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We use the Jaco-Shalen and Johannson theory of the characteristic submanifold and the Torus theorem (Gabai, 

Casson-Jungreis) to develop an intrinsic finite tvne theory for knots in irreducible 3-manifolds. We also establish _ __ 
a relation between finite type knot invariants in 3-manifolds and these in R3. 

existence of non-trivial finite type invariants for knots in irreducible 3-manifolds. 
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0. INTRODUCTION 

As an application we obtain the 
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The theory of quantum groups gives a systematic way of producing families of polynomial 

invariants, for knots and links in [w3 or S3 (see for example [18,24]). In particular, the 

Jones polynomial [12] and its generalizations [6,13], can be obtained that way. All these 

Jones-type invariants are defined as state models on a knot diagram or as traces of a braid 

group representation. 

On the other hand Vassiliev [25,26], introduced vast families of numerical knot invariants 

(Jinite type invariants), by studying the topology of the space of knots in [w3. The compu- 

tation of these invariants, involves in an essential way the computation of related invariants 

for special knotted graphs (singular knots). It is known [l-3], that after a suitable change 

of variable the coefficients of the power series expansions of the Jones-type invariants, are 

of Jinite type. 

In [23], Stanford studied finite type invariants for links and graphs in [w3, by only using 

generalized Redemeister moves and standard PL-techniques available in the 3-space. In [17], 

Lin was able to free Stanford’s work from the use of the special features of [w3, and develop 

a finite type theory for links in simply connected 3-manifolds. He showed that for these 

manifolds the theory is equivalent to the one in [w3 (see Theorem 7.2 in [17]). The main 

ingredient used in Lin’s work, is the generic picture of a family of maps from a compact 

l-polyhedron in a 3-manifold, parameterized by a 2-disc. 

In this paper we develop a finite type theory for knots in closed irreducible 3-manifolds. 

Our approach, intrinsically 3-dimensional, is the one initiated in [17]. However, the presence 

of a non-trivial fundamental group makes things essentially different and requires the use 

of more powerful and sophisticated techniques from the topology of 3-manifolds. One of 

our main tools is the theory of the characteristic submanifold as developed by Jaco-Shalen 

and Johannson [ 10,111. The techniques of this paper and [ 171, were used in [ 141 to define a 

power series invariant for links in rational homology spheres, which generalizes the 2-variable 

Jones polynomial (HOMFLY). 

To describe the main ideas and state the results of this paper we need to establish some 

notation and terminology. 

tThis research was partially supported by NSF grants DMS-91-06584 and DMS-96-26140. 
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Assume that A4 is an oriented piecewise linear 3-manifold and let %? be the set of 

conjugacy classes in rcl(A4). Let JZ = (4 : S’ + M; Cp is a piecewise-linear map} and let 

B={4EJY; $ IS a an embedding}. The complement of &, is the discriminant of J2’. 

The components of ~2’ are in one-to-one correspondence with the conjugacy classes in 

ret (M). We will denote by ~2’~ the component of ~2’ corresponding to c E 59. Finally, let us 

denote by X (resp. Xc) the set of isotopy classes of knots in ,&’ (resp. &&). 

Any two knots in some J& are related by a sequence of “crossing changes”. When 

we make a crossing change from one knot to another, we produce a singular knot as an 

intermediate step. By repeating this procedure for singular knots with one double point we 

produce singular knots with two double points, and so on. So, it is natural to consider 

immersions S’ ----f M, whose only singularities are finitely many transverse double points 

(singular knots). 

In this paper we work over a ring 9, which is torsion free as an abelian group. A knot 

invariant f : Xc + 92, gives rise to a singular knot invariant by repeatedly defining 

f(KX ) = f(K+) - f(K- ). (1) 

Here K+ and K_ are the knots obtained by resolving a double point “x”, of the singular 

knot K, . The functional f is called an invariant of jinite type m, if its derived singular knot 

invariant vanishes identically on singular knots with more than m double points, and m is 

the smallest such integer. 

Let us denote by P” (resp. em) the g-module of all jinite type invariants of type 

<m, for knots in X (resp. in X,). Clearly we have, P”= $cte3m. We show that the 

invariants in every em, are determined by crossing change formulae together with a set of 

initial data (see Theorem 5.6). The initial data, which consist of the values of the invariants 

on a special set of singular knots, are given as solutions to a system of linear equations. The 

equations arise from resolutions of triple points and are given in terms of 4-term relations. 

The system is finite iff the fundamental group of the manifold is finite, and it is really a 

generalization of the system arising in [3] from Vassiliev’s original work for knots in R3. 

Then, we show that every finite type knot invariant in R3 gives rise to an invariant for 

knots in every irreducible 3-manifold that is not one of the small Euclidean Seifert spaces 

(Section 3). 

THEOREM 0.1. Let A4 be a closed, orientable, irreducible 3-manifold, as above. Then 

e”‘(M) contains a submodule isomorphic to P’(R3), for every m and c E V, with c # 1. 

This gives a first existence theorem of non-trivial finite type invariants for knots in closed 

irreducible 3-manifolds. 

Let us, now, briefly describe the main ideas of the paper. It turns out that in order to 

describe the spaces em we have to deal with the following problem: Starting with a singular 

knot invariant f, we want to find necessary and sufficient conditions that f has to satisfy 

so that it is derived from a knot invariant, via (1). We do so in Sections 3 and 4. This 

is a question about the “integrability” of the invariant f along a path in J&. Let Q be a 

path in J&. After perturbation, we may assume that it intersects the discriminant in only 

finitely many points. Moreover, we can assume that when the parameter of the loop passes 

through such a point the corresponding map changes by a “crossing change”. Hence, the 

maps corresponding to these points are singular knots. The sum of suitably signed values 

of f on these knots, denoted here by Xa, can be thought of as the integral of f along @. 

In order for f to be derived from a knot invariant, it is necessary and sufficient that &, 

is independent of a, or equivalently that & = 0, for every loop @ in J&. 
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The first thing that we do is to find a set of finite local “integrability conditions” which 

guarantee that & only depends on the homotopy class of Q in J&. It turns out that these 

conditions imply the vanishing of the integral XQ, along most of the loops a. In particular, if 

the manifold M does not contain any Seifert fibered manifolds over non-orientable surfaces, 

then these conditions imply the vanishing of the integral & along any loop a. For a null- 

homotopic loop this assertion is proved by putting the null-homotopy into a nice general 

position. This is done in Lemmas 3.4 and 3.5. In general we show that the obstruction for 

integrating a singular knot invariant that satisfies these local integrability conditions, to a 

knot invariant lies in a certain subgroup of 7~1. This obstruction is shown to vanish, directly, 

in many cases in which H,(M) is finite (see Proposition 3.10). 

To treat the general case, we have to impose a set of “stronger” integrability conditions, 

on the singular knot invariant f, and employ the theory of the characteristic submanifold. 
First, we need to change our point of view and think of Q as a map P x S’ + M, where P is 

in general an l-dimensional compact polyheron. This naturally leads to the study of tori (and 

annuli) in A4 and to the use of the theory of the characteristic submanifold [ 10,l l] in order to 

treat essential @‘s. The idea is to first homotope @ into the characteristic submanifold, which 

is a Seifert fibered space. This is done by using the “Enclosing Theorem” (see Section 2 for 

the statement). Then, by employing the homotopy classification of essential tori (and annuli) 

in Seifert fibered spaces [ 1 l] we are able to homotope Q in a “nice position” so that we 

can see that X, = 0 is implied by the integrability conditions. All this is done in Lemmas 

3.11-3.14, 4.6 and 4.7. The case of inessential Q’s is treated in Lemmas 3.8 and 4.5 by a 

refinement of the arguments used for null-homotopic loops. 

Finally, from the Torus Theorem [5,8] we deduce that if M is not Haken, then it is a 

Seifert manifold, and we use work of Scott [21] to handle non-Haken Seifert manifolds. 

The paper is organized as follows: In Section 1 we recall from [ 171 the generic picture 

of a family of maps from a compact l-polyhedron into a 3-manifold, parameterized by a 

disc. In Section 2 we give the preliminaries from the topology of 3-manifolds that we use 

in subsequent sections. In Section 3 we treat a special case of the integrability question 

mentioned above. The main result of this section is Theorem 3.7. In Section 4 we treat the 

general question of integrability of singular knots invariants (see Theorem 4.1). In Section 5 

and Section 6 we describe the structure of the spaces e”’ and we prove Theorem 0.1. Finally, 

we show that the classical Alexander polynomial for knots in a rational homology sphere is 

equivalent to a sequence of finite type invariants. 

I. ALMOST GENERAL POSITION FOR A DISJOINT UNION CIRCLES AND FOR 

RIGID-VERTEX NULL HOMOTOPIES 

In this section we summarize from [17] the results about the generic picture of a family 

of maps from a compact l-polyhedron to a 3-manifold, parametrized by a 2-disc. 

Let P be an l-dimensional compact polyhedron. Let M be a 3-manifold and let D* be 

a 2-disc. A map @ : P x D* + M gives rise to a family of maps {& : P + M; x E D2}, 
where &(*) = a(*,~) for x E D2. Suppose that every & is a piecewise-linear map, and let 

Sq, be the closure of the set {x E D2; & is not an embedding}. One can see that S$ is a 

sub-polyhedron of D*. 
Two maps $I,& : P + M are called ambient isotopic if there exists an isotopy h, : M --‘M, 

tE[O,l] with ho=id and hl$l=&. 
A double point (resp. triple point) of a map 4 : P --7‘M is a point p EM such that Q!-‘(P) 

consists of two (resp. three) points. A double (or triple) point of a piecewise linear map 
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(b : P +M is called transverse if there exist two (or three) I-simplexes ul, 02 (or, in addition 
@3) contained in the l-skeleton of P such that 

(1) C#I is linear and non-degenerate on ~1 and (~2 (or, in addition 03); 
(2) &al) fl (P((Tz) (or, &cr1)(7 &a*) n &OS))) is the double (or, triple point) in question; 
(3) &al ) and 4(02) (or, in addition 4(~3 )) intersect transversally in their interiors and 

&((TI), (P(Gz), 4~3) do not lie on the same plane. 
Let us now introduce some te~ino~ogy about l-dimensional polyhedra in 3-manifolds. 
Let Q be an l-dimensional polyhedron. Every point 4 E & has a neighborhood homeo- 

morphic to a bouquet of finitely many arcs such that Q is the common endpoint of these 
arcs. The number of arcs in the bouquet is called the valence of q. A point q E Q with 
valence different than 2 is called a vertex of Q. A component of the complement of vertices 
is called an edge of Q. 

Following [ 171 we call an 1 -dimensional subpolyhe~on Q c D2 neat, if Q Cl Z12 consists 
of finitely many points and each of them is a valence 1 vertex of Q. We call these vertices 
boundary vertices of Q and we call the vertices of Q lying in the interior of D2 interior 

vertices of Q. 

PROPOSITION 1.1 (Lin 1171). Assume that P is a disjoint union of oriented circles and 

that A4 is an oriented 3-manifold. A map Cp : S’ x D2 -+A4 can be changed by an arbitrary 
small perturbation so that Sb is a neat I-dimensional subpolyhedron of D2. Moreover, we 

have 
(I) If x,x’ E D2 belong to the same component of D2\S# or S,p\(interior vertices}, then 

& and & are ambient isotopic. 
(2) The interior vertices of S, are of valence either four or one. 

(3) If x E Sb lies on an edge of S+ or is a boundary vertex, then & has exactly one 

transverse double point. 
(4) If x E Sb is an interior vertex of valence four, then (pX has exactly two transverse 

double points. 
(5) If XES~ is an interior vertex of valence one, then 4b, is an embedding ambient 

isotopic to the nearby embeddings. 

We say that the resulting map in Proposition 1.1 is in almost general position. Figure 1 
below illustrates & c 0’ for a map @ in almost general position. 

Fig. 1. S+ c D2. 
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Now we assume that P is an l-dimensional compact polyhedron whose set of vertices 

of valence 23, is not empty. Let us denote this set by V. Furthermore, assume that P has 

no vertices of valence 1, and let M be an oriented 3-manifold. 

Definition 1.2. An embedding 4 : P -+ M is called a rigid-vertex embedding, if for every 

vertex v E V, there is a proper 2-disc D in a ball neighborhood B c M of $(v) is specified 

such that, the image of a neighborhood of v is contained in D. An isotopy h, : M -+ M, 
t E [0, 11, between two rigid-vertex embeddings C#JO and 41, is called rigid-vertex isotopy if it 

carries through the ball-disc pair for every v E V. A homotopy & : M -+ M, t E [0, 11, between 

two rigid embeddings 40 and 41, is called rigid-vertex homotopy if there is a neighborhood 

N of V in P, and an isotopy h, : M -+ M, t E [0, 11, such that 4,IN = ht&lN for all t E [0, 11. 
Moreover, h, should carry through the ball-disc pair for every vertex v E V. 

LEMMA 1.3 (Lin [17]). If two rigid-vertex embeddings $0 and 41, are homotopic then 

the.y are rigid-vertex homotopic. 

If {cJ$},~I~,J~ is a rigid vertex homotopy with ~$0 = 41 and the ball-disc pairs for vertices 

of P corresponding to 40 and 41 are the same, we have a closed rigid-vertex homotopy. 

In this case we can assume that there is a neighborhood B of &(V) c M containing $0(N) 

such that hl (B = id. 

Let E be the frame bundle of M, which is a principal SO3-bundle, and let @ : P x D2 -+ M 
be a map such that QlP x dD* is a closed rigid-vertex homotopy. We pull back E via a, 

to get a trivial SOs-bundle El, over V x D 2. The isotopy in the definition of a rigid-vertex 

homotopy gives rise to a section of El over V x aD2. The obstruction of extending this 

section on V x D2 lies in $ni(SOs)= $i&. If this obstruction is trivial then there is a 

section of El over V x D2, extending the one over V x aD2. 

Definition 1.4. A map Q : P x D2 ---) M such that @lP x aD* is a closed rigid-vertex 

homotopy with vanishing obstruction, is called a rigid-vertex null homotopy. 

THEOREM 1.5 (Lin [17]). Let @ :P x D2 +M be a rigid-vertex null homotopy. Then @ 

can be changed by an arbitrary small perturbation, so that S+ is a neat l-dimensional 
subpolyhedron of D*. Moreover, we have 

(1) Zf x, x’ ED* belong to the same component of D*\& or &,\{interior vertices}, then 

I& and &I are ambient isotopic. 
(2) If x E SQ lies on an edge or is a boundary vertex, then & has exactly one transverse 

double point. 

(3) If x E SQ is an interior vertex of valence 23, then either & has exactly two 
transverse double points (in which case the valence is 4), or there exists a point v E V such 
that &(v) E &(int(a)) for an l-simplex a c P\V, and this is the only singularity of &. 

(4) rf x ES, is an interior vertex of valence 1, then C& is an embedding isotopic to the 

nearby embeddings. 

We say that the resulting rigid-vertex null homotopy in Theorem 1.5 is in almost general 

position. 

2. PRELIMINARIES FROM THE THEORY OF THE CHARACTERISTIC SUBMANIFOLD 

In this section we state several, well known, results about the topology of 3-manifolds, 

which are used in subsequent sections. 
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DeJinition 2.1. A 2-sphere 5’ in a 3-manifold M is compressible in M, if 5’ bounds 
a 3-cell embedded in M. Otherwise S is called incompressible. A 3-manifold M is called 
irreducible iff every 2-sphere in M is compressible. 

By the Sphere Theorem (see for example [9]), we have that rcz(M)= { I}, if A4 is 
irreducible. 

De~nition 2.2. A surface F # S2, properly embedded in a 3-manifold M (or embedded 
in ~~), is compressible if there exists a disc D c M such that D (7 F = ZD and ZJ is not 
homotopi~ally trivial in F. Otherwise F is called incompressible in M. A compact, orientable, 
irreducible 3-manifold is called a Haken manifold (or a sufficiently large manifold), if it 
contains a two-sided incompressible surface. 

It is well known that every 3-manifold with infinite first homology group is Haken. 
Next, we need to recall a few things about Seifert Jibered spaces. More details may be 

found in any of [9,10] or [22]. Let (p,v) be a pair of relatively prime integers. Let 

D2 ={(r-,8); O<r< 1, 0,<8<2n} c R2 

be the unit 2-disc defined in polar coordinates. A fibered solid torus of type (p,v), is the 
quotient of the cylinder D2 x I, via the identification ((r, e), 1) = ((u, 8 +2~v/~), 0). The fibers 
are the images of the arcs {x) x 1. If p > 1 the fibered solid torus is said to be exceptionally 
fibered and the core is the exceptional jiber. Otherwise the fibered solid torus is regularly 

jibered and each fiber is a regular jiber. 

DeJinition 2.3. An orientable 3-manifold S is called a Setjert jibered space, if it is a 
union of pairwise disjoint simple closed curves, called fibers, such that each one has a 
closed neighborhood, consisting of a union of fibers, which is homeomorphic to a fibered 
solid torus via a fiber preserving isomorphism. 

A fiber of S is called exceptional if it has a neighborhood homeomo~hi~ to an excep- 
tional~y jbered solid torus. 

The quotient space obtained from a Seifert fibered manifold S by identifying each fiber 
to a point is called the orbit space and the images of exceptional fibers are called cone 
points. A total classification of Seifert manifolds up to fiber preserving isomorphism can be 
found in the beautiful original paper of Seifert [22]. 

PROPOSITION 2.4. Assume that S is a Setfert jibered space with orbit space B and jiber 

projection p. Let j be a d-fold covering of B. For a point x E B, let 2 ~8 be a point over x, 

and s a point of S which corresponds to x. Consider the set S = ((s,x”); f EL?), and define 
f:S -+ S by f(s,Z)=s. Then f is a covering map of degree d, such that tf a point s E S 

runs among a fiber H, then (s,Z), for jixed f, runs along a curve I? which lies one-to-one 
over H. 

Proof It follows directly from the definitions. cl 

Definition 2.5. Let iM be a 3-manifold and F a surface, which is not the 2-sphere. A 
map G : F + h4 is called essential iff 

(i) Ker({@* : nl(F) -+ nl(M)})= 1; 
(ii) @ cannot be homotoped to a map @t : F - M with C&(F) c M. 
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Definition 2.6. Let S be a Seifert fibered space, with a fixed fibration and let p: S -+ B 

be the fiber projection. Let F be a surface. A map f : F + S is called vertical or saturated, 

with respect to p, if p-‘(pf(F)) = f(F) and f(F) contains no exceptional fibers. 

A proof of the following classification up to homotopy of singular essential tori and 

annuli in a Sezfert fibered space can be found in [ 111. 

PROPOSITION 2.7. Suppose that S is a Seifert jbered space which is a Haken manifold. 

Let @:T=S’ x S’ + S be an essential map. Then there exists a Seifert jibration of S, 

and a homotopy @‘r : T -+ S, t E [0, 11, such that @CJ = Q, and @I is vertical with respect to 

this fibration. 

PROPOSITION 2.8. Let S be a Setfert fibered space such that ??S # 8. Moreover, assume 

that S is not a solid torus. Let Q : (A, 8A) + (S, 8s) be an essential map, where each com- 

ponent of A is an annulus. Then, one of the following is true: 

( 1) There is a Setfert fibration of S, such that Q can be homotoped, as a map of pairs, 

to a map @I which is vertical with respect to this Jibration. 

(2) There exists a jibration of S as an I-bundle over the annulus, torus, Mobius band, 

or Klein bottle such that A is vertical with respect to this jibration. 

Definition 2.9. Let M be a closed 3-manifold, with or without boundary. A co-dimension 

zero submanifold X CM is called a characteristic submantfold if the following hold: 

( 1) Each component S of X admits a structure as a Seifert fibered space, with fiber 

projection p : S + B, such that 

S n 8M = p-‘(p(S n 8M)) 

(2) If W is a non-empty codimension zero submanifold of M with IV c (M\X) then 

X U W does not satisfy (1). 

(3) If X’ is a codimension zero submanifold of M satisfying (1) and (2), then X’ can 

be deformed onto X by a proper isotopy of M. 

We state below a version of the “JacoShalen-Johannson decomposition Theorems” 

which are suitable for our purposes here. 

THEOREM 2.10 (Jaco and Shalen [lo] and Johannson [ll]). Suppose that M is a Haken 

3-munifold, which is either closed or it has incompressible boundary. Then either M contains 

no essential tori (or annuli) or it contains a non-empty characteristic submantfold. 

In fact as a consequence of the work of Gabai [8] and Casson-Jungreis [5] we have 

THE TORUS THEOREM (Casson-Jungreis [5] and Gabai [Xl). Let M be a closed irreducible 

3-mamfold that udmits an essential map @ : T = S’ x S’ + M. Then either M contains an 

embedded torus, and thus is Haken, or it is a Setfert fibered space. 

THE ENCLOSING THEOREM (Jaco and Shalen [lo] and Johannson [ 111). (a) Let M be a closed 

Haken 3-munifold, and let X c M be its characteristic submanifold. Let Q : T = S’ x S’ -+ M 

be an essential map. Then there exists a homotopy @r : T +M, t E [0, 11, such that @o = Q 

and (P,(T) cX. 

(b) Let M be a Haken 3-manifold, with incomp_ressible boundary aM. Let A be a 

2-manifold each component of which is an annulus, and f : (A, aA> + (M, 8M) such that 

f 12.4 is l-l and every component of A is non-contractible in M. Let U be a regular 
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neighborhood of aA in dM. Then there exists a Self&t jibered pair (S, U) c(X, &Y), such 
that f can be homotoped, relative aA, to a map f’ : A -+ M with f’(A) c S. 

From Propositions 2.7, 2.8 and the Enclosing Theorem we get the following proposition, 
which is going to be very useful in the next sections. 

PROPOSITION 2.11 (Johannson [1 11). Let M be a Haken 3-manifold. Suppose that M is 

closed or boundary incompressible and let @ : T -+ M be an essential map from the torus 
or the annulus. Then there exists a homotopy Gr : T -+h4 such that a~=@ and@, =@zoq, 
where q : T + T is a covering map, and @z : T -+ M is an im~nersion without triple points. 

Finally, we will need the following theorem of Nielsen (see for example 19, Theorem 
13.11). 

THEOREM 2.12. Suppose F and G are compact, closed surfaces with n,(F) # 1. Let 

f : (F, aF> --f (G, aG) be a map such that f* : n,(F) -+ ~1 (G) is one-to-one. Then there is 

a homotopy f f : (F, aF) --+ (G, dG) with fo = f and either 

(i) fi : F -+ G is a covering map, or 

(ii) F is an annulus or Mobius band and f,(F) c 8G. 

If for some component C of c?F f jC : C -+ f(C) is a coverjng map, then the homotop~~ 

can be carried out relatively C. 

3. SINGULAR KNOTS AND THEIR INVARIANTS 

This section contains the statement and the proof of the first step (see Theorem 3.7 

below) that jnite type knot invariants exist in closed irreducible 3-manifolds. The proof will 
occupy most of the section. 

3.1. Preliminiwies 

Let M be an oriented 3-manifold and let P be a disjoint union of oriented circles. 

~e~nition 3.1. A singular link of order n is a piecewise-linear map L : P ---f M that has 
exactly n transverse double points. A singular link of order 0 is simply a link. Two singular 
links L and L’ are equivalent if there is an isotopy ht : A4 -+ M, t E [0, 1] such that ho = id, 

L’ = h,(L), and the double points of h,(L) are transverse for every t E [0, 11. 

Let p EM be a transverse double point of a singular link L. Then L-‘(p) consists of 
two points ~1, p2 E P. There are disjoint I-simplexes, rrl and 62, on P with pi E int(cri), 
i = 1,2, such that for a small ball neighborhood B of p in M 

Moreover, there is a proper 2-disc D in B such that L(crl ), L(cr2) c D intersect transversally 
at p, and the isotopy hl of Definition 3.1 carries the ball disc pair (B, D) through for all the 
double points of L. 

We can resolve a transverse double point of a singular link of order n in two different 
ways. Notice, that L(al) n I;(a,) consists of four points on ao. Choose two arcs al and ~2 
as shown in Fig. 2. 

The orientation of M and that of L(Q) determine an orientation of aI ua2. Suppose that 
it is consistent with the orientation of al and opposite to that of ~2. 
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Fig. 2. Resolutions of a transverse double point. 

Define 
L+ = L\L(a2) u a1 

L_ =L\L(c2) U a2. 

Clearly L+, L_ are well defined singular links of order n - 1. We call L+ (resp. L_) the 

positive (resp. the negative) resolution of L. 

Let Xx” (resp. 9”‘) denote the set of equivalence classes of singular knots (resp. links) of 

order n in M, and let 9 be a ring. A singular link invariant is a map 9” -+ 8. In particular, 

for n = 0 we have a link invariant. From a link invariant Y + 99 we can always define a 

singular link invariant 9’ -+ 9 as follows: 

Let L, E 9’ where x stands for the only double point. Then L+, L- E To = 9. We 

can define a singular link invariant f : 3’ + L%? by 

f(Lx)=f(L+) - f(L-) (2) 

As a first step in reversing this procedure we ask the following question: Suppose that we are 

given a singular link invariant 9 + W. Under what conditions can we find a link invariant 

9+9! so that (2) holds for all L, E di”‘? In [l], Bar-Natan thinks of (2) as the definition 

of the “first partial derivative” of the link with respect to a certain crossing. In this spirit the 

question above concerns the “integrability” of a singular link invariant (see also discussion 

in [17]). 

Our goal in this section is to answer the above-mentioned question for knots in closed 

irreducible 3-manifolds, and 9 a ring which is torsion free as an abelian group. Before we 

can state our main result we need some preparation. 

We will say that a singular link L, E 9’ is inadmissible iff either 

(a) the 

(b) the 

(i) 
(ii) 

two resolutions L+ and L- of L, represent isotopic links; or 

double point x of L, belongs on a single component LI c L and moreover: 

the two lobes of L1 are homotopically essential in nt(A4); and 

the two resolutions L+ and L_ of L, , differ by a change of orientation of the 

component corresponding to L1. 

Dejinition 3.2. (a) We say that an invariant f : 9’ -+ 9 satisfies the weak local integra- 

bility conditions if and only if we have: 

f(m)=0 (3) 

f(L.+)-f(L.-)=f(L+.)-f(L-.). (4) 
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(b) We say that an invariant f : T* -+ 9 satisfies the strong local integrability conditions 

if and only f satisfies (4) above and we have 

f (hadm > = 0. (3’) 

Notation. Before we proceed let us explain the notation above. In (3) the kink stands 

for a singular link L, E _Y* where there is a 2-disc D c A4 such that L, n D = dD, and 

the unique double point of L, lies on 80. In (4) we start with an arbitrary singular link 

LX X E 9’. The four singular links in Y1 are obtained by resolving one double point of L, X 
at a time. Finally, in (3’) Linadm stands for any inadmissible singular link in 9’. Clearly, 

(3’) is a stronger condition than (3). 

To continue, let L : P AM be a link and let J&(P,M) denote the space of maps P -+M 

homotopic to L, equipped with the compact-open topology. Moreover, let @ : P x S’ + M 

be a closed homotopy from L to itself. Then, Q may be thought of as a loop in _&@(P,M), 
based at L. 

For a point t E S’, let & denote the link Q(P x {t}). After perturbation, we can assume 

that there are only finitely many points tl, t2,. . . , tn E S’ , ordered cyclicly according to the 

orientation of S’, so that &, E 9’ and & is equivalent to +t for all ti < t, s < ti+l. When t 

passes through ti, & changes from one resolution of &, to another. 

Dejinition 3.3. Let L, @ and tl, t2,. . . , t,, ES’ be as above and let f : 9' -+ 92 be an 

invariant of singular links with one double point. We define the integral of f along Q to be 

the following alternating summation: 

where si = il is determined as follows: If &,+a, for 6 > 0 sufficiently small, is a positive 

resolution of &, then si = 1. Otherwise si = - 1. 

Next, we study various properties of the integral of a singular link invariant along a 

closed homotopy and we prove some preliminary lemmas which are essential for the proof 

of Theorem 3.7. The following lemma was proved in [17], but we include the proof here 

for completeness. 

LEMMA 3.4. Let M, P and @ be as above and let f be a singular link invariant that 
satisfies the weak local integrability conditions. Moreover, suppose that @ can be extended 
to a map 6 : P x D* -+M, where D* is a 2-disc with aD2 = { *} x S’. Then, the integral of 
f along Q vanishes, i.e. XQ = 0. 

Proof: We perturb 6 to an almost general position map as in Proposition 1.1. Then, each 

edge of the set of singularities Q,, corresponds to a singular link of order 1. So by using 

the invariant f we can assign an element of 9 to every edge of S,. We will reduce the 

desired conclusion to local integrability conditions around each interior vertex in S,. More 

precisely, for every interior vertex of S& draw a small circle C around it, so that the number 

of points in C n S& is equal to the valence of the vertex. For a picture see Fig. 3. It suffices 

to show that 

(5) 

for every interior vertex of S,. Here $,(S’) = &(P x {x}). 
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Fig. 3. From local to global integrability conditions. 

Case 1: The valence of the interior vertex is one: In this case it is easy to see that for 
x E Q,, near that vertex, the unique double point of 6, is at a kink. So (5) is implied by 
the local integrability condition (3). 

Case 2: The valence of the interior vertex is four: In this case the four points in C n S& 
correspond to the four singular links appearing in the local integrability condition (4) and 
one can easily see that (5) is guaranteed by it. 0 

LEMMA 3.5. Assume that A4 is an orientable 3-manifold with 7cz(M) = { 1). Let f : 2’ + 

W be a singular link invariant satisfying the weak local integrability conditions, and let 

Cp : S’ + .ML(P,M) be a loop. Then XQ only depends on the free homotopy class of Cp in 
&(P, M). 

Proof: Let a’ be another closed homotopy in almost general position such that a, a’ : 

S’-+JY~(P,M) are freely homotopic loops in JL(P,M). Then there exists a homotopy 
ap, : P -+AL(P,M) with t E [0, 11, such that @o = Q and a1 = a’. 

Let y be the path in .ML(P,M) defined by y(t) = @,,(L). After putting y in almost general 
position we have 

X&_, =X, +x,, -X, =&,. 

Hence we can assume that both & and &,I are based at L, and the homotopy Q’t is taken 
relatively L. The homotopy $ gives rise to a map Y? : P x S’ x I -+M. We cut the annulus 
S’ x I into a disc D2 along a proper arc a C S’ x I. Then, we have 

X,,2 = *:(x, - X&G - X, +X,). 

By Lemma 3.4 we obtain Xap = 0, and hence & =&I. 0 

To continue, we first need to introduce some notation. Suppose that P has m components; 
that is 

where each Pi is an oriented circle. 
let ai denote the homotopy class of 
centralizer of Ui in n~(M,L(pi)). 

i=m 

P=flfi 
i=l 

Let L : P + A4 be a link. Pick a basepoint pi E P;: and 
L(P;:) in ZI(M,L(pi)). Finally, we denote by Z(ai) the 
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LEMMA 3.6. Assume that M, P, and f are as in the statement of Lemma 3.5. Let 

L : P -+ M be a link such that the abelianization of Z(ai) is finite, for every i = 1,. . . , m. 

Then & = 0, for every closed homotopy @ : P x S’ --+M from L to itselfI 

Proof We denote by 4! = AL(P,M) the space of maps P +M, which are homotopic 

to L, equipped with the compact-open topology. 

Let 
71=7q(&L(P,M), L). 

Since n*(M) = { 1) one can see that n is isomorphic to the direct product of the centralizers 

{Z(ai)}i=l,...,m. 

By Proposition 3.3 of [17], the assignment Cp + x(Q) is a group homomorphism x : 

n--t%?. 

Since $8 is abelian, x must factor through the abelianization of rt which is finite by 

assumption. Now, since W is torsion free, we must have x = 0 and thus 

which is the desired conclusion. 0 

3.2. The statement of the main result 

Our goal in this paragraph is to give the statement of “integrability result” for invariants 

of singular knots with one double point, in irreducible 3-manifolds and prove it for knots in 

manifolds which are atoroidal. 
Recall, that we have denoted by X1 (resp. X) the set of equivalence classes of singular 

knots of order 1 (resp. knots) in M. Let V be the set of all conjugacy classes in rci(M). For 

every c E %, let Xc denote the set of equivalence classes of knots, corresponding to c. For 

every c E 59, we fix a knot KC : S’ + M that represents it. We denote by FX = {KC where 

c E %} = “set of trivial knots”. The knots in 5X are going to play for our theory a role 

similar to the one that the standard unknot plays for the “finite type theory” in S3. Changing 

the set FX amounts to changing our invariants by some constants. 

If M is a Seifert fibered manifold, we will say that it is small, if it fibers over the 2- 

sphere and it has at most three exceptional fibers. Let N be the subgroup of nl(M) generated 

by a regular fiber of M. If M is small, then either n,(M) is finite or rri(s)/ilr is a Euclidean 

or hyperbolic triangle group. 

Now we are ready to state the main theorem of this section. 

THEOREM 3.7. Suppose that M is a closed, oriented, irreducible 3-manifold, that it is not 

a small Euclidean Setfert mantfold, and that W is a ring which is torsion free as an abelian 
group. Let f : .Xx’ + 2 be a singular knot invariant. 

(a) Iff satisfies the strong integrability conditions (3)’ and (4), for every c # 1, there 

exists a knot invariant F : Xc + 92 so that (2) holds for all K, E X1. 
(b) Moreover tf M does not contain any Secfert jibered spaces over non-orientable sur- 

faces, then the following is true: For every c # 1, there exists a knot invariant F : Xc -+ 9-2 
so that (2) holds for all K, E Y^’ if and only if f satisJies the weak local integrability 
conditions (3) and (4). 

As we will shortly see, in the course of proving Theorem 3.7, we will need to study maps 

from the torus to M. Let us here introduce some relevant notation. Let Q : T = S’ x S’ + M, 
which is in general position. Let I, m : S’ -+ T be embeddings representing the standard lon- 

gitute and meridian of T. For an embedding 2: S’ -+ T, let [A] be its homology class in 

HI(T). Then [A] =x[Z] + y[m] with x, y E Z. By abusing the notation, we will sometimes 
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write E. = xl + ym to denote the simple closed curve &St) c T. To continue with our no- 

tation, let a, b c T be oriented simple closed curves such that [a] and [b] give a basis for 

H,(T). We choose a basepoint * E T. The map @ : T = S’ x S’ +M, gives rise to a family 

of maps {f& : S’ + M, x E b(S’)}, where &(S’) = @(a(S’ ) x {x}). Thus @ gives rise to a 

loop Pb : b(S’ ) +J@(a(S’),M), where K* is the knot @(a(S’) x {*}). We will denote 

by X;” the integral of f along Vb. Notice that Xirn IS nothing else but the integral &, 

of f along a. 

Proof of Theorem 3.7. One direction of the theorem is clear. That is if a singular knot 

invariant f : .X1 -+ 52 is derived from a knot invariant F : X -+ 92, then it satisfies (3) and 

(4). To see that (3) is satisfied observe that the positive and the negative resolution of the 

double point in the kink are equivalent. For (4) observe that, using (2), both sides of (2) 

can be expressed as F(K++) - F(K_+) - F(K+_) + F(K__). 
We now turn into the proof of the other direction which we will break into several steps. 

First of all we define F on the elements in FX by arbitrarily assigning the values F(K,), 

for all K, E FL%?. 
Let K E x be a knot type in M. We use K to also denote a representative K : S’ + M, of 

K. Then K E XC for some c E %? and hence K is homotopic to some KC E Y%C. We choose 

a homotopy & : S’ x [0, l] --+A4 such that 40 = K and $I= K,. After perturbation we can 

assume that for only finitely many points 0 < ti < t2 < . . < tn < 1, c$t is not an embedding. 

Moreover we can assume that +,,, for i = 1, 2,. . . , n are singular knots of order 1. For 

different t’s in an interval of [0, l]\{ti, t2,. . . , tn} the corresponding knots are equivalent. 

When t passes through ti, q$ changes from one resolution of & to another. 

We define 

F(K)=F(K,)+~&if(~l.). 
i=l 

Here ei = & 1 is determined as follows: If &,+a, for 6 > 0 sufficiently 

resolution of & then ci = 1. Otherwise ci = -1. 

small, is a positive 

To prove that F is well defined we have to show that modulo “the integration constant” 

F(K,), the definition of F(K) above is independent of the choice of the homotopy. For this 

we consider a closed homotopy Cp : T = S’ x S’ -+M. Here the knot direction is I, and the 

parameter space is m. To prove that F is well defined we need to show that the integral of 

f along Cp vanishes, i.e. 

x,=0. (6) 

We will call (6) the “global integrability condition” for @. 

LEMMA 3.8. Assume that M and f are as in the statement of Theorem 3.7 and Q : T = 
S’ x S’ +M is a closed homotopy from a knot K to itseljl Moreover, assume that K is 

not homotopically trivial and that Ker{nl(T) + xl(M)} # { 1). Then, XQ = 0. 

ProoJ: We may assume that xl(M) is infinite since otherwise the conclusion is true 

by Lemma 3.6. Then since M is orientable and irreducible, 711(M) is torsion free (see for 

example [9, Theorem 9.8 or Corollary 9.91). 

By assumption, there exists a homotopically non-trivial closed curve 3, c T, such that 

@*(A) = 1, where Q* is the map induced by a’, on the fundamental groups. Furthermore, by 

the discussion above we can assume that 2 is a simple closed curve. Hence A=al+ bm, 

where a, b E Z with gcd(a, b) = 1. 
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By assumption we have that b # 0. Then consider the lb]-fold covering p : F -+ T of T, 

corresponding to the subgroup h @ bZ of rcl (T). Let 7 and G be simple closed curves in i; 

lifting 1 and m respectively, and let & = @ o p. We orient I” and fi so that p is orientation 

preserving. Then p*(k) = bm, p*(i) = 1, and p* 1 I: i + 1 is a homeomorphism. Let 1 c f 

be a simple closed curve lifting 1. Then we have j= a?+ 6. We observe that &*(I) = 1 

in M. 

Notice that 1 (j, i) 1 = (i, fi) = 1, where (*, *) denotes the algebraic intersection number. 

Therefore we can take the pair ([i], [J]) as basis for H’(T). We orient i and 1 suitably, so 

that the orientation of F induced by them is the same as that induced by i and fi. 

Since &(j) = 1 we can extend 4 on a disc D, with [aDI = [I]. Since M is irreducible 

we have rc#4)= {l}, and hence we can extend 6 on a solid torus V ES’ x D, with the 

image of S’ carried by 1. We continue to denote the extended map by 5,. 

By Lemma 3.4 we conclude that Xi” = 0. Observe that X2” =X$“, since a point x E G 

such that $1 is not an embedding, corresponds to exactly one such point on 1, and vice versa. 

Hence, we get that X?” @ =O. Finally, since p*(k)= bm and p*i= 1, we have Xi” = 6x2”’ 

and since 9 is torsion free, we get XQ = 0. This finishes the proof of the lemma. 0 

DeJnition 3.9. A compact, oriented, irreducible manifold M, is called atoroidal if every 

map f : S' x S' +M, from the torus to A4 is inessential. 

PROPOS’T’ON 3.10. Assume that A4 is a closed, oriented, irreducible 3-mantfold which is 

atoroidal. Then Theorem 3.7 is true for M. 

Proof Recall that f : X’ + 9 is an invariant which satisfies the local integrability con- 

ditions (3) and (4). It is enough to show that for every closed homotopy Q, : 5” x S’ + A4 

of a knot to itself the global integrability condition (6) is satisfied. If A4 is atoroidal then 

the conclusion follows immediately from Lemma 3.8. 0 

3.3. Closed homotopies of knots and essential tori 

Our next goal is to prove “the global integrable condition” (6), in the case that the closed 

homotopy Q : S’ x S’ 4 A4 is an essential map. Since the characteristic submantfold of A4 

contains up to homotopy all the essential tori, and since XQ depends only on the homotopy 

class of a’, it is enough to prove (6) for Seifert fibered spaces. We do so in Lemma 3.13 

below, but first we need to prove two auxiliary lemmas for essential tori in Seifert spaces. 

Let B be a surface and let CI : S’ + B be a loop. Choose a subdivision to < tl < . . tn_ 1 < t, 

= to of S’ such that each cr([ti_l, ti]) lies in a disc Di c B. By translating, in D’, a neighbor- 

hood of a(to) to neighborhood of a(tl ) in D’ n 02 and so on, we obtain a homeomorphism 

h from a neighborhood of a(to) to itself. We say that CI is orientation preserving if such an 

h is an orientation preserving homeomorphism. 

LEMMA 3.11. Suppose that S is an irreducible+ Setfert jibered space, with or without 

boundary, with orbit space B and fiber projection p : S + B. Let Q : T =S’ x S’ 

-+S be vertical with respect to the given jibration. Moreover, suppose that the loop 

p(@( T)) c B is orientation preserving. Then, there exists a trivial jiber bundle F ES’ x B’ 

tThe only non-irreducible Seifert manifolds are S2 x S’ and RP3#RP3. 
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Fig. 4. ct = oq U ct2 U . . U an, 

over a surface B’, whose boundary aF is a collection of disjoint tori T U q U . . . U Tk, and 

there exists a map 6 : F + S such that 
(i) 81 T=@, 

(ii) for every i= l,...,k, 6 1 Ti: + @(Ti) is the composition of a covering map Ti : + 

fi and an embedding I?i : -44. Here, each pi is a surface covered by the torus. 

Proof: By Proposition 2.11 we can assume that + = +i o q where q : T -+ T’ is a covering 

map, and a.1 : T’ + S is an immersion without triple points. 

Case 1: The degree of the covering q is equal to 1; that is, the map @ : T --+A4 is an 

immersion without triple points. 

Then, the singular set of Cp consists of disjoint parallel, essential simple curves on T. 

Moreover, the images of these curves, under + are regular fibers of the fibration of S. Let 

us choose one of these simple curves on T, and denote it by H. We also choose a simple 

closed curve Q c T with (H, Q) = 1, such that a(Q) gives a cross section for the image 

a(T). By replacing Q with Q f XH (x E Z), we may assume that Q does not wrap around 

H. Notice that ([HI, [Q]) give a basis for H,(T). 
By our assumption IX = p(@l(T)) C B is an orientation preserving closed curve, whose 

only singularities are finitely many transverse double points. Hence a regular neighborhood 

of rx in B is a singular annulus. 

We distinguish two subcases: 

Subcase 1: The orbit space B is an orientable surface. Notice that we have aB # 0 if and 

only if as # 0. 
By the previous discussion c1 is a union of simple closed curves, CI = c11 U ctz U . . . U ~1, as 

shown in Fig. 4. Consider {Ni = Cli x Z}i=i ,,,,, n (I = [-1, l]), a collection of regular neighbor- 

hoods of the xi’s which are disjoint from the cone points of B. Let fii = ai x {l}, i = 1,. . . , 

n. Clearly pi is a simple closed curve on B, and Ti = p-‘(pi) is a properly embedded torus in 

S. Let Bi = tli x [0, 11. Then each 4 = p-‘(Bi) is a fiber bundle with afi = p-‘(Ei)U p-‘(pi). 

For every i = 1, . . . , n, let ki be the number of double points of a lying on the boundary 

of Bi. We choose a collection of simple arcs {~/}~,i,,,,,~, on Bi such that, 

(i) c/(O) is a double point of LY, 

(ii) c/((O, 11) C int(Bi). 

Observe that A{ = p-‘(c/) c 6 is a properly embedded annulus for every i = 1,. . . , n and 

j=l,...,ki. 
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Let bJk=l,...,s be the double points of M, {P~,&}~=,,,,,,~ be their preimages on 

a-‘(P-‘(a))=Q, and let f$=Hx{p{}~T, k=l,...,s andj-1, 2. 

Recall our map @ : T 4 S. First we extend @ along annuli {A~*}~=, with &tk* = HL U 

Hi, by @AL*) = @(HL) = @(Hi), for every k = 1,. . . ,s. Let fi be the space obtained from 

E by cutting along the collection of ammli A{, and let A{’ and A? be the two copies of A; 

in F;. Clearly, @ extends to a map 6 on F = U :=‘Fi. Now, each component of the boundary 

of P, aF, is a torus. Let us write aF = T U T’ U .. U T, U F-, where each component in F 

is a torus obtained by the union of three annuli, of the form xjk = A/’ U A{* U A:‘, for some 

i=l )...) n, j=l,..., ki and k= l,...,s. 

Since each torus zjk in F, maps under 6 to an annulus (by our construction we have 

8(zjk) = A{), we see that 6 1 Tjk is inessential. Thus, and since S is irreducible, we extend 

6 on a solid torus b$jk with a&jk = zjk. The fibration of F will extend over each Kjk unless 

one of these solid tori is attached so that the meridian disc is attached to a fiber i3F. But this 

cannot happen since every fiber of aF is essential in S. Finally, the resulting space, is the 

desired fiber bundle F. Clearly, we have aF = T U i‘l U . . . U T,, and 6(c) is an embedded 

torus for every i= l,...,n. 

Let B’ be its orbit space. Notice, that we have constructed both F and B’ to be orientable, 

and since aF # 0, we have that FE S’ x B’. This finishes the proof of Subcase 1. 

Subcase 2: B is a non-orientable surface. Let s : B -+ B be the two-fold orientable cov- 

ering of B, and let $ be the Seifert fibered space, with orbifold j, corresponding to it (see 

Proposition 2.4). Then $ is a two-fold covering of S. Let s”: 3 -+ S be the covering projection. 

Since a = p(@(T)) c B is orientation preserving, we see that S-‘(U) has two components LX’ 

and ~12, such that s : U-i + GI is a homeomorphism. Hence s1-‘(@( T)) has two components T’ 

and T2 such that s”: Ti + a(T) is a homeomorphism. By applying our result of Subcase 1 to 

the map s”-’ o @ we get the desired conclusion. 

Case 2: We have that @=G’oq where q: T + T’ is a covering map of degree greater 

than 1. Let H’ and Q’ be simple closed curves on T’ mapping onto a regular fiber of S and 

a cross section of @‘(T’ ), respectively. Let F’ E S’ x B’ be a trivial bundle corresponding 

to the map @‘, as constructed in the proof of Case 1. 

Suppose H, Q c T are curves lifting H’ and Q’ respectively, and that q(H) = aH’, 

q(Q) = bQ for some a, b E Z. Consider the coverings q’ : T + T* and q2 : T2 --f T’ such 

that, 

(i> q=q2041 
(ii) If Hz, Q2 c T* are curves lifting H’ and Q’ respectively then (q’).+(H)= Hz, (q’)* 

<Q>=bQz and (q1Mfh)=afh, (~~MQ~)=QI. 

It is not hard to see that q2 can be extended to a covering q2 : F2 -+ F’ = qz(Fz), where 

F2 % (Hz) x B’, and q’ to a branched covering q’ : F + Fz = q’(F) , where F a fiber bundle, 

over a surface B’, satisfying all the desired properties. 0 

LEMMA 3.12, Assume that S, B, p and + : T = S’ x S’ + S are as in the statement of 

Lemma 3.11. Assume moreover that H = S’ x {*} maps onto a cross section of Q(T), and 

Q = { +} x S’ maps onto a regular jiber of S. Moreover, suppose that a neighborhood N c B 

of p(@(H)) contains no orientation reversing loops. Then for every x1,x2 E {*} x S’ there 

exists a homeomorphism h’* : S -+ S such that, 

(1) h’* = id outside a regular neighborhood N of (P(T) in S; 

(2) h’*(&, ) = &, where &, = @(S’ x {xi}), (i = 1, 2); 

(3) h12 is isotopic to the identity map, id : S + S. 
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Fig. 5. N* c B. 

Proof By our assumption the closed curve CI = p(@(Q)) c B is orientation preserving 

and its only singularities are finitely many transverse double points. Recall also that by the 

definition of a vertical map @(T) c B is a union of regular fibers of the fibration of S. 

Fix xl, x2 E { *} x S’ . We will construct /z12 : S -+ S as claimed above. 

Consider 9 = {A 1, AZ, . . . , Ak} a piece-wise linear triangulation of B satisfying the fol- 

lowing properties: 

1. The double points of the curve a are vertices of 9. 

2. CI is contained in the l-skeleton of 9. 

3. The l-skeleton of 9 contains no cone points of B. 

4. The interior of every Ai, contains at most one cone point of B. 
5. A regular neighborhood N* c B of c1 (triangulated as shown if Fig. 5), contains no 

cone points of B. 

The triangulation 9 of B gives rise to a decomposition V = {K = P-‘(Ai)}r:i,.,,,k, of S 

into fibered solid tori. For every I$, d E = Yfi is the union of three fibered annuli each lying 

above a side of Ai = p( I$). Let N = P-‘(N*). 

The decomposition -Y- has the following properties: 

1. If I$ c N then either, 

(a) aI$ n Q, = En &, = Sj (j = 1,2), where Sj is an arc with 88, lying on distinct com- 

ponents of one of the annuli consisting 86 = c, and ~(61) = ~(62) c IX is an l-simplex of 

9 or, 

(b) aI$n$,, = En+,, =pj, (j= 1,2), and P~c~X, is a point with p(pI)=p(p2)~a 

a vertex of 9. 

2. If I$cS\N then dK:n&,=@, forj=1,2. Assume that KcN and let aK=7;=,4ju 

A: UA!, where {A:},=,,,,,, are the three fibered annuli corresponding to the three sides 

Of Ai = p( 6). 

Choose oriented arcs yy C {A:}, where j = 1,2 and i = 1,2,3, such that 

(i) 8yy lies on distinct components of {A!} and int yy c int {At}. 
(ii) The initial point of y?+‘)j is the terminal point of yy (here k is considered mad(3)). 

(iii) If I$ is as in the case (la) above and aI$n &, =A! fl &, = Sj, then y:’ = Sj and 

terminal point of yjk+‘)j = initial point of yjkf2)j. 
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(iv) If l$ is as in the case (lb) above and a6 n &, = AC n &, = A?+‘) n &, = { pj} then 

we have terminal point of ykj = initial point of $+“j and YT+~)’ = Y:~+~)‘. 

(v) Let cji =y,!‘n ?;t’n$ (j= 1,2). We have that c;’ and ci2 are homotopic, simple 

closed curves on z, each intersecting the fibers exactly once. 

We are ready, now, to construct map h . l2 .S --+ S as claimed in the statement of the 

lemma. First note that since q’ is homotopic to c;2, and since every I$ c N is an ordinary 

fibered solid torus, there exists Al21 U’,c,v z such that h12] U z : z -+ q takes c;’ onto ci2, 

translates 7;: along the fibers and is isotopic to id : T --+ 7;. We can extend Al2 to U K and 

then to the whole space S. The rest of the claims follow easily. q 

Remark 3.13. As it was pointed out to me by C. Livingston and P. Kirk, Lemma 3.12 

is not true in the case that a neighborhood N c B of p(@(H)) contains orientation reversing 

loops. Thus, the weak integrability conditions do not guarantee that a singular knot invariant 

can be integrated to a knot invariant, in every irreducible 3-manifold. See [15], for exam- 

ples of invariants that satisfy the weak integrability conditions but cannot be integrated to 

knot invariants. The reason for that is the following: Let us, for simplicity, assume that 

p(@(H)) contains two orientation reversing sub-loops, say (x’ and ~2, meeting at a double 

point k E p(@(H)). Let t =p-‘(k) denote the fiber of S over k. Then V’(t) constists of 

two parallel copies, say Q’ and Q2, of the parameter space Q that are identified by opposite 

orientation, under @. One can easily see that each of (P(S’ x (0)) and @(S’ x {i}) is a 

singular knot with a double point. Moreover, each of these double points is of the same 

sign. Then, and by our definition of a resolution of a double point, we can see that both 

(P(S’ x (0)) (resp. @(S’ x {i})) are inadmissible singular knots. 

In general, we can have many pairs of the parameter space Q, that are identified under a’, 

with opposite orientations. Each such pair gives rise to two singular knots along a. The two 

resolutions of each of the singular knots appearring along @ differ by a change of orientation. 

Then, one can see that all the singular knots along such an @ are inadmissible. 

LEMMA 3.14. Assume that S is Seifert jibered space, in which every essential (singular) 

torus can be homotoped to be vertical with respect to some jibration. Let f and &? be as 
in the statement of Theorem 3.7 and let @ : T = S’ x S’ + S be a closed homotopy from a 
knot to itself Assume moreover, that @ is an essential map and let Xe be the integral of 
f along @. Then we have & = 0. 

Proof By assumption there exists a homotopy @‘t : T = S’ xS’ + S, t E [0, 11, with a.0 = @ 

and a Seifert fibration of S, such that a’ is vertical with respect to this fibration. 

By Lemma 3.5 we have XG, =X,. Therefore it is enough to prove that &, = 0. 

We choose a pair of simple closed curves (FZ, Q) on T, such that a’(H) covers a regular 

fiber of S, and (a,(Q) covers a cross section of the image G’(T). We orient (H, Q) so that 

the induced orientation on T is the same with that induced by (I, m). Let B be the orbit 

space of S and let !z=p(Q,‘(T))cB. 
Since the orientation of @I( I) (= knot) does not change along (a(m) we have that the 

orientation of a’(H) does not change along cP’(Q). Hence the orientation of the fiber does 

not change along c( = p(@‘(T)) c B. But since S is orientable CI has to be an orientation 

preserving curve on B. Hence Lemma 3.11 applies and we can find a trivial fiber bundle F 
withfiberHandboundary~F=TUT’U...UT,,andamap~~:F--tSsuchthat~’IT=~’ 

and &‘1Ti:7;--+&‘(K) is a covering map for i=l,...,n. 
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Let B’ be the orbit space of F. Then we have 8B’ f? T = B’ f? T = Q. Let Q = 8B’ 17 6 =I 

B’n~cc, for i=l,.,., IZ. 

Suppose that I = aH + bQ and rn= CH + dQ, where a, b, c, d E 21 such that gcd(a, b) = 
gcd(c,d)=ad - be= 1. 

Assume that a # 0. Then consider the covering 3: 1s -+ F of F, corresponding to the 

subgroup aH x nt(B’) of Z x nl(B’)= al(F). Let f= P-‘(T) and let I?, 0, ? and 6 be 

simple closed curves in F lifting H, Q, I and m respectively. Also Iet Fi = j7’(G) and let fij, _ _ 
Qj, Ei and liii be simple closed curves in Fi lifting Hi, Qi, li and mi, for i = 1,. . . ,n. We orient 

p suitably so that j is orientation preserving. Then we have i = fi + bo and $I= -& - ada. 
Let d, =@I op. 

CLAIM. We have 

Proof qf claim. Observe that j&(G) = am and that 0 = ci + 6, for some c E Z. Then, 

the first equality follows by observing that every point x E G such that &I(@’ ) x {x]) is a 

singular knot of order 1, gives rise to such a point on 0 and vice versa. To see the second 

equality, observe that every point x E m for which a,( Z(S’ ) x {x}) is not an embedding, 

corresponds to Ial points y E 61 such that 61(&s’) x {y}) is not an embedding. 

Notice that the intersection number of 1 and 0 is 1. lfence we may assume, up to a fiber 

preserving homeomorphism, that $ is a trivial bundle over B’ with fiber i. 

To continue with the proof of the lemma, we choose a collection of proper arcs 

such that (i) B’ if cut along the {a!}‘~ becomes a disc (this is possible since B’ is con- 

nected), and 

(ii) the endpoints of the {cc~]‘s avoid the points for which &t(i x (*}) is not an embed- 

ding. Let r denote the space obtained by cutting i x B’ along the collection of annuli 

(A,};:” 

where A, = I” x Ej. Let us denote by \k the map induced on II’, by &t OF. 

By Lemma 3.4 we have that 

x, =o. 

It is not hard to see that X$ = &Y~,” - Xi’,‘“’ - . . . - X~‘om ) and thus we obtain 

Since 611 p is a covering map we can easily see that we have Xk,‘“1 = 0 for every i = 1,. . . , m. 

Hence the right-hand side of the equation above is zero, which implies that Xi,,” = 0. Now 

from the claim above, and the fact that we are working over a torsion free ring, we obtain 

that &, = 0 which finishes the proof of the case a # 0. 

Now, we observe that if a = 0, then we have @t*(i) = bit and by applying Lemma 3.12 

and Remark 3.13 we get that &,, = 0. cl 

By Proposition 2.1, we see that Lemma 3.14 is true for Seifert manifolds which are 

Haken. In particular, this includes all Seifert manifolds with non-empty boundary. 
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It is well known that if S is a closed irreducible Seifert manifold, with infinite funda- 
mental group, that is not Haken then the base space is the 2-sphere and it has exactly three 
exceptional fibers. Moreover, if N is the subgroup of xi(S) generated by a regular fiber of S, 
then the quotient ni(S)/N is the triangle group A(~,q,r), where p, q and r are the multiplic- 
ities of the exceptional fibers. As shown in [21], an essential map St x S’ -+ S, can always be 
homotoped to a vertical one if A(p,q, y) is a hyperbolic triangle group. Thus, Lemma 3.14 
is also true for these manifolds, and the only Seifert spaces that cannot be handled with the 
techniques introduced so far are those corresponding to Euclidean triangle groups. 

Let us call a Seifert manifold small if it has finite fundamental group, or it fibers over 
the 2-sphere and it has exactly three exceptional fibers. 

CO~OLLARV 3.15. Theorem 3.7 is true for Haken Seifert jibered spaces, or small Seifert 

manl~olds that either haue $nite fundamental group or correspond to hyperbolic triangle 

groups. 

ProoJ It follows immediately from Lemmas 3.8, 3.14, and the discussion above, 

3.4. The compiet~on of the proof of Theorem 3.7 

Let Q : T = S’ x S’ +M be a closed homotopy from a knot to itself, and let & be the 
integral of the invariant f along @. We will show that & = 0, for every + as above. 

In view of Lemmas 3.4 and 3.8 we may restrict ourselves to essential @‘s. 
First suppose that M is a Haken manifold. If (9 is an essential map, then the c~~aracterist~c 

submanl~ld S, of M has to be non-empty. Notice that 5’ is a Seifert fibered space which 
is closed if M itself is a Haken Seifert space, and has non-empty boundary otherwise. In 
any case S is a Haken Seifert manifold, and thus Lemma 3.14 applies. By the Enclosing 
Theorem, we can homotope @ to a map @i : T = S’ x S’ -+ M, with @t(T) c MS. Finally, 
by combining Lemmas 3.5 and 3.14 we obtain Xa =&, =O. 

Now suppose that I’ll is non-Haken. Then, ~,(~) has to be finite since every 3-manifold 
with non-zero first Betti number is Haken. (See for example Lemma 6.6 of [9].) By the 
Torus Theorem, if M is not Haken, then it has to be a small Seifert manifold. 

By Corollary 3.15 the only case that we need to worry about is the case of small Seifert 
manifolds corresponding to Euclidean triangle groups. This finishes the proof of 3.7. 0 

The problem with these manifolds is that there might contain essential immersed tori that 
cannot be homotoped to immersions without triple points, and thus our arguments in Lemmas 
3.11-3.14 do not apply, directly. These manifolds are handled in the rest of this paragraph. 

Let us fix an essential map cli, : T = S’ x S’ -+M, and let E and m denote the longidute 
(knot direction) and me~dian (parameter space) of T. 

Recall that we denoted by N, the fiber group of M. Let a E or. If a E N, then the 
centralizer Z(a), of a is all of nt(M). In general, Z(a) is abelian of order <2 (see [lo]). 
Although we do not use this fact, let us mention that if Q*(Z) EN, then we obtain that 
X@ =0 from Lemma 3.6. 

There are only three Euclidean triangle groups. These are A(2,4,4), A(3,3,3) and 

A(2,3,6). 

(a) The triangle group is A(2,4,4). Then (see [21]) A4 has a two-fold covering fi, which 
is Haken. Clearly, @ lifts to an essential map (I, : T = S1 x S’ -+ &. Then, and for a generic 
9p, we may homotope 6 to a vertical map and apply Lemma 3.11 to obtain a trivial fiber 
bundle p 2s’ x B’ over a surface B’, whose boundary 8F is a collection of disjoint tori 
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TUT1 u ... U Tk, and there exists a map & : p +&f such that; 

(i) &IT=&, 

(ii) for every i= 1,. . .,k, 61Ti : + $(7;) is the composition of a covering map 7; : --+ T 

and an embedding c : -+&. 

Let p: I@ -+M be the covering map. Now since p is of degree two the images of the 

embedded boundary tori of F will be immersed tori in M without triple points. 

Thus our original map @ extends on a trivial fiber S’-bundle, say F, over a surface B, 

where the boundary of F is a union of disjoint tori with the following property: One of 

them is the torus T to begin with, and the images of the rest of the components under the 

extended map Cp are vertical tori. In particular, the integral of our knot invariant around each 

of these immersed tori is trivial. Then, by an argument similar to the proof of Lemma 3.14, 

we obtain XQ = 0. 

(b) The triangle group is A(2,3,6) or A(3,3,3). Then [21] M has a three-fold covering 

G, which is Haken. In fact fi fibers over the 2-sphere with four exceptional fibers each of 

multiplicity four in the first case, and it fibers overs the torus without exceptional fibers in 

the second case. In both cases the group of covering translations G, has order three. Let us 

denote by y a generator of G. 

For a generic a’, as in (a) above we may extend the lifting map 6 : T = S’ x S’ + fi, on 

a trivial fiber bundle F, having the properties described in (a). We only need to be concerned 

with the fact that as we induce new boundary components in creating P, we might introduce 

some (embedded) essential tori whose images under the covering p : A? +M might have 

triple points, and thus the technique of Lemma 3.14 would not apply to show that the 

integral of our singular knot invariant, around the newly created loops is trivial. 

Notice however (see proof of Lemma 3.11), that the extra tori we use can be taken to 

be vertical and embedded in I@. Let us focus on one of these tori, say Tl cd?, and let 

gT1, g2 TI be the images of T, under the covering translations. Clearly, TI f~ gT1 contains a 

circle that represents a regular fiber of fi. But then the proof of Lemma 4.4 in [21] applies 

to show that we can assume that T, f’gT1 n g2T, is empty and thus p(Tl) is an immersion 

without triple points. 

However, in both (a) and (b) above, if after homotopying 6, we are in the situation of 

Lemma 3.12 or Remark 3.13 or if 6 is horizontal with respect to the fibration of fi then 

we may have &, #O (see [15]). 

THEOREM 3.16. Suppose that M is a closed, oriented, irreducible homology 3-sphere and 

that 9 is a ring which is torsion free as an abelian group. Let f : X’ -+ .% be a singular 

knot invariant. There exists a knot invariant F : .X ---f 92 so that (2) holds for all K, E X1 

if and only if f satisjes the weak integrability conditions (3) and (4). 

Proof It follows from Theorem 3.7 and Lemma 3.6. cl 

4. SINGULAR KNOTS WITH MORE THAN ONE DOUBLE POINT 

Our goal in this section is to answer the following question: Let f : Xx” -+ 9, n > 1 be a 

singular knot invariant. Under what conditions is there a singular knot invariant F : Xx”-’ + W 

such that, 

f(Kx ) = F(K+) - F(K- ) (7) 

for every KX E Xx”. Here x denotes one of the double points of a singular knot of order n. 
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Fig. 6. Resolutions of a transverse triple point. 

Clearly, for the existence of the inv~ant F conditions similar to those of Theorem 3.7 
are still necessary. However, it turns out that they are not sufficient, in the case that n > 1. 

4.1. A generalization of Theorem 3.7 

Let us denote by KR, KS, KE and KW the four singular knots of order n > 1, which differ 
only in a small ball in M as shown in Fig. 6. (Our de~nitio~ here depends on the cyclic 
ordering of the three arcs X, Y, and 2.) 

One easily sees that these four singular knots appear in a series of “crossing changes” 
from a singular knot K E Xx”-’ to itself. Hence in order for (7) to be true, we must have 

In the next section we are going to see that KN, KS, KE and Kw, arise as resolutions of 
a triple point. 

We will say that a singular knot K, of order n is inadmissible if it contains a double 
point p E K such that either 

(a) the two resolution K+ and K-, of K with respect to p, are isotopic singular knots 
of order n- 1; or 

(b) the two lobes of K with respect to p are non-trivial in xl(M), and the two resolutions 
K+ and K_ differ by a change of orientation. 

THEOREM 4.1. Assume M is a closed, oriented, irreducible, 3~~an~o~d as in 3.7, and W 
is a ring which is torsion free as an abelian group. Let f : L%? --+ 9, n > 1 be a singular 
knot invariant. 

(a) For every c # 1, there is a singular knot invariant F: X:-l + W such that (7) is 
true if 

f(-klnadm)=O (8) 

f(L,+)-f(L,-)=f(L+.)-f(L-.) (9) 

_WN) -.tWs)+P(&) - fWw)=O. (10) 

(b) Moreover, if M is as in Theorem 3.7(b) then there is a singular knot invariant 
F - Xnmi -+ R such that (7) is true if and only if f satires (9),(10) and * c 

f(;o)=O. (8)' 

As in Theorem 3.7 we call (8) (resp. (8)‘), (9) and (IO) the “‘strong (resp. weak) 
~ntegrabi~ity co~ditions’~. 
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The main ingredients used in our proof here, are the homotopy classification of essential 

annuli in Haken manifolds (Proposition 2.11), and the generic picture for rigid-vertex null 

homotopies described in Theorem 1.5. 

We need some preliminaries before we are ready to proceed with the proof of 

Theorem 4.1. 

Suppose that K : S’ --+M is a singular knot with m double points. Let PK be the 

l-dimensional compact polyhedron obtained from K as follows: For every double point 

of K we identify its two preimages on S ‘. We will call PK the configuration of K. We say 

that two singular knots K, K’ E Xx” respect the same configuration, iff there is a homeomor- 

phism $ : PK + PKJ, which lifts to an orientation preserving homeomorphism $ : S’ -+ S' By 

definition all double points of K and K’ are transverse. The homeomorphism $ induces a 

one-to-one correspondence between the double points of K and those of K’. After isotopy, 

we may assume that the double points of K match those of K’ according to the above men- 

tioned one-to-one correspondence. Furthermore, we can assume that for each double point 

there is a ball neighborhood B c M with K n B = K’ n B consisting of two line segments that 

intersect transversally at the given double point. By taking the B’s sufficiently small, we can 

assume that they are disjoint. Let {Ci} (resp. {C;}) be the set of components of K nM\UB 
(resp. KnM\uB). N ow, $ induces an one-to-one correspondence between the components 

of K nM\U B and those of K’ nM\uB. Suppose that the component C; of K n M\U B, 

corresponds to C’: of K’ nM\UB. 

Definition 4.2. Let K and K’ be two singular knots in some &:” that respect the same 

configuration, PK. With the notation being as above, we will say that K and K’ are similar 

iff, for every i, Ci and C,! are homotopic in M\ UB, relatively to the boundary. 

LEMMA 4.3. Let K, K’ E Xx”-’ be two similar singular knots, and let Pk be their common 

configuration. Then there is a rigid-vertex homotopy & : Pk +M, t E [0, 11, with 40 = K, 
C#J~ = K’ and there are finitely many points 0 < tl < t2 < . . < ts < 1 such that 

(a) each &,EX~, i= l,..., s, 

(b) for every ti < t, s < t;+l, & and +s are equivalent singular knots in Xx”-‘; and 

(c) when t passes through ti, & changes from one resolution of &, to another. 

Proof: It follows immediately by putting the homotopies in the definition of similarity 

into general position. n 

Remark 4.4. Notice, that every singular knot K E Xx” is similar to itself. Let 4, : PK + M 

t ES’, be a rigid-vertex homotopy as in Lemma 4.3 with 40 = K = 41. In general, HO and 

41 (Pk) will differ by a permutation of the vertices, of order, say, k. Consider q : S ES’ -+ S’ 

the k-fold covering of the parameter space of the homotopy above. Define a new homotopy 

&:PK+M SES, by 

qqp. > = 4q(s)vk ), 

Clearly, the homotopy (4;) is a rigid-vertex homotopy, as well. Then, it is not hard to see 

that for every vertex of v of PK, there is a neighborhood N c Pk of v, and there exists a 

proper 2-disc D, in a ball neighborhood B of &,(v), such that &,(N)c D and ${(N)cD. 
Then, and possibly after an isotopy taking place in B, we may assume that 4: IB = &,jB. 
Thus, { $6) gives rise to a map Q’ : Pk x S -+ M. 

Proof of Theorem 4.1. We need only to prove the sufficiency of the integrability 

conditions. 
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For every CE 59 we choose a set of representatives of similarity classes in &“-I, and 

assign the values of the singular knot invariant F : Xx”-’ + B? on this set, arbitrarily. 

Now let K E Xx”-’ and let K’ be the representative chosen from the similarity class 

of K. Let &, t E [0, l] be the homotopy from K to K’ given in Lemma 4.3. 

We define 

F(K) = FW’) + c &if(h, 1 
i=l 

where si = fl are determined as in the proof of Theorem 3.7. 

To prove that F is well defined we have to prove that 

(11) 

~Eif($t,)=O (12) 
i=l 

for any rigid-vertex closed homotopy, {$f}tGs~, from K to itself, that satisfies the require- 

ments of Lemma 4.3. 

Now observe that the quantity on the left-hand side of (12) is multiplied by an integer, 

if we replace {&}tE~l by {4:&s of Remark 4.4. Thus, and since W is torsion free, we 

may assume that {&}rcs~ gives rise to a map 

ip:PK xs’+M. 

Let & denote the quantity in the left-hand side of (12). We have to show that 

X,=0. (13) 

Let Y = n - 1. Choose a basepoint on PK and let V = {VI,. . . , u,} be the set of vertices of 

PK in the order we encounter them as we travel along PK, following the orientation induced 

by that of the S’. Also let {et , . . . , ezr} be an ordering of the edges of PK guided by the 

above ordering of the vertices. 

The proof of (13) occupies the rest of this section. 

LEMMA 4.5. Let M and @ be as above. Moreover, assume that & is the integral of an 

invariant of singular knots, that satisfies the weak local integrability conditions. Then we 

have: 

(a) IfYi=@P({Q}xS’) P re resents a torsion element in n](M), then & = 0. 

(b) In general, if Ker{zl(PK xS’)-+rt~(M)}#{l}, and @(PK) is not homotopically 

trivial then, Xe = 0. 

Proof (a). By our assumption there exists an integer m such that myi is homotopically 

trivial in M. Without loss of generality we may assume that m = 1. For, otherwise we pass 

to the covering id x p : PK x S’ -+ PK x S’, where p : S’ 4 S’ is the m-fold cover. 

Since, yi is homotopically trivial, we can extend Q on a disc {Vi} x D2 with 8D2 = S’ , for 

every i=l,...,r. Let S~=({vt} xS’)U((q) xS’)U({DZ} xS’). Clearly SF is a 2-sphere. 

Since M is irreducible Q/S: extends on a 3-cell, BI 2 (6) x D2. By repeating this procedure 

till we exhaust all the edges of PK we can extend @ on PK x D2. 
Now notice that the obstruction to extend @[PK x S’ to a rigid-vertex null homotopy is 

annihilated by 2. Since 9 is torsion free we may assume that this obstruction is trivial, and 

hence @ : PK x D2 4 A4 is a rigid-vertex null homotopy. We use Theorem 1.5 to put Q into 

almost general position. 

Now we can reduce the global integrability condition (13) to local integrability conditions 

around the interior vertices of SQ. Let x be an interior vertex of SQ. First we notice that 
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+- n 
Fig. 7. Modification of a non-transverse triple point 

since all vertices of PK have valence 4 it follows that x has valence 1 or 4. We have the 

following three cases: 

Case 1: The vertex x is of valence 1. 

Case 2: The vertex x is of valence 4 and & has exactly two transverse double points. 

Case 3: x is of valence 4 and there is an l-simplex 0 c PK, and a vertex po E PK such 

that &(po) E &(Znt(a)) and this is the only singularity of &. 

Cases 1 and 2 correspond to our integrability conditions (8’), (9). We now explain how 

case 3 corresponds to condition (10) of our theorem. 

We choose a small enough neighborhood N* of x in D2 so that we can assume that 

&(a x N*)cM is a ball and &(p)=&(p), f or every XEN* and pcP~\o. Furthermore, 

&(PK) n &(o x N* ) consists of three line segments intersecting at &( PO) and one of them 

is &(o). The triple point of & might not be a transverse double point; i.e the three line 

segments above may lie on the same plane. Then we perturb @ as shown in Fig. 7. 

Under this perturbation SQ changes as shown in the bottom of Fig. 7. Now a moment’s 

thought will convince the reader that the newly created vertex has to be as in Case 2 above, 

and that the vertex x to begin with, corresponds to the local integrable condition (10). 

(b). The statement (b) of the Lemma is reduced to (a) by a modification of the arguments 

in Lemma 3.8 along the lines of Lemmas 3.3.3 and 3.3.4 of [14]. cl 

LEMMA 4.6. Let a, a’ : PK x S’ --+A4 be two rigid-vertex homotopies in general position 

and let Q’t : PK x S’ + M t E [0, 11, be a homotopy such that @o = @ and @I = a’. Then we 

have XQ = A&. 

Proof: Choose a basepoint y E S’, and let L = @(PK x {y}). Let us denote by CL = CL(P~, 

A4 ), the space of maps PK + M, which are homotopic to L, equipped with the compact-open 

topology. Then, @ and @ may be viewed as freely homotopic loops in CL. 

Let y be the path in CL defined by y(t) = at(L). After putting y in almost general position 

we have 

Hence, we can assume that both Cp and a’ are based at L and the homotopy @t is taken 

relatively L. The homotopy @t gives rise to a map 2 : P x S’ x I --tM. We cut the annulus 

S’ x I into a disc D* along a proper arc !x c S’ x I. We have 

By Lemma 4.5 we obtain X,,J = 0, and hence & = XQJ. q 
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4.2. Homotopies of singular knots and essential atuudi 

We will need the following Lemma, the proof of which is identical to that of 

Lemma 3.12. 

LEMMA 4.7. Assume that S is a Setfert Jibered space with non-empty boundary. Let B 

be the orbit space of S and p : S + B be the fiber projection. Let A be a 2-manifold each 

component of which is nn annulus and let G : A + S be a map which is vertical with respect 

to the fibration of S. Moreover, suppose that the following is true: For every double point 
k of p(G(A), the two components of G-‘(p-‘(k)) are identi$ed with the same orientation. 

Let A = (UI) x St and let gX = G((UI) x {x}). Th en or every x1,x2 E {*} x S’ there exists f 
a homeomorphism h12 : S + S such that, 

(1) h” = id outside a regular neighborhood N of the interior of G(A) in S; 

(2) h” = id on JS\JN; 

(3) h”(g,, ) = g,q; 
(4) h12 is isotopic, relatively X\dN, to the identity map id : S --) S. 

We will say that a closed rigid-vertex homotopy @‘, from a singular knot K to itself is 

simple iff there is a neighborhood N c PK, of the set of vertices, Y, of Pk such that 

@(NxS’)n@(XxS’)=@ 

where X is the interior of Pk\N. We need the following lemma. 

LEMMA 4.8. Let K be a singular knot with configuration PK and let V be the set of 
vertices of PK. Let @ be a closed rigid-vertex homotopy from K to itself, such that 

Ker(nl(PK x S’)-+?r~@f))={l). 

Recall the notation ~$i = @(PK x {t}). Then, there exist ~1,. . . ,sk E [0, 11, such that if we let 

@,*Z,...,@+l to denote the restriction of Cp on [O,si], [q,sz], . . . , [sk, 11, respectively, the 

following is true: There exist homotopies 

*I ,..+,Xl$k:PK x [O, l]-+M 

such that (i) We have *j(P~~(O})=&=K and $(PKx{~})=&,$~ all i=l,...,k; 
and (ii) Each of the closed homotopies 

&,=@.Qi, $~=!qo~~o~*,*.., 6k+,=!iq’o&+ 

is homotopic to a simpie homotopy. 
In particular, we have that 

Proof: By general position and our assumption above, we may suppose that the inter- 

sections @(N x S’) II @(X x S’ ) consist of finitely many embedded discs each intersecting 

transversally one of the embedded curves @(V x S’). First choose st E [0, 11, so that the 

open homotopy @t is simple, and let !I$ : PK x [0 11 +M, with $(Pk x (0)) = I#J,, = K and 

‘%(P, x {l})=& b e an open homotopy, so that the interiors of @t and *t (viewed as paths 

in the A) do not intersect. By pushing the intersections of @(N x [O,st])f? gt(X x [0, 11) 

and $(N x 10, l])rl @(X x [O,st)) into @(N x [st, l]), we may assume that &,I = a1 oq’ 

is simple. Then we choose SI < s2 < 1, so that the open homotopy a2 is simple, 

and $:PKx[O l]+M, with !&(P~x(0})=&, and St(P,x{l})=#~,, and such that 
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&(Xx [0,l]))fl@(N~S’)=~~(X x [O,l])fl@(N x [O,si]). By rearranging the singular- 

ities further, we may assume that 62 = q,-’ o a2 o $ is simple. The reader, can see 

that we can proceed this way till we reach all requirements claimed in the statement 

above. n 

The completion of the proof of Theorem 4.1. By Lemma 4.5 we can assume that 

the Ker{rri(PK x S’) -+ rci(M)} = { 1). Thus, in particular the curves yi = @({Vi} x S’) are 

essential. 

Since @ is a rigid-vertex homotopy, there is a neighborhood N = Ur._, Ni of V in PK, and 

an isotopy h, : PK -+M, tE [0, 11, such that &IN = h,&lN for all t E [0, 11, where & = @(PK 

x {t}). Let X be the interior of PK\N. By our definition of similarity, Lemmas 4.6 and 4.8 

we may suppose that Q(N) n Q(X x S’ ) = 8. 

Now, let Ui c A4 be a regular neighborhood of the simple closed curve yi = @( { 0,) x S’ ) 

such that; 

(a) Every Ui is a solid torus whose meridinal disc Di x {*} contains the two arcs of 

Q(Ni) x {*} transversally intersecting at @(vi) x {*}. 

(b) @(Ni x S’) C Ui and @(aNi x S’) C au;. 

(c) +(PK xS’)fI(UU;)=@(N xS’)fl(IJU;). 
Without loss of generality we may assume that au; intersects the singular knot @(PK X: 

{ *}) at precisely four points, say { p/}j= i,...,d. Let U: (j = 1,. . . ,4) be the preimage of pi 

on aNi. Clearly, PK\intN is a union of 2r arcs whose set of boundary points is {p!}, 
j=l ,..., 4, i=l,..., r. Let us call these arcs {cI,, . . . , ~2~) and let A, = M, x S’, s = 1,. . . ,2r. 

By our assumptions we have that @(As n (U U;)) = @(aA, n (U au,)) for every 

s=l , . . . ,2r. 

Let A? = M\ U U;. Since M is irreducible and each yi is an essential curve, A? has to be 

irreducible. Moreover, A? is Haken. Since aA? consists of tori, A? either is a solid torus or 

its boundary is incompressible. If A? is a solid torus, then the number of double points of 

PK has to be equal to 1. But then A4 is obtained by glueing together two solid tori and thus 

rci(A4) has to be finite. In this case the conclusion XQ = 0, follows by Lemma 4.5. So we 

may assume that the boundary of aA? is incompressible. 

Let A = lJ:L, Ai and let @ = @]A. 

Then 9 : (A, A4) + (A?, a#) satisfies the hypothesis of (b) of the Enclosing Theorem and 

hence we may find a Seifert fibered pair (8, U) c (&f, ati) such that 9 can be homotoped, 

relative &4, to a map Xl? : A -+A? with Q’(A) c S. 

First, suppose that Q’(A; is inessential on some component A;, of A. Then, Q’(Ai) can 

be homotoped on the boundary of S, relatively a(&). Notice that since all our homotopies 

have been carried out relatively to dA, we may conclude that our map @ : PK x S’ ----t n/r 

is homotoped to a map @‘1 : PK x S’ + A4 such that @i (A;) lies on an embedded torus T 

in M. Observe that the images, under @i, of the two components of aA; are disjoint, and 

hence they decompose T into two annuli C and B. Then @,(A;) has to lie on one of them, 

say B. By Nielsen’s theorem, and since the components of Cpi (aA,> are disjoint, we may 

homotope @ 1 IA; : A; + B, to a covering map, relatively d(A;). Let us continue to denote the 

resulting map by @i. In view of Lemma 4.6 it is enough to prove that XQ, = 0. But notice 

that since @i /Ai : A; + B is a covering and since @l(A\A;) lies away from the torus T, the 

only contributions to &, will come from double points between some (a,(~ x {*}) and 

@,(a, x {*}), with k,l # i. Of course k may be equal to 1. 

In view of the above discussion, we may assume that q’ : (A, aA) + (S, aS) is an essential 

map. Moreover, we can assume that S is not a solid torus since every non-contractible annulus 
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in a solid torus, can be deformed into the boundary. Then by Proposition 2.8 we may assume 

that, either 

Case 1: there is a homotopy of pairs Qi : (A, ~34) + (S, GS), where t E [0, 11, such that (i) 

qb = XV and (ii) *i is vertical with respect to the fibration of S, or 

Case 2: there exists a fibration of S as an I-bundle over the annulus, torus, Mobius band, 

or Klein bottle such that A is vertical with respect to this fibration. 

First we suppose that we are in Case 1. Since the above-mentioned homotopy is actually 

a homotopy of pairs, and since homotopic curves on a torus are isotopic, we may assume 

that H is taking place relatively ?A. Thus, our map @ : PK x S’ + has been homotoped in M 

to a map @t : PK x S’ + with the property that @r IA = Q{ IA is vertical in S. 

Let B be the orbit space of S and let p : S -+B be the fiber projection. Then, by the 

homotopy classification of essential annuli, p(Q{ (A)) is a union of 2r arcs {PI,. . .,/I,,} 

such that; 

(i) agi c f3B, i = 1,. . . ,2r; 

(ii) the only singularities of flI are finitely many transverse double points; 

(iii) two arcs /?i and bj intersect at finitely many transverse double points; 

(iv) the union /II U.. . U& is disjoint from the cone points of B. 

Hence, the core Hi of every annulus A, maps, under Xi?{, onto a regular fiber of S and 

there exists a simple essential arc Ql c A;, intersecting Hi once, which maps onto a cross 

section of Qi(Ai). Without loss of generality, we may assume that Q, = ai. First suppose that 

the requirements of Lemma 4.7 are satisfied. Then for every XI and x2 on the parameter curve 

of 9’ there is a homeomorphism At2 : S -+ S, with h’2($i, ) = I,/&, where I& = V(U aj x {xi}) 

(i= 1,2). 

Now Al2 is the identity on the boundary of S, except, possibly, on a collection of disjoint 

embedded annuli on which it is a translation along the fibers of S. Now it is not hard to see 

that Al2 may be extended to a homomorphism Al2 : A4 + M, which is isotopic to id : M + A4 

and such that h12(K1) = h12(K2), where K’ = Q’I(PK x {xi}). Thus we obtain X+, = 0. 

Now suppose that Lemma 4.7 does not apply. Then, by an argument similar to that 

in Remark 3.13 we will show that there is a closed homotopy @I : PK x S’ + M such that 

(i) X+ =&,, and (ii) @,I contains finitely many singular knots of order n + 1, each of which 

is inadmissible. Thus, the result will follow from our integrability condition (8). 

Now if we are in the situation of Case 2, and by using the fact that Q(aA) is an 

embedding, and an argument similar to that in the proof of Proposition 5.13 of [ll], one 

can see that Xa = 0. 0 

As in the case of Theorem 3.7 we have a stronger version of Theorem 4.1, if we restrict 

ourselves to homology spheres. 

THEOREM 4.9. Assume M is u closed, oriented, irreducible, homology 3-sphere and 2 is 

a ring which is torsion free us an abeliun group. Let ,f : Xx” + 2, n > 1 be a sing&r knot 

invariant. There is a singular knot invariunt F : .e-’ + 9 such that (7) is true fund only 

if f satisfies the weak integrability conditions (8’), (9) und (10). 

5. FINITE TYPE INVARIANTS FOR KNOTS IN 3-MANIFOLDS 

As we have already mentioned in Section 3, from a knot invariant f : X + .$_Y we can 

derive a singular knot invariant f : jT(’ ) + 92 by 

f( x ) = .f (K+) - _fW 1. 
By iterating this procedure, we can derive a singular knot invariant f : X” + 9, for every n. 

More precisely, let K 6X’. By considering all positive and negative resolutions of K we 
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get 2” knots., which we denote by K’, . . . , K2”. Then the nth derived singular knot invariant 

is defined by 

f(K) = 2 ~if(Ki) 
i=l 

where ci = 1 if we have made an even number of negative resolutions. Otherwise Ei = - 1 

Definition 5.1. A knot invariant f : X + 9 is called of finite type m, iff its derived 

singular knot invariant vanishes on singular knots with more than m double points, and 

m is the smallest such integer. 

Let us denote by .!P (respectively, 3”‘) the B-module of invariants of type < m, for 

knots in X (respectively, Z). Clearly we have Frn = ecEV em. 

LEMMA 5.2. Let f E Fm be a knot invariant. Then for every K E &m, f(K) depends only 

on the similarity class of K. 

Proof: Suppose f ~9”’ and let K, K’ E x:” be similar. Then by Lemma 4.3 K can be 

changed to K’ by a sequence of “crossing changes”. Hence, 

f(K)=f(K’)+&if(K;) 
i=l 

where K;EX”‘+‘, i=l,..., s. Since the type of f is <m, we must have f (Ki) = 0 and 

hence f(K) = f (K’). 0 

Definition 5.3. (a) A similarity class in q is called inadmissible if every singular knot 

K : S’ +A4 in this similarity class is inadmissible. 

(b) A similarity class in q is called strongly inadmissible if for every singular knot 

K : S’ -+ A4 in this similarity class we have 

(1) there is an interval I c S’ such that 8Z is the preimage of a double point of K, and 

I contains no preimages of other double points; and 

(2) K(Z) is homotopically trivial in M. 

Otherwise the similarity class is called admissible. 

For every c E 59, we choose a set of representatives of the similarity cases in &j, denoted 

by Rf o’=l,..., m). This choice should be subject to the following restriction: If K : S’ + M 

is the chosen representative of a strongly inadmissible similarity class, then there is a disc 

D CM, with DnK(S’) =DflK(Z), where I is as in Definition 5.3. We will show that every 

$$“’ is determined by a system homogeneous linear equations. The unknowns of the system 

will be the values of the invariants on {RE’}j=‘,,,.,m, and the equations arise from resolutions 

of triple points. Hence, the existence of non-trivial finite type invariants of type <m will 

be reduced to the existence of non-trivial solutions for this system. 

In order to explicitly describe the above-mentioned system, we need to introduce and 

study immersions S’ -+M that have a transverse triple point. To begin, let us denote by 

X(j,” the set of ambient isotopy classes of piecewise-linear maps K’ : S’ + M, having 

exactly j transverse double points and one transverse triple point. The isotopy should preserve 

the transversality of the double points and that of the triple point. We will also use K’ to 

denote the isotopy class of K’ : S’ --+M. 
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Let K’ E X(j,’ ) and let p E M be the triple point of K' . Let B c M be a ball neighborhood 

of p in M such that B n K’ consists of three linearly independent oriented line segments 

X, Y and Z. Then it is easy to see that there are six different ways to resolve p into two 

double points. More precisely, if we fix a cyclic ordering of {X, Y, Z} then there are four 

different resolutions of p giving rise to knots KA, Ki, KA, Ktfy E sTJ’+~, which differ only 

in a ball as shown in Fig. 6. We denote by Xc *(J ‘) the set of ambient isotopy classes of 

immersions, with j transverse double points and a triple point, whose all resolutions in the 

above sense represent singular knots in X:+2. 

Suppose that K’ E X(h’). Let {PI,. . . , pj} be the double points of K’, and let p be its 

triple point. We construct a 1 -dimensional compact polyhedron PKl, by identifying points on 

S’ whose image under K’ is the same. The polyhedron PKl, is calIed the conjguration of 

K' . We say that two immersions Ki, K: E 3%‘) respect the same con~g~ratio~, ifI there 

is a homeomo~hism x : PKi ---f Plc;, which lifts to an orientation preserving homeomo~hism 

2 : S’ + S’. The homeomo$hism 31 induces an one-to-one correspondence between the double 

(triple) points of Kd and these of K/. After isotopy, we may assume that the double points 

(resp. triple point) of Kd match the double points (resp. triple point) of Ki, according to 

the above mentioned one-to-one correspondence. 

Fu~he~ore, we can assume that for each double point (resp. the triple point) there 

is a ball neighborhood B c M with Kd n B = K/ n B consisting of two (resp. three) line 

segments that intersect transversally at the given double (resp. triple) point. By taking these 

balls sufficiently small, we can assume that they are disjoint. Let {Ci} (resp. (C:}) be 

the set of components of Ki f2M \US (resp. K,’ nM \UB). Now x induces an one-to-one 

co~espondence between the components of Ki r! M \U B and those of K/ n M \U B. Suppose 

that the component Ci of Ki n M \U B corresponds to C: of Kd II M \U B. 

Dejinition 5.4. Two immersions Kd, K/ E X(j,‘) are called similar iff; 

(1) Kd and Kj belong in the same z-(’ ‘), for some c E ‘%‘; 

(2) they respect the same configu~tion, 

(3) with the notation being as above, for every i, { Ci) and {C;} are homotopic in 

M \U 3, relative to the boundary. 

LEMMA 5.5. Let Kd, K{ E X(j,‘) be two similar immersions and let P be their common 
con~garat~o~. Then there is a rigid-vertex hornotop~~ & : P -+ M t E [O, I], with 40 = Ki, 

41 = K: and there are ~nite~~~ many points 0 < tl < t2 < . . . < ts < 1 such that 
(a) Cpr, E %9+‘,l) ) i= l,...,s; 

(b) for every ti < t,s < ti+l , & and & are equivalent; 
(c) when t passes through ti, (-61 changes Jiom one resolution of &, to another. 

ProojI It follows immediateIy from the definition of similarity. q 

Now let us fix a conjugacy class c E V and let f E q. Suppose that if K E !$ is a 

representative that respects an inadmissible similarity class then we have 

f(K)=O. (14) 

If the similarity class in question is strongly inadmissible then (14) is always true. Let 
Ki E flfj? I), j = 1,. . . ,m - 2, and let KA, Ki, KA, K& E Xi’2 be the resolutions of K’ as 

above. Then since KA, KA, KA, K& are results of a sequence of “crossing changes” of a 

singular knot in Xi+’ to itself (see Section 4) we must have 

f(x;: ) - f (K; ) + .r(% ) - _f(K; ) = 0. (15) 
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Let us denote by &A, Ri, R&., R& the representative in 0Li+2) of the similarity class of 

Kh, KA, KL, K&, respectively. Now since f 1 X$ depends only on the similarity class and 

not on the particular representative we must have 

f(R$-f&)+ f(~z.)-f(&T)=O (16) 

for every K’ E C$-‘, ‘). However, if we take K’ E of, j = 0,. . . , m - 3, then the resolutions 

KA:, KA, Kk, K& may not agree with their representatives, in tiLticf2, of the similarity class they 

respect. Nevertheless, we have agreement up to “crossing changes” and we can express any 

of the differences f (Kk) - f (Z?h), f (Ki) - f (k$), f (KL) - f (Z?;) and f (K&) - f (k&) as 

a linear combination of values of f on finitely many elements in @i+3,. . . , 0:. Thus we get, 

f(kk) - f(&)+ f(kA) - f(IZl)= f.l.c{f(Of)), i= l,...,m} (17) 

where f .l.c stands for “finite linear combination”. 

If we view {f (RL)}j= _._ 1, ,,, as unknowns then (14), (16), (17) give us the system of 

linear equations promised earlier. We denote this system by S,. Moreover, let SA be the 

system obtained from S, by removing all the equations of type (14) for similarity classes in 

{(Rf)}j= I,...,,, that are not strongly inadmissible. We have, 

THEOREM 5.6. Assume that M is a closed, oriented, irreducible 3-mantfold, as in Theorem 

3.7, and let CE@. 
(a) If A4 is as in 3.7(b), then any invariant f E Em (c # 1) is completely determined by 

f (KC) and its values on !2f, j = 1 ,. . .,m subject to (14) (16) and (17). That is, there exist 

non-trivial jinite type invariants of type <m tf and only if there exist non-trivial solutions 

for the system Si. Moreover, if M is a homology 3-sphere then the conclusion is true for 
c = 1 also. 

(b) In general, a solution to the system SC, gives rise to an invariant f E 8”’ 

for c# 1. 

Proof We have to show that every solution of the system S,, gives rise to an invariant 

f E em. By Lemma 5.2, a solution of S, defines an invariant of singular knots of order m. Let 

us denote this invariant by f. By (14) and (16) we see that f satisfies the local integrability 

conditions of Theorem 4.1 and thus it may be integrated to an invariant of singular knots 

with m - 1 double points. Inductively, one can show that the integrability conditions (8) (9) 

and (10) (resp. (8’), (9)) of Theorems 4.1 and 3.7 are always guaranteed by the equations 

(14), (16) and (17), and thus f can be integrated to a knot invariant. The details are similar 

to these of the proof of Theorem 7.7 in [17] and are left to the reader. Now suppose that 

M is a homology sphere. Then the conclusion follows from Theorems 3.16 and 4.9. Cl 

6. EXISTENCE OF NON-TRIVIAL FINITE TYPE INVARIANTS 

AND A CONNECTION WITH THE CONWAY POTENTIAL FUNCTION 

In this section we prove that pm(M) is non-trivial for every type m, and every closed 

irreducible manifold M as in Theorem 3.7. See Corollary 6.4. Finally, we show that the 

classical Alexander polynomial of a knot in a rational homology sphere is equivalent to a 

sequence of Jinite type invariants. 

Let c E %‘, and let Rf (resp. 0, ci-2V ‘) ), be sets of representatives of similarity classes 

in Xc (resp. in Xij-2”)), for j = 1,. . . ,m. We denote by S, the system of equations (14), 

(16) and (17). Recall that S, determines the values of finite type invariants of type d m on 
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Before we proceed we need the following lemma, whose proof follows directly from the 

de~itions. 

LEMMA 6.1. Let M be a 3-manifold and %f be the set of conjugacy classes in 711(M). 
Choose c E W:. For every j = 1,. . . ,m, let A: and Al!“) be a subset of tiC and fliJ-2”), 

respectively. Let A, = IJ A{. and let A: = lJz4$i’ I), and suppose that the following prop- 

erty is satisfied: if K’ is an eIement in AA (resp. in the complement IJstp ” \A:) then 

eqs. (14)-(17) obtained by resolving the triple point of K’ involve only elements in A, 

(resp. in the complement U fl? ’ ) \ A,). 

Then, SC breaks into two independent subsystems Sj and S: and hence em Z F,’ $ F,’ 
where F; is the solution space oj. Si, for i = 1, 2. 

It is well known (see for example 1207) that every closed, orientable 3-manifold, M, can 

be obtained from S3 by surgery along a link Lo E S3. Then we can find a link L EM such 

that, M \ L and S3 \ Lo are homeomorphic. 

THEOREM 6.2. Let h4 be a closed, orientable, irreducible 3-manifold as in Theorem 3.7. 

Then, p:(M) contains a subspa~e iso~lor~~l~~ to Snz(S3) for every m, and every c E Q?. 
with c # 1. Moreover, if M is a rational AomologJj 3-sphere the conclusion is true for c = 1 

as well. 

Proof: Let us fix links L and Lo as in the discussion above and let us fix a homeomor- 

phism h:M\L-+S3 \L”. 
Let c E $9, and KC c M \ L be a knot representing c. We take a 3-ball B3 c h4 \ L which 

intersects KC in a small unknotted arc. 

In B3, we choose a set Aj, of representatives of similarity classes of X,i(S3), and a 

set A(j-2,‘) of representatives of similarity classes of X(j,‘)(S3). Here, j = 0,. . . , m. Let 
4 = UAj and let 4’ = u,4(j-2T’). 

For an immersion K in some Aj (resp. A(j-“*‘)) we can cons~ct various immersions 

in X! (resp. in X$-2,‘) ) by forming a “connected sum”, in B3, of iy and KC. Let A, 

(resp. A;) denote the set of all immersions in & (resp. in X?‘,t)) that can be obtained 

that way. By deleting any repetitions, we may assume that no two immersions in A, or 

Ai belong in the same similarity class in M. Observe, that all the singular knots obtained 

by resolving the triple point of an immersion in Ai belong to similarity classes represented 

in A,. 
Now, we complete A, (resp. AA) to a set s1,, (resp. Qi) of representatives of similarity 

classes for l_l Xi (resp. U XJj-‘,‘)). 

We claim that all the singular knots obtained by resolving the triple point of an immersion 

in Szz \A: belong to similarity classes represented in R, \ A,. To see this let us pick an 

immersion K” in QJ \ A:. First suppose that K’ contains at least two arcs, connecting two 

double points or a double point and the triple point, which cannot be homotoped to lie in 

a 3-ball. Then, each singular knot obtained by resolving the triple point K’ has the same 

property and thus it cannot be similar to an immersion in A,. If K’ contains exactly one arc 

that cannot be homotoped to lie in a 3-ball, then it is easy to see that has to be similar to 

one of the immersions in Ai. 

By Lemma 6.1 we obtain that SC breaks into two independent subsystems Sj and S,‘, 

where SE involves only elements in A,. We will show that every invariant of type J‘ E P”(S3) 

gives rise to a solution of 5’: and thus to an invariant .f , of type m for knots in .X,(M). 

We can assume that c # 1. For an immersion K E A, we define j(K) =f(h(K)). Let 

K’ f A& and let &, Ks, Ka and Kw be the singular knots obtained by resolving the triple 
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point of K' . Notice that by our choices above, the homotopies taking each of these resolutions 

to the representative of their similarity class in A,, can be carried out entirely in B3. Then, 

the fact that this choice of values satisfies the equations of type (14), (16) and (17) follows 

from the fact that f is an invariant of type m for knots in B3. 

If A4 is a rational homology sphere and c = 1, then we may take A, = A and there is 

nothing to prove. 0 

Let us, now, suppose that W= R. Then it is known that P’(S3)# (0) for every m. 

More precisely, 

THEOREM 6.3 (Birman [2], Bit-man and Lin [3], Bar-Natan [l] and Lin [16]). To every ir- 

reducible representation of a semisimple Lie algebra corresponds a solution to the system 

describing Sm(S3) for every m, and hence a knot invariant of type m. 

Combining this with Theorem 6.2 above we get, 

COROLLARY 6.4. Let M be a closed, compact, orientable, irreducible 3-mantfold as in 

Theorem 3.7. Then, to every invariant of finite type for knots in S3 corresponds an invariant 
of finite type for knots in M. In particular every irreducible representation of a semisimple 

Lie algebra gives rise to a finite type invariant of every type in M. 

For the rest of the section we assume that M is a rational homology sphere. 
Let K E M be a knot and let A,(t) be the symmetrized version of its Alexander polyno- 

mial. For details see [27]. In [4] it is proved that there is a well-defined Conway potential 

function VK(t), (see [6]), satisfying 

vK(t)= -$g& 
v,(t) - VK-(t)=(t - t-‘)vjlK&) 

(18) 

(19) 

where d is defined as follows: Let G = Hl(M \ K) and let T be the torsion subgroup of G. 

We define d to be the quotient ITI/IHI(M)I. We have, 

PROPOSITION 6.5. The coeficients of the power series obtained by Vk(t) if we substitute 

t = ex are Jinite type invariants. 

Proof Guided by (19) we extend 

VK, (t) = vK+(t) - VK_(t). 

Let us denote by PK(x) the power series obtained from vK(t) by substituting t = e’. Then 

using (19) we see that x divides PK, (x). Hence, if K has more than j points then 

divisible by at least xj+’ > and hence the mth coefficient of the power series is an 

of type 172. 

P&x) is 

invariant 

0 

7. CONCLUDING REMARKS 

1. In this paper we have restricted ourselves to knots in closed irreducible 3-manifolds. 

However, all of our arguments generalize immediately to compact, irreducible 3-manifolds 

with incompressible boundary. With some extra work, we can also generalize our results here 

for many classes of compact irreducible manifolds whose boundary is not incompressible. 
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These results, as well as the question of the functoriality behavior of finite type theories will 

be addressed in a fo~hcoming paper. 

2. In [14], we prove Theorem 3.7 for links in a large class of rational homology 3-spheres. 

As an application we obtained a formal power series link invariant, which generalizes the 

2-variable Jones polynomial (HOMFLY). 

3. It is not hard to see that the submodule inclusions of Theorem 6.2 are in general 

proper. For example, for the real projective space IwP3 the dimension of the space of type 2 

invariants, corresponding to the trivial conjugancy class of ;ni([FBP3) is equal to three. On the 

other hand, there is only one invariant of type 2 for knots in S3. 

For the moment, it is not clear to us what is the relation of the invariants discussed in 

this paper or in 1141, to the Witten-Resheti~in-Turaev link inva~~ts [19,27]. 
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