
j. differential geometry

78 (2008) 429-464

DEHN FILLING, VOLUME, AND

THE JONES POLYNOMIAL

David Futer, Efstratia Kalfagianni & Jessica S. Purcell

Abstract

Given a hyperbolic 3–manifold with torus boundary, we bound
the change in volume under a Dehn filling where all slopes have
length at least 2π. This result is applied to give explicit diagram-
matic bounds on the volumes of many knots and links, as well as
their Dehn fillings and branched covers. Finally, we use this result
to bound the volumes of knots in terms of the coefficients of their
Jones polynomials.

1. Introduction

It is well–known that the volumes of hyperbolic 3–manifolds form a
closed, well–ordered subset of R [39]. However, 3–manifolds are often
described combinatorially, and it remains hard to translate the combi-
natorial data into explicit information on volume. In this paper, we
prove results that bound the volumes of a large class of manifolds with
purely combinatorial descriptions.

There are other recent theorems relating volumes to combinatorial
data. Brock and Souto have proved that the volume of a hyperbolic
3–manifold is coarsely determined by the complexity of a Heegaard
splitting [13]. Costantino and Thurston have related volume to the
complexity of a shadow complex [18]. Despite the general power of
these theorems, the constants that bound volume from below remain
mysterious.

This paper provides explicit and readily applicable estimates on the
volume of hyperbolic manifolds obtained using Dehn filling. We apply
these estimates to a large class of knot and link complements, obtaining
bounds on their volume based purely on the combinatorics of a diagram
of the link. We then use these results to relate the volume of a large
class of knots to the coefficients of the Jones polynomial.
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The volume conjecture [27, 32] asserts that the volume of hyperbolic
knots is determined by certain asymptotics of the Jones polynomial and
its relatives. At the same time, a wealth of experimental evidence sug-
gests a direct correlation between the coefficients of the Jones polyno-
mial and the volume of hyperbolic knots. For example, Champanerkar,
Kofman, and Patterson have computed the Jones polynomials of all
the hyperbolic knots whose complements can be decomposed into seven
or fewer ideal tetrahedra [15]. Although some of these Jones polyno-
mials have large spans, their non-zero coefficients have small values,
suggesting a relationship between small volume and small coefficients.
Dasbach and Lin have proved that such a connection does in fact exist
for alternating links [22]; our results extend this relationship to many
non-alternating links.

1.1. Volume change. Given a 3–manifold M with k torus boundary
components, we use the following standard terminology. For the i-th
torus Ti, let si be a slope on Ti, that is, an isotopy class of simple closed
curves. Let M(s1, . . . , sk) denote the manifold obtained by Dehn filling
M along the slopes s1, . . . , sk.

When M is hyperbolic, each torus boundary component of M cor-
responds to a cusp. Taking a maximal disjoint horoball neighborhood
about the cusps, each torus Ti inherits a Euclidean structure, well–
defined up to similarity. The slope si can then be given a geodesic
representative. We define the slope length of si to be the length of this
geodesic representative. Note that when k > 1, this definition of slope
length depends on the choice of maximal horoball neighborhood.

Theorem 1.1. Let M be a complete, finite–volume hyperbolic mani-
fold with cusps. Suppose C1, . . . , Ck are disjoint horoball neighborhoods
of some subset of the cusps. Let s1, . . . , sk be slopes on ∂C1, . . . , ∂Ck,
each with length greater than 2π. Denote the minimal slope length by
ℓmin. If M(s1, . . . , sk) satisfies the geometrization conjecture, then it is
a hyperbolic manifold, and

vol(M(s1, . . . , sk)) ≥
(

1 −
(

2π

ℓmin

)2
)3/2

vol(M).

Note that when at least one cusp of M is left unfilled, the manifold
M(s1, . . . , sk) is Haken, and thus satisfies geometrization by Thurston’s
theorem [40]. In the general case, the hyperbolicity of M(s1, . . . , sk)
would follow from Perelman’s work [34, 35].

Theorem 1.1 should be compared with other known results. Neumann
and Zagier have found asymptotic changes in volume under Dehn filling
as slope lengths become long [33]. They show that the change in volume
is asymptotically of order O(1/ℓmin

2). Although Theorem 1.1 was not
meant to analyze the asymptotic behavior of volume, it also gives an
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O(1/ℓmin
2) estimate. However, our constants are not sharp. See Sec-

tion 2.3 for a more detailed discussion of the sharpness and asymptotic
behavior of our estimate.

Hodgson and Kerckhoff have also found bounds on volume change
under Dehn filling, provided that the filling is obtained via cone defor-
mation [25]. They show that if the normalized slope length is at least
7.515, the cone deformation exists and their volume estimates apply.
However, the normalized slope length is typically much smaller than
the actual slope length. Thus Theorem 1.1 applies in many more cases
than their results.

1.2. Twist number and volumes. We will apply Theorem 1.1 to link
complements in S3. Consider a diagram of a knot or linkK as a 4–valent
graph in the plane, with over–under crossing information associated to
each vertex. A bigon region is a region of the graph bounded by only
two edges. A twist region of a diagram consists of maximal collections
of bigon regions arranged end to end. A single crossing adjacent to no
bigons is also a twist region. Let D(K) denote the diagram of K. We
denote the number of twist regions in a diagram by tw(D).

Our statements concern the number of twist regions of a diagram. We
rule out extraneous twist regions by requiring our diagram to be reduced
in the sense of the following two definitions, illustrated in Figure 1.

A B ⇒

A or B

A B ⇒

A or B

Figure 1. Left: A prime diagram. Right: A twist re-
duced diagram.

First, we require the diagram to be prime. That is, any simple closed
curve which meets two edges of the diagram transversely must bound a
region of the diagram with no crossings.

Second, we require the diagram to be twist–reduced. That is, if any
simple closed curve meets the diagram transversely in four edges, with
two points of intersection adjacent to one crossing and the other two
adjacent to another crossing, then that simple closed curve must bound
a (possibly empty) collection of bigons arranged end to end between the
crossings.

In the remainder of this paper, we will implicitly assume that all link
diagrams are connected, and that a diagram is alternating within each
twist region.
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Theorem 1.2. Let K ⊂ S3 be a link with a prime, twist–reduced
diagram D(K). Assume that D(K) has tw(D) ≥ 2 twist regions, and
that each region contains at least 7 crossings. Then K is a hyperbolic
link satisfying

0.70735 (tw(D) − 1) < vol(S3rK) < 10 v3 (tw(D) − 1),

where v3 ≈ 1.0149 is the volume of a regular ideal tetrahedron.

The upper bound on volume is due to Agol and D. Thurston [29,
Appendix], improving an earlier estimate by Lackenby [29]. For al-
ternating diagrams, Agol, Storm, and W. Thurston [7] have proved a
sharper lower bound of 1.83(tw(D)−2), again improving an earlier esti-
mate by Lackenby [29]. Theorem 1.2 is also an improvement of a recent
theorem of Purcell [37]. A linear lower bound was also obtained in
that paper, but the results applied only to links with significantly more
crossings per twist region.

Theorem 1.1 also leads to lower bounds on the volumes of Dehn fillings
of link complements in S3 and branched coverings of S3 over links. For
example, combining Theorem 1.1 with the orbifold theorem [10, 16]
and a result of Adams on the waist size of knots [3] yields the following
result.

Theorem 1.3. For a hyperbolic knot K in S3 and an integer p > 0,
let Mp denote the p–fold cyclic cover of S3 branched over K. If p ≥ 7,
then Mp is hyperbolic, and

(
1 − 4π2

p2

)3/2

vol(S3rK) ≤ vol(Mp)

p
< vol(S3rK).

For further applications and discussion, including a sharper version
of Theorem 1.3, we refer the reader to Section 3.

1.3. Twist number and Jones polynomials. Let D be a link di-
agram, and x a crossing of D. Associated to D and x are two link
diagrams, each with one fewer crossing than D, called the A–resolution
and B–resolution of the crossing. See Figure 2. Starting with any D,
let sA(D) (resp. sB(D)) denote the crossing–free diagram obtained by
applying the A–resolution (resp. B–resolution) to all the crossings of
D.

Definition 1.4. Given a link diagram D we obtain graphs GA, GB

as follows. The vertices of GA are in one-to-one correspondence with
the components of sA(D). Every crossing of D gives rise to two arcs
of the A–resolution. These will each be associated with a component
of sA(D), and thus correspond to a vertex of GA. Add an edge to GA

connecting these two vertices for each crossing of D, as in Figure 2. We
will refer to GA as the A–graph associated to D. In a similar manner,
construct the B–graph GB by considering components of sB(D).
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B− resolutionA− resolution

Figure 2. A crossing and its A–, B–resolutions. The
dashed lines show the edges of the graphs GA, GB cor-
responding to the crossing.

A link diagram D is called A–adequate (resp. B–adequate) if the
graph GA (resp. GB) contains no loops (i.e., edges with both of their
endpoints on the same vertex). The diagram D is called adequate if
it is both A–adequate and B–adequate. A link is called adequate if it
admits an adequate diagram.

The class of adequate links includes all alternating links and all n–
string parallels of alternating links, as well as most pretzel knots and
links and most arborescent links. For more information, see for example
the paper of Lickorish and Thistlethwaite [30].

For any link K ⊂ S3, let

JK(t) = αtn + βtn−1 + . . .+ β′ts+1 + α′ts

denote the Jones polynomial of K, so that n (resp. s) is the highest
(resp. lowest) power in t. We will always denote the second and next-
to-last coefficients of JK(t) by β and β′, respectively.

Theorem 1.5. Let K be a link in S3 with an adequate diagram D(K),
such that every twist region of D(K) contains at least 3 crossings. Then

1

3
tw(D) + 1 ≤ |β| +

∣∣β′
∣∣ ≤ 2 tw(D).

By putting together Theorem 1.2 and Theorem 1.5, we obtain the
following result relating the volume and the Jones polynomial of a hy-
perbolic link.

Corollary 1.6. Let K ⊂ S3 be a link with a prime, twist–reduced,
adequate diagram D(K). Assume that D(K) has tw(D) ≥ 2 twist re-
gions, and that each region contains at least 7 crossings. Then K is a
hyperbolic link, satisfying

0.35367 (|β| +
∣∣β′
∣∣− 2) < vol(S3rK) < 30 v3 (|β| +

∣∣β′
∣∣− 1).

Here, β and β′ are the second and next-to-last coefficients of the Jones
polynomial of K, and v3 ≈ 1.0149 is the volume of a regular ideal tetra-
hedron.

Dasbach and Lin [22] showed that the twist number of a twist–
reduced alternating diagram is exactly |β| + |β′|. Combined with work



434 D. FUTER, E. KALFAGIANNI & J. PURCELL

of Lackenby [29], this led to two–sided bounds on the volume of al-
ternating links in terms of these coefficients of the Jones polynomial.
Theorem 1.5 and Corollary 1.6 extend these results into the realm of
non-alternating links.

1.4. Organization of the paper. In Section 2, we prove Theorem 1.1
and provide some experimental data. The proof of 1.1 requires a careful
analysis of the properties of solutions to certain differential equations;
due to their technical nature, these details are postponed until Section
5. In Section 3, we apply Theorem 1.1 to knots and links, their Dehn
fillings, and their brached covers. In particular, we prove Theorem 1.2
and several other applications. In Section 4, we relate the twist number
of a diagram to the Jones polynomial, proving Theorem 1.5.

1.5. Acknowledgements. We thank Marc Lackenby for pointing us
in the right direction with differential equation arguments in the proof
of Theorem 2.1. We thank Nathan Dunfield for helping us set up the
numerical experiments to check the sharpness of our volume estimate.
Finally, we are grateful to Lawrence Roberts, Peter Storm, and Xiao-
dong Wang for their helpful suggestions.

2. Volume change under filling

In this section, we prove Theorem 1.1, by employing the following
strategy. For every cusp of M that we need to fill, we will explicitly
construct a negatively curved solid torus, following the proof of Gromov
and Thurston’s 2π–theorem [9]. When we sew in these solid tori, we
obtain a negatively curved Riemannian metric on M(s1, . . . , sk). Then,
we will use a theorem of Boland, Connell, and Souto [11] to compare
the volume of this metric with the true hyperbolic volume of the filled
manifold.

This strategy is similar to that of Agol in [6]. However, while Agol
starts with closed hyperbolic manifolds and constructs negatively curved
metrics on cusped ones, we begin with cusped hyperbolic manifolds and
construct negatively curved metrics on their Dehn fillings.

2.1. Negatively curved metrics on a solid torus. Our main tool
in the proof of Theorem 1.1 is the following result, inspired by Cooper
and Lackenby [17, Proposition 3.1]. To simplify exposition, we define a
function

h(x) := 1 −
(

2π

x

)2

.

Theorem 2.1. Let V be a solid torus. Assume that ∂V carries a Eu-
clidean metric, in which the Euclidean geodesic representing a meridian
has length ℓ1 > 2π. Then, for any constant ζ ∈ (0, 1), there exists a
smooth Riemannian metric τ on V , with the following properties:
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(a) On a collar neighborhood of ∂V , τ is a hyperbolic metric, whose
restriction to ∂V is the prescribed flat metric.

(b) The sectional curvatures of τ are bounded above by −ζ h(ℓ1).
(c) The volume of V in this metric is at least 1

2ζ area(∂V ).

Proof. Following Bleiler and Hodgson’s proof of the 2π Theorem [9],

we will explicitly construct a metric on Ṽ , the universal cover of V .

First, give Ṽ cylindrical coordinates (r, µ, λ), where r ≤ 0 is the radial

distance measured outward from ∂Ṽ , 0 ≤ µ ≤ 1 is measured around each
meridional circle, and −∞ < λ < ∞ is measured in the londitudinal
direction, perpendicular to µ. We normalize the coordinates so that

the generator of the deck transformation group on Ṽ changes the λ
coordinate by 1.

The Riemannian metric on Ṽ is given by

(1) ds2 = dr2 + (f(r))2 dµ2 + (g(r))2 dλ2,

where f and g are smooth functions that we will construct in the course

of the proof. In order to obtain the prescribed Euclidean metric on ∂Ṽ ,
we must set f(0) = ℓ1 and g(0) = ℓ2, where ℓ2 := area(∂V )/ℓ1.

With this metric, the deck transformation group on Ṽ is generated
by the isometry

(r, µ, λ) 7→ (r, µ+ θ, λ+ 1),

where the shearing factor θ ∈ [0, 1) is chosen so that the fundamental
domain of ∂V becomes a parallelogram of the correct shape. See Figure

3. The metric on Ṽ descends to give a smooth metric on V , and the
coordinates (r, µ, λ) give local cylindrical coordinates on V .

(r, µ, λ)

(r, µ+ θ, λ+ 1)

Figure 3. The fundamental domain for the action of

the deck transformation group on Ṽ .

In order to give conclusions (a)–(c) of the theorem, the functions f
and g must satisfy several conditions:

• f and g must give a hyperbolic metric near ∂V , such that the
induced metric on ∂V gives a Euclidean torus with the right shape.
In other words, we must have f(r) = ℓ1e

r and g(r) = ℓ2e
r near

r = 0.
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• In order to be nonsingular, the metric must have a cone angle of
2π along the core, i.e., at the points r = r0 such that f(r0) =
0. Bleiler and Hodgson computed that this cone angle is exactly
f ′(r0). Thus we need to ensure f ′(r0) = 2π.

• Bleiler and Hodgson computed that the sectional curvatures are
all convex combinations of:

κ12 = −f
′′

f
, κ13 = −g

′′

g
, κ23 = −f

′ · g′
f · g .

To ensure they are all bounded above by −ζh(ℓ1), we ensure that
each of these quantities is bounded.

• The volume of V is given by
∫ 0
r0
fg dr. For the volume estimate,

we ensure this quantity is bounded below.

With these requirements in mind, we can begin to construct f and
g. Basically, we construct both functions so that the curvature estimate
will be automatically true, and show that the other conditions follow.
Roughly, we would like to fix a value t > 0 and define f by a differential
equation f ′′/f = t, and g by f ′g′/fg = t. This would imply that all
curvatures are bounded above by −t. However, this simple definition
will not give a smooth hyperbolic metric near ∂V . Thus we introduce
smooth bump functions.

−ǫ −ǫ/2 r

t

1

0

Figure 4. The bump function kt,ǫ(r).

For ǫ > 0 and 0 < t < 1, let kt,ǫ(r) be the smooth bump function
defined as follows: kt,ǫ(r) = t if r ≤ −ǫ, kt,ǫ(r) = 1 if r ≥ −ǫ/2. For
r between −ǫ and −ǫ/2, kt,ǫ(r) is smooth and strictly increasing. See
Figure 4 for a typical graph. We also extend the definition of kt,ǫ to
ǫ = 0, obtaining a step function:

kt,0(r) := lim
ǫ→0+

kt,ǫ(r) =

{
t if r < 0,
1 if r ≥ 0.

Note that k is continuous in the three variables (r, t, ǫ) for ǫ > 0.
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For any ǫ ≥ 0 and t ∈ (0, 1), define a function ft,ǫ according to the
differential equation

(2) f ′′t,ǫ(r) = kt,ǫ(r)ft,ǫ(r),

with initial conditions ft,ǫ(0) = ℓ1 = f ′t,ǫ(0). When ǫ > 0 (and k is con-
tinuous), the existence and uniqueness of the solution ft,ǫ is a standard
result in differential equations (see for example [26]). When ǫ = 0, the
equation can be solved explicitly; ft,0 is a C1 function that satisfies (2)
for all r 6= 0. (See equation (4) for the exact formula.)

In Section 5, we prove that the family of functions ft,ǫ has a number
of nice properties. In particular, by Theorem 5.4, ft,ǫ(r) depends con-
tinuously and uniformly on the parameters t and ǫ. (When ǫ > 0 and
kt,ǫ(r) is continuous, this is a standard result in differential equations;
when ǫ→ 0 and kt,ǫ becomes discontinuous, this takes some work.)

Given ft,ǫ, we define gt,ǫ according to the differential equation

(3)
g′t,ǫ(r)

gt,ǫ(r)
:= kt,ǫ(r)

ft,ǫ(r)

f ′t,ǫ(r)
,

with initial condition gt,ǫ(0) = ℓ2. Note that by Lemma 5.3(c), f ′t,ǫ(r) >
0 for all r, so the right-hand side is always well-defined. Because the
left-hand side of (3) is merely the derivative of ln gt,ǫ(r), the existence
and uniqueness of solutions follows immediately by integration.

Before we delve deeper into the properties of ft,ǫ and gt,ǫ, a roadmap
is in order. By Lemma 5.5, we know that ft,ǫ has a unique root r0 < 0.
On the interval [r0,−ǫ], ft,ǫ and gt,ǫ will have the form

ft,ǫ(r) = a sinh(
√
t(r − r0)), gt,ǫ(r) = b cosh(

√
t(r − r0)),

for constants a, b that depend on t and ǫ. Qualitatively, this means that
the metric defined by equation (1) realizes the inner part of the solid
torus as a rescaled hyperbolic tube, with constant curvature −t and a
cone angle of a

√
t along the core.

We will show that when t = h(ℓ1) and ǫ = 0, the cone angle is
exactly 2π, and we get a non-singular tube of constant curvature −h(ℓ1).
Furthermore, the volume of this metric is exactly 1

2ℓ1ℓ2. These values
are certainly enough to satisfy conditions (b) and (c) of the theorem.
However, because kt,0 is discontinuous, this metric fails to transition
smoothly between curvature −h(ℓ1) and curvature −1 (in fact, gt,0(r)
is not even differentiable at r = 0). To address this issue, we will find
values of t near h(ℓ1) and ǫ near 0 where the metric is smooth and
non-singular, and satisfies all the conditions of the theorem.

First, note for any ǫ > 0 and any 0 < t < 1, the functions ft,ǫ and gt,ǫ

define a hyperbolic metric near ∂V . On the interval (−ǫ/2, 0], kt,ǫ(r)
is identically 1, hence the differential equations satisfied by ft,ǫ and
gt,ǫ are solved by ft,ǫ(r) = ℓ1e

r and gt,ǫ(r) = ℓ2e
r. Thus in the collar
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neighborhood (−ǫ/2, 0] of 0, setting f = ft,ǫ and g = gt,ǫ in (1) gives
the metric desired near ∂V .

The regularity of ft,ǫ allows us to find a metric that is non-singular.
Recall that the cone angle along the core of V will be 2π whenever
f ′(r0) = 2π (where r0 is the root of ft,ǫ(r)).

Lemma 2.2. The roots of ft,ǫ(r) have the following behavior:

(a) For all t ∈ (0, 1) and ǫ ≥ 0, ft,ǫ(r) has a unique root r0(t, ǫ).
(b) The function m(t, ǫ) := f ′t,ǫ(r0(t, ǫ)) is continuous in t and ǫ, and

strictly decreasing in both variables.
(c) For every t ∈ (0, h(ℓ1)), there is a unique value ǫ(t) > 0 such that

m(t, ǫ(t)) = 2π.
(d) As t→ h(ℓ1), ǫ(t) → 0.

Proof. Parts (a) and (b) are proved in Lemma 5.5. To prove part (c),
we study the explicit solution to the equation for ft,ǫ(r) when ǫ = 0.
For all r < 0, ft,0 is given by the simple differential equation

f ′′t,0(r) = t ft,0(r),

and the initial conditions ft,0(0) = ℓ1 = f ′t,0(0). This has solution:

ft,0(r) = ℓ1 cosh
(
r
√
t
)

+
ℓ1√
t

sinh
(
r
√
t
)

(4)

=
ℓ1
√

1 − t√
t

sinh
(√

t (r − r0(t, 0))
)
,

where r0(t, 0) = − tanh−1(
√
t)/

√
t. Thus, for all t ∈ (0, h(ℓ1)],

m(t, 0) = f ′t,0(r0(t, 0))

= ℓ1
√

1 − t

≥ ℓ1
√

(2π/ℓ1)2

= 2π,

with equality if and only if t = h(ℓ1).

On the other hand, for all ǫ > 2 ln(ℓ1/2π), f ′t,ǫ(−ǫ/2) = ℓ1e
−ǫ/2 < 2π.

By its defining equation, ft,ǫ(r) is concave up in r when ft,ǫ(r) is positive,
and concave down when negative. Thus m(t, ǫ) is the absolute minimum
of f ′t,ǫ(r) over R. Therefore

m(t, ǫ) < 2π whenever ǫ > 2 ln(ℓ1/2π).

By the intermediate value theorem, we can conclude that for all t ∈
(0, h(ℓ1)), there is a value ǫ(t) > 0 such that m(t, ǫ(t)) = 2π. Further-
more, by part (b), m(t, ǫ) is strictly decreasing in ǫ, and therefore ǫ(t)
is unique.

By part (b), we know that m(t, ǫ) depends continuously on t and
ǫ. Thus ǫ(t) depends continuously on t. As a result, as t → h(ℓ1),
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ǫ(t) → ǫ(h(ℓ1)). Since we have already computed that m(h(ℓ1), 0) = 2π,
it follows that ǫ(h(ℓ1)) = 0, completing the proof. q.e.d.

From now on, we require that t ∈ (0, h(ℓ1)), and restrict our attention
to the functions ft := ft,ǫ(t) and gt := gt,ǫ(t) that give a non-singular
Riemannian metric τ(t) on the solid torus V . It remains to check the
curvature and volume estimates for this metric.

Lemma 2.3. Fix a value of t such that ζh(ℓ1) ≤ t < h(ℓ1). Then the
Riemannian metric τ(t) defined by ft and gt has all sectional curvatures
bounded above by −ζh(ℓ1).

Proof. We will actually prove the sectional curvatures of τ(t) are
bounded above by −t. Bleiler and Hodgson computed that these sec-
tional curvatures are convex combinations of

−f ′′
f

,
−g′′
g
, and

−f ′ · g′
f · g .

By equations (2) and (3), we have

−f
′′
t (r)

ft(r)
= −kt,ǫ(t)(r) ∈ [−1,−t], −f

′
t(r) g

′
t(r)

ft(r) gt(r)
= −kt,ǫ(t)(r) ∈ [−1,−t].

As for g′′t (r)/gt(r), we differentiate both sides of equation (3) to obtain

g′′t
gt

−
(
g′t
gt

)2

= kt,ǫ(t) −
(
ft

f ′t

)2 f ′′t
ft
kt,ǫ(t) +

ft

f ′t
k′t,ǫ(t),

which simplifies, using equations (2) and (3), to

g′′t
gt

= kt,ǫ(t) +
ft

f ′t
k′t,ǫ(t).

Since 1 ≥ kt,ǫ(t) ≥ t and all other terms are nonnegative (because ft

and kt,ǫ(t) are both increasing), −g′′t /gt ≤ −t. q.e.d.

Lemma 2.4. Let t vary in the interval (ζh(ℓ1), h(ℓ1)), and define the
Riemannian metric τ(t) by the functions ft and gt. Then

lim
t→h(ℓ1)

vol(V, τ(t)) =
ℓ1ℓ2
2

=
1

2
area(∂V ).

Proof. By equation (1),

vol(V, τ(t)) =

∫ 0

r0(t,ǫ(t))
ft,ǫ(t)(r) gt,ǫ(t)(r) dr.

Let tlim := h(ℓ1). By Lemma 2.2, as t→ tlim, ǫ(t) → 0. Furthermore, by
Theorems 5.4 and 5.6, the functions ft,ǫ(t) and gt,ǫ(t) converge uniformly
to ftlim,0 and gtlim,0, respectively. Theorem 5.4 also implies that

r0(t, ǫ) := f−1
t,ǫ (0)

is continuous in t and ǫ. Thus, as t→ tlim, r0(t, ǫ) → r0(tlim, 0).
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By equation (4), we know that for r < 0,

ftlim,0(r) =
ℓ1
√

1 − tlim√
tlim

sinh
(√
tlim (r − r0)

)
,

where r0 = − tanh−1(
√
tlim)/

√
tlim.

Similarly, when t = tlim and ǫ = 0, the differential equation for gt,ǫ

has solution

gtlim,0(r) = ℓ2
√

1 − tlim cosh
(√
tlim (r − r0)

)
.

Thus we may compute:

lim
t→tlim

vol(V, τ(t))

= lim
t→tlim

∫ 0

r0(t,ǫ(t))
ft,ǫ(t)(r) gt,ǫ(t)(r) dr

=

∫ 0

r0(tlim,0)
ftlim,0(r) gtlim,0(r) dr

=

∫ 0

r0

ℓ1ℓ2
(1−tlim)√

tlim
sinh

(√
tlim (r−r0)

)
cosh

(√
tlim (r−r0)

)
dr

=

[
ℓ1ℓ2

(1 − tlim)

2 tlim
sinh2

(√
tlim (r − r0)

)]0

r0

=
ℓ1ℓ2
2

· 1 − tlim
tlim

· sinh2
(
tanh−1(

√
tlim)

)

=
ℓ1ℓ2
2

· 1 − tlim
tlim

· tlim
1 − tlim

=
ℓ1ℓ2
2
.

This completes the proof of Lemma 2.4. q.e.d.

We are now ready to complete the proof of Theorem 2.1. By Lemma
2.2, if we select any t < h(ℓ1) and ǫ = ǫ(t) > 0, we get a non-singular
metric satisfying conclusion (a) of the theorem. By Lemma 2.3, con-
clusion (b) is satisfied if we ensure that t is between ζh(ℓ1) and h(ℓ1).
Finally, by Lemma 2.4, if we select t near enough to h(ℓ1), we will have

vol(V ) ≥ ζ
2area(∂V ), satisfying conclusion (c). q.e.d.

2.2. Negatively curved metrics on a 3–manifold. By applying
Theorem 2.1 to several cusps of a cusped manifold M , we obtain a
negatively curved metric on a Dehn filling of M .

Theorem 2.5. Let M be a complete, finite–volume hyperbolic man-
ifold with cusps. Suppose C1, . . . , Ck are disjoint horoball neighbor-
hoods of some (possibly all ) of the cusps. Let s1, . . . , sk be slopes on
∂C1, . . . , ∂Ck, each with length greater than 2π. Denote the minimal
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slope length by ℓmin. Let S be the set of all Riemannian metrics on
M(s1, . . . , sk) whose sectional curvatures lie in an interval [−a,−1] for
some constant a ≥ 1. Then S is non-empty, and

sup
σ∈S

vol(M(s1, . . . , sk), σ) ≥ (h(ℓmin))
3/2 vol(M).

Proof. Fix an arbitrary constant ζ ∈ (0, 1). We will replace each cusp
Ci by a solid torus Vi whose meridian is si. Theorem 2.1 guarantees
the existence of a smooth Riemannian metric τi on Vi, satisfying the
following properties:

• The sectional curvatures on Vi are all at most

−ζ h(ℓ(si)) ≤ −ζ h(ℓmin).

• vol(Vi, τi) ≥ 1
2ζ area(∂Ci) = ζ vol(Ci).

Furthermore, in a neighborhood of each torus ∂Ci, the metric τi
agrees with the hyperbolic metric on M . Thus we may cut out the cusps
C1, . . . , Ck and glue in the solid tori V1, . . . , Vk, obtaining a smooth Rie-
mannian metric τ on the filled manifold M(s1, . . . , sk), satisfying the
following properties:

• The sectional curvatures of τ are bounded above by −ζ h(ℓmin),
and below by some constant. The lower bound comes from the
fact that the solid tori V1, . . . , Vk are compact, and τ has constant
curvature −1 on Mr ∪k

i=1 Vi.

• vol(M(s1, . . . , sk), τ) ≥ vol(Mr ∪k
i=1 Ci) + ζ

∑k
i=1 vol(Ci)

. ≥ ζ vol(M).

Now, we would like our metric to have sectional curvatures bounded
above by −1. Note the definition of sectional curvature implies that
if we rescale the metric τ to be x τ , then all sectional curvatures are
multiplied by x−2. Thus we rescale τ to be σ =

√
ζ h(ℓmin) τ . This, in

turn, rescales the volume by a factor x3 = (
√
ζ h(ℓmin))

3. Thus under
the rescaled metric:

• The sectional curvatures of σ lie in [−a,−1] for some a ≥ 1.

• vol(M(s1, . . . , sk), σ) ≥ ζ5/2 (h(ℓmin))
3/2 vol(M).

Thus we have found a metric σ that lies in the set S. Now, because
ζ ∈ (0, 1) was arbitrary, we can conclude that

sup
σ∈S

vol(M(s1, . . . , sk), σ) ≥ (h(ℓmin))
3/2 vol(M).

q.e.d.

To complete the proof of Theorem 1.1, suppose that the manifold
N = M(s1, . . . , sk) admits a complete hyperbolic metric σhyp. (Since
we have already proved that N admits a negatively curved metric σ, the
geometrization conjecture implies that N will indeed be hyperbolic.)
Now, we compare the volumes of these metrics via the the following
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theorem of Boland, Connell, and Souto [11], stated here in a special
case.

Theorem 2.6 ([11]). Let σ and σ′ be two complete, finite–volume
Riemannian metrics on the same 3–manifold N . Suppose that all sec-
tional curvatures of σ lie in the interval [−1, 1] and all sectional curva-
tures of σ′ lie in the interval [−a,−1] for some constant a ≥ 1. Then

vol(N, σ) ≥ vol(N, σ′),

with equality if and only if both metrics are hyperbolic.

Remark. When N is a closed manifold, this theorem was originally
proved by Besson, Courtois, and Gallot [8]. In fact, it is quite likely that
their proof would apply in our setting, because the negatively curved
metrics that we construct all have constant curvature on the remaining
cusps of N .

Proof of Theorem 1.1.
By Theorem 2.5, we know that N = M(s1, . . . , sk) admits a non-

empty set S of Riemannian metrics whose sectional curvatures lie in an
interval [−a,−1]. By Theorem 2.6, the hyperbolic metric σhyp uniquely
maximizes volume over the set S. Thus, by putting together the state-
ments of the two theorems, we get:

vol(N, σhyp) = max
σ∈S

vol(N, σ) ≥ (h(ℓmin))
3/2 vol(M).

q.e.d.

2.3. How sharp is Theorem 1.1? We will attempt to answer this
question in two ways. For long slopes, we compare the volume estimate
of Theorem 1.1 to the asymptotic formula proved by Neumann and Za-
gier [33]. For medium–length slopes, we present the results of numerical
experiments conducted using SnapPea.

To compare asymptotic estimates, we restrict our attention to the
case when M has exactly one cusp. Let C be a maximal horoball neigh-
borhood of the cusp, let s be a slope on ∂C, and let

∆V := vol(M) − vol(M(s)).

With this notation, Neumann and Zagier [33] proved that as
ℓ(s) → ∞,

∆V ≈ π2 area(∂C)

ℓ(s)2
=

2π2 vol(C)

ℓ(s)2
.

Meanwhile, by expanding the Taylor series for (1 − x)3/2, we see that
Theorem 1.1 implies

∆V ≤ 3

2

(
2π

ℓ(s)

)2

vol(M) =
6π2 vol(M)

ℓ(s)2
.
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Thus, as ℓ(s) → ∞, Theorem 1.1 overestimates the change in volume
by a factor of 3vol(M)/vol(C). The quantity vol(C)/vol(M) is known as
the cusp density ofM . Böröczky [12] has proved that the cusp density of
a hyperbolic manifold is at most 0.8533. There is no known lower bound
on the cusp density; out of the approximately 5,000 orientable cusped
manifolds in the SnapPea census, exactly six have density less than
0.45. These numbers suggest that for most small manifolds, Theorem
1.1 overestimates the asymptotic change in volume by a constant factor
between 3.5 and 7.

Figure 5. The change in volume for medium–length slopes.

For medium–length slopes, we also tested the estimate of Theorem
1.1 on over 14,000 manifold–slope pairs from the SnapPea census. The
results are plotted in Figure 5. In the graph on the left, the dark curve
represents the estimate of Theorem 1.1, while the lighter point cloud
represents the actual ratio vol(M(s))/vol(M). In the graph on the right,
one can see that for all the manifolds and slopes tested, Theorem 1.1
overestimates the change in volume by a factor between 3 and 7.

3. Volumes of knots, links, and their fillings

In this section, we apply Theorem 1.1 to hyperbolic link complements
in S3, their Dehn fillings, and branched covers of S3 over hyperbolic
links.

3.1. Volumes of link complements. To prove Theorem 1.2, we ex-
press a link K as a Dehn filling of another link L.

Let D(K) be a prime, twist–reduced diagram of a link K (see Section
1.2 for definitions). For every twist region of D(K), we add an extra link
component, called a crossing circle, that wraps around the two strands
of the twist region. The result is a new link J . (See Figure 6.) Now,
the manifold S3rJ is homeomorphic to S3rL, where L is obtained by
removing all full twists (pairs of crossings) from the twist regions of J .
This augmented link L has the property that K can be recovered by
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Dehn filling the crossing circles of L. Similarly, every Dehn filling of K
can be expressed as a filling of L.

K J L L′

Figure 6. An augmented link L is constructed by
adding a crossing circle around each twist region of
D(K), then removing full twists.

The advantage of this construction is that the augmented link L has
a simple geometry that allows for very explicit estimates.

An estimate on volumes given by an estimate of cusp volume was
given in [37]. Here we are able to improve that estimate.

Proposition 3.1. Let D(K) be a prime, twist–reduced diagram with
at least two twist regions. Then the corresponding augmented link L is
hyperbolic, and

vol(S3rL) ≥ 2 v8 (tw(D) − 1),

where v8 = 3.66386... is the volume of a regular ideal octahedron. If K
is a two-bridge link, this inequality is an equality.

Proof. The hyperbolicity of S3rL is a consequence of work of Adams
[2]. See also Purcell [36].

To estimate the volume of S3rL, we simplify the link L even further,
by removing all remaining single crossings from the twist regions of L.
The resulting flat augmented link L′ has the same volume as L, by the
work of Adams [1]. (See Figure 6.) This link L′ is preserved by a
reflection in the projection plane. Thus the projection plane is isotopic
to a totally geodesic surface in S3rL′.

Cut the manifold S3rL′ along the projection plane. The result is two
hyperbolic manifolds M and M ′ with totally geodesic boundary. Since
M and M ′ are interchanged by the reflection of S3rL′, they have the
same volume. Moreover, the volume of S3rL is given by the sum of the
volumes of M and M ′.

Note that the manifold M is a ball with a tube drilled out for each
crossing circle. Hence it is topologically a handlebody with genus tw(D).
Miyamoto showed that if N is a hyperbolic 3–manifold with totally
geodesic boundary, then vol(N) ≥ −v8χ(N). (See [31, Proposition 1.1
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and Lemma 4.1].) We apply this result to M , and find

vol(S3rL) = 2 vol(M) ≥ −2 v8 χ(M) = 2 v8 (tw(D) − 1).

Finally, when D(K) is a standard diagram of a two-bridge link, it is
well-known that the augmented link L is obtained by gluing together
(tw(D) − 1) copies of the Borromean rings, each of which has volume
2v8. (See, for example, Futer and Guéritaud [24, Theorem B.3].) Thus,
for two-bridge links, vol(S3rL) = 2v8 (tw(D)−1), making our estimate
sharp. q.e.d.

In fact, Proposition 3.1 is sharp for many additional large classes of
knot and link diagrams.

To recoverK from L, one must perform Dehn filling along the crossing
circles. Thus we need to estimate the lengths of those slopes. To obtain
information about Dehn fillings of K, we also estimate the lengths of
non-trivial (that is, non-meridional) slopes on the components of L that
come from strands of K.

Proposition 3.2 (Theorem 3.10 of [23]). Let K = ∪m
j=1Kj be a

link in S3 with a prime, twist–reduced diagram D(K). Suppose that
D(K) contains twist regions R1, . . . , Rn (n ≥ 2) and that twist region
Ri contains ai crossings. For each component Kj, let nj be the number
of twist regions visited by Kj, counted with multiplicity; and let sj be a
non-trivial Dehn filling slope.

Then the Dehn filling on K with these slopes corresponds to a fill-
ing on the augmented link L. Furthermore, then there exists a choice
of disjoint cusp neighborhoods in S3rL, such that the slopes have the
following lengths:

1) For a component Kj of K, the slope sj has length at least nj.

2) For a crossing circle Ci, the slope has length at least
√
a2

i + 1.

We now have enough information to prove Theorem 1.2.

Theorem 1.2. Let K ⊂ S3 be a link with a prime, twist–reduced
diagram D(K). Assume that D(K) has tw(D) ≥ 2 twist regions, and
that each region contains at least 7 crossings. Then K is a hyperbolic
link satisfying

0.70735 (tw(D) − 1) < vol(S3rK) < 10 v3 (tw(D) − 1),

where v3 ≈ 1.0149 is the volume of a regular ideal tetrahedron.

Proof. The conclusion that K is hyperbolic was proved by Futer and
Purcell [23, Theorem 1.4], relying on W. Thurston’s hyperbolization
theorem [40]. (In fact, 6 crossings per twist region suffice to show K
is hyperbolic.) The upper bound on volume is due to Agol and D.
Thurston [29].
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To prove the lower bound, we apply Theorem 1.1 to the augmented
link L. Since every twist region has at least 7 crossings, by Proposition
3.2 the slope on each crossing circle will be at least

√
72 + 1 = 5

√
2 > 2π.

Thus, by Theorem 1.1,

vol(S3rK) ≥
(

1 −
(

2π

5
√

2

)2
)3/2

2 v8 (tw(D) − 1)

= 0.70735... (tw(D) − 1).

q.e.d.

Remark. In the proof of Theorem 1.2, we used the fact that to insert
7 crossings into a twist region, one fills along a slope of length at least√

72 + 1 = 5
√

2. In fact, if we require 8 crossings per twist region, we
may replace 5

√
2 with

√
82 + 1 =

√
65, and the lower bound improves to

1.8028 (tw(D) − 1). As the number of required crossings increases, the
estimate becomes better still. In the case of 8 crossings, our estimate
is similar to the lower bound for alternating links due to Lackenby [29]
and Agol, Storm, and Thurston [7], which is 1.83(tw(D) − 2). Their
estimate is known to be sharp for the Borromean rings.

3.2. Dehn fillings and branched covers. Under a slightly stronger
diagrammatic condition than that of Theorem 1.2, we can show that the
combinatorics of a link K determines the volumes of all of its non-trivial
fillings, up to an explicit and bounded constant.

Theorem 3.3. Let K be a link in S3 with a prime, twist–reduced
diagram D(K). Suppose that every twist region of D(K) contains at
least 7 crossings and each component of K passes through at least 7
twist regions (counted with multiplicity). Let N be a manifold obtained
by a non-trivial Dehn filling of some (possibly all) components of K,
which satisfies geometrization. Then N is hyperbolic, and

0.62768 (tw(D) − 1) < vol(N) < 10 v3 (tw(D) − 1).

Note that if K is a knot, a diagram with 4 or more twist regions and
7 or more crossings per region satisfies the hypotheses of Theorem 3.3.

The conclusion that every non-trivial filling of K is hyperbolic was
first proved by Futer and Purcell [23, Theorem 1.7], modulo the ge-
ometrization conjecture. In fact, 6 crossings per twist region suffice.

Proof. To prove that N is hyperbolic and compute the lower bound
on volume, we once again apply Theorem 1.1 to the augmented link L.
We know that every non-trivial filling of K can be realized as a filling
of L. By Proposition 3.2, every slope on a strand of K will have length
at least 7, and every slope on a crossing circle will have length at least
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5
√

2. Thus, by Theorem 1.1, N is hyperbolic and

vol(N) ≥
(

1 −
(

2π

7

)2
)3/2

2 v8 (tw(D) − 1)

= 0.62768... (tw(D) − 1)

For the upper bound, note that volume goes down under Dehn filling
(see Thurston [39]). Thus, by Theorem 1.2, vol(N) < 10 v3 (tw(D)−1).

q.e.d.

Theorem 1.1 also applies to Dehn fillings of arbitrary hyperbolic
knots.

Theorem 3.4. Let N be a hyperbolic manifold obtained by p/q–Dehn
surgery along a hyperbolic knot K in S3, where |q| ≥ 12. Then

vol(N) >

(
1 − 127

q2

)3/2

vol(S3rK).

Proof. Let C be a maximal cusp of S3rK. Let m and s be Euclidean
geodesics on ∂C that represent the meridian of K and the slope p/q,
respectively. Let θ be the angle between these geodesics. Then

(5) |q| · area(∂C) = ℓ(m) ℓ(s) sin(θ) ≤ ℓ(m) ℓ(s).

We can use equation (5) to estimate ℓ(s). By a theorem of Cao and
Meyerhoff [14, Theorem 5.9], area(∂C) ≥ 3.35. Furthermore, by the 6–
Theorem of Agol and Lackenby [5, 28], surgery along a slope of length
more than 6 yields a manifold with infinite fundamental group, which
cannot be S3. Thus ℓ(m) ≤ 6. Combining these results with equation
(5) gives

(6) ℓ(s) ≥ |q| · 3.35/6.

In particular, when |q| ≥ 12, ℓ(s) > 2π. Plugging inequality (6) into
Theorem 1.1 gives

vol(N) ≥
(
1 −

(
6 · 2π
3.35q

)2)3/2

vol(S3rK) >

(
1 − 127

q2

)3/2

vol(S3rK).

q.e.d.

We conclude the section with an application to branched covers. Re-
call that the cyclic p–fold cover of a hyperbolic knot complement S3rK
is a hyperbolic 3–manifold Xp with torus boundary. The meridian m
of K lifts to a slope mp on ∂Xp. Then the p–fold branched cover of S3

over K, denoted Mp, is obtained by Dehn filling ∂Xp along the slope
mp.
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Theorem 3.5. If p ≥ 4, the branched cover Mp is hyperbolic. For
all p ≥ 7, we have

(7)

(
1 − 4π2

p2

)3/2

vol(S3rK) ≤ vol(Mp)

p
< vol(S3rK).

If K is not the figure–8 or 52 knot and p ≥ 6, the estimate improves to

(8)

(
1 − 2

√
2π2

p2

)3/2

vol(S3rK) ≤ vol(Mp)

p
< vol(S3rK).

Proof. The fact that Mp is hyperbolic for p ≥ 4 is a well–known
consequence of the orbifold theorem (see e.g. [16, Corollary 1.26]).

As for the volume estimate, the hyperbolic metric of S3rK lifts to a
hyperbolic metric on Xp, implying that vol(Xp) = p vol(S3rK). Fur-
thermore, because a maximal cusp of S3rK lifts to a maximal cusp of
Xp, we have ℓ(mp) = p ℓ(m). To estimate the volume of Mp, we need
to estimate the length of m.

Adams has shown that every hyperbolic knot in S3 has meridian of
length at least 1 [3]. Thus, in the cyclic cover Xp, ℓ(mp) ≥ p. In
particular, when p ≥ 7, we have ℓ(mp) > 2π. Plugging ℓ(mp) ≥ p into
Theorem 1.1 proves the estimate of equation (7).

Adams has also proved that apart from the figure–8 and 52 knots,
every hyperbolic knot in S3 has meridian of length at least 21/4 [4].

Thus, in the cyclic cover Xp, we have ℓ(mp) ≥ 21/4p, proving equation
(8). q.e.d.

Remark. Numerical experiments with SnapPea confirm that the p–
fold branched covers over the figure–8 and 52 knots also satisfy equation
(8) when 6 ≤ p ≤ 1000. The complements of these knots admit ideal tri-
angulations consisting (respectively) of two and three tetrahedra, with
simple gluing equations. Thus one can probably employ the methods of
Neumann and Zagier [33] to rigorously prove equation (8) for these two
knots. Most of the details of the figure–8 case are worked out in [33,
Section 6].

4. Twist number and the Jones polynomial

In this section, we prove Theorem 1.5. The proof has three main
steps. The first step, due to Stoimenow [38], expresses the coefficients
of the Jones polynomial in terms of the combinatorics of the graphs GA

and GB, defined in Definition 1.4. The second and third steps relate
the combinatorics of the graphs to upper and lower bounds on the twist
number of a diagram.
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4.1. Reduced graphs and polynomial coefficients.

Definition 4.1. LetD be an connected link diagram, with associated
graphs GA, GB, as in Definition 1.4. The multiplicity of an edge e of
GA or GB is the number of edges that have their endpoints on the same
pair of vertices as e. Let G′

A denote the graph obtained from GA by
removing multiple edges connected to the same pair of vertices. We
will refer to G′

A as the reduced A–graph associated to D. Similarly, the
reduced B–graph G′

B is obtained by removing multiple edges connected
to the same pair of vertices.

Let vA(D), e′A(D) (resp. vB(D), e′B(D)) denote the number of ver-
tices and edges of G′

A (resp. G′
B). When there is no danger of con-

fusion we will omit D from the notation above to write vA := vA(D),
vB := vB(D), e′A := e′A(D) and e′B := e′B(D), and so on.

Proposition 4.2 (Stoimenow). For a link diagram D, let

〈D〉 = αAm + βAm−4 + γAm−8 + . . .+ γ′Ak+8 + β′Ak+4 + α′Ak

denote the Kauffman bracket of D, so that m (resp. k) is the highest
(resp. lowest) power in A. If D is connected and A–adequate, then

|β| = e′A(D) − vA(D) + 1.

Similarly, if D is connected and B–adequate, then
∣∣β′
∣∣ = e′B(D) − vB(D) + 1.

Note it is well known that for an A–adequate diagram, |α| = 1, and
for a B–adequate diagram, |α′| = 1.

Proof. For proofs of these statements, see the papers of Stoimenow
[38, Proposition 3.1] or Dasbach and Lin [21, Theorem 2.4]. q.e.d.

To obtain the Jones polynomial JK(t) from the Kauffman bracket
〈D〉, one multiplies 〈D〉 by a power of -A and sets t := A4. Thus
the absolute values of the coefficients remain the same. This gives the
following immediate corollary:

Corollary 4.3. Let D be an adequate diagram of a link K. Let β
and β′ be the second and next-to-last coefficients of JK(t). Then

|β| +
∣∣β′
∣∣ = e′A + e′B − vA − vB + 2.

Given Corollary 4.3, we can complete the proof of Theorem 1.5 by
estimating the quantity e′A(D) + e′B(D) − vA(D) − vB(D) + 2 in terms
of tw(D).
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4.2. Long and short resolutions.

Definition 4.4. Let D be a diagram, and let R be a twist region of
D containing cR > 1 crossings. One of the graphs associated to D, say
GA, will inherit cR − 1 vertices from the cR − 1 bigons contained in R.
We say that this is the long resolution of the twist region R. The other
graph, say GB, contains cR parallel edges (only one of which survives
in G′

B). This is the short resolution of R. See Figure 7.
When a twist region R contains a single crossing, there is no natural

way to choose the short and long resolutions. For such a twist region,
we say that both resolutions are short.

R

long short

Figure 7. Resolutions of a twist region R.

In order to count the vertices and edges of G′
A and G′

B, we regroup
them into short and long resolutions.

Definition 4.5. Recall from Definition 1.4 that every vertex of GA

and GB (and thus of G′
A and G′

B) comes from a component of one of the
A– or B–resolutions of the diagram D. We say that a vertex adjacent to
exactly 2 edges of GA or GB is a bigon vertex ; these vertices correspond
to bigons in twist regions of D. Let vbigon be the total number of bigon
vertices in GA and GB, and let vn-gon be the total number of remaining,
non-bigon vertices of GA and GB.

In a similar vein, let eshort (resp. elong) be the total number of edges of
GA and GB coming from short (resp. long) resolutions of twist regions.
Observe that an edge comes from a long resolution if and only if it is
adjacent to at least one bigon vertex. Thus, when a pair of vertices is
connected by multiple edges, if neither vertex is a bigon vertex, those
edges all short. In any other case, those edges are all long. As a result,
we can think of every edge of G′

A and G′
B as either short or long, and

define e′short and e′long accordingly.

An immediate consequence of this definition is that

vA + vB = vbigon + vn-gon and e′A + e′B = e′long + e′short.

We are now ready to prove one direction of Theorem 1.5.
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Proposition 4.6. Let D be an adequate diagram of a link K. Let β
and β′ be the second and next-to-last coefficients of the Jones polynomial
JK . Then

|β| +
∣∣β′
∣∣ = e′A + e′B − vA − vB + 2 ≤ 2 tw(D).

Proof. Suppose that an adequate diagram D has c := c(D) crossings
and t := tw(D) twist regions. Given Corollary 4.3 and Definition 4.5,
it suffices to estimate the quantities vbigon, vn-gon, e

′
long, and e′short in

terms of c and t.
In a twist region R containing cR crossings, there are cR − 1 bigons.

Thus vbigon = c − t. Notice that in both the A– and B–resolutions of
D, at least one circle passes through multiple twist regions. Thus each
of GA and GB contains at least one non-bigon vertex, and vn-gon ≥ 2.
In every twist region, all the edges of the short resolution get identified
to a single edge in either G′

A or G′
B. Thus e′short ≤ t. Meanwhile, since

each crossing has at most one long resolution, e′long ≤ elong ≤ c. Putting
these facts together, we get

|β| + |β′| = e′A + e′B − vA − vB + 2, (Corollary 4.3)

= e′short + e′long − vbigon − vn-gon + 2, (Definition 4.5)

≤ t + c − (c− t) − 2 + 2

= 2t.

We note that the adequacy of D is only needed to apply Corollary
4.3. The remainder of the proof works for any connected diagram D.
q.e.d.

4.3. Estimates from Turaev surfaces. To obtain a lower bound on
|β|+ |β′|, we engage in the detailed study of a Turaev surface associated
to the A– and B–resolutions of a diagram. The construction of this
surface was first described by Cromwell [19], building on work of Turaev
[41].

Let Γ ⊂ S2 be the planar, 4–valent graph of the link diagram D.
Thicken the projection plane to a slab S2×[-1, 1], so that Γ lies in
S2×{0}. Outside a neighborhood of the vertices (crossings), our surface
will intersect this slab in Γ×[-1, 1]. In the neighborhood of each vertex,
we insert a saddle, positioned so that the boundary circles on S2×{1}
are the components of the A–resolution sA(D), and the boundary circles
on S2×{-1} are the components of sB(D). (See Figure 8.) Then, we
cap off each circle with a disk, obtaining an unknotted closed surface
F (D).

In the special case when D is an alternating diagram, each circle
of sA(D) or sB(D) follows the boundary of a region in the projection
plane. Thus, for alternating diagrams, the surface F (D) is exactly the
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sAsA

sB

sB

Γ

Figure 8. Near each crossing of the diagram, a saddle
surface interpolates between circles of sA(D) and circles
of sB(D). The edges of GA and GB can be seen as gra-
dient lines at the saddle.

projection sphere S2. For general diagrams, it is still the case that the
knot or link has an alternating projection to F (D) [20, Lemma 4.4].

Furthermore, the construction of F (D) endows it with a natural cellu-
lation, whose 1–skeleton is the graph Γ and whose 2–cells correspond to
circles of sA(D) or sB(D), hence to vertices of GA or GB. These 2–cells
admit a natural checkerboard coloring, in which the regions correspond-
ing to the vertices of GA are white and the regions corresponding to GB

are shaded. The graph GA (resp. GB) can be embedded in F (D) as the
adjacency graph of white (resp. shaded) regions.

Definition 4.7. Let D be a diagram in which every twist region has
at least 2 crossings (hence, at least one bigon). Then we may modify the
4–valent graph Γ ⊂ F (D), by collapsing the chain of bigons in each twist
region to a single red edge. The result is a tri-valent graph P ⊂ F (D),
in which exactly one edge at each vertex is colored red. (See Figure 9.)

K Γ P Φ

⇒⇒⇒

Figure 9. The construction of the graphs P and Φ from
a knot diagram. The entire construction takes place on
the surface F (D).

If we remove all the red edges of P , we obtain a di-valent graph Φ. In
other words, Φ is a union of disjoint simple closed curves. We call the
closures of regions in the complement of P the provinces of F (D), and
the closures of regions in the complement of Φ the countries of F (D).
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Every province of F (D) comes from a non-bigon region of F (D)rΓ,
and corresponds to an n-gon vertex of GA or GB. Thus each province
is a disk. On the other hand, the countries of F (D) need not be simply
connected.

The subdivision of F (D) into countries allows us to partition the
twist regions of D and the short edges of GA and GB. Every twist
region of D corresponds to a red edge that lies in some country N of
F (D). Similarly, every short edge of GA or GB connects two vertices
that belong to the same country N . (Compare Figure 7 with Figure 9.)
Thus we may define tw(N) to be the number of twist regions belonging
to N , and eshort(N) to be the number of short edges belonging to N .
In a similar fashion, we may define e′short(N) by removing the duplicate
edges of GA or GB that belong to N .

Lemma 4.8. Let N be a country of F (D). Then

e′short(N) ≥ tw(N) + χ(N) − 1.

Proof. The country N is constructed by taking a number of con-
tractible provinces and gluing them along disjoint segments (red edges)
on the boundary. We claim if we cut N along a well–chosen set of
1− χ(N) red edges, it becomes a disk. This can be seen by considering
the dual graph to the red edges. Note the country deformation retracts
to this dual graph. A maximal spanning tree is obtained by removing
1 − χ(N) edges, which correspond to red edges in N .

After this operation, there remain tw(N) +χ(N)− 1 red edges along
which we did not cut. Call these the remnant red edges. The rem-
nant edges are in one-to-one correspondence with a subset of elements
of e′short(N), given by selecting a short edge of GA or GB from the
corresponding twist region. So e′short(N) ≥ tw(N) + χ(N) − 1. q.e.d.

To estimate e′short(D) more globally, we need a bound on the number
of countries.

Lemma 4.9. Let D be an adequate diagram, in which every twist
region contains at least 2 crossings. Let n(D) be the number of countries
in the surface F (D). Then

n(D) ≤ 2

3
tw(D) + 1.

Proof. Recall, from Definition 4.7, that every national border is a
component of the graph Φ. Let |Φ| denote the number of components
of the graph Φ. Thus n(D) ≤ |Φ|+1. Observe as well that the graph P
has exactly two vertices for every twist region of D (these are the two
endpoints of the red edge constructed from the twist region). Thus we
compare the number of components of Φ to the number of vertices of
P .
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Let ϕ be one simple closed curve contained in Φ. We will count the
number of vertices of P that lie on ϕ. There are two straightforward
cases:

Case 1 : ϕ bounds a one–province country. This province cannot
be a monogon, since monogons cannot occur in an adequate diagram.
It also cannot be a bigon, because the bigon would have been collapsed
in the construction of the graph P . Thus ϕ contains at least 3 vertices
of P .

Case 2 : ϕ does not bound a one–province country. Then consider
the provinces that adjoin ϕ. The provinces of F (D) are simply con-
nected, so each side of ϕ must meet at least one provincial border (red
edge). In fact, the hypothesis that D is adequate implies that a province
cannot border on itself along a red edge (otherwise, an edge of GA or
GB dual to this red edge would form a loop, violating Definition 1.4).
Thus each side of ϕ must meet at least two provinces, so ϕ must contain
at least 4 vertices of P .

In either case, each curve ϕ ⊂ Φ contains at least 3 vertices from
twist regions. Since each twist region gives rise to two such vertices,
tw(D) ≥ 3

2 |Φ|. We can conclude that

n(D) ≤ |Φ| + 1 ≤ 2

3
tw(D) + 1.

q.e.d.

We can now prove the remaining direction of Theorem 1.5.

Theorem 4.10. Let D be an adequate diagram of a link K, in which
every twist region contains at least 3 crossings. Let β and β′ be the
second and next-to-last coefficients of the Jones polynomial JK . Then

|β| +
∣∣β′
∣∣ = e′A + e′B − vA − vB + 2 ≥ tw(D)

3
+ 1.

Proof. Suppose that the diagram D has c := c(D) crossings and t :=
tw(D) twist regions. Given Corollary 4.3 and Definition 4.5, it suffices
to estimate the quantities vbigon, vn-gon, e

′
long, and e′short in terms of c

and t.
In a twist region R containing cR crossings, there are cR − 1 bigons

and cR long edges. Thus vbigon = c− t and elong = c. When every twist
region contains at least 3 crossings, it is evident from Figure 7 that all
long edges of GA and GB will survive in G′

A and G′
B. Thus we can

conclude that e′long = c, giving us

(9) e′long − vbigon = tw(D).

To estimate vn-gon and e′short, we compute the Euler characteristic of
F (D). Recall that the tri-valent graph P has 2t vertices (two for every
red edge) and 3t edges (since every third edge is red). The 2–cells in



DEHN FILLING, VOLUME, AND THE JONES POLYNOMIAL 455

the complement of P are provinces, one for every n-gon vertex of GA

and GB. Thus

(10) χ(F (D)) = vn-gon − 3tw(D) + 2tw(D) = vn-gon − tw(D).

Lemma 4.8 tells us that e′short(N) ≥ tw(N) + χ(N) − 1 for every
country N of F (D). By summing this over all countries, we get

e′short ≥ tw(D) + χ(F (D)) − n(D)

= vn-gon − n(D), by Equation (10)

≥ vn-gon − 2

3
tw(D) − 1 by Lemma 4.9.

Putting all of these results together gives

|β| +
∣∣β′
∣∣ = e′A + e′B − vA + vB + 2, by Corollary 4.3

= (e′long − vbigon) + (e′short − vn-gon) + 2, by Definition 4.5

≥ tw(D) +

(
−2

3
tw(D) − 1

)
+ 2,

=
tw(D)

3
+ 1.

q.e.d.

5. Families of differential equations

In the proof of Theorem 2.1, we defined a family of functions ft,ǫ and
gt,ǫ. Our goal in this section is to prove that ft,ǫ, f

′
t,ǫ, and gt,ǫ depend

continuously and uniformly on t and ǫ.
Let us recap the definitions. For parameters ǫ > 0 and 0 < t < 1, we

began with a smooth bump function kt,ǫ(r). This function has a precise
definition, as follows:

kt,ǫ(r) :=





t if r ≤ −ǫ,

t+ (1 − t)

∫ 2+2r/ǫ
0 z(u) du
∫ 1
0 z(u) du

if − ǫ < r < −ǫ/2,

1 if r ≥ −ǫ/2,

where z(u) = exp
(
− 1

u2 − 1
(u−1)2

)
. (See Figure 4 for a typical graph.)

By extension to ǫ = 0, we defined kt,0(r) as a step function whose
value is t for r < 0 and 1 for r ≥ 0.

Given kt,ǫ, we defined ft,ǫ and gt,ǫ according to the differential equa-
tions

(11) f ′′t,ǫ(r) = kt,ǫ(r) ft,ǫ(r),
g′t,ǫ(r)

gt,ǫ(r)
= kt,ǫ(r)

ft,ǫ(r)

f ′t,ǫ(r)
,

with initial conditions ft,ǫ(0) = f ′t,ǫ(0) = ℓ1 and gt,ǫ(0) = ℓ2.
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We will prove that ft,ǫ, f
′
t,ǫ, and gt,ǫ depend continuously and uni-

formly on t and ǫ, even as ǫ goes to 0, when kt,ǫ becomes discontinuous.
Before we prove that statement, we need a monotonicity result.

Definition 5.1. For any t ∈ (0, 1) and ǫ ≥ 0, define

r0(t, ǫ) := inf {s ∈ R : ft,ǫ(r) > 0 for all r > s}.
In other words, r0 is either the largest root of ft,ǫ, or −∞ if ft,ǫ has no
root.

Lemma 5.2. For any t ∈ (0, 1) and ǫ ≥ 0, r0(t, ǫ) < min{−ǫ/2,−1}.
Proof. If r0(t, ǫ) = −∞, the result is trivially true. Thus we may as-

sume that r0(t, ǫ) is a root of ft,ǫ. Note that for r ≥ −ǫ/2,
ft,ǫ(r) = ℓ1e

r > 0, and thus r0(t, ǫ) < −ǫ/2 ≤ 0.
To prove that r0(t, ǫ) < −1, observe that equation (11) implies ft,ǫ(r)

is concave up on (r0(t, ǫ), 0]. Thus, for all r ∈ (r0(t, ǫ), 0) we have

f ′t,ǫ(r) < f ′t,ǫ(0) = ℓ1.

Since the function ft,ǫ must climb from height 0 to height ℓ1 with slope
less than ℓ1, it follows r0(t, ǫ) < −1. q.e.d.

Lemma 5.3. The functions ft,ǫ and f ′t,ǫ are monotonic in the param-
eters t, ǫ; and ft,ǫ is also monotonic in r. More precisely:

(a) If 0 ≤ ǫ1 < ǫ2 and r ∈ [r0(t, ǫ2), 0], then ft,ǫ1(r) ≤ ft,ǫ2(r) and
f ′t,ǫ1(r) ≥ f ′t,ǫ2(r), with strict inequalities on [r0(t, ǫ2), −ǫ1/2).

(b) If 0 < t1 < t2 < 1 and r ∈ [r0(t2, ǫ), 0], then ft1,ǫ(r) ≤ ft2,ǫ(r) and
f ′t1,ǫ(r) ≥ f ′t2,ǫ(r), with strict inequalities on [r0(t2, ǫ), −ǫ/2).

(c) For any r ∈ R, ǫ ≥ 0, and t ∈ (0, 1), f ′t,ǫ(r) > 0.

Proof. The key observation for this proof is that the bump function
kt,ǫ(r) is increasing in both t and ǫ. See Figure 4.

For part (a), suppose that 0 ≤ ǫ1 < ǫ2. To compare f and f ′ for
these two values of ǫ, define a function ϕ(r) := ft,ǫ2(r) − ft,ǫ1(r). Then

ϕ′′(r) = f ′′t,ǫ2(r) − f ′′t,ǫ1(r)

= kt,ǫ2(r) ft,ǫ2(r) − kt,ǫ1(r) ft,ǫ1(r)

≥ kt,ǫ1(r) ft,ǫ2(r) − kt,ǫ1(r) ft,ǫ1(r) when r ∈ [r0(t, ǫ2), 0],

with a strict inequality for r ∈ [r0(t, ǫ2), 0] ∩ (−ǫ2,−ǫ1/2)

= kt,ǫ1(r)ϕ(r).

By definition, 0 ≤ kt,ǫ1(r) ≤ 1. Thus we obtain a differential inequality
with certain nice properties. By a result from analysis, whose proof we
include as Theorem A.1 in the Appendix, ϕ(r) ≥ 0 and ϕ′(r) ≤ 0 for all
r ∈ [r0(t, ǫ2), 0], with strict inequalities on [r0(t, ǫ2), −ǫ1/2). Note that
this interval is non-empty, because by Lemma 5.2,

r0(t, ǫ2) < −ǫ2/2 < −ǫ1/2.



DEHN FILLING, VOLUME, AND THE JONES POLYNOMIAL 457

This proves (a).
The proof of part (b) is very similar to (a), except this time we define

ϕ(r) := ft2,ǫ(r) − ft1,ǫ(r). An analogous calculation then goes through.
For part (c), fix values of ǫ ≥ 0 and t ∈ (0, 1). We want to prove

that f ′t,ǫ(r) > 0 for all r. If r ≥ −ǫ/2, we have already seen that
f ′t,ǫ(r) = ℓ1e

r > 0.
If r0(t, ǫ) ≤ r < −ǫ/2, we rely on part (a). That is, set ǫ1 = ǫ and

ǫ2 = −2r. Then provided we can show r ∈ [r0(t, -2r), 0], part (a) implies

f ′t,ǫ(r) ≥ f ′t,-2r(r) = ℓ1e
r > 0.

If r0(t, -2r) = −∞, then certainly r is in the correct range. Other-
wise, we know r ≥ r0(t, ǫ) by assumption. For any s ∈ [r0(t, -2r), 0],
part (a) implies ft,ǫ(s) ≤ ft,-2r(s), so in particular, ft,ǫ(r0(t, -2r)) ≤
ft,-2r(r0(t, -2r)) = 0. Thus r0(t, ǫ) ≥ r0(t, -2r). So r ≥ r0(t, -2r) as
desired.

Finally, for r < r0(t, ǫ), we note that when ft,ǫ(r) < 0, the function
must also be concave down. Thus, since f ′t,ǫ(r) > 0 at the root r =
r0(t, ǫ), f

′
t,ǫ(r) can only become more positive as r moves further to the

left. q.e.d.

Theorem 5.4. Fix constants tlim ∈ (0, 1) and ǫlim ≥ 0. Then, as
(t, ǫ) → (tlim, ǫlim),

ft,ǫ(r) → ftlim,ǫlim(r) and f ′t,ǫ(r) → f ′tlim,ǫlim
(r),

uniformly on compact sets. In particular, the functions f and f ′ are
continuous in the three variables (t, ǫ, r).

Proof. Observe that when ǫ > 0, the function kt,ǫ(r) is continuous in
all three variables (t, ǫ, r). Thus, when ǫlim > 0, the conclusion of the
theorem is a standard result in ODE theory (see, for example, [26]).
We will therefore restrict our attention to the case when ǫlim = 0.

Fix an integer n such that tlim ∈ ( 1
n ,

n−1
n ). Now, suppose that (t, ǫ)

varies in the compact domain [ 1
n ,

n−1
n ] × [0, 1], and that r varies in the

compact interval [−n, n]. We begin the argument by showing that the
values of ft,ǫ(r) are uniformly bounded on this domain. By Lemma
5.3(c), ft,ǫ(r) is strictly increasing, and so attains its maximum value at
r = n. Thus ft,ǫ(n) = ℓ1e

n is a uniform upper bound.
For a lower bound on ft,ǫ(r), we take a closer look at equation (11).

When r ≤ −ǫ, the equation has the explicit solution

(12) ft,ǫ(r) = c1(t, ǫ)e
r
√

t + c2(t, ǫ)e
−r

√
t,

where

(13) c1(t, ǫ) =
ft,ǫ(−ǫ)
2e−ǫ

√
t

+
f ′t,ǫ(−ǫ)

2
√
te−ǫ

√
t
, c2(t, ǫ) =

ft,ǫ(−ǫ)
2eǫ

√
t

−
f ′t,ǫ(−ǫ)
2
√
teǫ

√
t
.
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Now, when ǫ ≤ 1, Lemma 5.2 says that r0(t, ǫ) < −ǫ. Thus ft,ǫ and f ′t,ǫ
are positive and increasing on [−ǫ, 0], and both are bounded above by
ℓ1. Thus both ft,ǫ(−ǫ) and f ′t,ǫ(−ǫ) must be in the interval (0, ℓ1]. In
particular, this implies that

(14) c1(t, ǫ) > 0, c2(t, ǫ) >
−ℓ1

2
√

1/n
.

By putting together (12) and (14), we see that on the interval [−n, n],

ft,ǫ(r) ≥ ft,ǫ(−n) > c2(t, ǫ) e
n
√

t ≥ −ℓ1
√
n

2
en.

We can conclude that when t ∈ [ 1
n ,

n−1
n ], ǫ ∈ [0, 1], and r ∈ [−n, n],

the family of functions ft,ǫ(r) is uniformly bounded. Because kt,ǫ(r) is
also uniformly bounded (by 0 and 1), it follows that f ′′t,ǫ(r) is uniformly
bounded. By integration, it follows that f ′t,ǫ(r) is uniformly bounded
and equicontinuous. Integrating again, we see that ft,ǫ(r) is equicontinu-
ous. Finally, for any δ ∈ (0, n), kt,ǫ(r) has uniformly bounded derivative
on [−n,−δ], which implies that f ′′t,ǫ(r) is equicontinuous on that interval.

Fix a number δ ∈ (0, n), and let (ti, ǫi) be a sequence that converges
to (tlim, 0). Then the Arzela–Ascoli theorem implies that there is a
continuous function flim on [−n, n], twice differentiable on [−n,−δ],
such that

fti,ǫi
(r) → flim(r), f ′ti,ǫi

(r) → f ′lim(r), f ′′ti,ǫi
(r) → f ′′lim(r),

uniformly on [−n,−δ]. In fact, fti,ǫi
and f ′ti,ǫi

converge uniformly on
[−n, n]. Furthermore, for all ǫi < δ, kti,ǫi

(r) = ti on [−n,−δ], and thus
kti,ǫi

(r) converges uniformly to tlim. Thus flim satisfies the differential
equation

f ′′lim(r) = ktlim,0(r)flim(r),

for all r ∈ [−n,−δ]. Since δ was arbitrary, this equation is satisfied
for all r ∈ [−n, 0). Since flim(0) = f ′lim(0) = ℓ1, flim is a solution to
equation (11), for t = tlim and ǫ = 0. Therefore, by the uniqueness of
solutions, we can conclude that flim(r) = ftlim,0(r), for all r ∈ [−n, n].

q.e.d.

Lemma 5.5. The roots of ft,ǫ(r) have the following behavior:

(a) For all t ∈ (0, 1) and ǫ ≥ 0, ft,ǫ(r) has a unique root, equal to
r0(t, ǫ).

(b) The function m(t, ǫ) := f ′t,ǫ(r0(t, ǫ)) is continuous in t and ǫ, and
strictly decreasing in both variables.

Proof. By Lemma 5.3(c), ft,ǫ(r) is strictly increasing on R. Thus if
a root exists, it will be unique. To prove the existence of a root, we
study the explicit formula for ft,ǫ(r) on the interval (−∞,−ǫ], given in
equation (12). As r → −∞, this equation is dominated by the term
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c2(t, ǫ) e
−r

√
t. In particular, since ft,ǫ is increasing on R, we must have

c2(t, ǫ) ≤ 0. We will show that, in fact, c2(t, ǫ) < 0.
Suppose, for a contradiction, that c2(t, ǫ1) = 0 for some value ǫ1.

Then, by equation (12),

ft,ǫ1(r) = c1(t, ǫ1) e
r
√

t on (−∞,−ǫ1],
for a positive constant c1(t, ǫ1). Now, choose a larger value ǫ2. As
ǫ2 → ∞, we have larger and larger subsets of (−∞, 0] on which

ft,ǫ2(r) = ℓ1e
r.

Because t < 1 and er decays faster than er
√

t as r → −∞, there will be
an ǫ2 ≫ ǫ1 and an r ≪ 0 such that

ft,ǫ2(r) = ℓ1e
r < c1(t, ǫ1) e

r
√

t = ft,ǫ1(r),

contradicting Lemma 5.3(a). Thus c2(t, ǫ) < 0 for all t, ǫ.
As a result, ft,ǫ(r) approaches −∞ as r → −∞, and therefore has a

root. By Definition 5.1, this unique root is equal to r0(t, ǫ).
To prove part (b), we once again use the fact that ft,ǫ(r) is continuous

and strictly increasing. Thus it has a continuous inverse f−1
t,ǫ , such that

f−1
t,ǫ (0) = r0(t, ǫ). This allows us to write

m(t, ǫ) = f ′t,ǫ ◦ f−1
t,ǫ (0).

By Theorem 5.4, both f ′t,ǫ and f−1
t,ǫ are continuous in t and ǫ; therefore,

m(t, ǫ) is continuous as well.
Now, fix starting values ǫ1, t1 of ǫ and t. Then, for any ǫ2 > ǫ1,

Lemma 5.3(a) implies that

m(t1, ǫ1) = f ′t1,ǫ1(r0(t1, ǫ1)) > f ′t1,ǫ2(r0(t1, ǫ1)).

Sincem(t1, ǫ2) is the absolute minimum of f ′t1,ǫ2(r) over all of R (because
ft,ǫ is concave up whenever ft,ǫ is positive, concave down when negative
due to its defining equation (11)), we have

f ′t1,ǫ2(r0(t1, ǫ1)) ≥ m(t1, ǫ2).

So m(t1, ǫ1) ≥ m(t1, ǫ2).
Similarly, by Lemma 5.3(b), m(t1, ǫ1) > m(t2, ǫ1) for t2 > t1. Thus

m(t, ǫ) is strictly decreasing in both t and ǫ. q.e.d.

We now turn our attention to the function gt,ǫ(r). Its defining equa-
tion (11) can be written as

(15)
d

dr
(ln gt,ǫ(r)) = kt,ǫ(r)

ft,ǫ(r)

f ′t,ǫ(r)
,

with initial condition gt,ǫ(0) = ℓ2. Note that by Lemma 5.3(c),
f ′t,ǫ(r) > 0 for all r, so the right-hand side is always well-defined.
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Theorem 5.6. Fix constants tlim ∈ (0, 1) and ǫlim ≥ 0. Then, as
(t, ǫ) → (tlim, ǫlim),

gt,ǫ(r) → gtlim,ǫlim(r),

uniformly on compact sets.

Proof. This proof follows the same outline as the proof of Theorem
5.4. As in that proof, we restrict our attention to the case when ǫlim = 0,
because the conclusion of the theorem is a standard result for ǫlim > 0.

Fix an integer n such that tlim ∈ ( 1
n ,

n−1
n ). Now, suppose that (t, ǫ)

varies in the compact domain [ 1
n ,

n−1
n ] × [0, 1], and that r varies in the

compact interval [−n, n]. We begin the argument by showing that the
right-hand side of equation (15) is uniformly bounded on this domain.
In the proof of Theorem 5.4, we have already shown that on this domain,

(16) |kt,ǫ(r) ft,ǫ(r)| ≤ |ft,ǫ(r)| ≤ ℓ1
√
n en.

Also, because m(t, ǫ) is the absolute minimum value of f ′t,ǫ(r) over all
of R, and by Lemma 5.5(b),

(17) f ′t,ǫ(r) ≥ m(t, ǫ) ≥ m(n−1
n , 1) > 0.

Putting inequalities (16) and (17) together, we get

(18)

∣∣∣∣
d

dr
(ln gt,ǫ(r))

∣∣∣∣ ≤
ℓ1
√
n en

m(n−1
n , 1)

.

By integrating (18), we conclude that the family of functions ln gt,ǫ(r)
is uniformly bounded and equicontinuous. Also, for any δ ∈ (0, n),
d
dr ln gt,ǫ(r) is equicontinuous on [−n,−δ]. This follows by differentiating
the right-hand side of (15), because ft,ǫ(r), f

′
t,ǫ(r), f

′′
t,ǫ(r), kt,ǫ(r), and

k′t,ǫ(r) are all uniformly bounded on that interval, with f ′t,ǫ(r) bounded
away from 0.

Fix a number δ ∈ (0, n), and let (ti, ǫi) be a sequence that converges
to (tlim, 0). Then the Arzela–Ascoli theorem implies that there is a
continuous function glim, differentiable on [−n,−δ], such that

ln gti,ǫi
(r) → ln glim(r),

d

dr
ln gti,ǫi

(r) → d

dr
ln glim(r),

uniformly on [−n,−δ]. In fact, ln gti,ǫi
(r) converges uniformly on [−n, n];

since this is a compact set, gti,ǫi
(r) also converges uniformly to glim(r).

By letting δ approach 0, we see that the function glim(r) satisfies the
differential equation (15) for t = tlim and ǫ = 0. Thus, by the uniqueness
of solutions, glim(r) = gtlim,0(r), as desired. q.e.d.

Appendix A. Differential inequalities

The following elementary result from real analysis is probably well-
known. However, since we could not find a reference, we include a proof
here.
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Theorem A.1. Let I ⊂ R be a closed interval that includes 0. Let
ϕ : I → R be a C1 function, such that ϕ′′(x) exists for all x 6= 0.
Suppose that ϕ satisfies the differential inequality

ϕ′′(x) ≥ k(x) ϕ(x) for all x 6= 0,

where 0 ≤ k(x) ≤ 1. Assume as well that ϕ(0) ≥ 0 and ϕ′(0) = 0. Then

(a) ϕ′(x) ≥ 0 for x ≥ 0 and ϕ′(x) ≤ 0 for x ≤ 0,
(b) ϕ(x) ≥ 0 and ϕ′′(x) ≥ 0 for all x.

Furthermore,

(c) If ϕ′′(x0) > 0 and x0 < 0, then ϕ(x) > 0 and ϕ′(x) < 0 for x < x0.
(d) If ϕ′′(x0) > 0 and x0 > 0, then ϕ(x) > 0 and ϕ′(x) > 0 for x > x0.

A key step of the proof is the following, slightly weaker statement.

Lemma A.2. Let I ⊂ R be a closed interval that includes 0. Let
ψ : I → R be a C1 function, such that ψ′′(x) exists for all x 6= 0.
Suppose that ψ satisfies the differential inequality

ψ′′(x) ≥ k(x)ψ(x) for all x 6= 0,

where 0 ≤ k(x) ≤ 1. Assume as well that ψ(0) ≥ 0 and ψ′(0) ≥ 0. Then

(a) ψ(x) ≥ 0, ψ′(x) ≥ 0, and ψ′′(x) ≥ 0 on [0, 1] ∩ I.
(b) If ψ′′(x0) > 0 or ψ′(x0) > 0 for some x0 ∈ [0, 1), then ψ(x) > 0

and ψ′(x) > 0 on (x0, 1] ∩ I.
Proof. To prove (a), let m = min{ψ(x) : x ∈ [0, 1] ∩ I}. Assume, for

a contradiction, that m < 0. Then, because k(x) ≤ 1 for all x, we have
ψ′′(x) ≥ m, for all x ∈ [0, 1] ∩ I. Now, Taylor’s theorem allows us to
write

ψ(x) = ψ(0) + ψ′(0)x+
1

2
ψ′′(x0)x

2, for some x0 ∈ (0, x).

We can estimate each of these terms. We have ψ(0) ≥ 0 by hypothesis,
ψ′(0)x ≥ 0 because both parts of the product are non-negative, and
ψ′′(x0)x

2 ≥ m because x2 ≤ 1. (Recall that we have assumed m < 0.)
Putting all of this together gives

ψ(x) ≥ 0 + 0 +
1

2
m > m for all x ∈ [0, 1] ∩ I,

contradicting the assumption that m was the minimum.
As a result of this contradiction, ψ(x) ≥ 0 on [0, 1] ∩ I. Thus, since

k(x) ≥ 0, we have ψ′′(x) ≥ 0 as well. Integration gives ψ′(x) ≥ 0,
completing the proof of (a).

To prove (b), suppose first that ψ′′(x0) > 0 for some x0 ∈ [0, 1).
Then ψ′(x) is strictly increasing in a neighborhood of x0. Since we have
already shown that ψ′′(x) ≥ 0 for all x ∈ [0, 1] ∩ I, we have

ψ′(x) > ψ′(x0) ≥ 0, for all x ∈ (x0, 1] ∩ I.
By integration, we also have ψ(x) > 0 on (x0, 1] ∩ I.
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Now, suppose that ψ′(x0) > 0 for some x0 ∈ [0, 1). Since ψ′′(x) ≥ 0
for all x, this implies that ψ′(x) > 0 on [x0, 1] ∩ I. Then, integration
gives ψ(x) > 0 on (x0, 1] ∩ I, completing the proof. q.e.d.

Proof of Theorem A.1. We will apply Lemma A.2 inductively, many
times. We assume without loss of generality that I = R; if I ( R,
the only alteration required is to stop the inductive process once we get
to the boundary of I.

Applying the lemma to ψ(x) := ϕ(x) gives the conclusion of the
theorem on the interval [0, 1]. That is, ϕ(x) satisfies the differential
inequality of the lemma, and ϕ(0) ≥ 0, and ϕ′(0) = 0 so the lemma
applies immediately. This will imply that ϕ(1) ≥ 0 and ϕ′(1) ≥ 0, with
strict inequalities if ϕ′′(x0) > 0 for some x0 ∈ [0, 1).

Now, apply Lemma A.2 to the function ψ(x) := ϕ(x+1). The lemma
applies because ψ(0) = ϕ(1) ≥ 0, and ψ′(0) = ϕ′(1) ≥ 0 (possibly with
strict inequalities). This gives the conclusion of the theorem on the
interval [1, 2]. Repeatedly applying the lemma in this way proves the
theorem for all x ≥ 0.

To prove the theorem for x ≤ 0, we first apply Lemma A.2 to the
function ψ(x) := ϕ(−x). Note that ψ(0) = ϕ(0) ≥ 0, and ψ′(0) =
−ϕ′(0) = 0, so the lemma applies to this function. Then we obtain the
conclusion of the theorem on [−1, 0]. Note, in particular, that we now
have ϕ(−1) ≥ 0 and ϕ′(−1) ≤ 0 (with strict inequalities if ϕ′′(x0) > 0
for some x0 ∈ (−1, 0]). Now, apply Lemma A.2 to ψ(x) := ϕ(−x − 1),
etc., to obtain the conclusion of the theorem for all x ≤ 0. q.e.d.
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