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Abstract
The Perona-Malik equation is an ill-posed forward-backward parabolic equation with some appli-
cation in image processing. In this paper, we study the Perona-Malik type equation on a ball in an
arbitrary dimension n and show that there exist infinitely many radial weak solutions to the homo-
geneous Neumann boundary problem for smooth nonconstant radially symmetric initial data. Our
approach is to reformulate the n-dimensional equation into a one-dimensional equation, to convert
the one-dimensional problem into an inhomogeneous partial differential inclusion problem, and to
apply a Baire’s category method to the differential inclusion to generate infinitely many solutions.

Keywords: Perona-Malik type equation; Infinitely many radial weak solutions in all dimensions;
Partial differential inclusion; Baire’s category method.

1. Introduction

In this paper we investigate the existence of radial weak solutions for an n-dimensional Perona-
Malik type equation under the homogeneous Neumann boundary condition and radially symmetric
initial data: 

ut = div(a(|Du|2)Du) in ΩT := Ω × (0,T )
∂u
∂n = 0 on ∂Ω × (0,T )
u(x, 0) = u0(x) for x ∈ Ω,

(1.1)

where Ω := BR(0) is the open ball in Rn (n ≥ 1) with center 0 and radius R > 0, T > 0 is a given
time, n is outward unit normal to ∂Ω, u0 : Ω → R is a radially symmetric initial function, and
a ∈ C2,α([0,∞)), for some α ∈ (0, 1), is a positive function satisfying the following:

2p a′(p) + a(p)


> 0 for 0 ≤ p < 1
= 0 for p = 1
< 0 for p > 1,

and lim
p→∞

σ(p) = 0, (1.2)

with σ(p) = a(p2)p for p ∈ R. We can relax the function a in (1.2) to a ∈ C2,α([0, 1)) ∩ C([0,∞))
with σ strictly decreasing on [1,∞) without affecting the result of this paper. The notation and
assumptions in this paragraph will be kept throughout the paper unless otherwise stated.
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Figure 1: The graph of a typical function q = σ(p)

In the original paper of Perona & Malik [27], they proposed an anisotropic diffusion model
(1.1) for denoising and edge enhancement of a computer vision, where Ω ⊂ R2 is a square and
a(p) is given as

either a(p) =
1

1 + p
k2

or a(p) = exp
(
− p

2k2

)
,

with the fixed threshold k > 0 according to some experimental purposes. In our case we have
chosen k = 1 for simplicity, and the class of functions a contains all these functions.

For a general discussion, let us assume for the moment that Ω ⊂ Rn is a bounded C1 domain
and that a(p) = (1 + p)−1. Given a point x ∈ Ω̄, we say that the initial condition u0 ∈ C1(Ω̄) is
subcritical at x if |Du0(x)| < 1, supercritical at x if |Du0(x)| > 1, and critical at x if |Du0(x)| = 1.
The initial condition u0 is transcritical in Ω if there are two points x, y ∈ Ω with |Du0(x)| < 1
and |Du0(y)| > 1. Existence of global or local classical solutions to problem (1.1) depends heavily
on the initial condition u0. Kawohl & Kutev [17] showed that a global classical solution exists in
any dimension if u0 is subcritical in Ω̄. They also proved that the problem cannot admit a global
classical solution for n = 1 if u0 is transcritical in Ω under some technical assumptions, and these
assumptions were completely removed later by Gobbino [14]. Concerning the Perona-Malik type
equation, it had been the general belief that classical solutions can only exist if the initial data are
smooth, even analytic, at supercritical points; this was formally streamlined in Kichenassamy [18].
As regards the class of suitable initial conditions for classical solutions of (1.1), Ghisi & Gobbino
[11] has recently established that for n = 1, the set of initial conditions for which problem (1.1)
has a local classical solution is dense in C1(Ω̄).

The situation concerning the existence of a global classical solution to (1.1) with a transcritical
initial condition for n ≥ 2 turns out to be quite different from the case n = 1. The first existence
result of global classical solutions with transcritical u0 for n ≥ 2 was obtained by Ghisi & Gobbino
[12], where they constructed a class of global radial C2,1 solutions with suitably chosen radial
initial data transcritical on an annulus centered at the origin; these solutions also have the property
of finite-time extinction of supercritical region. In contrast to the one-dimensional result of [14, 17]
mentioned above, their result showed a quite different feature of the higher dimensional problem.
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On the other hand, in the radial case, Ghisi & Gobbino [13] also proved that a global C1 solution
cannot exist if the gradient of initial condition u0 is very large at a point. Therefore, requirement
of regularity of the solution (e.g., classical or C1) would prevent the existence of such a solution if
the initial data should be arbitrarily given and transcritical.

When the initial condition u0 is any given smooth function (satisfying certain compatibility
condition on ∂Ω), it seems natural to lower the expectation on the regularity of solutions by finding
plausible weak solutions to (1.1). Even under the lowering of regularity have enormous difficulties
occurred in the existence of weak solutions. Among many different approaches and attempts in
this direction, e.g., the Γ-limit method in Bellettini & Fusco [3], the Young measure solutions in
Chen & Zhang [4], and numerical scheme analyses in Esedoglu [9] and Esedoglu & Greer [10],
to our best knowledge, Zhang [30] was the first to successfully prove that, for n = 1, there are
infinitely many Lipschitz weak solutions to (1.1) for any given smooth nonconstant initial data
u0; his method uses the variational technique of partial differential inclusion together with the
so called in-approximation method or convex integration. In this paper, we generalize Zhang’s
method to the case of radial weak solutions to problem (1.1) in all dimensions. Our generalization
can also deal with other ill-posed forward-backward diffusion problems (see, e.g., the pioneering
work of Höllig [16] and its recent generalization by Zhang [31]), but we will not include the results
in those directions in this paper.

For α ∈ (0, 1), we use C3+α,1+α/2(Ω̄T ) to denote the parabolic Hölder space of functions u ∈
C0(Ω̄T ) such that ut, uxit, uxi , uxi x j , uxi x j xk ∈ C0(Ω̄T ) and that the quantities

sup
x∈Ω

s,t∈(0,T ),s,t

|uxit(x, s) − uxit(x, t)|
|s − t|α/2 , sup

x∈Ω
s,t∈(0,T ),s,t

|uxi x j xk(x, s) − uxi x j xk(x, t)|
|s − t|α/2 ,

sup
x,y,∈Ω,x,y

t∈(0,T )

|uxit(x, t) − uxit(y, t)|
|x − y|α , sup

x,y,∈Ω,x,y
t∈(0,T )

|uxi x j xk(x, t) − uxi x j xk(y, t)|
|x − y|α

are all finite, where i, j, k ∈ {1, . . . , n}.
We state the main result of this paper in the following theorem.

Theorem 1.1. Let u0 ∈ C3,α(Ω̄) be a radially symmetric function with u0(x) = v0(|x|) and

M := max
Ω̄
|Du0| = max

s∈[0,R]
|v′0(s)| > 0

such that the compatibility conditions hold:

v′0(R) = 0, v′′′0 (R) +
n − 1

R
v′′0 (R) = 0. (1.3)

Then the forward-backward Neumann problem (1.1) admits infinitely many radial weak solutions
u ∈ W1,∞(ΩT ) satisfying the following:

(a) For every ξ ∈ C1
0(ΩT ),

∫
ΩT

(utξ + a(|Du|2)Du · Dξ)dxdt = 0. (1.4)
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(b) The solutions u are (uniformly and locally) classical near {∂Ω ∪ {0}} × [0,T ] in the sense
that there exists a constant δ0 with 0 < δ0 < R/2, independent of u, such that u ∈ C3+α,1+α/2

(
{Bδ0(0) ∪ (BR(0) \ BR−δ0(0))} × [0,T ]

)
,

ut = div(a(|Du|2)Du) pointwise in {Bδ0(0) ∪ (BR(0) \ BR−δ0(0))} × (0, T ).
(1.5)

(c) The initial condition holds:
u(x, 0) = u0(x) ∀ x ∈ Ω̄.

(d) The boundary condition is satisfied:

∂u
∂n

(x, t) = 0 ∀(x, t) ∈ ∂Ω × [0,T ]. (1.6)

(e) The almost gradient maximum principle holds when u0 is critical or supercritical at some
point in Ω; that is, if M ≥ 1, then, given any ϵ > 0, we can choose the solutions u to satisfy
the following:

||Du||L∞(ΩT ;Rn) ≤ M + ϵ. (1.7)

(f) The conservation of mass:∫
Ω

u(x, t)dx =
∫
Ω

u0(x)dx ∀t ∈ [0, T ]. (1.8)

The proof of this theorem will be given in Section 4.
Observe that the condition u0 ∈ C3,α(Ω̄) requires v′0(0) = v′′′0 (0) = 0. The initial C3,α(Ω̄)-

regularity and the compatibility condition (1.3) are suitable for the C3+α,1+α/2-regularity of u∗ in
Theorem 2.2 below, which is only needed in the verification of gradient maximum principle. When
n = 1 and a(p) = (1 + p)−1, our main theorem is equivalent to the main theorem of Zhang [30] in
the following sense. When n = 1, the second compatibility condition in (1.3) may not be needed
for the C2+α,1+α/2-regularity and the gradient maximum principle of the solution u∗, as stated in
[30]; in this case, we may lower the regularity of the initial condition as u0 ∈ C2,α(Ω̄) and drop
the second condition in (1.3), then even-extend the initial function in Zhang’s case to obtain an
initial function on [−R,R] satisfying the conditions of our initial function u0, and finally restrict
our solutions u(x, t) to [0,R] × [0,T ] to obtain weak solutions to Zhang’s problem.

Let us explain our main approach and the major difficulty that arises if n > 1. One can easily
reformulate the equation in (1.1) for radial functions u(x, t) into the one-dimensional equation:

vt = (a(v2
s)vs)s + a(v2

s)vs
n − 1

s
in (0,R) × (0,T ), (1.9)

where s = |x| is the radial variable and v(s, t) = u(x, t). Using the flux function σ(p) = a(p2)p and
overlooking the singularity at s = 0, this equation can be recast as

(sn−1v)t = (sn−1σ(vs))s in (0,R) × (0,T ).
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Introduce a stream function φwith φs = sn−1v, φt = sn−1σ(vs), and letΦ = (v, φ). Then, to solve the
equation (1.9) in a weak form, it is sufficient to find a functionΦ = (v, φ) ∈ W1,∞((0,R)×(0,T );R2)

with the Jacobian matrix ∇Φ(s, t) =
(

vs vt

φs φt

)
, such that

∇Φ(s, t) ∈ Σ(s, v(s, t)) for a.e. (s, t) ∈ (0,R) × (0,T ), (1.10)

where, for each s > 0 and each v ∈ R, the set Σ(s, v) is defined by

Σ(s, v) :=
{(

p l
sn−1v sn−1σ(p)

)
∈ R2×2 : p, l ∈ R

}
.

If n = 1, the partial differential inclusion (1.10) is the same as in [30] since sn−1 = 1, with the
set Σ(s, v) independent of s. But the presence of the term sn−1 for n ≥ 2 enormously affects the
inclusion problem by making it essentially inhomogeneous in the variable s. In the fulfillment of
the density result, Theorem 3.1, for applying a Baire’s category method in Subsection 2.1, we have
to construct some auxiliary functions as in [30]. Rather substantial difference occurs in the way
of defining these functions in Section 5 as the equation φs = sn−1v should be kept in every gluing
process and the term sn−1 makes the functions necessarily depend on the position s where they are
glued. Accordingly, auxiliary functions are piecewise C1 with proper s-derivatives on the regions
that are separated by nonlinear C1 curves.

The study of inhomogeneous partial differential inclusions of the type (1.10) stems from the
successful understandings of homogeneous inclusion of the form Du(x) ∈ K first encountered in
the study of crystal microstructure by Ball & James [1, 2] and Chipot & Kinderlehrer [5]. Sub-
sequent developments including some important applications and the generalization to inhomoge-
neous differential inclusions of the form Du(x) ∈ K(x, u(x)) have been extensively explored; see,
e.g., Dacorogna & Marcellini [7, 8], Kirchheim [19], Müller & Šverák [24, 25, 26], Müller & Sy-
chev [23], and Yan [28, 29]. We point out that in this connection the differential inclusion method
has been recently used in De Lellis & Székelyhidi [21] to study the Euler equations. There are two
well-known different approaches in solving the inclusion problem; however, both derive basically
the same conclusion. The first method is the convex integration of Gromov [15], elaborated in
[23, 24, 25, 26]. The other approach is the Baire’s category method, exploited in [7, 8, 19, 28, 29].
We explore a simpler Baire’s category method based on the density argument to study differential
inclusion (1.10); our approach is quite different from that of Zhang [30] even for n = 1.

Let us compare our result with that of Ghisi & Gobbino [12]. Both papers deal with radial
solutions for the Perona-Malik equation in dimensions n ≥ 2. The paper [12] presents radial clas-
sical solutions over any annulus excluding the origin to avoid some technical difficulty due to the
singularity of the corresponding one-dimensional equation at s = 0, while our result is to construct
radial weak solutions on a ball including the singularity at s = 0 for the one-dimensional version.
The major difference between the two works lies in the admissible classes of the initial data u0 for
solvability. In [12], the class of possible initial conditions for classical solvability is severely re-
stricted due to the presence of backward (supercritical) region of a transcritical u0. One has much
freedom in choosing the initial values in the forward (subcritical) region of u0, but then the initial
values in the backward region are determined by the values of u0 in the forward region. This phe-
nomenon seems inevitable due to the inherent feature of the forward-backward radial problem. On
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the other hand, our result gives infinitely many radial weak solutions for all nonconstant smooth
radial initial data u0 (under certain natural compatibility conditions) whether it is transcritical or
not. In fact, our result shows that, restricted to the smooth nonconstant radially symmetric initial
data, no matter it is the specially selected initial condition in [12] or the initial condition which is
all subcrtical (so the classical solution exists by the work of [17]), the problem (1.1) will always
have infinitely many (Lipschitz) radial weak solutions.

The rest of this paper is organized as follows. In Section 2, we introduce more notations
and gather some of the ingredients needed to prove Theorem 1.1. A Baire’s category method is
introduced in Subsection 2.1 and a classical result for uniformly parabolic Neumann problems
is included in Subsection 2.2 as a building block that is to be used for a problem modified from
problem (1.1). Section 3 contains the main setup of (1.1) as a differential inclusion and the main
density result, Theorem 3.1, which plays a pivot role in constructing a weak solution via Baire’s
method. Section 4 is devoted to the proof of Theorem 1.1 based on Theorem 3.1. The construction
of auxiliary functions needed in the proof of Theorem 3.1 is given in Section 5. The proof of
Theorem 3.1 is finally given in Section 6.

2. Notation and preliminaries

We introduce some notations here. Let N, n ∈ N. For any measurable set X ⊂ Rn, |X| denotes
the Lebesgue measure of X. We denote by RN×n the space of N × n real matrices, and for each
A = (ai j) ∈ RN×n, we let |A| be the Hilbert-Schmidt norm of A, that is,

|A| :=
 N∑

i=1

n∑
j=1

a2
i j


1/2

.

We let O(n) denote the space of n × n orthogonal real matrices. For each A ∈ RN×n and each
K ⊂ RN×n, the distance from A to the set K is defined by

dist(A,K) := inf
B∈K
|A − B|.

For 1 ≤ p ≤ ∞, let W1,p(Ω;RN) denote the usual Sobolev space of functions u ∈ Lp(Ω;RN) whose
first weak derivatives of each component exist and belong to Lp(Ω), where Ω ⊂ Rn is open. Also
W1,∞

0 (Ω;RN) := W1,∞(Ω;RN) ∩ W1,1
0 (Ω;RN), where W1,1

0 (Ω;RN) is the closure of C∞0 (Ω;RN) in
W1,1(Ω;RN).

The following two lemmas are standard and used throughout this paper; see, e.g., [6, 8].

Lemma 2.1 (Vitali Covering Lemma). Let Ω̃ and Ω be open sets in Rn with Ω bounded and
|∂Ω| = 0. Then for each ϵ > 0, there exist a sequence {x j} j∈N in Rn and a sequence {ϵ j} j∈N of
positive reals such that

x j + ϵ jΩ ⊂ Ω̃ and ϵ j ≤ ϵ ∀ j ∈ N,
(x j + ϵ jΩ) ∩ (xk + ϵkΩ) = ∅ ∀ j, k ∈ N with j , k,
|Ω \ ∪∞j=1(x j + ϵ jΩ)| = 0.
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Lemma 2.2 (Gluing lemma). Let Ω be a bounded open set in Rn, and let {Ω j} j∈N be a sequence
of disjoint open sets in Ω. Let u ∈ W1,∞(Ω;RN), and let u j ∈ u +W1,∞

0 (Ω j;RN) for each j ∈ N. If
sup j∈N ∥u j∥W1,∞(Ω j;RN ) < ∞ and ũ := uχΩ\∪∞j=1Ω j +

∑∞
j=1 u jχΩ j , then ũ ∈ u +W1,∞

0 (Ω;RN).

2.1. A Baire’s category method
Definition 2.1 (Baire-one map). Let X and Y be metric spaces. Then f : X → Y is called a
Baire-one map if it is pointwise limit of a sequence of continuous maps from X into Y.

The proofs of the next two results can be found in [6, Chapter 10].

Theorem 2.1 (Baire’s Category Theorem). Let X and Y be metric spaces with X complete. If
f : X → Y is a Baire-one map, then D f is of the first category, where D f is the set of points in X
at which f is discontinuous. Therefore, the set C f of points in X at which f is continuous, that is,
C f = X \ D f , is dense in X.

Proposition 2.1. Let N and n be two positive integers. Let U be a bounded open set in Rn, and let
X ⊂ W1,∞(U;RN) be equipped with the L∞(U;RN)-metric. Then the gradient operator

∇ : X → Lp(U;RN×n)

is a Baire-one map for every p ∈ [1,∞).

Observe that if X in Proposition 2.1 is complete with respect to the L∞-metric, it follows from
Theorem 2.1 that the set C∇ of points of continuity for the gradient operator ∇ is L∞-dense in X.
In our application we take p = 1 and X to be the L∞-closure of the admissible class Pn−1

λ,l0
defined

in Section 3 with m = n−1, so that C∇ is L∞-dense in X. This is a much shorter way to achieve the
important principle that controlled L∞ convergence implies W1,1 convergence, exlpored in [23] by
convex integration method. This explains that Baire’s method is somehow equivalent to the convex
integration.

2.2. Classical solution as building block
We need the following result to build the nonempty admissible class Pn−1

λ,l0
for the proof of

Theorem 1.1.

Theorem 2.2. Let u0 ∈ C3,α(Ω̄) be a radially symmetric function with u0(x) = v0(|x|) satisfying the
compatibility condition (1.3) above. Let a∗ ∈ C2,α([0,∞)) be positive on [0,∞). Define σ∗(p) :=
a∗(p2)p for every p ∈ R. Suppose that there exist two constants C ≥ c > 0 such that

c ≤ (σ∗)′(p) ≤ C ∀p ≥ 0. (2.1)

Then the Neumann problem
u∗t = div(a∗(|Du∗|2)Du∗) in ΩT
∂u∗
∂n = 0 on ∂Ω × (0,T )
u∗(x, 0) = u0(x) for x ∈ Ω

(2.2)
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has a unique solution u∗ ∈ C3+α,1+α/2(Ω̄T ). Moreover, u∗ is radially symmetric in Ω̄T , that is,
u∗(x, t) = v∗(|x|, t) for a function v∗(s, t) on [0,R] × [0,T ], and we have the gradient maximum
principle:

max
Ω̄T

|Du∗| = max
Ω̄
|Du0| = max

[0,R]
|v′0|.

Proof. By (2.1) and the positivity of a∗, the problem (2.2) is uniformly parabolic. Existence
and uniqueness of classical solution to problem (2.2) under the compatibility condition (1.3) are
standard for parabolic equations [20, 22]. We only include a proof for the radial symmetry and
gradient maximum principle. In the case n = 1, the radial symmetry (i.e., u∗(−x, t) = u∗(x, t)) is
easy and the gradient maximum principle is also standard; so let us assume n ≥ 2. We first show
that the solution u∗ is radially symmetric in x on Ω̄T . Suppose on the contrary that there exist two
distinct points x0, y0 ∈ Ω with |x0| = |y0| and a time t0 ∈ (0, T ) such that u∗(x0, t0) , u∗(y0, t0). We
can choose a matrix A ∈ O(n) such that y0 = Ax0, where x0, y0 are regarded as column vectors.
Define

ũ∗(x, t) := u∗(Ax, t) ∀(x, t) ∈ Ω̄T .

Then it is straightforward to check that ũ∗ ∈ C3+α,1+α/2(Ω̄T ) solves the problem (2.2). But

ũ∗(x0, t0) = u∗(Ax0, t0) = u∗(y0, t0) , u∗(x0, t0),

and this is a contradiction to the uniqueness of solution of (2.2). Thus u∗ is radially symmetric in
Ω̄T . Note that Du∗(0, t) = 0 for all t ∈ [0,T ] by the radial symmetry and differentiability of u∗ and
that Du∗(x, t) = 0 for every (x, t) ∈ ∂Ω× [0,T ] by the Neumann boundary condition and the radial
symmetry of u∗. Next, we establish the maximum principle

max
Ω̄T

|Du∗| = max
Ω̄
|Du0| = max

[0,R]
|v′0|. (2.3)

Let u∗(x, t) = v∗(s, t), where s = |x|. Then |v∗s(s, t)| = |Du∗(x, t)| with s = |x| and hence v∗s(0, t) =
v∗s(R, t) = 0 for all t ∈ [0,T ]. Similarly as in the introduction (or see (4.3) below), the function v∗

solves the equation:

v∗t = (σ∗(v∗s))s + σ
∗(v∗s)

n − 1
s

in (0,R) × (0,T ).

Let w∗ = v∗s. Then w∗ solves the following equation in (0,R) × (0,T )
w∗t = (σ∗)′(w∗)w∗ss + (σ∗)′′(w∗)(w∗s)

2 + (σ∗)′(w∗)w∗s
n−1

s − σ∗(w∗)
n−1
s2 ,

w∗(0, t) = w∗(R, t) = 0 ∀ t ∈ [0, T ],
w∗(s, 0) = v′0(s) ∀ s ∈ [0,R].

(2.4)

It is then easy to show that
max

[0,R]×[0,T ]
|w∗| = max

[0,R]
|w∗(·, 0)|.

From this, (2.3) follows. (The compatibility condition (1.3) is easily seen needed from (2.4). The
presence of the term −σ∗(w∗) n−1

s2 in (2.4) makes the proof much easier.)
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3. Basic setup and the density theorem

In this section, we rephrase problem (1.1) into the framework of partial differential inclusion
(1.10) with the set Σ(s, v) replaced by a specific compact set Km

λ,l0
(s, v) with m = n − 1, and then

present our main density result, Theorem 3.1, that is closely related to the reduction principle [23]
or relaxation property [6]. To this end, we set up the relevant definitions and prove some lemmas
building up on the definitions that are to be used in the proofs of Theorem 1.1 and Theorem 3.1. In
doing so, we try to separate the arguments from these theorems to make our presentation as clear
as possible.

3.1. A new function σ∗ and several useful sets
In what follows, let σ(p) = a(p2)p be defined as above. It follows from (1.2) that for each

q ∈ (0, σ(1)), there are exactly two p+q , p−q ∈ R such that

0 < p−q < 1 < p+q , σ(p±q ) = q. (See Figure 1.)

For each λ > 1, let λ− := p−σ(λ); so, 0 < λ− < 1 < λ and σ(λ−) = σ(λ).
We begin with the following technical lemma whose proof can be found in [30, Lemma 3.1].

(See Figure 2.)

Lemma 3.1. Let λ > 1 and λ− < M < λ. Then, there exists an odd function σ∗ ∈ C2,α(R) satisfying
the following:

(a) σ∗(p) = σ(p) for 0 ≤ p ≤ λ−, σ∗(p) < min{σ(p), σ(M)} for λ− < p ≤ M, and

(b) there exist two constants C ≥ c > 0 such that

c ≤ (σ∗)′(p) ≤ C for every p ≥ 0.

We remark that the function σ∗ depends on λ and M.

Figure 2: The graph of a new function q = σ∗(p) from Lemma 3.1
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For λ > 1, define the sets

K̃λ := {(p, σ(p)) ∈ R2 : |p| ≤ λ},
Ũ+λ := {(p, q) ∈ R2 : σ(λ) < q < σ(1), p−q < p < p+q }, (3.1)

Ũ−λ := {(p, q) ∈ R2 : (−p,−q) ∈ Ũ+λ }.

Let m ≥ 0 be a fixed integer in the rest of this section. Here let us keep in mind that m = n − 1 in
our application, where n is the space dimension in Theorem 1.1. For each s > 0 and λ > 1, define

K̃m
λ (s) := {(p, smq) ∈ R2 : (p, q) ∈ K̃λ},

Ũm
λ (s) := {(p, smq) ∈ R2 : (p, q) ∈ Ũ+λ ∪ Ũ−λ }, (3.2)

Im
λ (s, p) :=

{
(smσ(λ), smσ(p)) ⊂ R if λ− < p < λ
(smσ(p),−smσ(λ)) ⊂ R if − λ < p < −λ−.

Given any l0 > 0, for s > 0 and v ∈ R, define the sets in R2×2:

Km
λ,l0(s, v) :=

{(
p l

smv smq

)
∈ R2×2 : (p, q) ∈ K̃λ, |l| ≤ l0

}
, (3.3)

Um
λ,l0(s, v) :=

{(
p l

smv smq

)
∈ R2×2 : (p, q) ∈ Ũ+λ ∪ Ũ−λ , |l| < l0

}
. (3.4)

We also let l0 > 0 be fixed throughout the rest of this section.

3.2. Properties of some distance functions
The following four lemmas are basically on the reformulations of some (inhomogeneous) dis-

tance functions into simpler expressions that we can easily manage for the proof of the density
result, Theorem 3.1.

Lemma 3.2. Let s > 0. Then for each (p, q′) ∈ R2,

(p, q′) ∈ Ũm
λ (s) if and only if p ∈ (−λ,−λ−) ∪ (λ−, λ), q′ ∈ Im

λ (s, p).

For each v′ ∈ R, define

Wv′ :=
{(

a b
v′ d

)
∈ R2×2 : a, b, d ∈ R

}
.

If K ⊂ Wv′ , let ∂|Wv′K denote the relative boundary of K in Wv′ . Let W := W0, and let PW be the
projection of R2×2 onto W, that is,

PW

((
a b
c d

))
=

(
a b
0 d

)
∀
(

a b
c d

)
∈ R2×2.

For example, Km
λ,l0

(s, v), Um
λ,l0

(s, v) ⊂ Wsmv, where s > 0 and v ∈ R.
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Lemma 3.3. Let s > 0 and v ∈ R, and let

A =
(

p̃ l̃
smv q̃′

)
∈ R2×2.

Then
dist(A,Km

λ,l0(s, v) ∪ ∂|WsmvU
m
λ,l0(s, v)) = dist(PW(A),Km

λ,l0(s, 0) ∪ ∂|WUm
λ,l0(s, 0)).

Lemma 3.4. Let F ⊂ R+ × R be a compact set, where R+ := {s ∈ R : s > 0}. If T : F → W is a
continuous mapping, then the mapping d : F → [0,∞), defined by

d(s, t) := dist(T (s, t),Km
λ,l0(s, 0) ∪ ∂|WUm

λ,l0(s, 0)) ∀(s, t) ∈ F,

is also continuous.

Proof. Let ϵ > 0. By the uniform continuity of T on F, there exists a δ > 0 such that

|T (s1, t1) − T (s2, t2)| ≤ ϵ

2

whenever (s1, t1), (s2, t2) ∈ F, |(s1, t1) − (s2, t2)| ≤ δ. Fix any two (s1, t1), (s2, t2) ∈ F with |(s1, t1) −
(s2, t2)| ≤ δ. Since Km

λ,l0
(s1, 0) ∪ ∂|WUm

λ,l0
(s1, 0) is compact, we can choose a matrix

(
p̃1 l̃1

0 q̃′1

)
in

this compact set so that

d(s1, t1) =

∣∣∣∣∣∣T (s1, t1) −
(

p̃1 l̃1

0 q̃′1

)∣∣∣∣∣∣ .
Put q̃1 := (s1)−mq̃′1. Then ( p̃1, q̃1) ∈ K̃λ ∪ (Ũ+λ ∪ Ũ−λ ) if l̃1 ∈ {l0,−l0} or ( p̃1, q̃1) ∈ K̃λ ∪ (∂Ũ+λ ∪ ∂Ũ−λ )
if l̃1 ∈ (−l0, l0). So we have(

p̃1 l̃1

0 (s2)mq̃1

)
∈ Km

λ,l0(s2, 0) ∪ ∂|WUm
λ,l0(s2, 0).

Note that

d(s2, t2) ≤
∣∣∣∣∣∣T (s2, t2) −

(
p̃1 l̃1

0 (s2)mq̃1

)∣∣∣∣∣∣
≤ |T (s2, t2) − T (s1, t1)| +

∣∣∣∣∣∣T (s1, t1) −
(

p̃1 l̃1

0 (s1)mq̃1

)∣∣∣∣∣∣
+

∣∣∣∣∣∣
(

p̃1 l̃1

0 (s1)mq̃1

)
−

(
p̃1 l̃1

0 (s2)mq̃1

)∣∣∣∣∣∣ ,
and so

d(s2, t2) − d(s1, t1) ≤ |T (s2, t2) − T (s1, t1)| +
∣∣∣∣∣∣
(

p̃1 l̃1

0 (s1)mq̃1

)
−

(
p̃1 l̃1

0 (s2)mq̃1

)∣∣∣∣∣∣
≤ ϵ

2
+ σ(1)|(s1)m − (s2)m|.
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Let I ⊂ R+ be a compact interval with {s ∈ R+ : (s, t) ∈ F} ⊂ I. Then the mapping s 7→ sm is
uniformly continuous on I, so that there exists a δ′ > 0 such that

s1, s2 ∈ I, |s1 − s2| ≤ δ′ ⇒ |(s1)m − (s2)m| ≤ ϵ

2σ(1)
.

Thus if (s1, t1), (s2, t2) ∈ F and |(s1, t1) − (s2, t2)| ≤ min{δ, δ′}, then

d(s2, t2) − d(s1, t1) ≤ ϵ.

Changing the roles of (s1, t1) and (s2, t2) and combining the results, we obtain the continuity of the
mapping d on F.

Lemma 3.5. Let s > 0 and v ∈ R, and let

A :=
(

p̃ l̃
smv q̃′

)
∈ R2×2

be such that |l̃| ≤ l0. Then

dist(A,Km
λ,l0(s, v)) = dist(( p̃, q̃′), K̃m

λ (s)).

Proof. Choose any (p, q) ∈ K̃λ. Then

dist(A,Km
λ,l0(s, v)) ≤

∣∣∣∣∣∣
(

p̃ l̃
smv q̃′

)
−

(
p l̃

smv smq

)∣∣∣∣∣∣ = |( p̃, q̃′) − (p, smq)|.

Taking an infimum on (p, q) ∈ K̃λ, we have

dist(A,Km
λ,l0(s, v)) ≤ dist(( p̃, q̃′), K̃m

λ (s)).

To show the reverse inequality, choose any (p, q) ∈ K̃λ and any l ∈ R with |l| ≤ l0. Then

dist(( p̃, q̃′), K̃m
λ (s)) ≤ |( p̃, q̃′) − (p, smq)| =

∣∣∣∣∣∣
(

p̃ l̃
smv q̃′

)
−

(
p l̃

smv smq

)∣∣∣∣∣∣
≤

∣∣∣∣∣∣
(

p̃ l̃
smv q̃′

)
−

(
p l

smv smq

)∣∣∣∣∣∣ ,
so that taking an infimum on (p, q, l) ∈ K̃λ × [−l0, l0], we have

dist(( p̃, q̃′), K̃m
λ (s)) ≤ dist(A,Km

λ,l0(s, v)).

Thus the lemma is proved.
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3.3. Admissible class and the density theorem
Let J := (0,R) ⊂ R, and JT := J × (0,T ) ⊂ R2. Fix a δ0 ∈ R with 0 < δ0 < R/2, and put

J∗T := (δ0,R − δ0) × (0,T ) ⊂ JT .
Let Φ∗ = (v∗, φ∗) ∈ W1,∞(J∗T ;R2) be a given piecewise C1 function in J∗T . We define the

admissible class needed for later construction of the weak solutions as follows:

Pm
λ,l0 :=


Φ ∈ Φ∗ +W1,∞

0 (J∗T ;R2) :

Φ = (v, φ) is piecewise C1 in J∗T ,

∇Φ(s, t) =
(

vs(s, t) vt(s, t)
φs(s, t) φt(s, t)

)
∈ Km

λ,l0
(s, v(s, t)) ∪ Um

λ,l0
(s, v(s, t))

for a.e. (s, t) ∈ J∗T


. (3.5)

Note that this set may be empty; but in our application below, we will define a function Φ∗ so that
this class Pm

λ,l0
is nonempty.

We are now in a position to state the following main density result, whose proof will be post-
poned to Section 6.

Theorem 3.1 (Density Theorem). For each ϵ > 0, the set

Pm
λ,l0,ϵ :=

Φ ∈ Pm
λ,l0 :

∫
J∗T

dist(∇Φ(s, t),Km
λ,l0(s, v(s, t)))dsdt ≤ ϵ |J∗T |


is dense in Pm

λ,l0
with respect to the L∞(J∗T ;R2)-metric.

4. Proof of Theorem 1.1

In this section we aim to prove Theorem 1.1 based on the density theorem, Theorem 3.1. To
this end, we assume a, σ and u0 are functions given as above.

4.1. The modified parabolic problem
Let J, JT be defined as in Subsection 3.3. Since u0 is radial, let u0(x) = v0(|x|) for a function

v0 ∈ C3,α(J̄), and so

max
J̄
|v′0| = max

Ω̄
|Du0| = M > 0. (4.1)

Fix any ϵ > 0. We define a number λ > 1 as follows: if M ≥ 1, let λ = M + ϵ; if 0 < M < 1, let
λ ≫ 1 be such that σ(λ) < σ(M). Then we always have λ− < M < λ.

With this choice of M and λ, let σ∗ be a function that can be determined by Lemma 3.1. Define
a∗(p) := σ∗(

√
p)/
√

p for each p > 0. Then a∗(p) = σ∗(
√

p)/
√

p = σ(
√

p)/
√

p = a(p) for every
p ∈ (0, (λ−)2]. Since a ∈ C2,α([0,∞)), we also have a∗ ∈ C2,α([0,∞)). Also the functions a∗ and σ∗

satisfy the hypotheses in Theorem 2.2. Therefore, for the given initial condition u0, problem (2.2)
has a unique radial solution u∗ ∈ C3+α,1+α/2(Ω̄T ) with the maximum principle

max
Ω̄T

|Du∗| = max
Ω̄
|Du0| = M > 0. (4.2)
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Let u∗(x, t) = v∗(|x|, t) for a function v∗ : J̄T → R. Then v∗ ∈ C3+α,1+ α2 (J̄T ). Let (x, t) ∈ {Ω \ {0}} ×
(0,T ). For each i ∈ {1, . . . , n},

∂iu∗(x, t) := ∂xiu
∗(x, t) = v∗s(|x|, t)

xi

|x| .

So Du∗(x, t) = v∗s(|x|, t) x
|x| , and hence

a∗(|Du∗(x, t)|2)Du∗(x, t) = a∗(v∗s(|x|, t)2)v∗s(|x|, t)
x
|x| .

Taking divergence on both sides, we obtain

div(a∗(|Du∗(x, t)|2)Du∗(x, t)) = (a∗(v∗s(s, t)2)v∗s(s, t))s

∣∣∣
s=|x|

+a∗(v∗s(|x|, t)2)v∗s(|x|, t)
n − 1
|x| .

Since u∗t (x, t) = v∗t (|x|, t), we thus have

v∗t (s, t) = (a∗(v∗s(s, t)2)v∗s(s, t))s + a∗(v∗s(s, t)2)v∗s(s, t)
n − 1

s
. (s = |x|) (4.3)

In summary, v∗ ∈ C3+α,1+α/2(J̄T ) solves the following problem:
(sn−1v∗(s, t))t = (sn−1a∗(v∗s(s, t)2)v∗s(s, t))s for (s, t) ∈ JT

v∗s(0, t) = v∗s(R, t) = 0 for t ∈ [0,T ]
v∗(s, 0) = v0(s) for s ∈ J̄,

(4.4)

where
max

J̄T

|v∗s | = max
J̄
|v′0| = M. (4.5)

The uniform continuity of v∗s on J̄T and the second of (4.4) imply that there exists a δ0 ∈ (0,R/2)
such that

max
{[0,δ0]∪[R−δ0,R]}×[0,T ]

|v∗s | ≤ λ−. (4.6)

With this δ0, let J∗T be defined as in Subsection 3.3.

4.2. The starting function Φ∗

We define Φ∗ := (v∗, φ∗), where φ∗ : J̄T → R is given by

φ∗(s, t) :=
∫ s

0
wn−1v∗(w, t)dw for every (s, t) ∈ J̄T .

Then φ∗ ∈ C3+α,1+α/2(J̄T ), and

φ∗s(s, t) = sn−1v∗(s, t),

φ∗t (s, t) =
∫ s

0
wn−1v∗t (w, t)dw

=

∫ s

0
(wn−1a∗(v∗s(w, t)

2)v∗s(w, t))wdw (by (4.4)) (4.7)

= sn−1a∗(v∗s(s, t)2)v∗s(s, t)
14



for every (s, t) ∈ JT . So Φ∗ = (v∗, φ∗) ∈ C3+α,1+α/2(J̄T ;R2), and

∇Φ∗(s, t) =
(

v∗s(s, t) v∗t (s, t)
φ∗s(s, t) φ∗t (s, t)

)
=

(
v∗s(s, t) v∗t (s, t)

sn−1v∗(s, t) sn−1a∗(v∗s(s, t)2)v∗s(s, t)

)
.

Put l0 := maxJ̄T |v∗t | + 1 > 0. Let K̃λ and Ũ±λ be defined as in (3.1). For each (s, t) ∈ JT , since
|v∗s(s, t)| ≤ M, it follows from Lemma 3.1 that

(v∗s(s, t), a∗(v∗s(s, t)2)v∗s(s, t)) = (v∗s(s, t), σ∗(v∗s(s, t))) ∈ K̃λ ∪ Ũ+λ ∪ Ũ−λ

and that
(v∗s(s, t), a∗(v∗s(s, t)2)v∗s(s, t)) = (v∗s(s, t), σ(v∗s(s, t))) ∈ K̃λ (by (4.6))

if (s, t) ∈ JT \ J∗T . Hence∇Φ∗(s, t) ∈ Kn−1
λ,l0

(s, v∗(s, t)) ∪ Un−1
λ,l0

(s, v∗(s, t)) ∀ (s, t) ∈ JT ,

∇Φ∗(s, t) ∈ Kn−1
λ,l0

(s, v∗(s, t)) ∀ (s, t) ∈ JT \ J∗T ,
(4.8)

where the sets Kn−1
λ,l0

(s, v) and Un−1
λ,l0

(s, v) are defined as in (3.3) and (3.4) with m = n − 1.
We now define the admissible class Pn−1

λ,l0
by using this function Φ∗ on J∗T as in (3.5) with

m = n − 1. Then clearly,
Φ∗ ∈ Pn−1

λ,l0 , ∅.

4.3. The Baire category method
Let X denote the closure of Pn−1

λ,l0
in the space L∞(J∗T ;R2). Since the sets Kn−1

λ,l0
(s, v) and

Un−1
λ,l0

(s, v) are bounded, it is easily checked that

Pn−1
λ,l0 ⊂ X ⊂ Φ∗ +W1,∞

0 (J∗T ;R2).

Proposition 2.1 shows that the gradient operator ∇ : X → L1(J∗T ;R2×2) is a Baire-one map, and so
the set C∇ of points in X at which the map ∇ is continuous is dense in X by Theorem 2.1. So we
have C∇ , ∅, since X , ∅. Later we show that C∇ is actually an infinite set. But first we elaborate
on how the density theorem (Theorem 3.1) guarantees that every function in C∇ provides us with
a solution to problem (1.1).

Let Φ = (v, φ) ∈ C∇ ⊂ X. Let k ∈ N. By the definition of X, we can choose a Φ̃k ∈ Pn−1
λ,l0

so that

||Φ − Φ̃k||L∞ ≤
1
k
.

By the density theorem, Theorem 3.1, we can choose a function Φk = (vk, φk) ∈ Pn−1
λ,l0,1/k

so that

||Φ̃k − Φk||L∞ ≤
1
k
.

Combining these two inequalities, we have

||Φ − Φk||L∞ ≤
2
k
→ 0 as k → ∞.
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Since the map ∇ is continuous at Φ, we thus have

∇Φk → ∇Φ in L1(J∗T ;R2×2) as k → ∞.

Upon passing to a subsequence (we do not relabel), we can assume that

∇Φk(s, t)→ ∇Φ(s, t) in R2×2 as k → ∞, for a.e. (s, t) ∈ J∗T . (4.9)

Since Φk ∈ Pn−1
λ,l0,1/k

, it follows from Lemma 3.5 that∫
J∗T

dist(((vk)s(s, t), (φk)t(s, t)), K̃n−1
λ (s))dsdt =∫

J∗T

dist(∇Φk(s, t),Kn−1
λ,l0 (s, vk(s, t)))dsdt ≤

|J∗T |
k

∀ k ∈ N.

Applying Fatou’s lemma to this inequality with (4.9), we obtain∫
J∗T

dist((vs(s, t), φt(s, t)), K̃n−1
λ (s)) dsdt = 0.

Since K̃n−1
λ (s) is closed in R2 for each s > 0, it follows that

(vs(s, t), φt(s, t)) ∈ K̃n−1
λ (s) for a.e. (s, t) ∈ J∗T . (4.10)

Moreover, for each k ∈ N, we have

|(vk)t(s, t)| ≤ l0, (φk)s(s, t) = sn−1vk(s, t) for a.e. (s, t) ∈ J∗T ,

so that letting k → ∞, it follows that

|vt(s, t)| ≤ l0, φs(s, t) = sn−1v(s, t) for a.e. (s, t) ∈ J∗T . (4.11)

Combining (4.10) and (4.11), we have

∇Φ(s, t) ∈ Kn−1
λ,l0 (s, v(s, t)) for a.e. (s, t) ∈ J∗T .

Since Φ ∈ Φ∗ +W1,∞
0 (J∗T ;R2), we can extend Φ from J∗T to JT by setting

Φ := Φ∗ on JT \ J∗T . (4.12)

Then it follows that Φ ∈ Φ∗ +W1,∞
0 (JT ;R2) and Φ ≡ Φ∗ on JT \ J∗T , where we still write Φ = (v, φ)

on J̄T . Observe now that by (4.8),

∇Φ(s, t) ∈ Kn−1
λ,l0 (s, v(s, t)) for a.e. (s, t) ∈ JT . (4.13)

Define
u(x, t) := v(|x|, t), ψ(x, t) := φ(|x|, t) ∀ (x, t) ∈ Ω̄T . (4.14)
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By (4.13) and (4.14), we have

Du(x, t) = vs(s, t)
x
s
, Dψ(x, t) = φs(s, t)

x
s
= |x|n−2u(x, t)x, s = |x| , 0. (4.15)

Since (v, φ) = (v∗, φ∗) on JT \ J∗T , it is guaranteed from the definition of φ∗, (4.4), and (4.7) that for
all t ∈ [0,T ],

φ(0, t) = 0, φ(R, t) = φ(R, 0) =
∫ R

0
wn−1v0(w) dw. (4.16)

We now prove the following result.

Theorem 4.1. The function u defined above solves problem (1.1) in the sense that, for every ξ ∈
C1(Ω̄T ), ∫

Ω

(u(x,T )ξ(x,T ) − u0(x)ξ(x, 0)) dx =
∫
ΩT

(uξt − a(|Du|2)Du · Dξ) dxdt. (4.17)

Proof. It is sufficient to show that (4.17) holds for every ξ ∈ C∞(Ω̄T ). Let ξ ∈ C∞(Ω̄T ). By (4.15),
u = Dψ · x

|x|n , and hence∫
ΩT

uξt dxdt =
∫
ΩT

Dψ · x
|x|n ξt dxdt = lim

ϵ→0+

∫
ΩϵT

Dψ · x
|x|n ξt dxdt,

where ΩϵT = Ω
ϵ × (0,T ) with Ωϵ = {ϵ < |x| < R}. For all sufficiently small ϵ > 0, by the Divergence

Theorem, ∫
ΩϵT

Dψ · x
|x|n ξt dxdt =

∫ T

0

∫
∂Ωϵ

ψξt
x
|x|n · n dS dt −

∫
ΩϵT

ψdiv
(

x
|x|n ξt

)
dxdt

=
1

Rn−1

∫ T

0

∫
|x|=R

ψξt dS dt − 1
ϵn−1

∫ T

0

∫
|x|=ϵ

ψξt dS dt −
∫
ΩϵT

ψdiv
(

x
|x|n ξt

)
dxdt

=: A − Bϵ −Cϵ ,

where n is outward unit normal on ∂Ωϵ . Since ψ is continuous on Ω̄T and ψ(0, t) = φ(0, t) = 0 for
all t ∈ [0,T ], it is easily seen that

Bϵ → 0 as ϵ → 0+.

By (4.16), ψ(x, t) = C for all (x, t) ∈ ∂Ω × [0,T ], where C =
∫ R

0
wn−1v0(w) dw is a constant; hence

A =
1

Rn−1

∫ T

0

∫
|x|=R

(ψξ)t(x, t) dS dt =
1

Rn−1

[∫
|x|=R

ψξdS
]T

0

.

For the term Cϵ , using div
(

x
|x|n

)
= 0, we have, from integration by parts on t,

Cϵ =

∫
ΩϵT

ψ
x
|x|n · Dξt dxdt =

[∫
Ωϵ

x
|x|nψ · Dξ dx

]T

0
−

∫
ΩϵT

ψt
x
|x|n · Dξ dxdt
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=: Dϵ − Eϵ .

Using the Divergence Theorem and div
(

x
|x|n

)
= 0 again, we have

Dϵ =

[∫
Ωϵ

x
|x|nψ · Dξ dx

]T

0
=

[∫
∂Ωϵ

ψξ
x
|x|n · n dS

]T

0
−

[∫
Ωϵ

Dψ · x
|x|n ξ dx

]T

0

=
1

Rn−1

[∫
|x|=R

ψξdS
]T

0

− 1
ϵn−1

[∫
|x|=ϵ

ψξdS
]T

0

−
[∫
Ωϵ

uξ dx
]T

0

= A − 1
ϵn−1

[∫
|x|=ϵ

ψξdS
]T

0

−
[∫
Ωϵ

uξ dx
]T

0
=: A − Fϵ −Gϵ ,

where

lim
ϵ→0+

Fϵ = 0 since ψ(0, t) = 0 ∀t ∈ [0,T ], lim
ϵ→0+

Gϵ =

[∫
Ω

uξ dx
]T

0
.

Finally, using the equation ψt
x
|x|n = a(|Du|2)Du on ΩT with x , 0, we have

Eϵ =

∫
ΩϵT

a(|Du|2)Du · Dξ dxdt →
∫
ΩT

a(|Du|2)Du · Dξ dxdt as ϵ → 0+.

Therefore ∫
ΩT

uξt dxdt = lim
ϵ→0+

(A − Bϵ −Cϵ) = lim
ϵ→0+

(−Bϵ + Fϵ +Gϵ + Eϵ)

=

[∫
Ω

uξ dx
]T

0
+

∫
ΩT

a(|Du|2)Du · Dξ dxdt.

This is exactly (4.17), where u(x, 0) = u0(x) in Ω as shown independently in (c) below. We remark
that the fact that ψ is constant on |x| = R plays an important role in the proof. This completes the
proof.

4.4. Completion of Proof of Theorem 1.1
Let us first verify that the radial function u ∈ W1,∞(ΩT ) defined above satisfies all of (a)-(f) in

Theorem 1.1.

(a): This follows easily from (4.17).

(b): From (4.12), we have v ≡ v∗ on JT \ J∗T . So by the definition of u,

u ≡ u∗ ∈ C3+α,1+α/2
(
{Bδ0(0) ∪ (BR(0) \ BR−δ0(0))} × [0,T ]

)
.

Observe that

max
{Bδ0 (0)∪(BR(0)\BR−δ0 (0))}×[0,T ]

|Du| = max
{Bδ0 (0)∪(BR(0)\BR−δ0 (0))}×[0,T ]

|Du∗| = max
JT \J∗T
|v∗s | ≤ λ−
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by (4.6). Since a ≡ a∗ on [0, (λ−)2] and u∗ solves (2.2), it follows that u satisfies (b). At the end
of this proof, we will check that C∇ has infinitely many elements Φ = (v, φ). The first component
v in every Φ ∈ C∇ is then extended to be the common v∗ on JT \ J∗T , so that each corresponding u
satisfies (b) with the same δ0 > 0.

(c): By (4.4) and (4.12), we have

v(s, 0) = v∗(s, 0) = v0(s) for every s ∈ J̄.

Thus from the definitions of u and v0,

u(x, 0) = v(|x|, 0) = v0(|x|) = u0(x) for every x ∈ Ω̄.

(d): This follows immediately from the observation in (b).

(e): Assume M ≥ 1; then λ = M + ϵ. Let (s, t) ∈ JT be any point such that

∇Φ(s, t) ∈ Kn−1
λ,l0 (s, v(s, t)) and vs(s, t) exists in R.

Then for every x ∈ Ω with |x| = s, Du(x, t) exists in Rn,

|Du(x, t)| = |vs(s, t)|

by the radial symmetry of u, and |vs(s, t)| ≤ λ = M + ϵ by (4.13). Note also that these hold for a.e.
(s, t) ∈ JT , so that

||Du||L∞(ΩT ;Rn) = ||vs||L∞(JT ) ≤ M + ϵ.

(f): This follows easily by taking ξ ≡ 1 in (4.17), which remains valid even when ΩT and T
are replaced by Ωt and t with 0 < t ≤ T , respectively.

Finally, it remains to check that C∇ is an infinite set. Suppose on the contrary that C∇ is finite.
Since C∇ and Pn−1

λ,l0
are dense in X, we then have C∇ = X = Pn−1

λ,l0
. So Φ∗ ∈ Pn−1

λ,l0
= C∇. By the

above, Φ∗ satisfies (4.13), that is,

∇Φ∗(s, t) ∈ Kn−1
λ,l0 (s, v∗(s, t)) for a.e. (s, t) ∈ JT ,

and so
(v∗s(s, t), sn−1σ∗(v∗s(s, t))) = (v∗s(s, t), φ∗t (s, t)) ∈ K̃n−1

λ (s) for a.e. (s, t) ∈ J∗T .

This is equivalent to saying that

(v∗s(s, t), σ∗(v∗s(s, t))) ∈ K̃λ for a.e. (s, t) ∈ J∗T .

By the definition of the set K̃λ, we have

σ∗(v∗s(s, t)) = σ(v∗s(s, t)) for a.e. (s, t) ∈ J∗T . (4.18)
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On the other hand, it follows from (4.5) and (4.6) with λ− < M that choosing a δ > 0 so small that

σ∗(p) , σ(p) ∀p ∈ [−M,−M + δ] ∪ [M − δ,M],

we have
v∗s ∈ [−M,−M + δ] ∪ [M − δ,M]

on some set W = W(δ) ⊂ J∗T of positive measure. Thus for each (s, t) ∈ W,

σ∗(v∗s(s, t)) , σ(v∗s(s, t)),

and this is a contradiction to (4.18). Therefore, C∇ is an infinite set.
The theorem is now proved.

Remark 1. Assume maxΩ̄ |Du0| = M < 1. For the moment, we select a different λ > 1 such that
λ− = M and then select M′ ∈ (M, λ). With this choice of (M′, λ) in place of (M, λ) in Lemma 3.1,
we construct a function σ∗(p). Define a∗(p) := σ∗(

√
p)/
√

p for each p > 0. Then a∗(p) = a(p) for
every p ∈ (0,M2] and the functions a∗ and σ∗ satisfy the hypotheses in Theorem 2.2. Therefore,
for the given initial condition u0, problem (2.2) has a unique radial solution w∗ ∈ C3+α,1+α/2(Ω̄T ).
Then w∗ is also a classical solution to problem (1.1). However, Theorem 1.1 asserts that, even in
this case, problem (1.1) still has infinitely many weak solutions.

Remark 2. Let M+ ≥ 1 denote the unique number with σ(M+) = σ(M). (Note M+ = M when
M ≥ 1.) For any two λ > µ > M+, we have infinitely many weak solutions u of problem (1.1) such
that Du ∈ [0, µ−] ∪ [µ, λ] a.e. in ΩT and that the two disjoint subsets of ΩT at which Du ∈ [0, µ−]
and Du ∈ [µ, λ], respectively, are both of positive measure. To this end, one simply replaces the
set K̃λ in (3.1) with K̃µ,λ = {(p, σ(p)) : |p| ∈ [0, µ−] ∪ [µ, λ]} and changes the relevant sets in (3.1),
(3.2), (3.3) and (3.4) accordingly. One also replaces σ(M) in part (a) of Lemma 3.1 with σ(µ).
Then one may repeat all the same arguments thereafter to obtain such a gradient result for weak
solutions. So if µ is chosen large, then 0 < µ− ≪ 1 and the weak solutions u have a mixture of
parts with |Du| ≥ µ and with |Du| ≤ µ− at almost every t ∈ [0,T ]. This also shows that there exists
a sequence of weak solutions {uk}∞k=1 such that limk→∞ ∥Duk∥L∞(ΩT ) = ∞.

5. Auxiliary functions

In this section, we construct some auxiliary functions that are needed to prove the density
theorem, Theorem 3.1.

5.1. Construction lemma
We begin with the following useful result.

Lemma 5.1 (Construction Lemma). Let a > 0, b > 0, L > 0, s0 > 0, and let m ≥ 0 be an integer.
Let s1, s2 ∈ C1(0, L) be two functions satisfying{

0 < s1(t) < s0 < s2(t),
s1(t)+s2(t)

2 = s0,
∀ t ∈ (0, L). (5.1)
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Let D ⊂ R2 be the bounded open set, defined by

D := {(s, t) ∈ R2 : 0 < t < L, s1(t) < s < s2(t)}.

For each (s, t) ∈ D, define

F(s, t) :=
∫ as1(t)+bs

a+b

s1(t)
τm[−a(τ − s1(t))]dτ +

∫ as2(t)+bs
a+b

as1(t)+bs
a+b

τmb(τ − s)dτ

+

∫ s2(t)

as2(t)+bs
a+b

τm[−a(τ − s2(t))]dτ.

Then we have the following:

(a) F ∈ C1(D),

(b) there exists a unique function s̃ ∈ C1(0, L) such that

s1(t) < s̃(t) < s2(t), F(s̃(t), t) = 0 ∀ t ∈ (0, L),

(c) |s̃′(t)| ≤
[
1 +

(
s2(t)
s1(t)

)m]
|s′1(t)| for all t ∈ (0, L),

(d) if s1 ∈ C1([0, L]), s1(0) > 0, and s1(L) > 0, then s̃ ∈ C1([0, L]).

Proof. (a): Elementary computation shows that for each (s, t) ∈ D,

F(s, t) = cm

[
(as1(t) + bs)m+2

(a + b)m+1 − as1(t)m+2 − (as2(t) + bs)m+2

(a + b)m+1 + as2(t)m+2
]
, (5.2)

where cm =
1

m+1 −
1

m+2 > 0. Since s1, s2 ∈ C1(0, L), it follows immediately from (5.2) that
F ∈ C1(D).

(b): For each t ∈ (0, L), using (5.2), it can be checked (mainly from the convexity of function
sm+2 on s > 0) that F(s1(t), t) > 0 and F(s2(t), t) < 0. Moreover, on D,

∂sF(s, t) =
(m + 2)bcm

(a + b)m+1

[
(as1(t) + bs)m+1 − (as2(t) + bs)m+1

]
< 0,

since s2(t) > s1(t) > 0. In particular, ∂sF(s, t) , 0 for every (s, t) ∈ D. Therefore, by the
Intermediate Value Theorem, for each t ∈ (0, L), there exists a unique s̃(t) ∈ (s1(t), s2(t)) such that

F(s̃(t), t) = 0.

Furthermore, by the Implicit Function Theorem, it follows that s̃ ∈ C1(0, L), and so (b) is proved.
(c): Clearly, by (5.2), s̃(t) satisfies the equation

0 = (as1(t) + bs̃(t))m+2 − a(a + b)m+1s1(t)m+2

−(as2(t) + bs̃(t))m+2 + a(a + b)m+1s2(t)m+2 (5.3)
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for each t ∈ (0, L). Taking derivatives on both sides in (5.3) with respect to t, we obtain

s̃′(t) =
a
b

{ s′1(t)[(as1(t) + bs̃(t))m+1 − (as1(t) + bs1(t))m+1]
(as2(t) + bs̃(t))m+1 − (as1(t) + bs̃(t))m+1

+
s′2(t)[(as2(t) + bs2(t))m+1 − (as2(t) + bs̃(t))m+1]

(as2(t) + bs̃(t))m+1 − (as1(t) + bs̃(t))m+1

}
for each t ∈ (0, L). Applying the Mean Value Theorem, we have

s̃′(t) = s′1(t)
(
as1(t) + bs̄1(t)
as̄3(t) + bs̃(t)

)m s̃(t) − s1(t)
s2(t) − s1(t)

+s′2(t)
(
as2(t) + bs̄2(t)
as̄3(t) + bs̃(t)

)m s2(t) − s̃(t)
s2(t) − s1(t)

for some s̄1(t), s̄2(t), s̄3(t) ∈ R with

s1(t) < s̄1(t) < s̃(t) < s̄2(t) < s2(t), s1(t) < s̄3(t) < s2(t).

So

|s̃′(t)| ≤ |s′1(t)| + |s′1(t)|
(

s2(t)
s1(t)

)m

=

[
1 +

(
s2(t)
s1(t)

)m]
|s′1(t)|,

since s′2(t) = −s′1(t) by (5.1). Thus (c) is proved.
(d): Finally to prove (d), assume s1 ∈ C1([0, L)) with s1(0) > 0, and we will show that s̃ ∈

C1([0, L)). (If s1 ∈ C1((0, L]) with s1(L) > 0, we can prove that s̃ ∈ C1((0, L]) exactly in the same
way.) Note that 0 < s1(0) ≤ s0 by (5.1). If 0 < s1(0) < s0, then we can extend s1 and s2 from [0, L)
to (−δ, L) for some δ > 0 in a way that s1, s2 ∈ C1((−δ, L)) satisfy (5.1), and we can apply the
previous argument to show s̃ ∈ C1((−δ, L)). So let us assume s1(0) = s0; then, by (5.1), s2(0) = s0.
From (5.3), we have

lim
t→0+

s̃(t) = s1(0) = s2(0) = s0.

We claim that
lim
t→0+

s̃′(t) = 0, (5.4)

and so s̃ ∈ C1([0, L)). To prove this claim, we rewrite (5.3) as

f (as1(t) + bs̃(t), as2(t) + bs̃(t)) = (a + b)m+1 f (s1(t), s2(t)) ∀ t ∈ (0, L), (5.5)

where f (s1, s2) is the polynomial in s1 and s2 determined through

sm+2
1 − sm+2

2 = (s1 − s2) f (s1, s2) ∀ (s1, s2) ∈ R2.

Note that f (s1, s2) is symmetric in (s1, s2) and ∂1 f (s1, s2) > 0 for all s1 > 0 and s2 > 0. To prove
(5.4), note that, by (c), s̃′(t) is bounded on (0, L/2), and it suffices to show that if β := limk→∞ s̃′(tk)
exists along a sequence tk → 0+, then β = 0. Let α = s′1(0+); then s′2(0+) = −α. Taking derivatives
on both sides in (5.5) with respect to t, we have

∂1 f (as2(t) + bs̃(t), as1(t) + bs̃(t)) · (as′2(t) + bs̃′(t))
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+∂2 f (as2(t) + bs̃(t), as1(t) + bs̃(t)) · (as′1(t) + bs̃′(t))

= (a + b)m+1[∂1 f (s2(t), s1(t))s′2(t) + ∂2 f (s2(t), s1(t))s′1(t)]

for each t ∈ (0, L). Letting t = tk → 0+, we have

∂1 f (as0 + bs0, as0 + bs0) · (−aα + bβ) + ∂2 f (as0 + bs0, as0 + bs0) · (aα + bβ)

= (a + b)m+1[∂1 f (s0, s0)(−α) + ∂2 f (s0, s0)α] = 0,

by the symmetry of f . This yields that 2βb∂1 f (as0 + bs0, as0 + bs0) = 0, so that β = 0, as desired.
Hence (5.4) follows, and (d) is proved.

5.2. Construction of auxiliary functions
We are now ready to construct auxiliary functions that will be used as local gradient modifiers

in the proof of Theorem 3.1. Towards this goal, let a > 0, b > 0, L > 0, s2
0 > s1

0 > 0, s0 := s2
0+s1

0
2 ,

and let m ≥ 0 be an integer. Define

s1(t) :=
s2

0 − s1
0

2L
t + s1

0 and s2(t) :=
s1

0 − s2
0

2L
t + s2

0

for each t ∈ [0, L]. (See Figure 3 with t0 = 0.)

Figure 3: The s-derivatives of ṽ in Lemma 5.2 on the six regions separated by nonlinear piecewise C1 curves s̃1(t) and
s̃2(t)

Let D+ ⊂ R2 be the bounded open set, given by

D+ := {(s, t) ∈ R2 : 0 < t < L, s1(t) < s < s2(t)}.

23



For each (s, t) ∈ D+, define F(s, t) as in Lemma 5.1, so that there exists a unique s̃ ∈ C1([0, L])
such that  s1(t) < s̃(t) < s2(t), F(s̃(t), t) = 0 ∀t ∈ [0, L),

|s̃′(t)| ≤
[
1 +

(
s2(t)
s1(t)

)m]
|s′1(t)| ∀t ∈ [0, L].

(5.6)

Let s̃1, s̃2 : [0, L]→ R be given by

s̃i(t) :=
asi(t) + bs̃(t)

a + b
∀t ∈ [0, L], ∀i ∈ {1, 2},

so that s̃1, s̃2 ∈ C1([0, L]) and that by (5.6),

s1(t) < s̃1(t) < s̃(t) < s̃2(t) < s2(t) ∀t ∈ [0, L).

Let D+1 ,D
+
2 ,D

+
3 ⊂ R2 be the bounded open sets, defined by

D+1 := {(s, t) ∈ R2 : 0 < t < L, s1(t) < s < s̃1(t)},

D+2 := {(s, t) ∈ R2 : 0 < t < L, s̃1(t) < s < s̃2(t)},
D+3 := {(s, t) ∈ R2 : 0 < t < L, s̃2(t) < s < s2(t)},

so that these are disjoint open subsets of D+ with∣∣∣∣D+ \ ∪3
i=1D+i

∣∣∣∣ = 0. (See Figure 3 with t0 = 0.)

Let ṽ : D̄+ → R be the function, defined by

ṽ(s, t) :=


−a(s − s1(t)) ∀(s, t) ∈ D̄+1
b(s − s̃(t)) ∀(s, t) ∈ D̄+2
−a(s − s2(t)) ∀(s, t) ∈ D̄+3 .

It is easily checked that ṽ : D̄+ → R is well-defined and that ṽ ∈ W1,∞(D+). It also follows from
Lemma 5.1 that ṽ ∈ C1(D̄+i ) for i = 1, 2, 3. If 0 ≤ t ≤ L, then

ṽ(s1(t), t) = ṽ(s2(t), t) = 0.

Let t ∈ [0, L]. Then

max
s∈[s1(t),s2(t)]

|ṽ(s, t)| = max{| − a(s̃1(t) − s1(t))|, | − a(s̃2(t) − s2(t))|}

= max
{∣∣∣∣∣∣−a

(
as1(t) + bs̃(t)

a + b
− s1(t)

)∣∣∣∣∣∣ ,
∣∣∣∣∣∣−a

(
as2(t) + bs̃(t)

a + b
− s2(t)

)∣∣∣∣∣∣
}

= max
{

ab
a + b

(s̃(t) − s1(t)),
ab

a + b
(s2(t) − s̃(t))

}
≤ ab

a + b
(s2

0 − s1
0).

Hence
max

D̄+
|ṽ| ≤ ab

a + b
(s2

0 − s1
0) ≤ a + b

4
(s2

0 − s1
0).
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Define
D− := {(s, t) ∈ R2 : (s,−t) ∈ D+},

D−i := {(s, t) ∈ R2 : (s,−t) ∈ D+i } ∀i ∈ {1, 2, 3},
D := int(D+ ∪ D−).

We do the even extensions for s1, s̃1, s̃, s̃2, s2 : [−L, L]→ R and for ṽ : D̄→ R along the t-axis, so
that we have from the above observations that

ṽ ∈ W1,∞
0 (D),

ṽ ∈ C1(D̄±i ) ∀i ∈ {1, 2, 3},
maxD̄ |ṽ| ≤ a+b

4 (s2
0 − s1

0).
(5.7)

It follows from (5.6) that for each t ∈ [0, L],∫ s2(t)

s1(t)
τmṽ(τ, t)dτ = F(s̃(t), t) = 0, (5.8)

and this equality is valid for all t ∈ [−L, L] by the definition ṽ. Note also that

∇ṽ(s, t) =



(−a, as′1(t)) if (s, t) ∈ D+1 ,
(b,−bs̃′(t)) if (s, t) ∈ D+2 ,
(−a, as′2(t)) if (s, t) ∈ D+3 ,
(−a,−as′1(−t)) if (s, t) ∈ D−1 ,
(b, bs̃′(−t)) if (s, t) ∈ D−2 ,
(−a,−as′2(−t)) if (s, t) ∈ D−3 .

(5.9)

Also the second of (5.6) implies that

|s̃′(t)| ≤
1 + (

s2
0

s1
0

)m s2
0 − s1

0

2L
∀t ∈ [−L, L].

Combining this with (5.9), we have

|∂tṽ(s, t)| ≤ max{a, b}
1 + (

s2
0

s1
0

)m s2
0 − s1

0

2L
∀(s, t) ∈

3∪
i=1

(D+i ∪ D−i ). (5.10)

Using the third of (5.7), we obtain

max
(s,t)∈D̄

∣∣∣∣∣∣
∫ s

s1(t)
τmṽ(τ, t)dτ

∣∣∣∣∣∣ ≤ a + b
4

(s2
0)m(s2

0 − s1
0)2. (5.11)

One can also easily check that

∂

∂t

(∫ s

s1(t)
τmṽ(τ, t)dτ

)
=

∫ s

s1(t)
τm∂tṽ(τ, t)dτ ∀(s, t) ∈

3∪
i=1

(D+i ∪ D−i ). (5.12)
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Fix any t0 ∈ R. We now translate everything constructed above along the t-axis by t0. So we
define

D(s1
0, s2

0, t0, L) := {(s, t) ∈ R2 : (s, t − t0) ∈ D},
D±i (s1

0, s
2
0, t0, L) := {(s, t) ∈ R2 : (s, t − t0) ∈ D±i } ∀i ∈ {1, 2, 3},

s j(s1
0, s2

0, t0, L; t) := s j(t − t0) ∀t ∈ [t0 − L, t0 + L], ∀ j ∈ {1, 2},
ṽ(−a, b, s1

0, s2
0, t0, L; s, t) := ṽ(s, t − t0) ∀(s, t) ∈ D(s1

0, s
2
0, t0, L).

(5.13)

Here is the right spot of mentioning a rather delicate feature of our construction. We should
prohibit the auxiliary function ṽ in (5.7) from being translated in the s-axis as any s-translation
will destroy the key properties to act as auxiliary functions for local gluing in the proof of the
density theorem, Theorem 3.1. Accordingly, we construct ṽ on the positive s-axis from the start
and allow translation in the t-axis only as in (5.13).

As a conclusion of this section, we suppress the letters −a, b, s1
0, s2

0, t0, L in (5.13) for a nota-
tional simplicity and summarize the properties of ṽ inherited from (5.7), (5.8), (5.9), (5.10), (5.11),
and (5.12) as follows. (See Figure 3.)

Lemma 5.2. The function ṽ : D̄→ R constructed in (5.13) satisfies the following:

(a) ṽ ∈ W1,∞
0 (D),

(b) ṽ ∈ C1(D̄±i ) ∀i = 1, 2, 3,

(c) ∂sṽ(s, t) =
{
−a ∀(s, t) ∈ D+1 ∪ D−1 ∪ D+3 ∪ D−3
b ∀(s, t) ∈ D+2 ∪ D−2 ,

(d) |∂tṽ(s, t)| ≤ max{a, b}
[
1 +

(
s2

0
s1

0

)m]
s2

0−s1
0

2L ∀(s, t) ∈ ∪3
i=1(D+i ∪ D−i ),

(e) ∂
∂t

(∫ s

s1(t)
τmṽ(τ, t)dτ

)
=

∫ s

s1(t)
τm∂tṽ(τ, t)dτ ∀(s, t) ∈ ∪3

i=1(D+i ∪ D−i ),

(f)
∫ s2(t)

s1(t)
τmṽ(τ, t)dτ = 0 ∀t ∈ [t0 − L, t0 + L],

(g) maxD̄ |ṽ| ≤ a+b
4 (s2

0 − s1
0),

(h) max(s,t)∈D̄

∣∣∣∣∫ s

s1(t)
τmṽ(τ, t)dτ

∣∣∣∣ ≤ a+b
4 (s2

0)m(s2
0 − s1

0)2.

6. Proof of Theorem 3.1

In this long and final section, we present the proof of Theorem 3.1; that is, we prove the
L∞-density of Pm

λ,l0,ϵ
in Pm

λ,l0
for each ϵ > 0. To this end, assume Φ = (v, φ) ∈ Pm

λ,l0
, namely,

Φ ∈ Φ∗ +W1,∞
0 (J∗T ;R2),

Φ is piecewise C1 in J∗T , and
∇Φ(s, t) ∈ Km

λ,l0
(s, v(s, t)) ∪ Um

λ,l0
(s, v(s, t)) for a.e. (s, t) ∈ J∗T .

(6.1)
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Let 0 < η < 1. Our goal is to prove that there exists a function Φη ∈ Pm
λ,l0,ϵ

such that ||Φ −
Φη||L∞(J∗T ;R2) ≤ η; that is, there exists a function Φη = (vη, φη) ∈ Φ∗ +W1,∞

0 (J∗T ;R2) satisfying that
Φη is piecewise C1 in J∗T ,
∇Φη(s, t) ∈ Km

λ,l0
(s, vη(s, t)) ∪ Um

λ,l0
(s, vη(s, t)) for a.e. (s, t) ∈ J∗T ,∫

J∗T
dist(∇Φη(s, t),Km

λ,l0
(s, vη(s, t)))dsdt ≤ ϵ |J∗T |,

||Φ − Φη||L∞(J∗T ;R2) ≤ η.

(6.2)

We divide the proof into several parts.

6.1. Separation of domain J∗T
By the second of (6.1), there is a sequence {Gi}i∈N of disjoint open subsets of J∗T such that{

|J∗T \ ∪∞i=1Gi| = 0,
Φ ∈ C1(Ḡi;R2) ∀i ∈ N.

Fix an index i ∈ N throughout this section. Since ∂sφ and v are continuous on Ḡi, it follows from
the third inclusion of (6.1) that

∂sφ(s, t) = smv(s, t), i.e., ∇Φ(s, t) ∈ Wsmv(s,t) ∀(s, t) ∈ Ḡi.

Applying Lemma 3.3, we have

di(s, t) := dist(∇Φ(s, t),Km
λ,l0(s, v(s, t)) ∪ ∂|Wsmv(s,t)U

m
λ,l0(s, v(s, t)))

= dist(PW(∇Φ(s, t)),Km
λ,l0(s, 0) ∪ ∂|WUm

λ,l0(s, 0))

for every (s, t) ∈ Ḡi, and it follows form Lemma 3.4 that the mapping di : Ḡi → [0,∞) is continu-
ous. Let 0 < δ < 1, and put

Ki,δ := {(s, t) ∈ Gi : di(s, t) ≤ δ}.
Define also

K1
i,δ := {(s, t) ∈ Ki,δ : ∇Φ(s, t) < Km

λ,l0
(s, v(s, t)) ∪ Um

λ,l0
(s, v(s, t))},

K2
i,δ := {(s, t) ∈ Ki,δ : ∇Φ(s, t) ∈ Km

λ,l0
(s, v(s, t))},

K3
i,δ := {(s, t) ∈ Ki,δ : ∇Φ(s, t) ∈ Um

λ,l0
(s, v(s, t))},

so that Ki,δ is the disjoint union of K1
i,δ, K2

i,δ, and K3
i,δ. Note that |K1

i,δ| = 0 by the third of (6.1), and
that

K3
i,δ ⊆ {(s, t) ∈ Gi : dist(∇Φ(s, t),Km

λ,l0
(s, v(s, t))) ≤ δ,∇Φ(s, t) ∈ Um

λ,l0
(s, v(s, t))}

∪{(s, t) ∈ Gi : dist(∇Φ(s, t), ∂|Wsmv(s,t)U
m
λ,l0

(s, v(s, t))) ≤ δ,∇Φ(s, t) ∈ Um
λ,l0

(s, v(s, t))}
=: K3,α

i,δ ∪ K3,β
i,δ .

Hence ∫
Ki,δ

dist(∇Φ(s, t),Km
λ,l0

(s, v(s, t))) ≤
∫

K2
i,δ

dist(∇Φ(s, t),Km
λ,l0

(s, v(s, t)))

+
∫

K3,α
i,δ

dist(∇Φ(s, t),Km
λ,l0

(s, v(s, t))) +
∫

K3,β
i,δ

dist(∇Φ(s, t),Km
λ,l0

(s, v(s, t)))

=
∫

K3,α
i,δ

dist(∇Φ(s, t),Km
λ,l0

(s, v(s, t))) +
∫

K3,β
i,δ

dist(∇Φ(s, t),Km
λ,l0

(s, v(s, t)))

≤ δ|K3,α
i,δ | + Ni|K3,β

i,δ | ≤ δ|J∗T | + Ni|K3,β
i,δ |,

(6.3)
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where Ni := max(s,t)∈Ḡi dist(∇Φ(s, t),Km
λ,l0

(s, v(s, t))) is independent of δ. By the definition of K3,β
i,δ

(0 < δ < 1),
K3,β

i,δ1
⊂ K3,β

i,δ2
whenever 0 < δ1 < δ2 < 1.

Let us check that ∩
0<δ<1

K3,β
i,δ = ∅. (6.4)

Suppose on the contrary that there is a point (s, t) ∈ ∩
0<δ<1 K3,β

i,δ . Then

dist(∇Φ(s, t), ∂|Wsmv(s,t)U
m
λ,l0(s, v(s, t))) = 0,

and so
∇Φ(s, t) ∈ Um

λ,l0(s, v(s, t)) ∩ ∂|Wsmv(s,t)U
m
λ,l0(s, v(s, t)) , ∅.

This is a contradiction to the fact that Um
λ,l0

(s, v(s, t)) is open in Wsmv(s,t), and so (6.4) holds. We
thus have

δ|J∗T | + Ni|K3,β
i,δ | → 0 as δ→ 0+.

Note also that
|{(s, t) ∈ Gi : di(s, t) = δ}| > 0

for at most countably many δ ∈ (0, 1). So it is possible to choose a δi ∈ (0, ϵ/2) so that{
δi|J∗T | + Ni|K3,β

i,δi
| ≤ ϵ

2i+1 |J∗T |,
|{(s, t) ∈ Gi : di(s, t) = δi}| = 0.

(6.5)

With this choice of δi, we define

K̂i := {(s, t) ∈ Gi : di(s, t) < δi},
Ĥi := {(s, t) ∈ Gi : di(s, t) = δi},
Ĝi := {(s, t) ∈ Gi : di(s, t) > δi},

so that Ki,δi = K̂i ∪ Ĥi, |Ĥi| = 0 by (6.5), and K̂i and Ĝi are disjoint open subsets of Gi with
|Gi \ (K̂i ∪ Ĝi)| = 0 by the continuity of the mapping di : Ḡi → [0,∞). By (6.3) and (6.5), we have∫

K̂i
dist(∇Φ(s, t),Km

λ,l0
(s, v(s, t)))dsdt

=
∫

Ki,δi
dist(∇Φ(s, t),Km

λ,l0
(s, v(s, t)))dsdt ≤ ϵ

2i+1 |J∗T |.
(6.6)

Let us take a moment here to explain what we have done so far. We have separated the open
set Gi into two disjoint open sets K̂i and Ĝi. On the set K̂i, the value of the integral in question is
already “small” enough to the extent (6.6) as we wanted in the fulfillment of the third of (6.2). So
no modification will be made to Φ on the set K̂i. But on the set Ĝi, the (inhomogeneous) distance
from the gradient of Φ to Km

λ,l0
is relatively “large”, and therefore a necessary modification will

be made to Φ by gluing suitable functions constructed in Section 5, specifically in Lemma 5.2, so
that the integral can be made “small” enough. This is what to be accomplished in the following
subsections.
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6.2. Properties of the gradient of Φ in Ĝi

By the uniform continuity of ∇Φ : Ḡi → R2×2, there exists an ηi = ηi(ρ, δi) > 0 such that

(s, t), (s′, t′) ∈ Ḡi, |(s, t) − (s′, t′)| ≤ ηi ⇒ |∇Φ(s, t) − ∇Φ(s′, t′)| ≤ ρδi, (6.7)

where ρ > 0 is a constant with

ρ < min
{

1
6
,

1
12RmMσ

}
(6.8)

and
Mσ := sup

p1,p2∈[−2λ,2λ],p1,p2

∣∣∣∣∣σ(p1) − σ(p2)
p1 − p2

∣∣∣∣∣ < ∞.
Let us check that for each (s, t) ∈ Ĝi,

∇Φ(s, t) ∈ Um
λ,l0

(s, v(s, t)),
dist((∂sv(s, t), ∂tφ(s, t)), ∂Ũm

λ (s)) > δi,
|∂tv(s, t)| < l0 − δi.

(6.9)

To show this, choose any (s, t) ∈ Ĝi. By the third of (6.1), we can take a sequence {(s j, t j)} j∈N in Ĝi

such that {
∇Φ(s j, t j) ∈ Km

λ,l0
(s j, v(s j, t j)) ∪ Um

λ,l0
(s j, v(s j, t j)) ∀ j ∈ N,

(s j, t j)→ (s, j) in R2 as j→ ∞.

So for each j ∈ N, we have(
∂sv(s j, t j) ∂tv(s j, t j)
∂sφ(s j, t j) ∂tφ(s j, t j)

)
=

(
p j l j

(s j)mv(s j, t j) (s j)mq j

)
(6.10)

for some (p j, q j) ∈ K̃λ ∪ Ũ+λ ∪ Ũ−λ and some l j ∈ [−l0, l0]. Passing to a subsequence (we do not
relabel),

(p j, q j)→ (p, q) and l j → l as j→ ∞,

for some (p, q) ∈ K̃λ ∪ Ũ+λ ∪ Ũ−λ and some l ∈ [−l0, l0]. Letting j→ ∞ on both sides of (6.10), we
obtain (

∂sv(s, t) ∂tv(s, t)
∂sφ(s, t) ∂tφ(s, t)

)
=

(
p l

smv(s, t) smq

)
. (6.11)

Since (s, t) ∈ Ĝi, it follows from the definition of Ĝi that

δi < di(s, t) = dist(∇Φ(s, t),Km
λ,l0(s, v(s, t)) ∪ ∂|Wsmv(s,t)U

m
λ,l0(s, v(s, t)))

= dist(PW(∇Φ(s, t)),Km
λ,l0(s, 0) ∪ ∂|WUm

λ,l0(s, 0)). (6.12)

Note that K̃λ ∪ Ũ+λ ∪ Ũ−λ is the disjoint union of K̃λ∪∂Ũ+λ∪∂Ũ−λ and Ũ+λ∪Ũ−λ . So if (p, q) < Ũ+λ∪Ũ−λ ,
then PW(∇Φ(s, t)) ∈ Km

λ,l0
(s, 0)∪ ∂|WUm

λ,l0
(s, 0) by (6.11), and so di(s, t) = 0. This is a contradiction

to (6.12). Thus
(p, q) ∈ Ũ+λ ∪ Ũ−λ . (6.13)
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Next, suppose that dist((p, smq), ∂Ũm
λ (s)) ≤ δi. Since ∂Ũm

λ (s) is compact, we can choose a point
( p̃, q̃) ∈ ∂Ũ+λ ∪ ∂Ũ−λ so that

|(p, smq) − ( p̃, smq̃)| = dist((p, smq), ∂Ũm
λ (s)) ≤ δi.

But (
p̃ l
0 smq̃

)
∈ ∂|WUm

λ,l0(s, 0),

and so

δi < dist(PW(∇Φ(s, t)),Km
λ,l0(s, 0) ∪ ∂|WUm

λ,l0(s, 0))
≤ dist(PW(∇Φ(s, t)), ∂|WUm

λ,l0(s, 0))

≤
∣∣∣∣∣∣PW(∇Φ(s, t)) −

(
p̃ l
0 smq̃

)∣∣∣∣∣∣ = |(p, smq) − ( p̃, smq̃)|

by (6.11) and (6.12). This is a contradiction, and we thus have

dist((p, smq), ∂Ũm
λ (s)) > δi. (6.14)

Finally, suppose |l| ≥ l0 − δi. Assume further that l ≥ l0 − δi. Note(
p l0

0 smq

)
∈ ∂|WUm

λ,l0(s, 0),

and so

dist(PW(∇Φ(s, t)),Km
λ,l0(s, 0) ∪ ∂|WUm

λ,l0(s, 0)) ≤ dist(PW(∇Φ(s, t)), ∂|WUm
λ,l0(s, 0))

≤
∣∣∣∣∣∣PW(∇Φ(s, t)) −

(
p l0

0 smq

)∣∣∣∣∣∣
= l0 − l ≤ δi

by (6.11). This is a contradiction to (6.12), and thus l < l0 − δi. If l ≤ −(l0 − δi), then we also have
a contradiction, so that we conclude that

|l| < l0 − δi. (6.15)

Thus (6.9) follows from (6.11), (6.13), (6.14), and (6.15).

6.3. Local gradient modifiers in subdivisions of Ĝi

By the Vitali Covering Lemma, we can take a sequence {Qk
i }k∈N of disjoint open squares in Ĝi

whose sides are parallel to the axes such that∣∣∣∣∣∣∣Ĝi \
∞∪

k=1

Qk
i

∣∣∣∣∣∣∣ = 0.
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For each k ∈ N, let dk
i > 0 denote the side length of Qk

i and (sk
i , t

k
i ) the center of Qk

i . Dividing these
squares further if necessary, we can have

dk
i ≤ min

 ηi√
2
,

4η
√

2(λ − λ−)
,

√
4η

√
2(λ − λ−)Rm

,
δi

12Mgσ(1)

 ∀k ∈ N, (6.16)

where Mg := max|s1 |,|s2 |≤R |g(s1, s2)| and g is the polynomial of two variables such that

(s1)m − (s2)m = (s1 − s2)g(s1, s2) ∀s1, s2 ∈ R. (Take g ≡ 0 if m = 0.)

We fix an index k ∈ N in the rest of the section. If (s, t), (s′, t′) ∈ Qk
i , then |(s, t)− (s′, t′)| <

√
2dk

i ≤
ηi by (6.16), and so

|∇Φ(s, t) − ∇Φ(s′, t′)| ≤ ρδi

by (6.7). In particular,
|∇Φ(s, t) − ∇Φ(sk

i , t
k
i )| ≤ ρδi ∀(s, t) ∈ Qk

i . (6.17)

Figure 4: A necessary local s-derivative change of v in Qk
i

Since (sk
i , t

k
i ) ∈ Qk

i ⊂ Ĝi, we have from (6.9) that
∇Φ(sk

i , t
k
i ) ∈ Um

λ,l0
(sk

i , v(sk
i , t

k
i )),

dist((∂sv(sk
i , t

k
i ), ∂tφ(sk

i , t
k
i )), ∂Ũm

λ (sk
i )) > δi,

|∂tv(sk
i , t

k
i )| < l0 − δi.

(6.18)

So (
∂sv(sk

i , t
k
i ) ∂tv(sk

i , t
k
i )

∂sφ(sk
i , t

k
i ) ∂tφ(sk

i , t
k
i )

)
=

(
pk

i lk
i

(sk
i )

mv(sk
i , t

k
i ) (sk

i )
mqk

i

)
(6.19)
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for some (pk
i , q

k
i ) ∈ Ũ+λ ∪ Ũ−λ and some lk

i ∈ R with |lk
i | < l0 − δi. Also

dist((pk
i , (sk

i )
mqk

i )), ∂Ũm
λ (sk

i )) > δi. (6.20)

So by the Intermediate Value Theorem, there exist two positive reals ak
i and bk

i such that{
dist((pk

i − ak
i , (sk

i )
mqk

i ), K̃
m
λ (sk

i )) = dist((pk
i + bk

i , (sk
i )

mqk
i ), K̃

m
λ (sk

i )) =
δi
2 ,

(pk
i − ak

i , (sk
i )

mqk
i ), (pk

i + bk
i , (sk

i )
mqk

i ) ∈ Ũm
λ (sk

i ).
(6.21)

(See Figure 4.) Observe
ak

i + bk
i < λ − λ−.

Let ξk
i > 0 be a constant with

ξk
i ≤ min

 δi

2(λ − λ−)
[
1 +

(
R−δ0
δ0

)m] , δi

6(R − 2δ0)(R − δ0)m(λ − λ−)
[
1 +

(
R−δ0
δ0

)m]
 . (6.22)

Define the diamond-shaped D̃k
i in R2 as

D̃k
i := int

(
co{(0, 1), (0,−1), (ξk

i , 0), (−ξk
i , 0)}

)
.

By the Vitali Covering Lemma, there exist a sequence {(sk
i, j, t

k
i, j)} j∈N in Qk

i and a sequence {ϵk
i, j} j∈N

of positive reals such that {(sk
i, j, t

k
i, j) + ϵ

k
i, jD̃

k
i } j∈N is a sequence of disjoint open subsets of Qk

i whose
union has measure |Qk

i |. Following the notations in (5.13), we have

(sk
i, j, t

k
i, j) + ϵ

k
i, jD̃

k
i = D(sk

i, j − ϵk
i, jξ

k
i , s

k
i, j + ϵ

k
i, jξ

k
i , t

k
i, j, ϵ

k
i, j) =: Dk

i, j ∀ j ∈ N.
Let j ∈ N. We also define according to the notations in (5.13) that

(Dk
i, j)
±
r := D±r (sk

i, j − ϵk
i, jξ

k
i , sk

i, j + ϵ
k
i, jξ

k
i , t

k
i, j, ϵ

k
i, j) ∀r ∈ {1, 2, 3},

(sk
i, j)r(t) := sr(sk

i, j − ϵk
i, jξ

k
i , sk

i, j + ϵ
k
i, jξ

k
i , t

k
i, j, ϵ

k
i, j; t) ∀t ∈ [tk

i, j − ϵk
i, j, t

k
i, j + ϵ

k
i, j], ∀r ∈ {1, 2},

ṽk
i, j(s, t) := ṽ(−ak

i , b
k
i , sk

i, j − ϵk
i, jξ

k
i , sk

i, j + ϵ
k
i, jξ

k
i , t

k
i, j, ϵ

k
i, j; s, t) ∀(s, t) ∈ Dk

i, j.

Then Lemma 5.2 can be restated as follows in a bit more specific form:

(a) ṽk
i, j ∈ W1,∞

0 (Dk
i, j),

(b) ṽk
i, j ∈ C1

(
(Dk

i, j)±r
)
∀r ∈ {1, 2, 3},

(c) ∂sṽk
i, j(s, t) =

{ −ak
i ∀(s, t) ∈ (Dk

i, j)
+
1 ∪ (Dk

i, j)
−
1 ∪ (Dk

i, j)
+
3 ∪ (Dk

i, j)
−
3

bk
i ∀(s, t) ∈ (Dk

i, j)
+
2 ∪ (Dk

i, j)
−
2 ,

(d)

|∂tṽk
i, j(s, t)| ≤ max{ak

i , b
k
i }

1 +  sk
i, j + ϵ

k
i, jξ

k
i

sk
i, j − ϵk

i, jξ
k
i

m 2ϵk
i, jξ

k
i

2ϵk
i, j

≤ (λ − λ−)
[
1 +

(
R − δ0

δ0

)m]
ξk

i

≤ δi

2
∀(s, t) ∈

3∪
r=1

[(Dk
i, j)
+
r ∪ (Dk

i, j)
−
r ], (by (6.22))

32



(e) ∂
∂t

(∫ s

(sk
i, j)1(t)

τmṽk
i, j(τ, t)dτ

)
=

∫ s

(sk
i, j)1(t)

τm∂tṽk
i, j(τ, t)dτ ∀(s, t) ∈ ∪3

r=1[(Dk
i, j)
+
r ∪ (Dk

i, j)
−
r ],

(f)
∫ (sk

i, j)2(t)

(sk
i, j)1(t)

τmṽk
i, j(τ, t)dτ = 0 ∀t ∈ [tk

i, j − ϵk
i, j, t

k
i, j + ϵ

k
i, j],

(g) max
Dk

i, j
|ṽk

i, j| ≤
ak+bk

i
4 2ϵk

i, jξ
k
i ≤ λ−λ−

4 dk
i ≤

η√
2
, (by (6.16))

(h)

max
(s,t)∈Dk

i, j

∣∣∣∣∣∣∣
∫ s

(sk
i, j)1(t)

τmṽk
i, j(τ, t)dτ

∣∣∣∣∣∣∣ ≤ ak + bk
i

4
(sk

i, j + ϵ
k
i, jξ

k
i )m(2ϵk

i, jξ
k
i )2

≤ λ − λ−
4

Rm(dk
i )2 ≤ η

√
2
. (by (6.16))

6.4. New function Φη from old Φ
We now define

ṽ :=
∑

i, j,k∈N
ṽk

i, jχDk
i, j

in J∗T .

Note that ∀i, j, k ∈ N,

||ṽk
i, j||W1,∞(Dk

i, j)
= ||ṽk

i, j||L∞(Dk
i, j)
+ ||∂sṽk

i, j||L∞(Dk
i, j)
+ ||∂tṽk

i, j||L∞(Dk
i, j)

≤ η
√

2
+max{ak

i , b
k
j} +

δi

2
(by (c), (d), and (g))

≤ η
√

2
+ (λ − λ−) + ϵ

4
, (by (6.5))

that is, supi, j,k∈N ||ṽk
i, j||W1,∞(Dk

i, j)
≤ η√

2
+ (λ − λ−) + ϵ

4 < ∞. Applying the Gluing Lemma, it follows
from this inequality, (a), and (b) that{

ṽ ∈ W1,∞
0 (J∗T ),

ṽ is piecewise C1 in J∗T .
(6.23)

Define
φ̃(s, t) :=

∫ s

δ0

τmṽ(τ, t)dτ ∀(s, t) ∈ J̄∗T .

It is then clear that φ̃ ∈ W1,∞(J∗T ). Also, by (f) and the definitions of φ̃ and ṽ,

φ̃(s, t) = 0 ∀(s, t) ∈ J̄∗T \
∪

i, j,k∈N
Dk

i, j, (6.24)

and hence φ̃ ≡ 0 on ∂J∗T . Thus φ̃ ∈ W1,∞
0 (J∗T ).

Let r ∈ {1, 2, 3} and (s, t) ∈ (Dk
i, j)
±
r . By (e) and (f),

∂tφ̃(s, t) =
∫ s

(sk
i, j)1(t)

τm∂tṽk
i, j(τ, t)dτ. (6.25)
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So it is easily deduced from (b) that

∂tφ̃ ∈ C0
(
(Dk

i, j)±r
)
.

By the definition of φ̃,
∂sφ̃(s, t) = smṽ(s, t) ∀(s, t) ∈ J∗T . (6.26)

Since ṽ ∈ C0(J̄∗T ), we have ∂sφ̃ ∈ C0(J̄∗T ). In particular,

∂sφ̃ ∈ C0
(
(Dk

i, j)±r
)
,

so that
φ̃ ∈ C1

(
(Dk

i, j)±r
)
. (6.27)

Thus {
φ̃ ∈ W1,∞

0 (J∗T ),
φ̃ is piecewise C1 in J∗T .

(6.28)

Finally, we define

vη := v + ṽ, φη := φ + φ̃, and Φη := (vη, φη) in J∗T .

6.5. Completion of Proof of Theorem 3.1
To finish the proof of the density theorem, Theorem 3.1, we will show that the function Φη

defined above belongs to Φ∗ +W1,∞
0 (J∗T ;R2) and satisfies all of (6.2).

First, it follows from (6.1), (6.23), and (6.28) that{
Φη ∈ Φ∗ +W1,∞

0 (J∗T ;R2),
Φη is piecewise C1 in J∗T .

It remains to verify the rest of (6.2).

The fourth of (6.2): Note

||Φ − Φη||L∞(J∗T ;R2) = sup
i, j,k∈N

||(ṽ, φ̃)||L∞(Dk
i, j;R2) ≤ sup

i, j,k∈N

(
||ṽ||2L∞(Dk

i, j)
+ ||φ̃||2L∞(Dk

i, j)

)1/2
,

since ṽ = φ̃ = 0 on J̄∗T \
∪

i, j,k∈N Dk
i, j. But for every (i, j, k) ∈ N3,

||ṽ||L∞(Dk
i, j)
= ||ṽk

i, j||L∞(Dk
i, j)
≤ η
√

2
(by (g))

and
||φ̃||L∞(Dk

i, j)
≤ η
√

2
. (by (f) and (h))

Thus
||Φ − Φη||L∞(J∗T ;R2) ≤ η.
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The second of (6.2): By the third of (6.1) and (6.26),

∂sφη(s, t) = ∂s(φ(s, t) + φ̃(s, t))
= smv(s, t) + smṽ(s, t) (6.29)
= smvη(s, t)

for a.e. (s, t) ∈ J∗T . Since Φη ≡ Φ on J∗T \
∪

i, j,k∈N Dk
i, j, it follows from the third of (6.1) that

∇Φη(s, t) = ∇Φ(s, t) ∈ Km
λ,l0(s, v(s, t)) ∪ Um

λ,l0(s, v(s, t)) = Km
λ,l0(s, vη(s, t)) ∪ Um

λ,l0(s, vη(s, t))

for a.e. (s, t) ∈ J∗T \
∪

i, j,k∈N Dk
i, j. Let i, j, k ∈ N. To finish the proof of this part, it now suffices to

show that
∇Φη(s, t) ∈ Um

λ,l0(s, vη(s, t)) for a.e. (s, t) ∈ Dk
i, j. (6.30)

To this end, we will show that for a.e. (s, t) ∈ Dk
i, j, we have

|∂tvη(s, t)| < l0 (6.31)

and {
∂svη(s, t) ∈ (−λ,−λ−) ∪ (λ−, λ),
∂tφη(s, t) ∈ Im

λ (s, ∂svη(s, t)). (6.32)

Then combining (6.29), (6.31), and (6.32) and appealing to Lemma 3.2, we obtain (6.30).
Since Dk

i, j ⊂ Qk
i , it follows from (6.17) that for each (s, t) ∈ Dk

i, j,

|∂tv(s, t) − ∂tv(sk
i , t

k
i )| ≤ |∇Φ(s, t) − ∇Φ(sk

i , t
k
i )| ≤ ρδi.

But |∂tv(sk
i , t

k
i )| < l0 − δi by the third of (6.18). Observe also that for a.e. (s, t) ∈ Dk

i, j,

|∂tṽ(s, t)| = |∂tṽk
i, j(s, t)| ≤ δi

2
. (by (d))

Thus for a.e. (s, t) ∈ Dk
i, j,

|∂tvη(s, t)| = |∂tv(s, t) + ∂tṽ(s, t)|
≤ |∂tv(s, t) − ∂tv(sk

i , t
k
i )| + |∂tv(sk

i , t
k
i )| + |∂tṽ(s, t)|

< ρδi + l0 − δi +
δi

2
< l0 −

δi

3
< l0, (by (6.8))

and hence (6.31) holds.
As above for each (s, t) ∈ Dk

i, j,

ρδi ≥ |∇Φ(s, t) − ∇Φ(sk
i , t

k
i )|

≥ |(∂sv(s, t), ∂tφ(s, t)) − (∂sv(sk
i , t

k
i ), ∂tφ(sk

i , t
k
i ))|

= |(∂sv(s, t), ∂tφ(s, t)) − (pk
i , (sk

i )
mqk

i )| (by (6.19))
≥ max{|∂sv(s, t) − pk

i |, |∂tφ(s, t) − (sk
i )

mqk
i |}, (6.33)
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where (pk
i , q

k
i ) ∈ Ũ+λ ∪ Ũ−λ . Let us assume that (pk

i , q
k
i ) ∈ Ũ+λ . (The other case that (pk

i , q
k
i ) ∈ Ũ−λ can

be shown in the same way.) We have to show that for a.e. (s, t) ∈ Dk
i, j,

λ− < ∂svη(s, t) = ∂sv(s, t) + ∂sṽ(s, t) < λ,
∂tφη(s, t) ∈ Im

λ (s, ∂svη(s, t)),
or equivalently smσ(λ) < ∂tφ(s, t) + ∂tφ̃(s, t) < smσ(∂sv(s, t) + ∂sṽ(s, t)).

(6.34)

Case 1: Assume (s, t) ∈ (Dk
i, j)
+
1 ∪ (Dk

i, j)
−
1 ∪ (Dk

i, j)
+
3 ∪ (Dk

i, j)
−
3 .

In this case, we have
∂sṽk

i, j(s, t) = −ak
i

by (c). Let 0 < pk,−
i < 1 < pk,+

i be such that

σ(pk,±
i ) = qk

i ,

so that (sk
i )

mσ(pk,±
i ) = (sk

i )
mqk

i . Then by (6.21),

pk,−
i +

δi

3
< pk

i − ak
i < pk

i < pk
i + bk

i < pk,+
i −

δi

3
.

(See Figure 4.) Also by (6.8) and (6.33),

−δi

6
< ∂sv(s, t) − pk

i <
δi

6
.

Thus
λ− < pk,−

i < pk
i −

δi

3
− ak

i < ∂sv(s, t) +
δi

6
− δi

3
− ak

i

< ∂sv(s, t) − ak
i = ∂sv(s, t) + ∂sṽk

i, j(s, t) = ∂svη(s, t)

< ∂sv(s, t) − δi

6
+ bk

i +
δi

3
< pk

i + bk
i +

δi

3
< pk,+

i < λ,

that is,
λ− < ∂svη(s, t) < λ. (6.35)

Next, note from (6.22), (6.25), and (d) that

|∂tφ̃(s, t)| ≤ (R − 2δ0)(R − δ0)m(λ − λ−)
[
1 +

(
R − δ0

δ0

)m]
ξk

i ≤
δi

6
. (6.36)

By (6.21),

(sk
i )

mqk
i ≤ (sk

i )
mσ(pk

i − ak
i ) −

δi

2
. (6.37)

(See Figure 4.) But

|(sk
i )

mσ(pk
i − ak

i ) − smσ(∂sv(s, t) − ak
i )|

= |((sk
i )

m − sm)σ(pk
i − ak

i ) + sm(σ(pk
i − ak

i ) − σ(∂sv(s, t) − ak
i ))|

≤ |sk
i − s||g(sk

i , s)|σ(1) + RmMσ|pk
i − ∂sv(s, t)|

≤ Mgσ(1)dk
i + RmMσρδi (by (6.33))

< δi
6 . (by (6.8) and (6.16))

36



Combining this with (6.37), we get

(sk
i )

mqk
i < smσ(∂sv(s, t) − ak

i ) −
δi

3
. (6.38)

So

∂tφ(s, t) + ∂tφ̃(s, t) ≤ (sk
i )

mqk
i + ρδi + |∂tφ̃(s, t)| (by (6.33))

< smσ(∂sv(s, t) − ak
i ) −

δi

3
+
δi

6
+
δi

6
(by (6.8), (6.36), and (6.38))

= smσ(∂sv(s, t) + ∂sṽ(s, t)). (6.39)

Note (See Figure 4.)
(sk

i )
mqk

i > (sk
i )

mσ(λ) + δi (by (6.20)) (6.40)

and
|smσ(λ) − (sk

i )
mσ(λ)| ≤ Mgσ(1)dk

i ≤
δi

12
. (by (6.16)) (6.41)

So

∂tφ(s, t) + ∂tφ̃(s, t) ≥ (sk
i )

mqk
i − ρδi − |∂tφ̃(s, t)| (by (6.33))

≥ (sk
i )

mσ(λ) + δi −
δi

6
− δi

6
(by (6.8), (6.36), and (6.40))

≥ smσ(λ) − δi

12
+ δi −

δi

6
− δi

6
(by (6.41))

> smσ(λ). (6.42)

Combining (6.35), (6.39), and (6.42), we have (6.34) whenever (s, t) ∈ (Dk
i, j)
+
1 ∪ (Dk

i, j)
−
1 ∪ (Dk

i, j)
+
3 ∪

(Dk
i, j)
−
3 .

Case 2: (6.34) also holds whenever (s, t) ∈ (Dk
i, j)
+
2 ∪ (Dk

i, j)
−
2 . To show this, we just follow the

lines of Case 1 with minor modifications whenever it is necessary. We skip the details.
We conclude from Cases 1 and 2 that (6.34) holds for a.e. (s, t) ∈ Dk

i, j.
The third of (6.2): Observe∫

J∗T

dist(∇Φη(s, t),Km
λ,l0(s, vη(s, t)))dsdt =

∞∑
i=1

∫
K̂i

dist(∇Φ(s, t),Km
λ,l0(s, v(s, t)))dsdt

+

∞∑
i, j,k∈N

∫
Dk

i, j

dist(∇Φ(s, t) + ∇Φ̃(s, t),Km
λ,l0(s, v(s, t) + ṽ(s, t)))dsdt =: A + B,

where Φ̃ := (ṽ, φ̃). By (6.6), we have A ≤ ϵ
2 |J∗T |. Let i, j, k ∈ N, and let (s, t) ∈ ∪3

r=1[(Dk
i, j)
+
r ∪(Dk

i, j)
−
r ]

be any point at which (6.30) holds. Then by Lemma 3.5,

dist(∇Φ(s, t) + ∇Φ̃(s, t),Km
λ,l0(s, v(s, t) + ṽ(s, t)))

= dist((∂sv(s, t) + ∂sṽ(s, t), ∂tφ(s, t) + ∂tφ̃(s, t)), K̃m
λ (s)).
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We assume further that (s, t) ∈ (Dk
i, j)
+
1 ∪ (Dk

i, j)
−
1 ∪ (Dk

i, j)
+
3 ∪ (Dk

i, j)
+
3 , so that ∂sṽ(s, t) = −ak

i . Choose
any (p, q) ∈ K̃λ. Then

|(∂sv(s, t) − ak
i , ∂tφ(s, t) + ∂tφ̃(s, t)) − (p, smq)|

= |(∂sv(s, t), ∂tφ(s, t)) − (∂sv(sk
i , t

k
i ), ∂tφ(sk

i , t
k
i )) + (∂sv(sk

i , t
k
i ), ∂tφ(sk

i , t
k
i ))

+(−ak
i , 0) + (0, ∂tφ̃(s, t)) − (p, smq) − (p, (sk

i )
mq) + (p, (sk

i )
mq)|

≤ ρδi + |(pk
i − ak

i , (sk
i )

mqk
i ) − (p, (sk

i )
mq)|

+|∂tφ̃(s, t)| + |q||sm − (sk
i )

m|

≤ δi

6
+
δi

6
+
δi

12
+ |(pk

i − ak
i , (sk

i )
mqk

i ) − (p, (sk
i )

mq)|

as in the verification for the second of (6.2). Taking an infimum on (p, q) ∈ K̃λ for the far-left and
-right terms of the inequalities, we have

dist((∂sv(s, t) + ∂sṽ(s, t), ∂tφ(s, t) + ∂tφ̃(s, t)), K̃m
λ (s))

≤ 5δi

12
+ dist((pk

i − ak
i , (sk

i )
mqk

i ), K̃
m
λ (sk

i )) =
5δi

12
+
δi

2
< δi <

ϵ

2
by (6.5) and (6.21). We can get the same result when (s, t) ∈ (Dk

i, j)
+
2 ∪ (Dk

i, j)
−
2 , but we omit the

details. We now have

dist((∂sv(s, t) + ∂sṽ(s, t), ∂tφ(s, t) + ∂tφ̃(s, t)), K̃m
λ (s)) ≤ ϵ

2
for a.e. (s, t) ∈ Dk

i, j.

So we obtain B ≤ ∑
i, j,k∈N

ϵ
2 |Dk

i, j| ≤ ϵ
2 |J∗T |. Thus A + B ≤ ϵ |J∗T |.

The theorem is finally proved.
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