∆(E) = {‖x−y‖ : x, y ∈ E}, ‖ ·‖ denotes the

standard Euclidean metric. This problem is far from resolution in any dimension. See, for
example, a monograph by Matousek ([16]) and the references contained therein to review
the main milestones of the progress towards this conjecture.

The Falconer distance conjecture says that if E ⊂ R
d, d ≥ 2, has Hausdorff dimension

greater than d
2 , then ∆(E) has positive Lebesgue measure. See [5] for the latest progress

and description of techniques. For the connections between the Erdős and Falconer distance
problems see, for example, [13].

In the finite field setting the question turns out to have features of both the Erdős and
Falconer distance problems. The first non-trivial result was obtained by Bourgain, Katz
and Tao ([3]) using arithmetic-combinatorial methods and the connection of the geometric
incidence problem of counting distances with sum-product estimates.

Theorem 1.1. Suppose E ⊂ Z
2
p, where p ≡ 3 mod 4 is a prime, and |E| ≤ p2−ǫ. Then

there exists δ = δ(ǫ) such that

|∆(E)| ≥ c|E| 12+δ.

Here and throughout the paper, for E ⊆ F
d
q ,

∆(E) = {‖x − y‖ = (x1 − y1)
2 + · · · + (xd − yd)

2 : x, y ∈ E}

denotes the distance set of E.
It is interesting to observe that while the quantity ‖·‖ is not a distance, in the traditional

sense, it is still a natural object in that it is invariant under the action of orthogonal
matrices.

We note that the conclusion of Theorem 1.1 with the exponent 1
2 follows from the

argument due to Erdős ([6]). The condition |E| . q2−ǫ addresses the fact that if E = Z
2
p,

then ∆(E) = Zp and so |∆(E)| =
√
|E| and no better. The condition p ≡ 3 mod 4

addresses the fact that if conversely p ≡ 1 mod 4, the field Fp contains an element i such
that i2 = −1. This would allow one to take

E = {(t, it) : t ∈ Zp} (1.1)
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and it is straightforward to check that while |E| = p, |∆(E)| = 1 as all the distances
between the elements of the set are identically 0.

In view of the examples cited in the previous paragraph, Iosevich and Rudnev ([12])
formulated the Erdős-Falconer conjecture as follows.

Conjecture 1.2. Let E ⊂ F
d
q such that |E| ≥ Cǫq

d
2
+ǫ. Then there exists c > 0 such that

|∆(E)| ≥ cq.

A Fourier analytic approach to this problem, developed in [12], led to the following
result.

Theorem 1.3. Suppose that E ⊂ F
d
q and |E| ≥ 4q

d+1
2 . Then ∆(E) = Fq.

In d = 2, in particular, whenever q ≪ |E| ≪ q2, the results of the paper provide a
quantitatively explicit estimate. This enabled the first two authors and J. Solymosi to use
its analog to obtain a strongly nontrivial sum-product estimate ([11]). The basis for the
latter results was Weil’s bound ([21]) for Kloosterman sums,

∣∣∣∣∣∣

∑

t6=0

χ(at + t−1)

∣∣∣∣∣∣
≤ 2

√
q,

where χ further denotes a non-trivial additive character of Fq.
Observe that in the formulation of Conjecture 1.2 one asks for the positive proportion

of distances in Fq, while Theorem 1.3 guarantees that all distances in Fq occur, being
generated by E. The latter question is closely related to what in the discrete Euclidean
setting is known as the Erdős single distance conjecture, which says that a single distance in
R

2 cannot occur more than cn1+ǫ times where n is the cardinality of the underlying point set
E. It is tempting to strengthen the claim of Conjecture 1.2 to cover all distances. However,
we shall see below that even the weak form of this conjecture (1.2) is not true. This shows
that the Theorem (1.3) is essentially sharp. This underlines the difference between the
finite field setting and the Euclidean setting where the Erdős-Falconer distance conjecture,
while far from being proved, is still strongly believed.

We shall see however, that the exponent predicted by Conjecture 1.2 does hold for
subsets of the sphere in

Sd−1 = S = {x ∈ F
d
q : x2

1 + · · · + x2
d = 1}

in even dimensions. While it is possible that in some cases this exponent may be further
improved for this class of sets under some circumstances, we provide examples showing
that if one is after all the distances, and not a positive proportion, then getting a better
index is not in general possible. This is geometrically analogous to the general case, for
since Sd−1 is (d− 1)-dimensional variety in F

d
q , it makes sense that the sharp index should
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be (d−1)+1
2 = d

2 . The motivation for studying the Erdő-Falconer distance problems for
subsets of the sphere is not limited by the consideration that it provides a large set of sets
for which Conjecture 1.2 holds. For example, Erdős original argument that shows that N
points in R

2 determine & N
1
2 distances proceeded as follows. Choose one of the points in

the set and draw circles of every possible radius centered at this point such that each circle
contains at least one other point of the set. Suppose that the number of such circles is t.
If t ≥ N

1
2 , we are done. If not, there exists a circle containing ≥ N/t points and these

points, by an elementary argument, determine ≥ N/2t distinct distances. Comparing t
and N/2t yields the conclusion. In higher dimension we may proceed by induction with
the induction hypothesis being the number of distances determined by points on a sphere.
Thus one may view the distribution of distances determined by points on a sphere as a
natural and integral component of the general Erdős distance problem.

We conclude our introduction by emphasizing that the proofs below show that the
arithmetic structure of general fields allows for example that may not have analogs in
Euclidean space. A detailed comparative study between the Euclidean and finite field
environments shall be conducted in a subsequent paper.

2 Statement of results

2.1 Key incidence estimate

Our main tool is the following incidence theorem. See [10] for an earlier version.

Theorem 2.1. Let E ⊂ F
d
q and define the incidence function

ν(t) = |{(x, y) ∈ E × E : x · y = t}| . (2.1)

Then

∑

t∈Fq

ν2(t) ≤ |E|4q−1 + |E|q2d−1
∑

k 6=(0,...,0)

|E ∩ lk||Ê(k)|2 + (q − 1)q−1|E|2E(0, . . . , 0), (2.2)

where
lk = {tk : t ∈ F

∗
q}. (2.3)

Moreover,
ν(t) = |E|2q−1 + R(t), (2.4)

with 




|R(t)| ≤ |E|q d−1
2 , for t 6= 0,

|R(0)| ≤ |E|q d
2 .

(2.5)
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Note that E(x) denotes the characteristic function of E, so E(0, . . . , 0) = 1 if the origin
is in E and 0 otherwise. Also note that in many of the applications below it is legitimate
to assume, without loss of generality, that E does not in fact contain the origin.

Remark 2.2. The proof of Theorem 2.1 is via Fourier analysis. It has been pointed out to
the authors by Seva Lev that an alternate approach to (2.4) is via a graph theoretic result
due to Alon and Krivelevich. See, [1] and the references contained therein. We also note
that the relevant result of Alon and Krilevich can be recovered from the estimate (2.5)
above.

Remark 2.3. There are parallels here that are worth pointing out. In the study of the
Euclidean Falconer conjecture, the L2 norm of the distance measure is dominated by the
Mattila integral, discovered by P. Mattila, ([17]):

∫ ∞

1

(∫

Sd−1

|µ̂(tω)|2dω

)2

td−1dt,

where µ is a Borel measure on the set E whose distance set is being examined. It is
reasonable to view the expression

∑

k 6=(0,...,0)

|E ∩ lk||Ê(k)|2

as the Mattila integral for the dot product problem, a direct analog of the Mattila integral
for the distance set problem in the Euclidean space.

By analogy with the distance set ∆(E), let us introduce the set of dot products

Π(E) = {x · y = x1y1 + . . . + xdyd : x, y ∈ E}, (2.6)

Corollary 2.4. Let E ⊂ F
d
q such that |E| > q

d+1
2 . Then

F
∗
q ⊆ Π(E).

This result cannot in general be improved in the following sense:

i. Whenever Fq is a quadratic extension, for any ǫ > 0 there exists E ⊂ F
d
q of size

≈ q
d+1
2

−ǫ, such that |Π(E)| = o(q). In particular, the set of dot products does not
contain a positive proportion of the elements of Fq.

ii. For d = 4m + 3, m ≥ 0, for any q ≫ 1 and any t ∈ F
∗
q, there exists E of cardinality

≈ q
d+1
2 , such that t 6∈ Π(E).

Throughout the paper, X . Y means that there exists C > 0 such that X ≤ CY .
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2.2 Arithmetic results

Theorem 2.5. Let A ⊂ Fq, where Fq is an arbitrary finite field with q elements, such that

|A| > q
1
2
+ 1

2d . Then
F
∗
q ⊂ dA2. (2.7)

Moreover, suppose that for some constant C
1
d

size,

|A| ≥ C
1
d

sizeq
1
2
+ 1

2(2d−1) .

Then

|dA2| ≥ q · C
2− 1

d

size

C
2− 1

d

size + 1
. (2.8)

It follows immediately from Theorem 2.5 that in the most interesting particular case
d = 2,

F
∗
q ⊂ A2 + A2 if |A| > q

3
4 ,

and

|A2 + A2| ≥ q · C
3
2
size

C
3
2
size + 1

if |A| ≥ C
1
2
sizeq

2
3 .

We would like to complement the general result in Theorem 2.5 with the following
conditional statement.

Theorem 2.6. Let A ⊂ Fq, with |A| ≥ C
1
2
sizeq

1
2 , and suppose that

|(A × A) ∩ t(A × A)| ≤ Cuni|A|2q−1, (2.9)

for all t ∈ F
∗
q \ {1}. Then

|2A2| ≥ q · Csize

2Csize + Cuni
.

2.3 Distance set results

Theorem 2.7. The Conjecture 1.2 is false. More precisely, there exists c > 0 and E ⊂ F
d
q ,

d is odd, such that

|E| ≥ cq
d+1
2 and ∆(E) 6= Fq.

Theorem 2.8. Let E ⊂ F
d
q , d ≥ 3, be a subset of the sphere S = {x ∈ F

d
q : ‖x‖ = 1}.
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i. Suppose that |E| ≥ Cq
d
2 with a sufficiently large constant C. Then there exists c > 0

such that
|∆(E)| ≥ cq. (2.10)

ii. If d is even, then under the same assumptions as above,

∆(E) = Fq. (2.11)

iii. If d is even, there exists c > 0 and E ⊂ S such that

|E| ≥ cq
d
2 and ∆(E) 6= Fq. (2.12)

iv. If d is odd and |E| ≥ Cq
d+1
2 with a sufficiently large constant C > 0, then

∆(E) = Fq. (2.13)

v. If d is odd, there exists c > 0 and E ⊂ S such that

|E| ≥ cq
d+1
2 and ∆(E) 6= Fq. (2.14)

Remark 2.9. In summary, we always get a positive proportion of all the distances if |E| ≥
Cq

d
2 . If d is even, we get all the distances under the same assumption and the size condition

on E cannot be relaxed. Similarly, if d is odd we know that we cannot in general get all

the distances if |E| ≪ q
d+1
2 , but, as we note above, we get a positive proportion of the

distances under the assumption that |E| ≥ Cq
d
2 , and it is not out of the question that one

can go as low as q
d−1
2

+ǫ, asking for the positive proportion of distances.

We conclude this section by formulating a result which says that if a subset of the
sphere is statistically evenly distributed, then the distance set is large under much milder
assumptions than above.

Definition 2.10. Let E ⊂ S = {x ∈ F
d
q : x2

1 + · · · + x2
d = 1}. Suppose that

|E ∩ H| ≤ C|E|q−1

for every (d− 1)-dimensional hyper-plane H passing through the origin. Then we say that
E is uniformly distributed on the sphere.

We note that since the density of E is |E|
qd and the density of a hyperplane H is |H|

qd = q−1,

the expected number of points on E ∩H is indeed qd · |E|
qd · q−1 = |E|

q . Thus the uniformity
assumption says that the number of points of E on each hyperplane through the origin
does not exceed the expected number by more than a constant.

Theorem 2.11. Suppose that E is uniformly distributed on the sphere and that |E| ≥ Cq.
Then

|∆(E)| ≥ cq. (2.15)
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3 Proof of geometric results: Theorem 2.1 and Corollary 2.4

3.1 Proof of the L
2 estimate (2.2):

The Fourier transform of a complex-valued function f on F
d
q with respect to a non-trivial

principal additive character χ on Fq is given by

f̂(k) = q−d
∑

x∈Fd
q

χ(−x · k)f(x)

and the Fourier inversion formula takes the form

f(x) =
∑

k∈Fd
q

χ(x · k)f̂(k)

We have
ν(t) = |{(x, y) ∈ E2 : x · y = t}|

=
∑

x·y=t E(x)E(y).

The Cauchy-Schwartz inequality applied to the sum in the variable x yields

∑
t ν2(t) ≤ |E| · ∑t

∑
x·y=t

∑
x·y′=t E(x)E(y)E(y′)

= |E|∑(y′−y)·x=0 E(y′)E(y)E(x)

= |E|q−1
∑

y′,y,x

∑
s χ(s((y′ − y) · x))E(y′)E(y)E(x)

= |E|4q−1 + |E|q2d−1
∑

x

∑
s 6=0 E(x)|Ê(sx)|2

= |E|4q−1 + |E|q2d−1
∑

x

∑
s 6=0 E(sx)|Ê(x)|2

= |E|4q−1 + |E|q2d−1
∑

x 6=(0,...,0) |E ∩ lx||Ê(x)|2 + (q − 1)q−1|E|3E(0, . . . , 0).

(3.1)
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In the third line we have used the standard trick that
∑

s∈Fq
χ(ts) equals q for t = 0 and

zero otherwise. The transition from the fourth line to the fifth one was after changing
variables sx → x and then s → s−1. This completes the proof of the estimate (2.2), which
uses the “Fourier” notation k for x.

3.2 Proof of the point-wise estimate (2.4)

Similarly to the third line of (3.1), we rewrite the expression for the incidence function
(2.1) in the form

ν(t) =
∑

x,y∈E

q−1
∑

s∈Fq

χ(s(x · y − t)).

Isolating the term s = 0 we have, according to (2.4)

ν(t) = |E|2q−1 + R(t), where

R(t) =
∑

x,y∈E q−1
∑

s 6=0 χ(s(x · y − t)).
(3.2)

Viewing R as a sum in x, applying the Cauchy-Schwartz inequality and dominating the
sum over x ∈ E by the sum over x ∈ F

d
q , we see that

R2(t) ≤ |E|∑x∈Fd
q
q−2

∑
s,s′ 6=0

∑
y,y′∈E χ(sx · y − s′x · y′)χ(t(s′ − s))

= |E|qd−2
∑

sy=s′y′

s,s′ 6=0

χ(t(s′ − s))E(y)E(y′)

= I + II,

whether the term I corresponds to the case y = y′ (which forces s = s′), and the term II
corresponds to the case y 6= y′ (and so s 6= s′).

In the latter case we may set a = s/s′, b = s′ and obtain, for t 6= 0,

II = |E|qd−2
∑

y,b 6=0; a 6=0,1 χ(tb(1 − a))E(y)E(ay)

= −|E|qd−2
∑

y,a 6=1,0 E(y)E(ay).
(3.3)

Thus,
|II(t)| ≤ |E|qd−2

∑
y∈E\{(0,...,0)}(|E ∩ ly| + 1)

≤ |E|2qd−1,

(3.4)

since |E ∩ ly| + 1 ≤ q by the virtue of the fact that each straight line contains exactly q
points. The term +1 above has been added because in (2.3) above, the line ly was defined
away from the origin.
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In the case s = s′ we get

I(t) = |E|qd−2
∑

s 6=0;y

E(y) < |E|2qd−1. (3.5)

It follows that for t 6= 0
R2(t) ≤ −Q(t) + |E|2qd−1,

with
Q(t) ≥ 0.

Therefore, for t 6= 0 we have the bound (2.5),

|R(t)| ≤ |E|q d−1
2 . (3.6)

The same argument shows that

|R(0)| ≤ |E|q d
2 .

3.3 Proof of Corollary 2.4

We now turn our attention to the Corollary 2.4. The sufficient condition for Π(E) ⊇ F
∗
q

follows immediately from (3.2) and (3.6). Quite simply, it follows that ν(t) > 0 for all
t 6= 0.

To address the statement (i) of the Corollary, let us consider the case d = 2 and q = p2,
where p is a power of a large prime. The higher dimensional case follows similarly. Let a
be a generator of the cyclic group F

∗
q . Then aq−1 = 1 and ap+1 is the generating element

for F
∗
p since p + 1 = q−1

p−1 .
Let A be a proper cyclic subgroup of F

∗
q which properly contains F

∗
p. Let s be a divisor

of p + 1 and let the generating element of A be α = as. Note that we are taking advantage
of the fact that F

∗
q is cyclic. Consider the unit circle

{x ∈ F
2
q : x2

1 + x2
2 = 1},

and its subset
Cp = {x ∈ F

2
p : x2

1 + x2
2 = 1}.

By elementary number theory (or Lemma 5.2), the cardinality of Cp is p∓1, depending
on whether negative one is or is not a square in F

∗
p. Clearly, for any u, v ∈ Cp, u · v ∈ Fp.

Let
E = {tu : t ∈ A, u ∈ Cp}. (3.7)
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For any x, y ∈ E, the dot product x · y, if nonzero, will lie in A. Indeed, if x = tu,
y = τv, according to (3.7), then

x · y = tτ(u · v) ∈ A ∪ {0},

since A contains F
∗
p. The cardinality of E is

|E| =
p ∓ 1

2
|A| =

p ∓ 1

2
· q − 1

s
,

where s is a divisor of p+1. Taking s = 2 works and shows that less than half the elements
of F

∗
q may be realized as dot products determined by a set of size in excess of 1

4 · q 3
2 . In

order to see that {x · y : x, y ∈ E} does not in general even contain a positive proportion of

the elements of Fq if |E| ≪ q
3
2 , we need to produce a sequence of primes, or prime powers,

such that p + 1 has large divisors. For the reader who does not believe in the existence of
infinitely many generalized Fermat primes (those in the form a2n

+ 1), we can always do it
using field extensions as follows.

Consider the family of prime powers

{p2k+1 : k = 1, 2 . . . }

and observe that
p + 1 | p2k+1 + 1.

This completes the construction demonstrating the claim (i). To take care of the higher
dimensional case, simply replace circles by spheres and the same argument goes through.

The claim (ii) of the Corollary will follow immediately from the construction used in
the proof of the item (v) of Theorem 2.8 (see Section 5.5). On any sphere {x ∈ F

d
q :

x2
1 + · · · + x2

d = r}, with d = 4m + 3, we can find a set E, with |E| & q
d+1
2 , such that the

dot product t = −r is not achieved.

4 Proof of the arithmetic results

4.1 Proof of Theorem 2.5

We may assume, without loss of generality, that A does not contain 0. Let E = A2 + · · · + A2
︸ ︷︷ ︸

d times

.

The proof of the first part of Theorem 2.5 follows instantly from the estimate (2.4). To
prove the second part observe that

|E ∩ ly| ≤ |A| = |E| 1d
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for every y ∈ E. Using this, the estimate (2.2) implies, by the Cauchy-Schwartz inequality

|E|4 =

(
∑

t

ν(t)

)2

≤ |Π(E)| ·
∑

t

ν2(t), (4.1)

that

|{(x · y : x, y ∈ E}| ≥ q · |E|2

qd · |E| 1d + |E|2
,

and, consequently, that

|{x · y : x, y ∈ E}| ≥ q · C
2− 1

d

size

C
2− 1

d

size + 1

if
|E| ≥ Csizeq

d
2
+ d

2(2d−1) .

It follows that if

|A| ≥ C
1
d

sizeq
1
2
+ 1

2(2d−1) ,

then

|dA2| ≥ q · C
2− 1

d

size

C
2− 1

d

size + 1

as desired. This completes the proof of Theorem 2.5.

4.2 Proof of the conditionally optimal arithmetic result (Theorem 2.6)

Once again throw zero out of A if it is there, and let E = A × A. Using (2.2) we see that
∑

t

ν2(t) ≤ |E|4q−1 + q3|E|
∑

k 6=(0,0)

|E ∩ lk||Ê(k)|2.

Now,

q3|E|∑k 6=(0,0) |E ∩ lk||Ê(k)|2 ≤ q3|E| · |E| · |Ê(1, 1)|2

+ q3|E|∑k 6=(0,0),(1,1) |E ∩ lk||Ê(k)|2

≤ |E|4q−1 + Cuni|E|3.
It follows that

|2A2| = |{x · y : x, y ∈ E}|

≥ |E|4

|E|4q−1+Cuni|E|3

≥ q · Csize

2Csize+Cuni
,

13



as desired.

5 Distances: Proofs of Theorems 2.7, 2.8 and 2.11

5.1 Proof of Theorem 2.7

We begin by proving the following lemma.

Lemma 5.1. We say that v ∈ F
d
q , v 6= (0, . . . , 0), is a null vector if v · v = 0. If d ≥ 4 is

even, then there exists d
2 mutually orthogonal null vectors v1, . . . , v d

2
in F

d
q .

To prove the lemma, suppose there exists an element i ∈ Fq such that i2 = −1. Consider
the collection of vectors

v1 = (1, i, 0, 0, . . . , 0, 0), v2 = (0, 0, 1, i, . . . , 0, 0), . . . , v d
2

= (0, 0, . . . , 0, 0, 1, i).

It follows immediately that
vk · vl = 0

for every k, l = 1, . . . , d
2 .

If −1 is not a square, then from simple counting there exists a null vector

v1 = (a, b, c, 0 . . . , 0),

with all a, b, c ∈ F
∗
q . Suppose, d is a multiple of 4. Then we may take the null vector

v2 = (0,−c, b, a, . . . , 0)

noting that this vector is orthogonal to
v1. In this same way we may now take the null vector

v3 = (0, 0, 0, 0, a, b, c, 0, . . . , 0),

and find a corresponding null vector v4 which is orthogonal to v3 as well as trivially or-
thogonal to v1 and v2. Continuing in this manner we obtain d

2 mutually orthogonal null
vectors.

The proof will be complete now if we can also treat the case d = 6. In this case Let

v1 = (a, b, c, 0, 0, 0), v2 = (0, 0, 0, a, b, c) where a2 + b2 + c2 = 0.

Consider two three-vectors

w1 = (−b/c, a/c, 0) and w2 = (0,−c/a, b/a).

14



Let s ∈ Fq be such that
e1 = w1 + sw2

satisfies ||e1|| = 1. Such s exists, by the Lagrange theorem on quadratic forms (or can be
verified by direct calculation).

Consider now a six-vector v3 = [e1, w1]. By construction, v3 is orthogonal to both v1

and v2. It is also a null vector, as e1 · e1 = 1, while w1 · w1 = −1.
This completes the proof of Lemma 5.1.

Let d = 2m + 1, then from the above lemma there are m mutually orthogonal null
vectors v1, . . . , vm, such that their dth coordinate is zero. Now let A ⊂ Fq be an arithmetic
progression of length n and u = (0, . . . , 0, 1). Consider the set

E = {tivi + au for i = 1, . . . , m : ti ∈ Fq, a ∈ A}.

We have
|E| = qm · |A| = qm · n.

For any x, y ∈ E we have from orthogonality that

‖x − y‖ = ‖t1u1 + av − t2u2 − a′v2‖ = (a − a′)2,

so |∆(E)| ≤ 2n − 1.
It follows that if we choose 2n = cq, we have constructed, for any small c, a set E of

1
2cq

d+1
2 generating fewer than cq distances. This completes the proof in the case d ≥ 5.

If d = 3, and −1 is a square, take the null vector v = (1, i, 0) and u = (0, 0, 1). If −1
is not a square, take the null vector v = (a, b, c) such that no entry can be zero, and let
u = (−b, a, 0). The proof then proceeds as above.

5.2 Proof of Theorem 2.8, claim (i)

Since E ⊂ S,
‖x − y‖ = (x − y) · (x − y) = 2 − 2x · y,

so counting distances on the sphere is the same as counting dot products.
Since now E is a subset of the sphere, it does not contain the origin and

|E ∩ lk| ≤ 2.

Thus we conclude from the estimate (2.2) of Theorem 2.1 that

|E|q2d−1
∑

k 6=(0,...,0) |E ∩ lk||Ê(k)|2 ≤ 2|E|q2d−1
∑

k 6=(0,...,0) |Ê(k)|2

≤ 2|E|q2d−1q−d
∑

x E2(x)

= 2|E|2qd−1.

(5.1)
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By application of the Cauchy-Schwartz inequality (4.1) we conclude that if |E| ≥ cq
d
2 , we

have
|∆(E)| ≥ Cq.

5.3 Proof of the claim (iv)

The claim for x · y 6= 0 follows immediately from Corollary 2.4, without requiring d to be
odd. The case x · y = 0 will be addressed further in Section 5.4.

5.4 Proof of Theorem 2.8, claim (ii)

We now turn to the proof of (2.11). We will not distinguish between even and odd d until
it becomes necessary. We proceed as in (3.2) in the proof of Corollary (2.4) by writing

ν(t) = |E|2q−1 + R(t),

and apply the Cauchy-Schwartz inequality to R2(t). This time, however, instead of domi-
nating the sum over E by the sum over F

d
q , we dominate the sum over E by the sum over

the sphere S using the assumption that E ⊂ S. This yields

R2(t) ≤ q−2|E|∑x∈S

∑
s,s′ 6=0

∑
y,y′∈E χ(sx · y − s′x · y′)χ(t(s′ − s))

= qd−2|E|∑s,s′ 6=0 χ(t(s′ − s))
∑

y,y′∈E Ŝ(s′y′ − sy)

= I + II,

(5.2)

where the term I corresponds to the case s′y′ = sy. One of the keys to this argument is
that since E is a subset of the sphere, sy = s′y′ can only happen if y = ±y′ and s = ±s′.

Lemma (5.2) below tells us that Ŝ(0, . . . , 0) = q−1+ lower order terms (unless d = 2),
and it follows that

I ≤ qd−2|E|2. (5.3)

To estimate the term II, we have to use the explicit form of the Fourier transform of the
discrete sphere. For the reader’s convenience we replicate one of the arguments in [12].

Lemma 5.2. Let
Sr = {(x1, . . . , xd) ∈ F

d
q : x2

1 + . . . + x2
d = r},

Then for k ∈ F
d
q ,

Ŝr(k) = q−1δ(k) + Kdq−
d+2
2

∑

j∈F∗

q

χ

(‖k‖
4j

+ rj

)
ηd(−j), (5.4)

where the notation δ(k) = 1 if k = (0 . . . , 0) and δ(k) = 0 otherwise. The constant K
equals ±1 or ±i, depending on q, and η is the quadratic multiplicative character (or the
Legendre symbol) of F

∗
q.
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5.4.1 Proof of Lemma 5.2

For any k ∈ F
d
q , we have

Ŝr(k) = q−d
∑

x∈Fd
q
q−1

∑
j∈Fq

χ(j(‖x‖ − r))χ(−x · k)

= q−1δ(k) + q−d−1
∑

j∈F∗

q
χ(−jr)

∑
x χ(j‖x‖)χ(−x · k)

= q−1δ(k) + Kdq−
d+2
2

∑
j∈F∗

q
χ

(
‖k‖
4j + jr

)
ηd(−j).

(5.5)

In the line before last we have completed the square, changed j to −j, and used d times
the Gauss sum

∑

c∈Fq

χ(jc2) = η(j)
∑

c∈Fq

η(c)χ(c) = η(j)
∑

c∈F∗

q

η(c)χ(c) = K
√

q η(j), (5.6)

where K = ±i or ±1, depending on q and η(0) = 0. See any standard text on finite fields
for background and basic results about Gauss sums. Note that we have assumed that
χ = χ1 is the principal additive character of the field Fq (which means that for t ∈ Fq,

and q = ps, where p is a prime, χ(t) = e
2πiTr(t)

p , where Tr : Fq 7→ Fp is the principal
trace, see e.g. [15].) The specific choice of a principal character is of no consequence to the
calculations in this paper.

We remark that for even d, the sum in the last line of (5.5) is the Kloosterman sum,
while for odd d the presence of the quadratic character η would reduce it via the Gauss
sum to a “cosine”, which is nonzero only if θ2 ≡ r‖k‖

4 is a square in F
∗
q , in which case

∑

j∈F∗

q

χ

(‖k‖
4j

+ jr

)
η(−j) = K

√
q η(−‖k‖2)(χ(2θ) + χ(−2θ)). (5.7)

We now return to the proof of (2.11). From now on, let K, K ′ stand for complex
numbers of modulus 1 that may change from line to line. We now continue with the
estimation of the term II in (5.2). Namely, we have

II = qd−2|E|
∑

y,y′∈E

∑

s,s′∈F∗

q ,s′y′ 6=sy

Ŝ(s′y′ − sy)χ(t(s′ − s)) = III + IIII,

where the term III corresponds to the case the case y = y′, when s 6= s′. Then we have

III = qd−2|E|
∑

y∈E

∑

s,s′∈F∗

q ,s 6=s′

Ŝ((s′ − s)y)χ(t(s′ − s)).
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Observe that s′ − s runs through each value in F
∗
q exactly q− 2 times, because s, s′ 6= 0

and s 6= s′. Also, ||y|| = 1 since E ⊂ S. Therefore, using Lemma 5.4, we have

III = Kqd−2|E|∑y∈E(q − 2)q−
d+2
2

∑
s,j∈F∗

q
χ

(
s2

4j + ts + j
)

ηd(j)

= Kqd−2|E|∑y∈E(q − 2) · q− d+2
2

∑
s,j∈F∗

q
χ

(
(s+2jt)2

4j − jt2 + j
)

ηd(j)

= K q−2
q q

d−4
2 |E|∑y∈E

∑
j∈F∗

q
χ(j − jt2)ηd(j)[−χ(jt2) + K ′√qη(j)],

(5.8)

where the last line follows by (5.6).
We now consider the case t2 = ‖y‖ = 1. We have

IIIt2=1 ≈ q
d−4
2 |E|

∑

y∈E

∑

j∈F∗

q

ηd(j)[−χ(j) + K
√

qη(j)].

Since
∑

j∈F∗

q
η(j) = 0, the worst case scenario is when d is odd. Then the summation

in j contributes an extra factor q − 1 to K
√

q in the last bracket. If d is even then the
summation in j is the Gauss sum, which is smaller by the factor of

√
q. In either case, we

have
|IIIt2=1| ≤ 2q

d−1
2 |E|2. (5.9)

If t2 6= 1, the estimate (5.9) improves by factor
√

q, as the worst case scenario is now
when d is even, and it only contributes a Gauss sum to the term K

√
q:

∑

j∈F∗

q

χ(j − jt2)ηd(j)[−χ(jt2) + K
√

qη(j)]. (5.10)

Observe however, that in either case, for d ≥ 2 the estimate for the term III is majorated
by (5.3).

Finally, let us consider the term IIII:

IIII = qd−2|E|
∑

y,y′∈E,y 6=y′

∑

s,s′∈F∗

q

Ŝ(s′y′ − sy)χ[t(s′ − s)] (5.11)

Our goal is to prove the following estimate:

|IIII = IIII(t)| . q
d−4
2 |E|3 + q

d−2
2 |E| sup

τ∈Fq

|R(τ)|. (5.12)

and we are able to do it only for even values of d. (For odd d the estimate will be definitely
worse by

√
q for t2 = 1 and seems to be highly non-trivial for other values of t, see (5.19)
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below.) Note that we can always write supτ∈Fq
ν(τ) instead of supτ∈Fq

|R(τ)|, as the regular

term |E|2

q can be absorbed into the first term in (5.12).

We verify (5.12) below and will now show how it suffices to complete the proof of
(2.11). Indeed, assuming (5.12) and bringing in the estimate (5.3), which dominated the
terms I, III, we conclude that for all t,

R2(t) . qd−2|E|2 + q
d−4
2 |E|3 + q

d−2
2 |E| sup

τ∈Fq

|R(τ)|,

which implies that the same estimate holds for supτ∈Fq
R2(τ).

Assuming that for some large enough C, we have Cq
d
2 ≤ |E| clearly implies that now

|R(t)| ≤ 100√
C

|E|2
q

, ∀t ∈ Fq,

where the constant 100 is basically to majorate the number of cases that has been consid-
ered. For odd d the last two terms in the latter estimate for R are worse by the factor

√
q

which implies the estimate (3.6) for all t, thus the claim (ii) of Theorem 2.8. As for even d,
every dot product t ∈ Fq occurs and the claim (iv) of Theorem 2.8 follows, provided that
we can demonstrate (5.12).

5.4.2 Finale of the proof of claim (ii) – the estimate (5.12)

In the estimates that follow we write
∑

y,y′

instead of
∑

y,y′∈E,y 6=y′

.

Let us first extend the summation in (5.11) from s′ ∈ F
∗
q to s′ ∈ Fq. If we do so, it

follows from Lemma 5.4 that we pick up the following term T to IIII:

T = qd−2|E|∑y,y′

∑
s∈F∗

q
Ŝ(sy)χ(ts)

= Kq
d−6
2 |E|∑y,y′

∑
s,j∈F∗

q
χ

(
s2

4j + ts + j
)

ηd(j)

= Kq
d−6
2 |E|∑y,y′

∑
s,j∈F∗

q
χ

(
(s+2jt)2

4j − jt2 + j
)

ηd(j)

= Kq
d−6
2 |E|∑y,y′

∑
j∈F∗

q
χ(j − jt2)ηd(j)[−χ(jt2) + K ′√qη(j)]

The analysis of the summation in j now in essence replicates that for the term III, see
(5.8–5.10). If t2 6= 1 and d is even, using the Gauss sum formula (5.6) we obtain

|T | ≤ 2q
d−4
2 |E|3, (5.13)
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which improves by factor
√

q if d is odd. If t2 = 1, for even d, the term T satisfies a better

(by a factor q) estimate than (5.13). However, for odd d we would only get |T | ≤ q
d−3
2 |E|3,

which would not give an improvement over the bounds we already have we already have
in (3.6). Hence, up to now, the only case we are not able to handle is odd d and t2 = 1.

Thus we will further attempt to establish (5.12) for the quantity X, which equals IIII,
wherein the summation in s′ has been extended over the whole field Fq. Using Lemma 5.4
we have, after changing s′ to −s′, and using ‖y‖ = ‖y′‖ = 1:

X = Kq
d−6
2 |E|

∑

y,y′

∑

s,j∈F∗

q ,s′∈Fq

ηd(j)χ

(
s2 + 2(y · y′)ss′ + s′2 + 4tj(s + s′)

4j
+ j

)
(5.14)

We complete the square under χ as follows

s2 + 2(y · y′)ss′ + s′
2
+ 4tj(s + s′) = (s + s′)2 + 4tj(s + s′) + 2αs′(s + s′ − s′)

where α = α(y, y′) = y · y′ − 1, and we shall further analyze the possibilities α 6= 0,−2
separately: they occur when y · y′ = ±1, respectively.

We rewrite the latter quadratic form as

[(s + s′) + (2tj + αs′)]2 − 2αs′2 − (2tj + αs′)2.

We now have a new variable c = (s + s′) + (2tj + αs′), which is in Fq. Since (5.14) is
symmetric with respect to s and s′, we can assume that, in fact, s ∈ Fq, s′ ∈ F

∗
q , so for

each s′, j the change s 7→ c is non-degenerate. Changing the notation from −s′ to s we
therefore have, using the Gauss sum formula

X = Kq
d−6
2 |E|∑y,y′

∑
s,j∈F∗

q ,c∈Fq
ηd(j)χ

(
c2−(2α+α2)s2

4j + tαs + j(1 − t2)
)

= X1 + X−1 + X ′,

(5.15)

where X1 has only summation in y, y′ such that y ·y′ = 1 (α = 0), X−1 has only summation
in y, y′ such that y · y′ = −1 (α = −2), and X ′ includes the rest of y, y′ ∈ E.

Observe that in either case we already have a Gauss sum in c, so we write

X ′ = Kq
d−5
2 |E|

∑

y·y′ 6=±1

∑

s,j∈F∗

q

ηd+1(j)χ




−a

(
s − 2jtα

a

)2

4j
+ j

(
t2α

2 + α
+ (1 − t2)

)


 ,

(5.16)
provided that a = 2α + α2 6= 0.

Before we proceed with the main term X ′, let us deal with the cases α = 0,−2 which
would make the completion of the square in the transition from (5.15) to (5.16) incorrect.
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If α = 0, we confront the sum

X1 = Kq
d−5
2 |E|

∑

y·y′=1

∑

s,j∈F∗

q

ηd+1(j)χ(j(1 − t2)).

If d is even, the worst case scenario is t2 6= 1, when the sum in s and Gauss sum in j
contribute the factor q3/2. Hence

|X1| ≤ 2q
d−2
2 |E| sup

τ
ν(τ), for even d, (5.17)

in accordance with (5.12). If d is odd, the same, or in fact, better bound holds unless
t2 = 1, when (5.17) gets worse by factor

√
q.

If α = −2, we analyze the sum

X−1 = Kq
d−5
2 |E|

∑

y·y′=−1

∑

s,j∈F∗

q

ηd+1(j)χ(j(1 − t2) − 2ts).

If d is even, X−1 is still bounded by (5.17) – the worst case scenario now is t = 0; if d is
odd, the bound is better than (5.17) by factor

√
q.

Finally, we turn to X ′, the case a 6= 0, and once again, the only situation we have not
been able to handle so far is d odd and t2 = 1.

Now taking advantage of the Gauss sum in s in (5.16) we have

X ′ = Kq
d−5
2 |E|∑y·y′ 6=±1

∑
j∈F∗

q
ηd+1(j)χ

(
j
(

t2α
2+α + (1 − t2)

))

×
[
−χ

(
−j t2α

2+α

)
+ K ′√qη(a)η(j)

]

= X ′
1 + X ′

2,

according to the two terms in the last bracket.
We have

X ′
1 = Kq

d−5
2 |E|

∑

y·y′ 6=±1

∑

j∈F∗

q

ηd+1(j)χ(j(1 − t2)).

For even d, the worst case scenario occurs when t2 6= 1, the Gauss sum in j then leads to
X ′

1 to be dominated by the first term in (5.12). The latter bound will get worse by factor√
q only if d is odd and t2 = 1. For the quantity X ′

2 we obtain:

X ′
2 = Kq

d−4
2 |E|∑y·y′ 6=±1 η(a)

∑
j∈F∗

q
ηd(j)χ

((
1 − 2

2+α t2
)

j
)

= Kq
d−4
2 |E|∑y·y′ 6=±1 η[(y · y′)2 − 1]

∑
j∈F∗

q
ηd(j)χ

((
1 − 2

y·y′+1 t2
)

j
)

.

(5.18)
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There are two cases here: y · y′ = 2t2 − 1 and otherwise. First consider the latter case.
Then if d is even, X ′

2, subject to this extra constraint, satisfies the estimate (5.12), as the
summation in j simply yields −1. If d is odd, however, there is a major problem, as then
we have

q
d−4
2 |E|∑y·y′ 6=2t2−1,±1 η((y · y′)2 − 1)

∑
j∈F∗

q
ηd(j)χ

((
1 − 2

y·y′+1 t2
)

j
)

= Kq
d−3
2 |E|∑y·y′ 6=2t2−1,±1 η((y · y′) − 1)η((y · y′) + 1 − 2t2),

. (5.19)

It follows that to improve on the trivial bound q
d−3
2 |E|3 one would have to establish a

cancelation in the multiplicative character sum in (5.19).
We finish by adding the constraint y · y′ = 2t2 − 1 to X ′

2 in (5.18). Dealing with this
does not represent any difficulty. For even d we have

q
d−4
2 |E|

∣∣∣∣∣∣

∑

±16=y·y′=2t2−1

η[(y · y′)2 − 1]
∑

j∈F∗

q

ηd(j)

∣∣∣∣∣∣
≤ q

d−2
2 |E| sup

τ∈Fq

ν(τ),

and zero in the right-hand side for odd d. This proves (5.12) and (2.11) follows.

5.5 Proof of Theorem 2.8, optimality claims (iii) and (v)

We establish (2.14) as the estimate (2.12) follows immediately from the same construction.

5.6 Construction in the case d 6= 5:

Suppose that Fq does not contain i =
√
−1. Let

S2 = {x ∈ F
3
q : x2

1 + x2
2 + x2

3 = 1},

and let Z2 denote the maximal subset of S2 such that Z2 ∩ (−Z2) = ∅. Then if u, v ∈ S2,
then u ·v = −1 if and only if u = −v. To see this, without loss of generality let v = (0, 0, 1).
Then the condition

u · v = −1

reduces to
u3 = −1,

and
u2

1 + u2
2 = 0. (5.20)

Since, by assumption, Fq does not contain
√
−1, (5.20) can only happen if u1 = u2 = 0,

and so u = −v. Since Z2 ∩ (−Z2) = ∅, the condition u · v = −1 in Z2 is never satisfied.
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Let d = 2k +1 with k ≥ 3. Let H denote sub-space of F
2k−2
q generated by the mutually

orthogonal null-vectors given by Lemma 5.1. Let

E = Z2 × H.

It follows that
|E| ≈ q2 · qk−1 = qk+1 = q

d+1
2 .

Let (x′, x′′) and (y′, y′′) be elements of E. Then

(x′, x′′) · (y′, y′′) = x′ · y′ 6= −1.

Moreover,
||(x′, x′′)|| = ||x′|| + ||x′′|| = ||x′|| = 1,

so E ⊂ S2k where
S2k = {x ∈ F

2k+1
q : x2

1 + · · · + x2
2k+1 = 1}.

This completes the construction in the case d 6= 5.

5.7 Construction in the case d = 5

Let
u = (a, b, c, 0, 0) where a2 + b2 + c2 = 0.

Let
v = (−b/c, a/c, 0, 0, 0) and w = (0,−c/a, b/a, 0, 0).

Let s ∈ Fq be such that
e = v + sw

satisfies
||e|| = c2 for some c ∈ F

∗
q .

The existence of such a c is verified by a direct calculation. Now let e′ = e
c , which

results in ||e′|| = 1.
Observe by a direct calculation that

u · e = 0 for all s ∈ Fq.

Let Z2 be as above and let O denote the orthogonal transformation that maps

{(x1, x2, x3, 0, 0) : xj ∈ Fq}

to the three dimensional sub-space of F
5
q spanned by e′, (0, 0, 0, 1, 0) and (0, 0, 0, 0, 1). Let

Z ′
2 denote the image of Z2 under O.
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Define
E = {tu + Z ′

2 : t ∈ Fq}.
Then |E| ≈ q3 and for any t, t′ ∈ Fq and z, z′ ∈ Z ′

2,

(tu + z) · (t′u + z′) = tt′u · u + tu · z′ + t′u · z + z · z′

= z · z′ 6= −1

by construction. This completes the construction in the case d = 5.

5.8 Proof of the conditionally optimal result (Theorem 2.11)

Once again we use the estimate (2.2) which tells us that

∑

t

ν2(t) ≤ |E|4q−1 + |E|q2d−1
∑

k 6=(0,...,0)

|E ∩ lk||Ê(k)|2.

Now,

|E|q2d−1
∑

k 6=(0,...,0)

|E ∩ lk||Ê(k)|2 ≤ 2|E|q2d−1
∑

k∈C(E)

|Ê(k)|2,

where
C(E) =

⋃

t∈Fq

tE.

Furthermore,

|E|q2d−1
∑

k∈C(E) |Ê(k)|2 = |E|q2d−1q−2d
∑

y,y′∈E

∑
k∈C(E) χ((y′ − y) · k)

= |E|q−1
∑

y,y′∈E

∑
t

∑
x∈E χ((y − y′) · tx)

= |E|3 + |E|∑(y−y′)·x=0;y 6=y′ E(x)E(y)E(y′).

(5.21)

Since E is assumed to be uniformly distributed,

∑

(y−y′)·x=0

E(x) ≤ C|E|q−1,

plugging this into (5.21) we obtain |E|4q−1. Using (4.1) once again we complete the proof.
Observe that the assumption that |E| ≥ Cq is implicit in the uniform distributivity as-
sumption.
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