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Abstract. We use the skein theory of sl3-webs to study the properties of the quantum sl3-link

polynomial of positive links. We give explicit formulae for the three leading terms of the polynomial

on positive links in terms of diagrammatic quantities of their positive diagrams. We show that a

positive link is fibered if and only the second coefficient of the polynomial is equal to one. We also

show that the third coefficient provides obstructions to representing links by positive braids.

1. Introduction

We study the Reshetikhin-Turaev [RT90] quantum link polynomial, corresponding to the 3-

dimensional defining representation of the Lie algebra sl3, for positive links. The invariant of

oriented links is a Laurent polynomial in a single variable q. We obtain explicit diagrammatic

formulae for the three leading coefficients of this invariant and discuss their applications to knot

theory. Our approach to the invariant is through the theory of A2-webs as defined by Kuperberg

in [Kup96].

Throughout the paper, we will usually refer to this invariant as the sl3 polynomial for links

L ⊂ S3. The particular normalization we work with and its relation to other normalizations

appearing in the literature is discussed in the beginning of the next section.

A link L is positive if it admits a diagram containing only positive crossings. It is a classical result

that for a positive link L the surface obtained by applying Seifert’s algorithm to any connected

positive diagram D of L has maximum Euler characteristic over all Seifert surfaces of L. We use

χ(L) to denote this Euler characteristic. By construction, this surface contains a special spine,

denoted by GW := GW (D) in this paper, and is called the Seifert graph of D.

We will use v to denote the number of vertices of GW . Also we will use e′ to denote the number

of edges in the reduced graph G′
W , obtained from GW by removing all the multiple edges between

all the pairs of vertices. If L admits a positive non-connected diagram, then all the quantities

defined above are additive over the connected components of the diagram.

To describe our results, for a positive link L ⊂ S3, let

⟨⟨L⟩⟩ = γ1q
n + γ2q

n−2 + γ3q
n−4 + lower degree terms
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denote the sl3 polynomial of L in the variable q with integral coefficients γi. For positive links we

show ⟨⟨L⟩⟩ is a polynomial in Z[q2, q−2].

The main technical result of this paper is the following, where the terminology used is defined

in detail in Section 5.

Theorem 1.1. For any connected positive diagram D = D(L), we have:

(1) the leading degree of ⟨⟨L⟩⟩ is n = 2χ(L) ≤ 2, and if n = 2 then L is the unknot,

(2) γ1 = 1 and γ2 = v − e′ ≤ 1,

(3) γ3 =
(γ2+1) γ2

2 + µ− θ.

Here v and e′ are as defined above, µ is the number of edges in G′
W that have multiplicity greater

than one in GW , and θ is the number of pairs of edges in G′
W which are mixed at a vertex in G′

W .

Theorem 1.1 and its proof imply that for any non-trivial positive knot, the polynomial ⟨⟨K⟩⟩
contains only non-positive powers of the variable q. In the process of proving the theorem we give

a state model reformulation of the sl3 polynomial and study how the contribution of each state to

various terms of the polynomial change under transition between states by skein moves on webs.

Combining our work here with a result of Futer, Kalfagianni and Purcell [FKP13] we obtain the

following characterization of fibered positive links.

Theorem 1.2. A non-split positive link L is fibered if and only if γ2(L) = 1.

A particularly interesting class of positive links is the class of links that can be represented as

closures of positive braids i.e. products of only positive powers of the Artin generators of braid

groups. It been known for a long time that closed positive braids are fibered and that not all positive

knots are closed positive braids or fibered. Positive braids have been studied extensively in low-

dimensional topology and the question of determining which links can be represented by positive

closed braids has been studied considerably in the literature. Our results here have applications

to this question. For instance we show the following. The reader is referred to Section 7 for more

results and discussion.

Corollary 1.3. Let K be a knot that decomposes into a direct sum of p prime knots. If K can be

represented as a closed positive braid, then γ2 = 1 and γ3 = p+ 1. In particular, if a prime knot is

a closed positive braid, then γ3 = 2.

The paper is organized as follows.

In Section 2 we recall the definition of the quantum sl3 link invariant and specify the conventions

and normalization we will adopt throughout the paper. We also describe a state model approach

for computing the invariant and prove a technical lemma for use in subsequent sections.

In Section 3 we begin by introducing state graphs which are graphs corresponding to states that

we use to compute the sl3 link polynomial. The main result in this section is Theorem 3.2 in which

we determine the two leading terms of the polynomial for positive links.
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In Section 4 we study the question of when a positive link is fibered and we prove Theorem 1.2.

In fact we have a stronger version of the theorem, see Theorem 4.1.

In Section 5 we prove the main technical result of the paper (Theorem 5.1) determining the three

leading terms of the sl3 link polynomial for positive links. This in particular implies Theorem 1.1.

In Section 6 we study the behavior of the coefficients γ2 and γ3 under connected sum and disjoint

union of links.

In Section 7 we discuss obstructions to representing links by positive closed braids and, in

particular, we prove Corollary 1.3. We also show that the only non-split links that are represented

as positive alternating closed braids are connected sums of (2, n) torus links. We also compare our

obstructions to previous related work in the literature, most notably the work of Ito [Ito22] that

has derived obstructions to positive braiding using the 2-variable HOMFLY link polynomial.

Acknowledgement The research of M.H. is partially supported by the NSF/RTG Grant, DMS-

2135960, “Algebraic and Geometric Topology at Michigan State”. The research of E.K. is partially

supported by NSF Grant, DMS-2304033.

2. The quantum sl3 invariant of unframed links

2.1. Definition of the invariant. We consider the Reshetikhin-Turaev quantum invariant of

links associated with (sl3, V ), where V is the defining representation of the Lie algebra of sl3.

Equivalently, V is the representation with highest weight (1, 0). We follow the spider or web

approach to this invariant introduced by Kuperberg [Kup96], where it is also called the quantum

A2 invariant. This invariant is computed from an oriented link diagram D by first resolving each

crossing by the relations

= q−2 − q−3 = q2 − q3 .(1)

This produces a Z[q, q−1]-linear combination of webs diagrams, trivalent graphs embedded in S2

where each vertex is either a source or a sink. These diagrams may be simplified according to the

square, bubble, and circle moves of Equation (2). Iterating these moves simplifies any closed web

W to a scalar multiple ⟨⟨W ⟩⟩ of the empty diagram and it is independent of the order the moves

are applied. Then ⟨⟨D⟩⟩ is an invariant of the link presented by D. The defining relations on webs

are as follows:

= + , = [2] , = = [3],(2)

where [2] = q + q−1 and [3] = q2 + 1 + q−1.

Our conventions differ from both Kuperberg and Ohtsuki [Kup96, Oht02]. First, we use the

unframed normalization of the invariant, meaning that it respects the first Reidemeister move. The

framing factors in their respective normalizations are q−4/3 and A8. After adjusting, we recover
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our convention from Kuperberg’s by replacing q with −q−2, and setting A = −q1/3 for Ohtsuki’s

convention.

If PL(a, z) denotes the HOMFLY polynomial, defined by the relations

(3) a−1PL+(a, z)− aPL−(a, z) = zPL0(a, z) and Punknot(a, z) = 1

then

(4) ⟨⟨L⟩⟩ = [3] · PL(q
−3, q − q−1) .

2.2. Computation of ⟨⟨·⟩⟩ by states. In this subsection we discuss a state sum approach for

computing the quantum sl3 invariant.

Definition 2.1. An oriented link L is called positive (resp. negative) if it has a diagram D = D(L)

in which all crossings are positive (resp. negative), as shown in Figure 1. Note that if a link is

positive then its mirror image is negative and vice-versa.

positive crossing negative crossing

Figure 1. A positive crossing and a negative crossing.

At each crossing of D we may choose either an oriented resolution or a web resolution as shown

in Figure 2. We abbreviate these as O and W resolutions. A state s := s(D) is a choice of resolution

O-resolution W -resolution

Figure 2. The oriented (O) and web (W ) -resolutions of a crossing.

at each crossing in D. The number of states associated to D is 2e(D), where e(D) is the number of

crossings in D.

There is a bijection between states of D and planar webs obtained by replacing all crossings

of D with O and W resolutions, each linear term in the expression of D after applying Equation

(1). The result of applying state s to D gives a web W(s) := W(s)(D) that we will call the web

associated to s. There are states for which W(s) may have several components, including disjoint

circles. We denote the all-O state by O := O(D) and the all-W state by W := W (D). We will use

v := v(D) to denote the number of circles in O and e := e(D) to denote the number of crossings in

D. The evaluation of W(s) using the relations of Equation (2) to an element of Z[q, q−1] is denoted

⟨⟨W(s)⟩⟩.
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Given a state s, on a fixed diagram D, let α+(s) and β+(s) (resp. α−(s) and β−(s)) denote the

number of O and W resolutions of positive (resp. negative) crossings in a state s of D, respectively.

If D is a positive or negative diagram then we simply write α(s) and β(s).

For each state s we call the quantity

ϕ(s) := (−1)β+(s)+β−(s)q−2(α+(s)−α−(s))−3(β+(s)−β−(s)),

the phase of s. The phase is computed as the product of coefficients appearing in Equation (1)

over all crossings in a given state. For positive and negative diagrams,

ϕ(s) = (−1)β(s)q−2α(s)−3β(s) and ϕ(s) = (−1)β(s)q2α(s)+3β(s),

respectively. The discussion above implies the following.

Proposition 2.2. Let D be a diagram of a link L. Then the quantum sl3 invariant of L is computed

as a sum of state contributions

⟨⟨D⟩⟩ =
∑
s

Y (s), where Y (s) := ϕ(s)⟨⟨W(s)⟩⟩.

To facilitate our exposition we will refer to the Laurent polynomial Y (s) as the weight of the

state s.

We close the subsection with the following lemma.

Lemma 2.3 ([Oht02, Lemma B.1]). Let W be a web embedded on a 2-sphere S2. Then, at least

one of the regions of S2 \W is a bigon or a square.

2.3. Relating maximum degrees of weights. Our goal in this subsection is to understand how

the maximum degree of a weight Y (s) changes when we replace a single O-resolution in s by the

W -resolution. Proposition 2.6 below is important for the proof of the main technical results of

the paper (Theorems 3.2 and 5.1) that provide formulae for the three leading coefficients for the

sl3 invariant of positive links. We note however that Lemma 2.5, that is used for the proof of

Proposition 2.6, applies to all link diagrams and not just positive.

Definition 2.4. We say that two states s, s′ of a link diagram D are related by an OW -move if s′

is obtained from s by replacing a single O-resolution by a W -resolution. If the states s and s′ are

related by an OW -move, the the corresponding webs W(s) and W(s′) differ only in a disc E that

intersects W(s) in two coherently oriented arcs. Then E∩W′(s) is the replacement of the apparent

O-resolution with a W -resolution.

A simple example of an OW -move is given in Figure 3.

Let deg(⟨⟨W(s)⟩⟩) denote the maximum degrees of the sl3 invariant of the web associated to s.

Lemma 2.5. Suppose s and s′ are two states of D such that s′ is obtained from s by an OW -move.

Then either

deg(⟨⟨W(s′)⟩⟩) = deg(⟨⟨W(s)⟩⟩) + 1 or deg(⟨⟨W(s′)⟩⟩) = deg(⟨⟨W(s)⟩⟩)− 1 .
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E

OW -move7−−−−−−−−→

E

Figure 3. An OW -move between two state webs W(left) and W′(right) in the disc

E whose boundary is indicated by the dotted line. The clearing region contains the

part between the two arcs of E ∩W that is disconnected in E ∩W′.

We simplify notation by writing these two equalities as deg(W(s′)) = deg(W(s)) + {−1, 1}.

Proof. The planar webs W(s) and W(s′) only differ in a disc neighborhood E of the crossing of D

where the OW -move is applied. We refer to the center region of E ∩W(s) which is disconnected in

E ∩W(s′) as the clearing, see Figure 3. By Lemma 2.3, W(s) must contain some bigons or squares.

Simplify each web W(s) and W(s′) outside of E using Equation (2) until no bubbles or squares

remain except those that have an edge that is a component of E∩W(s). Note that the contribution

of each of these simplifications to deg(⟨⟨W(s)⟩⟩) is the same as the contribution to deg(⟨⟨W(s′)⟩⟩).
After these simplifications we have pairs of webs that

(i) are related by an OW -move inside the disc E, and

(ii) any bubble or square in the webs must have an edge that intersects E.

Without loss of generality assume that the webs W(s) and W(s′), to begin with, are a pair that

satisfy (i) and (ii).

We prove the lemma by induction on the number n of edges in W(s). The proof is then further

divided into cases based on the number and shape of polygons in W(s) that have edges intersecting

E.

The base case for the induction is n = 2, seen in Figure 3. In this case, we have ⟨⟨W(s)⟩⟩ = [3]2

and ⟨⟨W(s′)⟩⟩ = [2][3], and hence deg(W(s′)) = deg(W(s)) + {−1, 1} .
Suppose, inductively, that the lemma holds for all pairs W(s) and W(s′) that satisfy (i) above

and W(s) has fewer than n edges.

For the inductive step, suppose now, that W(s) has exactly n edges. We can consider W(s) and

W(s′) embedded on a 2-sphere and hence the clearing region in W(s) is bounded by either one or

two polygons.

Case(A). If the clearing region is bounded by two polygons, then W(s) has two components, say

W1, W2. Each of W1, W2 can be simplified entirely outside E, using the relations of Equation (2)

until we arrive at two circles each containing one of the two arcs of E ∩W(s). Hence, ⟨⟨W(s)⟩⟩ sim-

plifies as a product c1c2[3]
2 for some c1, c2 ∈ Z[q, q−1]. Similarly W(s′) can be simplified completely

away from a resulting bubble intersecting E, which determines ⟨⟨W(s′)⟩⟩ = c1c2[2][3]. We conclude

that

deg(W(s′)) = deg(W(s)) + {−1, 1}.
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Case(B). Suppose the clearing region is bounded by one polygon. Then the bounding polygon

must have an even number of vertices to ensure biparticity of the web – recall that each vertex

must be a source or a sink. There are now subcases according to whether the bounding polygon is

a bubble, a square, or an m-gon for m ≥ 6.

Subcase(B1). If the polygon bounding the clearing region is a bubble, then the local diagrams at

E are related by

W(s′) = = [2] = [2]W(s)

Thus, deg(W(s′)) = deg(W(s)) + {−1, 1} .

Subcase(B2). If the polygon bounding the clearing region is a square, then, up to a vertical

reflection, the local diagrams at E are given by

W(s′) = = [2] = [2]W(s)

We also have deg(W(s′)) = deg(W(s)) + {−1, 1} in this case.

Subcase(B3). Suppose the bounding polygon in W(s) is an m-gon with m ≥ 6 and is adjacent

to a bubble with one of its edges on one of the components of E ∩W(s). Note that such a bubble

must transform into a square of W(s′) under the OW -move.

We separate the argument into two subcases according to whether the OW -move also produces

a square in W(s′) that is not coming from a bubble of W(s) or not. In either case, the polygon

bounding the clearing region in W(s) reduces to an (m−2)-gon. In the diagrams below, the dotted

edge indicates additional vertices and outgoing edges of the polygon, possibly none.

Subsubcase(B3a). Suppose that the OW -move produces at least one square in W(s′) that is not

coming from the bubble in W(s). We declare W to be the web obtained by resolving the bubble in
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W(s) and omitting the factor [2]. Then

W(s) = = [2] = [2]W

and deg(W(s)) = deg(W) + 1.

On the other hand, in the neighborhood of E in W(s′) we have

W(s′) = = + = W+ [2]

︸ ︷︷ ︸
W′

= W+ [2]W′
.

Observe that four regions intersect E in W(s′). The middle left of these regions is a square that

comes from a bubble of W(s). By assumption, at least one of the remaining two regions is a square.

In the first equality, we apply the square relation of Equation (2) to resolve the middle square in

W(s′) and transform the other into a bubble. We next apply the bubble relation of Equation (2)

to further simplify the web. Thus, we get deg(W(s′)) = max(deg(W),deg(W′
) + 1).

Now notice that by performing an OW -move on W′
in a neighborhood disc if the dashed arc

illustrated in the left hand side panel of the equation below, we obtain W:

W′
=

OW -move7−−−−−−−−→ = W .

Since W′
has fewer than n edges we may apply the inductive hypothesis and so deg(W′

) = deg(W)+

{−1, 1}. We now have

deg(W(s′)) = max(deg(W), deg(W) + {0, 2}) = deg(W) + {0, 2}

= (deg(W(s))− 1) + {0, 2} = deg(W(s)) + {−1, 1} .

Subsubcase(B3b). Suppose that the OW -move produces no squares on W(s′) that do not come

from a bubble of W(s). In this case the polygon bounding the clearing region must have at least
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eight sides as illustrated in the figure below. We again declare W to be the simplified web without

the factor [2].

W(s) = = [2] = [2]W

We note that deg(W(s)) = deg(W) + 1.

After resolving the square in W(s′), that resulted from the bubble of W(s) illustrated above,

we obtain two webs W and W′, illustrated left to right in the middle part of the equalities below.

Given our earlier assumptions and Lemma 2.3, the OW -move must create a square, say T , on W′

as shown below. Resolving T we write W′
= W1 +W2, as shown below.

W(s′) = = + = W+

︸ ︷︷ ︸
W1

+

︸ ︷︷ ︸
W2

Observe that each of W1 and W2 transforms into W under two applications of the OW -move. Each

move will be performed in a disc neighborhood of one the four arcs indicated by dashed lines in

the right hand side of above equation.

Once again, since W has fewer than n edges, by the induction hypothesis, we have

deg(W1) = deg(W) + {−2, 0, 2} and deg(W2) = deg(W) + {−2, 0, 2}.

Now we have

deg(W(s′)) = max(deg(W), deg(W1), deg(W2))

= max(deg(W),deg(W) + {−2, 0, 2}) = deg(W) + {0, 2} .

which gives deg(W(s′)) = deg(W(s)) + {−1, 1}.

Subcase(B4). Suppose that the polygon bounding the clearing region is an m-gon with m > 4.

Suppose, moreover, that W (s) has no bubbles and that it has a square with one of its sides being

a component of E ∩W(s). Then,
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W(s) = =

︸ ︷︷ ︸
W1

+

︸ ︷︷ ︸
W2

and similarly in E ∩W′(s) we have,

W(s′) = =

︸ ︷︷ ︸
W′

1

+

= W′
1 +

︸ ︷︷ ︸
W′

1

+

︸ ︷︷ ︸
W′

2

.

We observe the following relations:

W1
OW -move7−−−−−−−−→ W′

1 , W′
1
OW -move7−−−−−−−−→ W1 , W′

2
OW -move7−−−−−−−−→ W2 .

By the inductive hypothesis, these imply

deg(W1) = deg(W′
1) + {−1, 1} , deg(W′

1) = deg(W1) + {−1, 1} , deg(W′
2) = deg(W2) + {−1, 1} ,

and so

deg(W(s′)) = max(deg(W′
1), deg(W

′
1), deg(W

′
2))

= max(deg(W1) + {−1, 1}, deg(W2) + {−1, 1})

= max(deg(W1),deg(W2)) + {−1, 1}

= deg(W(s)) + {−1, 1} . □

We use the notation for the degree function

d(s) = deg(Y (s)) = −2(α+(s)− α−(s))− 3(β+(s)− β−(s)) + deg(⟨⟨W(s)⟩⟩) .
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For positive diagrams this reduces to

d(s) = deg(Y (s)) = −2α(s)− 3β(s) + deg(⟨⟨W(s)⟩⟩) .

Proposition 2.6. Let D be a positive diagram. Suppose s and s′ are two states of D such that s′

is obtained from s by an OW -move. Then

d(s′) = d(s) or d(s′) = d(s)− 2 .

In particular, OW -moves on s do not increase the degree of Y (s).

Proof. The phases of states related by an OW -move differ by a factor of −q−1:

ϕ(s′) = (−1)β(s)+1q−2(α(s)−1)−3(β(s)+1) = −q−1ϕ(s) .

Therefore

d(s′) = deg(⟨⟨W(s′)⟩⟩) + deg(ϕ(s))− 1 and d(s) = deg(⟨⟨W(s)⟩⟩) + deg(ϕ(s)) .

Now from Lemma 2.5 either deg(⟨⟨W(s′)⟩⟩) = deg(⟨⟨W(s)⟩⟩)+1 or deg(⟨⟨W(s′)⟩⟩) = deg(⟨⟨W(s)⟩⟩)−1.

The claim readily follows. □

Remark 2.7. Under single changes of resolutions, the degree of Y (s) is preserved modulo 2. Also

note that each reduced expression in Equation (2) contributes a polynomial in q of constant degree

modulo 2. Since d(O) = 2(v−e) for positive diagrams, we have ⟨⟨D⟩⟩ ∈ q2(v−e)Z[q−2]. In particular,

the sl3 invariant of a positive link is valued in Z[q2, q−2]. ♢

3. The two leading terms of sl3 for positive links

3.1. The O and W state graphs. We consider graphs associated to a link diagram D for various

types of crossing resolutions. We have already introduced the oriented and web resolutions of

crossings in Figure 2.

To each state s of a link diagram D, there is an associated state diagram Ds constructed as

follows. First consider the all O-resolution of D which consists of non-intersecting circles on S2.

For each crossing of D which is assigned a W -resolution in s, add an edge between two curves in the

position of the crossing. We also have the state graph Gs := Gs(D) associated to s, obtained from

Ds by collapsing each circle to a point. By definition, for each state s, the graph Gs is a spanning

subgraph of GW , i.e. it contains all the vertices of GW . We denote the number of vertices in GW

(Seifert circles in D) by v and the number of edges in GW (crossings in D) by e.

Remark 3.1. Note that the O-resolution is orientation preserving, and the state diagram DO coin-

cides with the set of Seifert circles of D. In Seifert’s algorithm for constructing a Seifert surface,

twisted bands join two circles in the positions of each crossing. The core of each band corresponds

an edge in the diagram Ds and DW is exactly the Seifert diagram of D. In this way GW is a spine

of the Seifert surface for D.
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The graph associated with the all-O state GO, which may also call the O-graph, has no edges.

Whereas GW the W -graph associated to the all-W resolution is exactly the Seifert graph of D. ♢

The reduced state graph G′
s := G′

s(D) for a state s is obtained from Gs by removing all multiplicity

edges. We call an edge of G′
W a reduced edge and write e′ for the number of reduced edges in the

graph.

Our main result in this section is the following.

Theorem 3.2. Let L be a link with a positive diagram D. The first two leading terms of the sl3

invariant are expressed as

⟨⟨L⟩⟩ = q2(v−e) + (v − e′)q2(v−e−1) + lower degree terms ,

where v, e and e′ are defined for D as above.

Note that Theorem 3.2 implies, in particular, that the quantities v − e and v − e′ are invariants

of L (i.e. independent of the choice of the positive diagram).

Remark 3.3. Given the language of state graphs, we formulate another implication of Proposition

2.6 and its proof that will also be useful in computing coefficients of the sl3 invariant. In Case(A)

of the proof of Lemma 2.5, the clearing region is bounded by two polygons and in this case we

showed deg(⟨⟨W(s′)⟩⟩) = deg(⟨⟨W(s)⟩⟩) − 1. Therefore d(s′) = d(s) − 2. Moreover, this OW -move

decreases the number of components of both W(s) and the state graph Gs. Consequently, a state

s corresponding to a (reduced) graph with v − k components has degree at most 2(v − e− k). ♢

3.2. Proof of Theorem 3.2. Recall that Y (O) = q−2e[3]v and d(O) = 2(v− e). Every state of D

is obtained from O by replacing a number of O-resolutions by W -resolutions. Thus s is obtained

from O by performing a number of OW -moves. Now if s1 is a state on a positive diagram D that

is obtained from O by an OW -move, then in s1 two Seifert circles of O are merged as shown in

Figure 3. By Remark 3.3, d(s1) = d(O)− 2. If s2 is obtained by performing additional OW -moves

on s1, then d(s2) ≤ d(s1) < d(O). It follows that deg(⟨⟨D⟩⟩) = 2(v− e) for positive D and the all-O

resolution is the unique state contributing to the highest coefficient of ⟨⟨D⟩⟩. Thus, the leading

coefficient of ⟨⟨D⟩⟩ is one.
To compute the second coefficient we need the following lemma.

Lemma 3.4. Let D be a positive diagram and let s ̸= O be a state for which d(s) = 2(v − e− 1).

Then, all the W -resolutions in s occur between a single pair of Seifert circles, i.e. states s where

G′
s has a single edge. For such states

Y (s) = (−q)−2e−β(s)[3]v−1[2]β(s) .

Proof. By assumption, s has at least one W -resolution. Therefore its state graph has at most

v − 1 components, and so, by Remark 3.3, d(s) ≤ 2(v − e − 1). Moreover, if s′ is another state

with additional W -resolutions between a different pair of vertices, then this further decreases the

number of components of the state graph. For such s′, d(s′) < d(s). Therefore, only states with
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a single edge in their reduced graph have degree 2(v − e − 1). The evaluation of such a state is a

straightforward computation. □

We now complete the proof of Theorem 3.2.

Proof. Let D = D(L) be a positive diagram of L. The states s of D which contribute to the leading

terms come from the all-O resolution of D as well as those with a single reduced edge by Lemma

3.4. As indicated above,

Y (O) = q−2e[3]v = q2(v−e) + vq2(v−e−1) + lower degree terms

and for states s corresponding to a single reduced edge

Y (s) = (−1)β(s)q2(v−e−1) + lower degree terms .

It remains to compute the sum over these states weighted by Y (s).

Enumerate the edges of G′
W for i = 1, . . . , e′ and let ki be the multiplicity of the i-th reduced

edge relative to GW . Thus we obtain the coefficient

e′∑
i=1

ki∑
j=1

(
ki
j

)
(−1)j =

e′∑
i=1

−(1− δki,0) = −e′ . □

4. A characterization of positive fibered links

In this section we provide a characterization of positive fibered links in terms of the second

coefficient of the quantum sl3 invariant. Alternatively, our characterization can be stated in terms

of the Seifert graph GW = GW (D) of any positive diagram of the link.

For positive link L and any positive diagram D = D(L), let γi denote the i-th coefficient of the

quantum sl3 invariant, specifically the coefficient of q2(v−e−i+1). From Theorem 3.2, we have γ1 = 1

and γ2 = (v − e′).

Theorem 4.1. Suppose that L is admits a connected positive diagram D with reduced Seifert graph

G′
W . The following are equivalent:

(1) S3 \ L fibers over S1,

(2) G′
W is a tree,

(3) γ2 = 1.

Before we proceed with the proof we explain how Theorem 1.2 is derived from Theorem 4.1:

Suppose that L is a positive non-split link. Any positive diagram of L must be non-split (i.e.

connected). Hence, L is fibered if and only if γ2 = 1 by Theorem 1.2.

For the proof of Theorem 4.1 we need to recall the A, B-resolutions of link diagrams appearing

the definition of the classical Kauffman bracket, which in turn is related to the Jones polynomial.

In this setting, from a crossing of an un-oriented connected link diagram D we obtain the A-

resolution and the B resolution as illustrated in Figure 4. The A-resolution (resp. B-resolution)
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is defined by deleting the part of the diagram swept over by rotating the overcrossing clockwise

(resp. counterclockwise). Applying the A-resolution (resp. B-resolution) to all the crossings of D

gives gives a collection of simple closed curves vA (resp. vB) called state circles. The all-A (resp.

all-B) state graph of D, denoted by GA := GA(D) (resp. GB := GB(D)) has vertex set vA (resp.

vB) and each edge connects points on state circles where the crossing resolutions where performed.

Associated to the all-A and all-B resolutions of D one has the state surfaces SA(D) and SB(D):

Each state circle in vA (resp. vB) bounds an embedded disc on the projection plane. The discs

can be made disjoint by pushing their interiors below the projection plane. Then for each resolved

crossing we join the corresponding arcs of the state circles by a half-twisted band as shown in

Figure 4. The reader is referred to [FKP13] and references therein for additional details. Clearly

the graph GA (resp. GB) is a spine of the surface SA(D) (resp. SB(D)).

Figure 4. The A-resolution (left) the B-resolution (right) of a crossing and their

contribution to state surfaces. In both cases the edges of the state graph are shown

in red.

Definition 4.2. The diagram D is called A-adequate (resp. B-adequate) if GA (resp. GB) contains

no 1-edge loops.

Let D be a connected positive diagram of a link L and consider the Seifert graph G′
W obtained

from the all-W resolution described in the beginning of Section 3. We will use D to denote D

with the orientations ignored. Furthermore, for a crossing x of D we will use x to denote the

corresponding crossing in D. We can take the all-B resolution of D and the corresponding state

graph G′
B(D) and the corresponding state surface SB(D). We need the following known lemma

(proved for instance in [FKP13]) and include a proof for completeness.

Lemma 4.3. Let D be a positive connected diagram of a link L. The following are equivalent:

(1) the graphs GW (D) and GB(D) are isomorphic,

(2) the state surface SB(D) is orientable and it is isotopic to the Seifert surface obtained by applying

Seifert’s algorithm to D,

(3) the diagram D is B-adequate.

Proof. We begin with the following direct observation: For any crossing of x of D, the O-resolution

of x, with orientations of the arcs ignored, is identical to the B-resolution of x in D. See Figure 5.

Now the first claim follows easily from the definitions of GW (D) and GB(D) and Remark 3.1. It

follows that the graph GB(D) is bipartite, since GW (D) is and hence SB(D) is orientable (compare

[FKP13, Lemma 2.3]). The remainder of the claim in (2) follows from part (1) and the claim that

D is B-adequate also follows from the fact that GB(D) is bipartite. □
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positive crossing

O-resolution7−−−−−−−−−−→

O-resolution

·7−−−−→

B-resolution

Figure 5. The O-resolution of a positive crossing with the orientations ignored is

identical to the B-resolution.

We now give the proof of Theorem 4.1.

Proof. Suppose that D = D(L) is a connected positive diagram of fibered link L. By definition, L

is an oriented link. Then applying Seifert’s algorithm to D we obtain a Seifert surface S = S(D)

that is of minimum genus [Cro89, Corollary 4.1]. But then S is a fiber of a fibration of S3 \L over

S1 [Kaw96, Theorem 4.1.10]. On the other hand, by Lemma 4.3, the surface S is SB(D). That

is S = SB(D). Now [FKP13, Theorem 5.11] (its version for B-adequate diagrams) states that the

following two are equivalent:

(a) S is a fiber of a fibration S3 \ L over S1 ,

(b) the reduced graph G′
B(D) is a tree.

Since GB(D) = GW (D), we determine that G′
W (D) is a tree. Hence γ2 = (v− e′) = 1. This proves

that (1) =⇒ (2) =⇒ (3).

To finish the proof we show that (3) =⇒ (1). Suppose γ2 = (v − e′) = 1. Then the reduced

graph G′
W is a connected tree and again by [FKP13, Theorem 5.11], the surface SB(D) = S(D) is

a fiber of a fibration S3 \ L over S1. Hence L is fibered. □

5. The third coefficient of the sl3 invariant

Continuing our work from Section 3 we compute the third coefficient of the sl3 invariant of

positive links in terms of Seifert graphs of positive diagrams. We prove the following.

Theorem 5.1. Let L be a positive link. The first three leading terms of the sl3 invariant are

expressed as

⟨⟨L⟩⟩ = q2(v−e) + (v − e′)q2(v−e−1) +

((
v − e′ + 1

2

)
+ µ− θ

)
q2(v−e−2) + lower degree terms

where v and e are as in Theorem 3.2, µ is the number of edges in G′
W that have multiplicity greater

than one in GW , and θ is the number of pairs of edges in G′
W which are mixed at a vertex in G′

W .

By Lemma 4.3 the Seifert graph GW (D) of a positive diagram D is the all-B graph of D with

orientations ignored. The quantity θ for GB is defined in [DL06] where the authors compute the

three tailing terms of the Jones polynomial of B-adequate links. We will recall the definition below.

Before we proceed with the proof of Theorem 5.1 we explain how Theorem 1.1, stated in the

introduction, is a consequence.
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Proof of Theorem 1.1. Let L be a link with a connected positive diagram D = D(L). Then

(i) the surface S obtained by applying Seifert’s algorithm to D realizes χ(L),

(ii) if the Seifert graph GW (D) is a connected tree, then D represents the unknot.

By Theorem 5.1 the highest degree of ⟨⟨L⟩⟩ is 2χ(GW (D)). By (i), and since GW (D) is a spine

for S, χ(GW (D)) = χ(S) = χ(L) ≤ 1. If χ(L) = 1, then GW (D) is a tree and by (ii) above D

represents the unknot. Hence, part (1) of the theorem follows.

Again by Theorem 5.1 the leading coefficient of ⟨⟨L⟩⟩ is 1 and γ2 := v − e′ = χ(G′
W (D)) ≤ 1,

proving part (2) of the theorem. Part (3) also follows at once from Theorem 5.1 since γ2 = v−e′. □

Remark 5.2. The formulae for the coefficients γi above are analogues of the Dasbach-Lin formulae

[DL06] for the coefficients of the Jones polynomial of alternating, and more generally adequate,

links. The formulae obtained in [DL06, Theorem 4.1] as well as the combinatorics underlying the

proof their theorem are similar to these of Theorem 5.1. The actual values of the coefficients of the

two polynomials are different. ♢

5.1. Separated and mixed states. Here we define terminology and we prove some lemmas we

need for the proof of Theorem 5.1.

Consider GW = GW (D) as the Seifert graph of a positive diagram D endowed with a cyclic

ordering of half-edges at each vertex.

Definition 5.3. Two edges e′1 and e′2 of G′
W are disjoint if they do not share a common vertex. If

e′1 and e′2 are not disjoint, then we say they are separated if, in the cyclic order at their common

vertex in GW , the edges can be separated into two consecutive sets of edges, one over e′1 and the

other over e′2 (ignoring other reduced edges in the graph). If these edges are neither disjoint nor

separated, then they are called mixed. See Figure 6.

Suppose e′1 and e′2 have a common vertex in G′
W . The lifts of these edges in GW are partitioned

into sets of (a1, a2, . . . , am) and (b1, b2, . . . , bm) of parallel multiple edges, so that all the half-edges

from e1 and e2 at the common vertex alternate in sets of size a1, b1, a1, b2, . . . , am, bm. Note that the

set of edges a1, b1, a1, b2, . . . , am, bm, am+1 is equivalent to a set of edges a1 + am+1, b2, . . . , am, bm

as shown in the Figure 6. We call m the mixing index of the pair of edges. Now e′1 and e′2 are

separated if and only if m = 1 and they are mixed otherwise.

The terminology above adapts to the components of reduced graphs G′
s which have exactly

two edges, i.e. we ignore other vertices and edges away from a shared vertex. Suppose that

G′
s has exactly one component with two edges, then we identify Gs \ {v | deg(v) = 0} with

G(u1, v1, . . . , um, vm) and the corresponding web is denoted W(u1, v1, . . . , um, vm) where 0 ≤ uj ≤
aj and 0 ≤ vj ≤ bj .

Since some uj and vj may be zero, the edges of G′
s may be mixed but the state mixing index nmay

be less than the mixing index m of G′
W . In this case G(u1, v1, . . . , um, vm) = G(u′1, v

′
1, . . . , u

′
n, v

′
n)

with u′j , v
′
j > 0. In particular, if n = 1 we call the state s semi-mixed.
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a1a1a1

a2a2a2

a3a3a3

b1b1b1

b2b2b2
=

a2

a1 + a3

b1b1b1

b2b2b2

Figure 6. An example of a state diagram over a mixed pair of edges with index 2.

These alternating edges realize the equality G(a1, b1, a2, b2, a3) = G(a1 +

a3, b1, a2, b2).

In a semi-mixed state, there is a set of consecutive indices i, i+ 1, . . . i+ ℓ considered modulo m

such that in the states with graph G(u1, v1, . . . , um, vm) ⊆ G(a1, b1, . . . , am, bm) all of the following

conditions hold:

(i) the entries uj for j < i and j > i+ ℓ must be zero,

(ii) at least one ui, . . . , ui+ℓ is nonzero,

(iii) the entries vi, . . . , vi+ℓ−1 must be zero,

(iv) at least one vj is nonzero for j < i or j ≥ i+ ℓ.

We denote the support of the uj by Iu ⊂ {i, i+1, . . . i+ℓ} and the support of the vj by Iv. Observe

that

|Iu|+ |Iv| ≤ m+ 1 and |Iu ∩ Iv| ≤ 1.

In the remainder of this section, we prove some lemmas that we will need for the proof of Theorem

5.1. The next lemma computes the contribution to the third coefficient of the web corresponding

to a graph G(u1, v1, . . . , um, vm) for a semi-mixed state, while the following two lemmas show thhat

the number of states with a support (Iu, Iv) is only a function of |Iu|+ |Iv|.

Lemma 5.4. Consider the set of states whose web-resolution lies over a single pair of mixed reduced

edges with state mixing index n = 1 and a fixed set of supports Iu and Iv. The leading term in the

sum of Y (s) over all such states is (−1)|Iu|+|Iv |q2(v−e−2).

Proof. In any such state Y (u1, v1, . . . , um, vm) is given by (−q)2e−
∑

uj−
∑

vj [3]v−2 · [2]
∑

uj+
∑

vj and

its leading term is (−1)
∑

uj+
∑

vjq2(v−e−2). The sum over all such states with this support is(∏
i∈Iu

ai∑
u=1

(
ai
u

)
(−1)u

)(∏
i∈Iv

bi∑
v=1

(
bi
v

)
(−1)v

)
=

(∏
i∈Iu

(−1)

)(∏
i∈Iv

(−1)

)
= (−1)|Iu|+|Iv | □

Having summed over states with a fixed support, it remains to count the number of support sets

with a given size. We define

Cu,v = |{Iu, Iv ⊆ {1, . . . ,m} | Iu, Iv determine semi-mixed states with |Iu| = u, |Iv| = v}| .
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For example, there are m
(
m
v

)
different support sets which have |Iu| = 1 and |Iv| = v. Note that

Cu,v = Cv,u and Cu,v = 0 if u + v > m + 1. By rotational symmetry C is always a multiple of m.

One can see this by assuming the last entry of Iu as a set of consecutive integers is 1 rather than j

with 1 ≤ j ≤ m. Therefore, we will also write Cu,v = Cu,v/m.

Lemma 5.5. Consider a pair of mixed reduced edges with index m. For u ≤ v,

Cu,v =


(
m

v

)
if u = 1

m−u+2∑
i=v+1

(
i− 1

v

)(
m− i

u− 2

)
if u > 1

.

Proof. In the case u = 1 we assume that Iu = {1}. Then any set Iv ⊂ {1, . . . ,m} produces a

separated graph and there are
(
m
v

)
such sets of size v.

For u > 1, we assume that as sets of consecutive integers modulo m the last entry of Iu is 1.

Then the extent of Iv is determined by the first entry of Iu, which is therefore at least v + 1. The

index i of the first entry of Iu may vary from v+1 to m−u+2 and in each case there are
(
i−1
v

)(
m−i
u−2

)
choices of sets. Summing over these possibilities gives the indicated expression. □

Note that if u > 1 and v = 1, then
∑m−u+2

i=v+1

(
i−1
v

)(
m−i
u−2

)
=
(
m
v

)
. This observation is consistent

with the symmetry Cu,v = Cv,u. More generally, C has the following property.

Lemma 5.6. For all u, v > 1, Cu,v = Cu+1,v−1.

Proof. A straightforward computation shows

Cu+1,v−1 − Cu,v =
m−u+1∑
i=v

(
i− 1

v − 1

)(
m− i

u− 1

)
−

m−u+2∑
i=v+1

(
i− 1

v

)(
m− i

u− 2

)

=

m−u+2∑
i=v+1

(
i− 2

v − 1

)(
m− i+ 1

u− 1

)
−
(
i− 1

v

)(
m− i

u− 2

)

=

m−u+2∑
i=v+1

{(
i− 1

v

)
−
(
i− 2

v

)}{(
m− i

u− 1

)
+

(
m− i

u− 2

)}
−
(
i− 1

v

)(
m− i

u− 2

)

=
m−u+2∑
i=v+1

(
i− 1

v

)(
m− i

u− 1

)
−
(
i− 2

v

)(
m− i+ 1

u− 1

)

=

m−u+1∑
i=v+1

(
i− 1

v

)(
m− i

u− 1

)
−

m−u+2∑
i=v+2

(
i− 2

v

)(
m− i+ 1

u− 1

)

=

m−u+2∑
i=v+2

(
i− 2

v

)(
m− i+ 1

u− 1

)
−
(
i− 2

v

)(
m− i+ 1

u− 1

)
= 0 . □

The last lemma in this subsection shows that the total contribution to the third coefficient of

semi-mixed states between a pair of mixed reduced edges is zero.
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Lemma 5.7. The sum of leading terms of all semi-mixed states over a pair of mixed reduced edges

is zero.

Proof. We showed in Lemma 5.4 that the sum over all states with a fixed support of size ℓ = u+ v

contributes (−1)ℓq2(v−e−2). By Lemma 5.6, there are
∑ℓ−1

i=1 Ci,ℓ−i = (ℓ− 1)C1,ℓ−1 = m(ℓ− 1)
(

m
ℓ−1

)
supports of size ℓ. As ℓ varies from 2 to m+ 1 we compute

m
m+1∑
ℓ=2

(
m

ℓ− 1

)
(−1)ℓ(ℓ− 1) = m

m+1∑
ℓ=1

(
m

ℓ− 1

)
(−1)ℓ(ℓ− 1) = −m

m∑
ℓ=0

(
m

ℓ

)
(−1)ℓℓ = m · δm,1 .

At a mixed pair of edges m > 1 and so the above sum evaluates to zero. □

5.2. Some web identities. Here we establish a particular web identity (Lemma 5.10) that we

need for the proof of Theorem 5.1. We need two lemmas that discuss how to simplify webs that

contain a sequence of squares.

Lemma 5.8. The half-capped sequence of k ≥ 0 squares simplifies as follows:

1 2 . . . k = [2]k+1

Proof. We give a proof by induction. The base case k = 0 is given by the bubble relation in

Equation (2). If the claim holds for some n, then again using the bubble move we have

1 2 . . . n+ 1 = [2] 1 2 . . . n = [2]n+2 .

□

Our second lemma show how to simplify webs that contain “uncapped” sequences of squares.

Lemma 5.9. The uncapped sequence of k ≥ 0 squares simplifies as follows:

1 2 . . . k =



+

k/2∑
i=1

[2]2i−1 if k is even

+

(k+1)/2∑
i=1

[2]2i−2 if k is odd

.

Proof. We give an inductive proof joined across both cases. The k = 0 base case is obvious and the

k = 1 base case follows from the square move in Equation (2). If the claim holds for some n ≥ 0,

1 2 . . . n+ 1 = 1 2 . . . n− 1 + 1 2 . . . n− 1 .
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The claim follows from applying Lemma 5.8 and the inductive hypothesis to the above terms. □

Now, using Lemma 5.9, we have the following:

Lemma 5.10. The following equality of webs holds for even k ≥ 0:

〈〈
1 2 . . . k

〉〉
= [2]2[3] +

k/2∑
i=1

[2]2i[3] .

Proof. The identity follows immediately from Lemma 5.9 by taking the appropriate closure and

applying Equation (2). □

5.3. The proof of Theorem 5.1. We are now ready to give the proof of Theorem 5.1.

Proof. Let D = D(L) be a positive diagram of L. To compute the third coefficient of the invariant,

we determine which states contribute to the degree 2(v− e− 2) term. Remark 3.3 tells us that the

state graphs contributing to the term of degree q2(v−e−2) have at least v − 2 components. Those

with exactly v or v − 1 components have exactly zero or one reduced edge, respectively. A state

graph with v − 2 components has exactly two reduced edges, since triangles are not allowed due

to biparticity of the state graph. For states whose reduced graph has v − e− 2 edges, we separate

into cases where the edges are mixed at a vertex or not.

Case(A). From the all-O state

Y (O) = q−2e[3]v = q2(v−e) + vq2(v−e−1) +

(
v

2

)
2

q2(v−e−2) + lower degree terms

where
(
v
2

)
2
is a trinomial coefficient equal to

(
v
1

)
+
(
v
2

)
=
(
v+1
2

)
.

Case(B). If s is a state with a single edge in G′
s, then by Lemma 3.4

Y (s) = (−q)−2e−β(s)[3]v−1[2]β(s) = (−1)β(s)q2(v−e−1)
(
1 + (v − 1 + β(s))q−2 + lower degree terms

)
.

We sum the q2(v−e−2) term over all such states. As in the proof of Theorem 3.2, we enumerate the

edges of G′
W for i = 1, . . . , e′ and let ki be the multiplicity of the i-th reduced edge relative of GW .

We compute

e′∑
i=1

ki∑
j=1

(
ki
j

)
(−1)j(v − 1 + j) = −

e′∑
i=1

(v − 1 + δki,1) = −(v − 1)e′ − |T1| = −ve′ + µ ,

where |T1| denotes the number of edges in G′
W that appear with multiplicity one in the unreduced

Seifert graph GW . Now recall that we denoted by µ the edges in G′
W that appear with multiplicity

more than one in GW . Since µ = e′ − |T1|, the last equation follows.
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Case(C1). For states whose reduced graph has v− e− 2 edges, we consider the states s where the

edges of G′
s are not mixed first. For such a state

Y (s) = (−q)−2s−β(s)[3]v−2[2]β(s) = (−1)β(s)q2(v−e−2) + lower degree terms .

Over a fixed pair of reduced edges with multiplicities k1 and k2 we sum these signs

k1∑
j1=1

k2∑
j2=1

(
k1
j1

)(
k2
j2

)
(−1)j1+j2 =

 k1∑
j1=1

(
k1
j1

)
(−1)j1

 k2∑
j2=1

(
k2
j2

)
(−1)j2

 = (−1)2 = 1

and the sum over all such pairs of reduced edges gives
(
e′

2

)
− θ where θ is the number of pairs of

mixed reduced edges.

Case(C2). We now consider states where the edges of G′
s are over a mixed vertex of index m and

state mixing index n ≤ m. First note that the web W(u1, v1, . . . , um, vm) = W(u′1, v
′
1, . . . , u

′
n, v

′
n)

satisfies

W(u′1, v
′
1, . . . , u

′
n, v

′
n) = [2]

∑n
i=1(ui+vi)−2nW(1, 1, . . . , 1, 1︸ ︷︷ ︸

2n-terms

) .

Observe that W(1, 1, . . . , 1, 1) is exactly the closed sequence of squares given in Lemma 5.10 for

k = 2(n− 1). Thus, together with the v − 3 disjoint vertices

⟨⟨W(u′1, v
′
1, . . . , u

′
n, v

′
n)⟩⟩ = [2]

∑n
i=1(ui+vi)−2n[3]

(
[2]2 +

n−1∑
i=1

[2]2i

)
· [3]v−3 .

In such a state s, there are β(s) =
∑n

i=1(ui + vi) total W -resolutions and so

Y (s) = (−1)β(s)q−2e−β(s)[2]β(s)−2n[3]v−2

(
[2]2 +

n−1∑
i=1

[2]2i

)
.

Thus

d(s) = 2(v − e− 2− n) + max(2, 2(n− 1)) =

2(v − e− 2) n = 1

2(v − e− 3) n > 1

and so only states which are semi-mixed contribute to the third coefficient. Now by Lemma 5.7,

the sum of the degree 2(v − e− 2) terms in those states equals zero. In summary we have shown

γ3 =

(
v + 1

2

)
+

(
e′

2

)
− ve′ + µ− θ,

which can be rewritten in the form given in the statement of the theorem. □
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6. Connected sum and disjoint union

In this section we discuss the behavior of the coefficients γ1, γ2, γ3 under disjoint union and

connected sum of positive links. To avoid ambiguities we state the result on connected sums for

knots only.

We begin by recalling that by a result of Ozawa [Oza02, Theorem 1.4] the decision of whether

they are non-split or prime can be made from their positive diagrams. For terminology about link

diagrams the reader is referred, for example, to [FKP13]. Let L be a positive link and D any

positive diagram of L that is reduced (i.e. D doesn’t contain nugatory crossings). Then [Oza02,

Theorem 1.4] gives the following.

• The link L is prime if and only if D is prime.

• The link L is non-split if and only if D is non-split.

If a knot K is the connected sum of prime knots #p
j=1Kj , then p is the prime decomposition

number of K. The knots Ki are the prime factors of K. Similarly, if a link L is the disjoint union

of non-split links L1, · · · , Ls then s is the splitting number of L.

If K is a positive knot with prime factors K1, . . . ,Kp, by [Oza02, Theorem 1.4], K admits a

positive reduced diagram D that is a connected sum D = #p
j=1Dj where Dj is a reduced positive

diagram of Ki.

By Theorem 5.1, we can compute the quantities γ2(K) := v(D)−e′(D) and λ(K) := µ(D)−θ(D)

from D. Similarly, γ2(Kj) = vj − e′j := v(Dj) − e′(Dj) and λ(Kj) := µj − θj , where µj − θj :=

µ(Dj)− θ(Dj) for j = 1 . . . , p. Theorem 5.1 also implies that all these quantities are invariants of

K and Ki respectively. Our next result shows that these invariants behave well under connected

sums.

Theorem 6.1. Let K be a positive knot with prime factors K1, . . . ,Kp. The following hold:

(1) γ2(K) = 1− p+
∑p

j=1 γ2(Kj),

(2) λ(K) =
∑p

j=1 λ(Kj),

(3) γ3(K) = (γ2(K)+1) γ2(K)
2 + λ(K).

Proof. We proceed by induction on p. The base case p = 1, is exactly Theorem 5.1.

Inductively, assume the claim holds for all positive knots with prime decomposition number

at most p. Next, consider a positive knot with prime decomposition #p+1
j=1 Kj , where by [Oza02,

Theorem 1.4] each Ki is a positive knot prime knot.

Let D be a positive diagram of K = #p
j=1Kj and Dp+1 be a prime, positive diagram of Kp+1.

Consider the split link L consisting of the disjoint union of K and Kp+1 with diagram D′ given

by the disjoint union of diagrams D and Dp+1. By computing the web invariant for each of K and

Kp+1 in L disjoint from the other, we have ⟨⟨L⟩⟩ = ⟨⟨K⟩⟩⟨⟨Kp+1⟩⟩. Write

⟨⟨Kp+1⟩⟩ = q2(vp+1−ep+1) + γ2(Kp+1)q
2(vp+1−ep+1) + γ3(Kp+1)q

2(vp+1−ep+1) + lower order terms
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and by induction

⟨⟨K⟩⟩ = q2(v−e) + γ2(K)q2(v−e−1) +

((
γ2(K) + 1

2

)
+ λ(K)

)
q2(v−e−2)

+ lower order terms .

Expanding the product of invariants yields

⟨⟨K⟩⟩⟨⟨Kp+1⟩⟩ = q2(v
′′−e′′) + γ′2q

2(v′′−e′′−1) + γ′3q
2(v′′−e′′−1) + lower order terms

where v′′ := v + vp+1, e
′′ := e + ep+1, γ

′
2 := γ2(K) + γ2(Kp+1), λ

′ := λ + λ(Kp+1) =
∑p+1

j=1 λ(Kj),

and

γ′3 =

(
γ2(K) + 1

2

)
+

(
γ2(Kp+1) + 1

2

)
+ γ2(K) γ2(Kp+1) + λ′ =

(
γ2(K) + γ2(Kp+1) + 1

2

)
+ λ′ .

Now the HOMFLY skein relation and the specialization to the sl3 invariant in Equations (3) and

(4) imply that

(5) [3]⟨⟨K#Kp+1⟩⟩ = ⟨⟨K⟩⟩⟨⟨Kp+1⟩⟩ .

Expanding [3] = q2 + 1 + q−2 now yields

⟨⟨K#Kp+1⟩⟩ = q2(v
′′−e′′−1) + (γ′2 − 1)q2(v

′′−e′′−2) + (γ′3 − γ′2)q
2(v′′−e′′−3) + lower order terms .

The second coefficient is given by

γ′2 − 1 = γ2(K) + γ2(Kp+1)− 1 = 1− p+

p∑
j=1

γ2(Kj) + γ2(Kp+1)− 1 = 1− (p+ 1) +

p+1∑
j=1

γ2(Kj).

Similarly, the third coefficient of ⟨⟨K#Kp+1⟩⟩ is equal to(
γ2(K) + γ2(Kp+1) + 1

2

)
+ λ′ − γ2(K)− γ2(Kp+1) =

(
γ2(K) + γ2(Kp+1)

2

)
+ λ′ =

(
γ′2
2

)
+ λ′

which completes the induction. □

Remark 6.2. The proof of Theorem 6.1 easily adapts to show that if a positive links L is a connected

sum of positive prime link L1 . . . Lk then formulae (1)− (3) hold. ♢

7. Obstructing positive braiding

A particularly interesting class of positive links is the class of links that can be represented as

closures of positive braids. It been known for a long time that positive closed braids are fibered

[Sta78] and that not all positive knots are fibered or the closure of a positive braid.

Positive braids have been studied extensively in low dimensional topology and the question of

determining which links can be represented by positive closed braids has been studied considerably.

For instance, recently, they have been surfaced in the studies around the “L-space conjecture”

that relates taut foliations on 3-manifolds to Floer theoretic invariants (see [Kri25] and references

therein).
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Theorem 7.1. The following hold:

(1) if a link L of splitting number s is the closure of a positive closed braid, then γ1(L) = 1 and

γ2(L) = s,

(2) if a knot K of prime decomposition number p is a positive closed braid, then γ1(K) = γ2(K) = 1

and γ3(K) = p+ 1.

Proof. We begin with the proof of claim (1). By [Oza02] (see also [Cro93]) L has a diagram D as a

closed braid that realizes the splitting number s. That is, D is the disjoint union of closed positive

braid diagrams D1, . . . , Ds, where Dj represents a link Lj . By Theorem 5.1 we have γ1(L) = 1 and

γ2(L) = v(D)− e′(D) = χ(G′
W (D)). Now have

γ2(L) = χ(G′
W (D)) =

s∑
j=1

χ(G′
W (Dj)) =

s∑
j=1

γ2(Li) = s,

where the last equality follows from the fact that Li is fibered [Sta78] and by Theorem 4.1.

Now we prove part (2). The claim that γ1(K) = γ2(K) = 1 follows from part (1). Again by

[Oza02, Cro93], K has a diagram D that can be written as a connected sum of p prime positive

closed braids.

Suppose D is prime, i.e. p = 1. By direct examination we can see that the graph G′
S(D) is a

tree. Primeness implies that there is an edge in the Seifert graph between each adjacent Seifert

circle determined by the braid. It also implies that each pair of adjacent reduced edges is mixed.

Thus µ = e′ = v − 1 and θ = v − 2. We now have γ3 = 2, by Theorem 5.1. Note also that

λ(K) = µ− θ = 1.

For p > 1, λ(Ki) = 1 for each prime factor of K. Now apply Theorem 6.1(2) to get λ(K) = p.

Then by Theorem 6.1(3) and since γ2(K) = 1, we get γ3(K) = p+ 1. □

The following generalizes [Baa13, Corollary 3].

Corollary 7.2. Let L be a non-split link that admits an alternating positive closed braid diagram.

Then L is a connected sum of (2, n) torus links.

Proof. By our earlier discussion, a reduced alternating positive closed braid diagram of L will be

either prime or a connected sum of prime alternating positive closed braid diagrams. Hence it is

sufficient to prove that the only links that admit alternating positive closed braid diagrams are

(2, n) torus links.

Let D = D(L) be a prime alternating positive closed braid diagram. By Theorem 7.1, γ2 = 1

and γ3 = 2. Since D is alternating, θ = 0. Then γ3 = 1 + µ− θ = 2 implies that µ = 1 and hence

exactly one edge in the reduced graph has multiplicity more than one in the unreduced Seifert

graph. Since the reduced Seifert graph is a tree and D is prime, D consists of a pair of circles

joined in a single twist region. Thus it is the standard 2-braid closure of a (2, n) torus link for some

n > 1. □
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Theorem 7.1 should be compared with the work of Ito [Ito22], who finds finds obstruction to

positive braiding in terms of the coefficients of the HOMFLY link polynomial.

7.1. Concluding Remarks. We have verified Theorem 5.1 for knots up to twelve crossings by

evaluating the specializations of HOMFLY polynomial from KnotInfo [LM25]. The sl3 invariant

detects braid positivity among the 33 positive fibered prime knots with at most twelve crossings.

With the exception of 11n183, γ3 = 1 on all knots which have a positive diagram but are not the

closure of a positive braid. These knots are tabulated in the table below.

Knot Positive Braid γ3

31 Y 2

51 Y 2

71 Y 2

819 Y 2

91 Y 2

10124 Y 2

10139 Y 2

10152 Y 2

10154 N 1

10161 N 1

11a367 Y 2

Knot Positive Braid γ3

11n77 Y 2

11n183 N 0

12n91 N 1

12n105 N 1

12n136 N 1

12n187 N 1

12n242 Y 2

12n328 N 1

12n417 N 1

12n426 N 1

12n472 Y 2

Knot Positive Braid γ3

12n518 N 1

12n574 Y 2

12n591 N 1

12n640 N 1

12n647 N 1

12n679 Y 2

12n688 Y 2

12n694 N 1

12n725 Y 2

12n850 N 1

12n888 Y 2

Example 7.3. As an example, we compute 11n183 from the positive diagram in Figure 7, generated

using SnapPy [CDGW] from the presentation in [KLM+]. We can see that v = 7, e′ = 6, µ = 6,

and θ = 7. Thus, indeed γ2 = 1 and γ3 = 0.

Figure 7. A positive 12-crossing diagram of the knot 11n183.

Remark 7.4. We note that the invariant γ3 does not detect all positive closed braids. For example,

the authors in [KLM+] define a family {Kn}n≥1 of positive fibered knots. They use [Ito22, Theorem

1.1], which relies on positivity properties of the 2-variable HOMFLY polynomial, to show that none



26 MATTHEW HARPER AND EFSTRATIA KALFAGIANNI

of these knots is a closed positive braid. The knot Kn has a positive diagram Dn defined as cyclic

Conway sum of 2n+ 1 copies of the tangle shown in [KLM+, Figure 8]. Using these diagrams one

can directly compute v(Kn) = 6n+5, e′(Kn) = 6n+4, µ(Dn) = 6n+4, and θ(Dn) = 6n+3. This

gives γ3(Kn) = 2, for all n ≥ 1. ♢
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