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Abstract. We use the degree of the colored Jones knot polynomials to show that the

crossing number of a (p, q)-cable of an adequate knot with crossing number c is larger than

q2 c. As an application we determine the crossing number of 2-cables of adequate knots.

1. Introduction

Given a knot K we will use c(K) to denote the crossing number of K, which is the smallest

number of crossings over all diagrams that represent K. Crossing numbers are known to be

notoriously intractable. For instance their behavior under basic knot operations, such as

connect sum of knots and satellite operations, is poorly understood. In particular, the basic

conjecture that if K is a satellite knot with companion C then c(K) ≥ c(C) is sill open [8,

Problem 1.68]. In this note, we prove a much stronger inequality for cables of adequate knots

and we determine the exact crossing numbers of infinite families of such knots.

To state our results, for a knot K in the 3-sphere let N(K) denote a tubular neighborhood

of K. Given co-prime integers p, q let Kp,q denote the (p, q)-cable of K. In other words,

Kp,q is the simple closed curve on ∂N(K) that wraps p times around the meridian and q-

times around the canonical longitude of K. Recall that the writhe of an adequate diagram

D = D(K) is an invariant of the knot K [9]. We will use wr(K) to denote this invariant.

Theorem 1.1. For any adequate knot K with crossing number c(K), and any coprime inte-

gers p, q, we have

c(Kp,q) ≥ q2 · c(K) + 1.

Theorem 1.1, combined with the results of [6], has significant applications in determining

crossing numbers of prime satellite knots. We have the following:

Corollary 1.2. Let K be an adequate knot with crossing number c(K) and writhe number

wr(K). If p = 2 wr(K)± 1, then Kp,2 is non-adequate and c(Kp,2) = 4c(K) + 1.

The proof of Corollary 1.2 shows that when p = 2 wr(K)± 1, if we apply the (p, 2)-cabling

operation to an adequate diagram of K the resulting diagram is a minimum crossing diagram

of the knot c(Kp,2). It should be compared with other results in the literature asserting that

the crossing numbers of some important classes of knots are realized by a “special type” of

knot diagrams. These classes include alternating and more generally adequate knots, torus

knots, Montesinos knots [7, 12, 15] and untwisted Whitehead doubles of adequate knots with

zero writhe number [6]. We note that these Whitehead doubles and the cables c(Kp,2) of
1
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Corollary 1.2 are the first infinite families of prime satellite knots for which the crossing

numbers have been determined.

Corollary 1.2 allows us to compute the crossing number of (±1, 2)-cables of adequate knots

that are equivalent to their mirror images (a.k.a. amphicheiral) since such knots are known

have wr(K) = 0. In particular, since for any adequate knot K with mirror image K∗ the

connect sum K#K∗ is adequate and amphicheiral, we have the following:

Corollary 1.3. For any adequate knot K with crossing number c(K) and mirror image K∗

let K2 := K#K∗. Then c(K2
±1,2) = 8 c(K) + 1.

Our results also have an application to the open conjecture on the additivity of crossing

numbers [8, Problem 1.68] under connect sums. The conjecture has been proved in the cases

where each summand is adequate, [7, 12, 15] both torus knots, [4] and when one summand is

adequate and the other an untwisted Whitehead doubles of adequate knot with zero writhe

number [6]. To these we add the following:

Theorem 1.4. Suppose that K is an adequate knot and let K1 = Kp,2, where p = 2 wr(K)±1.

Then for any adequate knot K2, the connected sum K1#K2 is non-adequate and we have

c(K1#K2) = c(K1) + c(K2).

It may be worth noting that out of the 2977 prime knots with up to 12 crossings, 1851 are

listed as adequate on Knotinfo [11] and thus our results above can be applied to them
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2. Crossing numbers of cables of adequate knots

2.1. Preliminaries. Given a knot diagram D, a Kauffman state is a choice of either the

A-resolution or the B-resolution for each crossing of D as shown in Figure 1. Applying a

Kauffman state σ to a diagram leads to a collection σ(D) of disjoint simple closed curve

called state circles. The all-A state on a knot diagram D, denoted by σA, is the state where

the A-resolution is chosen at every crossing of D. Similarly, the all-B state, denoted by σB,

is the state where the B-resolution is chosen at every crossing of D.

A-resolution B-resolution

Figure 1. The A- and B-resolution at a crossing. The dashed segments

indicate the original location of the crossing.

We will use the following notation:
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• c(D) is the number of crossings of the knot diagram D.

• With an orientation on D, c+(D) and c−(D) are respectively the number of positive

crossings and the number of negative crossings in the knot diagram D following the

conventions of Figure 2.

• vA(D) is the number of state circles in the all-A state, and vB(D) is the number of

state circles in the all-B state.

• The state graphs GA(D) and GB(D) have vertices the state circles of the all-A and

all-B state respectively, and edges segments recording the original location of the

crossing. In Figure 1, these segments are indicated in dashed line.

• The writhe of a knot diagram D, denoted by wr(D) := c+(D)− c−(D).

• The Turaev genus of D is defined by 2gT (D) := 2− vA(D)− vB(D) + c(D) [16, 3].

+1 −1

Figure 2. A positive crossing and a negative crossing.

Definition 2.1. A knot diagram D = D(K) is called A-adequate (resp. B-adequate ) if

GA(D) (resp. GB(D)) has no one-edged loops. A knot is adequate if it admits a diagram

D = D(K) that is both A- and B-adequate [10, 9].

We recall that if D = D(K) is an adequate diagram the quantities c(D), c±(D) [9, 7, 12, 15]

as well as the Turaev genus gT (D) [1] are minimal over all diagrams representing K. As a

result the writhe wr(D) of adequate diagrams is also constant for K. Thus they are invariants

of K and we will denote them by c(K), c±(K), gT (K), and wr(K) respectively.

Given a knot K let JK(n) denote its n-th colored Jones polynomial, which is a Laurent

polynomial in a variable t. Let d+[JK(n)] and d−[JK(n)] denote the maximal and minimal

degree of JK(n) in t and set

d[JK(n)] := 4d+[JK(n)]− 4d−[JK(n)].

Lemma 2.2. [9] Given a knot diagram D = D(K), for all n ∈ N, we have the following.

(a) d+[JK(n)] ≤ c+(D)
2 n2 +O(n) and we have equality if D is B-adequate.

(b) d−[JK(n)] ≥ − c−(D)
2 n2 +O(n) and we have equality if D is A-adequate.

(c) d[JK(n)] ≤ 2c(D)n2 + (4− 4gT (D)− 2c(D))n+ (4gT (D)− 4), and we have equality if D

is adequate.

The set of cluster points
{
n−2d[JK(n)]

}′
n∈N is known to be finite and the point with the

largest absolute value, denoted by djK , is called the Jones diameter of K.

We recall the following.

Theorem 2.3. [6]Let K be a knot with Jones diameter djK and crossing number c(K). Then,

djK ≤ 2 c(K),

with equality djK = 2 c(K) if and only if K is adequate.
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In particular, if K is a non-adequate knot admitting a diagram D = D(K) such that

djK = 2(c(D)− 1), then we have c(D) = c(K).

Next we recall a couple of results from that give the extreme degrees of the colored Jones

polynomials for knots where the degrees d±[JK(n)] are quadratic polynomials.

Proposition 2.4. [5, 2] Suppose that K is a knot such that d+[JK(n)] = a2n
2 +a1n+a0 and

d−[JK(n)] = a∗2n
2 + a∗1n + a∗0 are quadratic polynomials for all n > 0. Suppose, moreover,

that a1 ≤ 0, a∗1 ≥ 0 and that p
q < 4a2 and −pq < 4a∗2.

Then for n large enough,

4d+[JKp,q(n)] = q24a2n
2 + (q4a1 + 2(q − 1)(p− 4qa2))n+A,

4d−[JKp,q(n)] = −q24a∗2n2 − (q4a∗1 + 2(q − 1)(p− 4qa∗2))n+A∗,

where A,A∗ ∈ Q depend only on K and p, q.

Proof. The first equation is shown in [5] (see also [2]). To obtain the second equation we use

the fact that, since K∗−p,q = (Kp,q)
∗, we have d−[JKp,q(n)] = −d+[JK∗

−p,q
(n)] and apply the

first equation to K∗−p,q.

�

Now we recall the second result promised earlier.

Lemma 2.5. [5, 2]Let the notation and setting be as in Proposition 2.4.

If p
q > 4a2, then

4d+[JKp,q(n)] = pqn2 +B,

where B ∈ Q depends only on K and p, q.

Similarly, if −pq > 4a∗2, then

4d−[JKp,q(n)] = −pqn2 +B∗,

where B∗ ∈ Q depends only on K and p, q.

2.2. Lower bounds and admissible knots. We will say that a knot K is admissible if

there is a diagram D = D(K) such that we have

djK = 2 (c(D)− 1).

Our interest in admissible knots comes from the fact that if K is admissible and non-adequate,

then by Theorem 2.3, D is a minimal diagram (i.e. c(D) = c(K)).

Theorem 2.6. Let K be an adequate knot and let c(K), c±(K) and wr(K) be as above.

(a) For any coprime integers p, q, we have

(1) c(Kp,q) ≥ q2 · c(K).

(b) The cable Kp,q is admissible if and only if q = 2 and p = qwr(K)± 1.
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Proof. Since K is adequate, by Lemma 2.2,

(2) 4d+[JK(n)]− 4d−[JK(n)] = 2c(K)n2 + (4− 4gT (K)− 2c(K))n+ 4gT (K)− 4,

for every n ≥ 0.

We distinguish three cases.

Case 1. Suppose that p
q < 2c+(K) and −p

q < 2c−(K). Then, d+[JK(n)] satisfies the

hypothesis of Proposition 2.4 with 4a2 = 2c+(K) > 0 and d−[JK(n)] = −d+[JK∗(n)], where

d+[JK∗(n)] satisfies that hypothesis of Proposition 2.4 with 4a∗2 = 2c+(K∗) = 2c−(K). The

requirement that a1 ≤ 0 is satisfied since for adequate knots the linear terms of the degree of

J∗K(n) are multiples of Euler characteristics of spanning surfaces of K. See [5, Lemmas 3.6,

3.7]. Now Proposition 2.4 implies that for sufficiently large n we have that d±[JKp,q(n)] is a

quadratic polynomial and the Jones diameter of Kp,q is djK = q2c(K). Hence by Theorem

2.3 we get c(Kp,q) ≥ q2 · c(K) which proves part (a) of Theorem 1.1 in this case.

For part (b), we recall that a diagram Dp,q of Kp,q is obtained as follows: Start with an

adequate diagram D = D(K) and take q parallel copies to obtain a diagram Dq. In other

words, take the q-cabling of D following the blackboard framing. To obtain Dp,q add t-twists

to Dq, where t := p − qwr(K) as follows: If t < 0 then a twist takes the leftmost string in

Dq and slides it over the q− 1 strings to the right; then we repeat the operation |t|-times. If

t > 0 a twist takes the rightmost string in Dq and slides it over the q − 1 strings to the left;

then we repeat the operation |t|-times. Now

c(Dp,q) = q2 c(K) + |t|(q − 1) = q2 c(K) + |p− qwr(K)|(q − 1),

while djK = 2q2 c(K). Now setting 2c(Dp,q)− 2 = djK , we get |p− qwr(K)|(q− 1) = 1 which

gives that q = 2 and p = qwr(K) ± 1. Similarly, if we set p = qwr(K) ± 1 we find that

2c(Dp,q)− 2 = djK must also be true. Hence in this case both (a) and (b) hold.

Figure 3. Left: 3 positive twists on four strands Right: 3 negative twists on

four strands.

Case 2. Suppose that p
q > 2c+(K). Then by Lemma 2.5, 4d+[JKp,q(n)] = pqn2 + B,

where B ∈ Q depends only on K and p, q. Since p
q > 2c+(K), we get pq > 2c+(K)q2. On

the other hand, since −pq < 0, we clearly have −pq < 2c−(K), and Proposition 2.4 applies to

d+[JK∗
−p,q

(n)] for 4a∗2 = 2c−(K). Then

4d+[JK(n)]− 4d−[JK(n)] = d+[JK(n)] + 4d+[JK∗
−p,q

(n)] > q2 · c(K),
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as desired. This finishes the proof for part (a) of the theorem. In this case, we don’t get any

admissible knots: first note that p > 2qc+(K) > qwr(K). As in Case 1 we get a diagram

Dp,q of Kp,q with

c(Dp,q) = q2 c(K) + (p− qwr(K))(q − 1),

while djK = 2q2 c−(K) +p q. Now setting 2c(Dp,q)−2 = djK , and after some straightforward

algebra, we find that in order for Kp,q to be admissible we must have

2(q2 − q) c−(K) + 2q c+(K) + p (q − 2)− 2 = 0.

However, since p, c(K) > 0 and q ≥ 2, above equation is never satisfied.

Case 3. Suppose that −pq > 2c−(K) > 0, in which case p
q < 0 ≤ 2c−(K). This case is

similar to Case 2 above.

�

Remark 2.7. In [13] inequality (1) is also verified, for some choices of p and q, using crossing

number bounds obtained from the ordinary Jones polynomial in [14] and also from the 2-

variable Kauffman polynomial. Theorem 1.1 shows that the colored Jones polynomial and

the results of [6] provide better bounds for crossing numbers of satellite knots, allowing in

particular exact computations for infinite families.

3. Non-adequacy results

To prove the stronger version of inequality (1), stated in Theorem 1.1, we need to know

that the cables Kp,q are not adequate. This is the main result in this section.

Theorem 3.1. Let K be an adequate knot with crossing number c(K) > 0 and suppose that
p
q < 2c+(K) and −pq < 2c−(K). Then, the cable Kp,q is non-adequate.

To prove Theorem 3.1 we need the following lemma:

Lemma 3.2. Let K be an adequate knot with crossing number c(K) > 0 and suppose that
p
q < 2c+(K) and −pq < 2c−(K). If Kp,q is adequate, then c(Kp,q) = q2 c(K).

Proof. By our earlier discussion, for n large enough,

4d+[J(Kp,q
(n)]− 4d−[JKp,q(n)] = d2n

2 + d1n+ d0,

with di ∈ Q. By Proposition 2.4, we compute d2 = q2(4a2 + 4a∗2) = 2q2c(K). Now if Kp,q is

adequate, since d2 = 2c(Kp,q), we must have c(Kp,q) = q2c(K). �

We now give the proof of Theorem 3.1:

Proof. First, we let K, p, and q such that t := p− qwr(K) < 0.

Recall that if K has an adequate diagram D = D(K) with c(D) = c+(D)+c−(D) crossings

and the all-A (rep. all-B) resolution has vA = vA(D) (resp. vB = vB(D)) state circles, then

(3) 4 d−[JK(n)] = −2c−(D)n2 + 2(c(D)− vA(D))n+ 2vA(D)− 2c+(D),

(4) 4 d+[JK(n)] = 2c+(D)n2 + 2(vB(D)− c(D))n+ 2c−(D)− 2vB(D).
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Equation (3) holds for A-adequate diagrams D = D(K). Thus in particular the quantities

c−(D), vA(D) are invariants of K (independent of the particular A-adequate diagram). Sim-

ilarly, Equation (4) holds for B-adequate diagrams D = D(K) and hence c+(D), vB(D) are

invariants of K. Recall also that c(D) = c(K) since D is adequate.

Now we start with a knot K that has an adequate diagram D then wr(D) = wr(K).

Hence we have c+(D) = c−(D) + wr(K). Since D is B-adequate and t < 0, the cable Dp,q is

a B-adequate diagram of Kp,q with vB(Dp,q) = qvB(D) and c+(Dp,q) = q2c+(D). See Figure

4. Furthermore, since as said above these quantities are invariants of Kp,q, they remain the

same for all B-adequate diagrams of Kp,q.

Figure 4. Left: the -1,2 cabling of the figure eight knot. Right: the B-state

graph showing that the cabling is B-adequate.

Now assume, for a contradiction, that Kp,q is adequate: Then, it has a diagram D̄ that is

both A and B-adequate. By above observation we must have vB(D̄) = vB(Dp,q) = qvB(D)

and c+(D̄) = c+(Dp,q) = q2c+(D).

By Lemma 3.2, c(D̄) = c(Kp,q) = q2c(K).

Write

4 d+[JKp,q(n)] = xn2 + yn+ z,

for some x, y, z ∈ Q.

For sufficiently large n we have two different expressions for x, y, z. On one hand, because

D̄ is adequate, we can use Equation (4) to determine x, y, z.

On the other hand, using 4 d+[JK∗
−p,q

(n)], x, y, z can be determined using Proposition 2.4

with a2 and a1 coming from Equation (4) applied to D.

We will use these two ways to find the quantity y. Applying Equation (4) to D̄ we obtain

(5) y = 2(vB(D̄ − c(D̄))) = 2qvB(D)− 2q2c(D)

On the other hand, using Proposition 2.4 with a2 and a1 coming from Equation (4) we

have: 4a2 = 2c+(D) = c(D) + wr(K). Also, we have 4a1 = 2vB(D)− 2c(D).

We obtain

(6) y = q(4a1)−2q(q−1)(4a2)+2(q−1)p = 2qvB(D)−2q2c(D)+2(q−1)p−2q(q−1)wr(K).

It follows for the two expressions derived for y from Equations (5) and (6) to agree we

must have

2q((q − 1)2wr(K) + p)− 2p = 0.



8 E. KALFAGIANNI AND R. MCCONKEY

However this is impossible since q > 1 and p, q are coprime. This contradiction shows that

Kp,q is non-adequate.

To deduce the result for Kp,q, with t(K, p, q) := p − qwr(K) > 0, let K∗ denote the

mirror image of K. Note that f (Kp,q)
∗ = K∗−p,q and since being adequate is a property that

is preserved under taking mirror images, it is enough to show that K∗−p,q is non-adequate.

Since t(K∗,−p, q) := −p − qwr(K∗) = −t(K, p, q) < 0, the later result follows from the

argument above. �

3.1. Proof of Theorem 1.1 and Corollary 1.2. By Theorem 2.6, we have

c(Kp,q) ≥ q2c(K).

We need to show that this inequality is actually strict. Recall that by the proof of Theorem

2.6, if p
q > 2c+(K) or −pq > 2c−(K), then the above inequality is strict so we need to only

consider when p
q < 2c+(K) and −pq < 2c−(K). By Theorem 3.1, Kp,q is non-adequate. Hence

by Theorem 2.3 again we have 2c(Kp,q) 6= djK and the strict inequality follows. �

Next we discuss how to deduce Corollary 1.2:

Proof. If q = 2 and p = qwr(K) ± 1, then by Theorem 2.6 Kp,q is admissible. Thus by

Theorem 2.3, the diagram Dp,2 constructed in the proof of Theorem 2.6 is minimal. That is

c(Kp,2) = c(Dp,2) = 4 c(K) + 1. �

4. Composite non-adequate knots

Here we give an application of Theorem 1.1 to the question on additivity of crossing

numbers under the connected sum of knots. [8, Problems 1.67]. As already mentioned, for

adequate knots the crossing number is additive under connected sum. The next result proves

additivity for families of knots where one summand is adequate while the other is not.

Theorem 1.4. Suppose that K is an adequate knot and let K1 := Kp,2, where p = 2 wr(K)±
1. Then for any adequate knot K2, the connected sum K1#K2 is non-adequate and we have

c(K1#K2) = c(K1) + c(K2).

Before we proceed with the proof of the theorem we need some preparation. Given a

knot K, such that for n large enough the degrees of the colored Jones polynomials of K are

quadratic polynomials with rational coefficients, we will write

4 d+[JK(n)] = x(K)n2 + y(K)n+ z(K) and − 4 d−[JK(n)] = x∗(K)n2 + y∗(K)n+ z∗(K).

We also write

4d+[JK(n)]− 4d+[JK(n)] = d2(K)n2 + d1(K)n+ d0(K).

Now let K1, K2 be as in the statement of Theorem 1.4. By assumption and Proposition

2.4, for n large enough the degrees of the colored Jones polynomials of both K1 and K2 are

quadratic polynomials. For the proof we need the following well known lemma:
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Lemma 4.1. [9] For large enough n, the degrees d±[JK1#K2(n)] are polynomials, and we

have the following.

(a) x(K1#K2) = x(K1) + x(K2) and x∗(K1#K2) = x∗(K1) + x∗(K2).

(b) y(K1#K2) = y(K1) + y(K2)− 2 and y∗(K1#K2) = y∗(K1) + y∗(K2)− 2.

(c) d2(K1#K2) = d2(K1) + d2(K2).

The second ingredient we need for the proof of Theorem 1.4 is the following lemma.

Lemma 4.2. Let K be a non-trivial adequate knot, p = 2 wr(K) ± 1 and let K1 := Kp,2.

Then for any adequate knot K2, the connected sum K1#K2 is non-adequate.

Proof. The claim is proven by applying the arguments applied to K1 = Kp,2 in the proofs of

Lemma 3.2 and Theorem 3.1 to the knot K1#K2 and using the fact that the degrees of the

colored Jones polynomial are additive under connected sum.

First we claim that if K1#K2 were adequate then we would have

c(K1#K2) = 4c(K) + c(K2)(7)

Note that as p = 2 wr(K)± 1, we have p
2 < 2c+(K) and −p2 < 2c−(K). Hence Proposition

2.4 applies to K1. Now write

4d+[JK1#K2(n)]− 4d−[JK1#K2(n)] = d2(K1#K2)n
2 + d1(K1#K2)n+ d0(K1#K2).

Since we assumed that K1#K2 is adequate, we have d2(K1#K2) = 2c(K1#K2). On the

other hand by Lemma 4.1, d2(K1#K2) = d2(K1) + d2(K2) = 2 · 4c(K) + 2c(K2) which leads

to (7).

Case 1. Suppose that p− 2 wr(K) = −1 < 0.

Start with D = D(K) an adequate diagram and let D1 := Dp,2 be constructed as in

the proof of Theorem 2.6. Also let D2 be an adequate diagram of K2. As in the proof

of Theorem 3.1 conclude that D1#D2 is a B-adequate diagram for K1#K2 and that the

quantities vB(D1#D2) = 2vB(D) + vB(D2) − 1 and c+(D1#D2) = 4c+(D) + c+(D2) are

invariants of K1#K2.

Let D̄ be an adequate diagram. Then

vB(D̄) = vB(D1#D2) = 2vB(D) + vB(D2)− 1 and c+(D̄) = 4c+(D) + c+(D2).

Next we will calculate the quantity y(K1#K2) of Lemma 4.1 in two ways: Firstly, since

we assumed that D̄ is an adequate diagram for K1#K2, applying Equation (4), we get

y(K1#K2) = 2(vB(D̄)− c(D̄)) = 2(2vB(D) + vB(D2)− 1− 4c(D)− c(D2)).

Secondly, using by Proposition 2.4 we get y(K1) = 2(2vB(D)− 4c(D) + p+ 2 wr(K)).

Then by Lemma 4.1,

y(K1#K2) = y(K1) + y(K2)− 1 = 2(2vB(D)− 4c(D) + p− 2 wr(K)) + vB(D2)− c(D2))− 1.

Now note that in order for the two resulting expressions for y(K1#K2) to be equal we

must have 2(p− 2 wr(K)) = 1 which contradicts our assumption that p− 2 wr(K) = −1. We

conclude that K1#K2 is non-adequate.
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Case 2. Assume now that p − 2 wr(K) = 1. Since (Kp,2)
∗ = K∗−p,2 and since being

adequate is a property that is preserved under taking mirror images, it is enough to show

that K∗−p,2#K
∗
2 is non-adequate. Since −p − 2 wr(K∗) = −(p − 2wr(K))) = −1, the later

result follows from the argument above.

�

Now we give the proof of Theorem 1.4.

Proof. Note that if K is the unknot then so is Kp,2 and the result follows trivially. Suppose

that K is a non-trivial knot. Then by Lemma 4.2 we obtain that K1#K2 is non-adequate.

As discussed above djK1 = 2(4c(K)) = 2(c(D±1,2) − 1). On the other hand, djK2 =

2c(D2) = 2c(K) where D2 is an adequate diagram for K2. Hence, by Lemma 4.1, djK1#K2 =

2(c(D1#D2)− 1), where D1 = D±1,2. By Theorem 2.3,

c(K1#K2) = c(D1#D2) = c(D1) + c(D2) = c(K1) + c(K2),

where the last equality follows since, by Theorem 1.1, we have c(K1) = c(D1) = c(Dp,2). �
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