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Kauffman Bracket Skein Module

M= oriented, compact 3-manifold.

R= commutative ring R with a distinguished invertible element A ∈ R

S(M,R)=Kauffman bracket skein module of M
S(M,R)= quotient of the free R-module on all framed unoriented links in
M, including the empty link, by the relations:

= A +A−1

Â

L ⊔ = (−A2 − A−2)LK1: K2:

Defined in the 80’s (Przytycki, Turaev).

Surface skein algebra: S(M), for M = surface × I.
Used in constructions of Witten-Reshetikhin -Turaev TQFT theories.

Relations with character varieties, cluster algebras, quantum field theories,
hyperbolic geometry.....

In this talk: M= closed 3-manifold, and R = Z[A±1] or R = Q(A).
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Examples
S(S3,R) ∼= R, generated by the empty link:
Kauffman bracket: ⟨ ⟩ : link diagrams −→ R such that

For D = D(K ) where K = trefoil knot :

We obtain: K = J(A,A−1) · ∅, J(A,A−1)= Jones polyn. of framed K .
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What about other 3-manifolds?

How is π1(M) reflected in Z[A±1]? more later
Embedded surfaces: e.g. non separating spheres?

Such spheres create torsion in S(S2 × S1,Z[A±1]) (Hoste-Przytycki,
90’s). Similar phenomena with other π1-injective surfaces.
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Examples: S(M,Z[A±1]) can be “wild”

(Hoste-Przytycki, 90’s) S(L(p,q),Z[A±1]) are free, finitely generated.

(Hoste-Przytycki, 90’s) S(S2 × S1,Z[A±1]) is not finitely generated:

S(S2 × S1,Z[A±1]) = Z[A±1]
⊕(

⊕
i
Z[A±1]/(1 − A2i+4)

)
.

(Mroczkowski, 2011) S(RP3♯ R P3,Z[A±1]) not a direct sum of free and
cyclic Z[A±1]-modules.

Hint. Both M contain an essential sphere ([S2] ̸= 0 in π2(M)).

However proving a conjecture of Witten

Theorem (Gunningham, Jordan and Safronov, 2019)
The skein module S(M,Q(A)) is finite dimensional for any closed M.

dimQ(A) S(S2 × S1,Q(A)) = 1, and dimQ(A) S(RP3♯ R P3,Q(A)) = 4.
(Gilmer-Masbaum, Detcherry-Wolf, 2020) Σg=genus g surface

dimQ(A) S(Σg × S1,Q(A)) = 22g+1 + 2g − 1.

E. Kalfagianni (MSU)
Quantum Topology, Quantum Information and connections to Mathematical Physics (in honor of Professor Arthur Jaffe’s 85th birthday), May 27 - 31, 2024 Texas A&M .
5 / 15



Examples: S(M,Z[A±1]) can be “wild”

(Hoste-Przytycki, 90’s) S(L(p,q),Z[A±1]) are free, finitely generated.

(Hoste-Przytycki, 90’s) S(S2 × S1,Z[A±1]) is not finitely generated:

S(S2 × S1,Z[A±1]) = Z[A±1]
⊕(

⊕
i
Z[A±1]/(1 − A2i+4)

)
.

(Mroczkowski, 2011) S(RP3♯ R P3,Z[A±1]) not a direct sum of free and
cyclic Z[A±1]-modules.

Hint. Both M contain an essential sphere ([S2] ̸= 0 in π2(M)).

However proving a conjecture of Witten

Theorem (Gunningham, Jordan and Safronov, 2019)
The skein module S(M,Q(A)) is finite dimensional for any closed M.

dimQ(A) S(S2 × S1,Q(A)) = 1, and dimQ(A) S(RP3♯ R P3,Q(A)) = 4.
(Gilmer-Masbaum, Detcherry-Wolf, 2020) Σg=genus g surface

dimQ(A) S(Σg × S1,Q(A)) = 22g+1 + 2g − 1.

E. Kalfagianni (MSU)
Quantum Topology, Quantum Information and connections to Mathematical Physics (in honor of Professor Arthur Jaffe’s 85th birthday), May 27 - 31, 2024 Texas A&M .
5 / 15



Examples: S(M,Z[A±1]) can be “wild”

(Hoste-Przytycki, 90’s) S(L(p,q),Z[A±1]) are free, finitely generated.

(Hoste-Przytycki, 90’s) S(S2 × S1,Z[A±1]) is not finitely generated:

S(S2 × S1,Z[A±1]) = Z[A±1]
⊕(

⊕
i
Z[A±1]/(1 − A2i+4)

)
.

(Mroczkowski, 2011) S(RP3♯ R P3,Z[A±1]) not a direct sum of free and
cyclic Z[A±1]-modules.

Hint. Both M contain an essential sphere ([S2] ̸= 0 in π2(M)).

However proving a conjecture of Witten

Theorem (Gunningham, Jordan and Safronov, 2019)
The skein module S(M,Q(A)) is finite dimensional for any closed M.

dimQ(A) S(S2 × S1,Q(A)) = 1, and dimQ(A) S(RP3♯ R P3,Q(A)) = 4.
(Gilmer-Masbaum, Detcherry-Wolf, 2020) Σg=genus g surface

dimQ(A) S(Σg × S1,Q(A)) = 22g+1 + 2g − 1.

E. Kalfagianni (MSU)
Quantum Topology, Quantum Information and connections to Mathematical Physics (in honor of Professor Arthur Jaffe’s 85th birthday), May 27 - 31, 2024 Texas A&M .
5 / 15



Examples: S(M,Z[A±1]) can be “wild”

(Hoste-Przytycki, 90’s) S(L(p,q),Z[A±1]) are free, finitely generated.

(Hoste-Przytycki, 90’s) S(S2 × S1,Z[A±1]) is not finitely generated:

S(S2 × S1,Z[A±1]) = Z[A±1]
⊕(

⊕
i
Z[A±1]/(1 − A2i+4)

)
.

(Mroczkowski, 2011) S(RP3♯ R P3,Z[A±1]) not a direct sum of free and
cyclic Z[A±1]-modules.

Hint. Both M contain an essential sphere ([S2] ̸= 0 in π2(M)).

However proving a conjecture of Witten

Theorem (Gunningham, Jordan and Safronov, 2019)
The skein module S(M,Q(A)) is finite dimensional for any closed M.

dimQ(A) S(S2 × S1,Q(A)) = 1, and dimQ(A) S(RP3♯ R P3,Q(A)) = 4.
(Gilmer-Masbaum, Detcherry-Wolf, 2020) Σg=genus g surface

dimQ(A) S(Σg × S1,Q(A)) = 22g+1 + 2g − 1.

E. Kalfagianni (MSU)
Quantum Topology, Quantum Information and connections to Mathematical Physics (in honor of Professor Arthur Jaffe’s 85th birthday), May 27 - 31, 2024 Texas A&M .
5 / 15



Examples: S(M,Z[A±1]) can be “wild”

(Hoste-Przytycki, 90’s) S(L(p,q),Z[A±1]) are free, finitely generated.

(Hoste-Przytycki, 90’s) S(S2 × S1,Z[A±1]) is not finitely generated:

S(S2 × S1,Z[A±1]) = Z[A±1]
⊕(

⊕
i
Z[A±1]/(1 − A2i+4)

)
.

(Mroczkowski, 2011) S(RP3♯ R P3,Z[A±1]) not a direct sum of free and
cyclic Z[A±1]-modules.

Hint. Both M contain an essential sphere ([S2] ̸= 0 in π2(M)).

However proving a conjecture of Witten

Theorem (Gunningham, Jordan and Safronov, 2019)
The skein module S(M,Q(A)) is finite dimensional for any closed M.

dimQ(A) S(S2 × S1,Q(A)) = 1, and dimQ(A) S(RP3♯ R P3,Q(A)) = 4.
(Gilmer-Masbaum, Detcherry-Wolf, 2020) Σg=genus g surface

dimQ(A) S(Σg × S1,Q(A)) = 22g+1 + 2g − 1.

E. Kalfagianni (MSU)
Quantum Topology, Quantum Information and connections to Mathematical Physics (in honor of Professor Arthur Jaffe’s 85th birthday), May 27 - 31, 2024 Texas A&M .
5 / 15



Examples: S(M,Z[A±1]) can be “wild”

(Hoste-Przytycki, 90’s) S(L(p,q),Z[A±1]) are free, finitely generated.

(Hoste-Przytycki, 90’s) S(S2 × S1,Z[A±1]) is not finitely generated:

S(S2 × S1,Z[A±1]) = Z[A±1]
⊕(

⊕
i
Z[A±1]/(1 − A2i+4)

)
.

(Mroczkowski, 2011) S(RP3♯ R P3,Z[A±1]) not a direct sum of free and
cyclic Z[A±1]-modules.

Hint. Both M contain an essential sphere ([S2] ̸= 0 in π2(M)).

However proving a conjecture of Witten

Theorem (Gunningham, Jordan and Safronov, 2019)
The skein module S(M,Q(A)) is finite dimensional for any closed M.

dimQ(A) S(S2 × S1,Q(A)) = 1, and dimQ(A) S(RP3♯ R P3,Q(A)) = 4.

(Gilmer-Masbaum, Detcherry-Wolf, 2020) Σg=genus g surface

dimQ(A) S(Σg × S1,Q(A)) = 22g+1 + 2g − 1.

E. Kalfagianni (MSU)
Quantum Topology, Quantum Information and connections to Mathematical Physics (in honor of Professor Arthur Jaffe’s 85th birthday), May 27 - 31, 2024 Texas A&M .
5 / 15



Examples: S(M,Z[A±1]) can be “wild”

(Hoste-Przytycki, 90’s) S(L(p,q),Z[A±1]) are free, finitely generated.

(Hoste-Przytycki, 90’s) S(S2 × S1,Z[A±1]) is not finitely generated:

S(S2 × S1,Z[A±1]) = Z[A±1]
⊕(

⊕
i
Z[A±1]/(1 − A2i+4)

)
.

(Mroczkowski, 2011) S(RP3♯ R P3,Z[A±1]) not a direct sum of free and
cyclic Z[A±1]-modules.

Hint. Both M contain an essential sphere ([S2] ̸= 0 in π2(M)).

However proving a conjecture of Witten

Theorem (Gunningham, Jordan and Safronov, 2019)
The skein module S(M,Q(A)) is finite dimensional for any closed M.

dimQ(A) S(S2 × S1,Q(A)) = 1, and dimQ(A) S(RP3♯ R P3,Q(A)) = 4.
(Gilmer-Masbaum, Detcherry-Wolf, 2020) Σg=genus g surface

dimQ(A) S(Σg × S1,Q(A)) = 22g+1 + 2g − 1.

E. Kalfagianni (MSU)
Quantum Topology, Quantum Information and connections to Mathematical Physics (in honor of Professor Arthur Jaffe’s 85th birthday), May 27 - 31, 2024 Texas A&M .
5 / 15



Character variety connection

(2000, Przytycki-Sikora, Bullock) S(M,Z[A,A−1]) is a “quantization” of the
SL2(C)-character variety of M.

More precisely: The SL2(C)-character variety,

X (M) := Hom(π1(M),SL2(C))//SL2(C)

a scheme over C (X (M)= the algebraic set underlying X (M)).
C[X (M)]=coordinate ring of X (M) (i.e. is the algebra of global sections of
the structure sheaf of X (M))
Fact 1. X (M) can be non-reduced (i.e. C[X (M)] may contain nilpotents)
Then,

C[X (M)] = C[X (M)]/{Nil − radical}.

Fact 2: ρ, ρ′ : π1(M) → SL(2,C) are identified in X (M) iff trρ = trρ′.

E. Kalfagianni (MSU)
Quantum Topology, Quantum Information and connections to Mathematical Physics (in honor of Professor Arthur Jaffe’s 85th birthday), May 27 - 31, 2024 Texas A&M .
6 / 15



Character variety connection

(2000, Przytycki-Sikora, Bullock) S(M,Z[A,A−1]) is a “quantization” of the
SL2(C)-character variety of M.
More precisely: The SL2(C)-character variety,

X (M) := Hom(π1(M),SL2(C))//SL2(C)

a scheme over C (X (M)= the algebraic set underlying X (M)).
C[X (M)]=coordinate ring of X (M) (i.e. is the algebra of global sections of
the structure sheaf of X (M))
Fact 1. X (M) can be non-reduced (i.e. C[X (M)] may contain nilpotents)
Then,

C[X (M)] = C[X (M)]/{Nil − radical}.

Fact 2: ρ, ρ′ : π1(M) → SL(2,C) are identified in X (M) iff trρ = trρ′.

E. Kalfagianni (MSU)
Quantum Topology, Quantum Information and connections to Mathematical Physics (in honor of Professor Arthur Jaffe’s 85th birthday), May 27 - 31, 2024 Texas A&M .
6 / 15



Character variety connection

(2000, Przytycki-Sikora, Bullock) S(M,Z[A,A−1]) is a “quantization” of the
SL2(C)-character variety of M.
More precisely: The SL2(C)-character variety,

X (M) := Hom(π1(M),SL2(C))//SL2(C)

a scheme over C (X (M)= the algebraic set underlying X (M)).
C[X (M)]=coordinate ring of X (M) (i.e. is the algebra of global sections of
the structure sheaf of X (M))

Fact 1. X (M) can be non-reduced (i.e. C[X (M)] may contain nilpotents)
Then,

C[X (M)] = C[X (M)]/{Nil − radical}.

Fact 2: ρ, ρ′ : π1(M) → SL(2,C) are identified in X (M) iff trρ = trρ′.

E. Kalfagianni (MSU)
Quantum Topology, Quantum Information and connections to Mathematical Physics (in honor of Professor Arthur Jaffe’s 85th birthday), May 27 - 31, 2024 Texas A&M .
6 / 15



Character variety connection

(2000, Przytycki-Sikora, Bullock) S(M,Z[A,A−1]) is a “quantization” of the
SL2(C)-character variety of M.
More precisely: The SL2(C)-character variety,

X (M) := Hom(π1(M),SL2(C))//SL2(C)

a scheme over C (X (M)= the algebraic set underlying X (M)).
C[X (M)]=coordinate ring of X (M) (i.e. is the algebra of global sections of
the structure sheaf of X (M))
Fact 1. X (M) can be non-reduced (i.e. C[X (M)] may contain nilpotents)
Then,

C[X (M)] = C[X (M)]/{Nil − radical}.

Fact 2: ρ, ρ′ : π1(M) → SL(2,C) are identified in X (M) iff trρ = trρ′.

E. Kalfagianni (MSU)
Quantum Topology, Quantum Information and connections to Mathematical Physics (in honor of Professor Arthur Jaffe’s 85th birthday), May 27 - 31, 2024 Texas A&M .
6 / 15



Character variety connection

(2000, Przytycki-Sikora, Bullock) S(M,Z[A,A−1]) is a “quantization” of the
SL2(C)-character variety of M.
More precisely: The SL2(C)-character variety,

X (M) := Hom(π1(M),SL2(C))//SL2(C)

a scheme over C (X (M)= the algebraic set underlying X (M)).
C[X (M)]=coordinate ring of X (M) (i.e. is the algebra of global sections of
the structure sheaf of X (M))
Fact 1. X (M) can be non-reduced (i.e. C[X (M)] may contain nilpotents)
Then,

C[X (M)] = C[X (M)]/{Nil − radical}.

Fact 2: ρ, ρ′ : π1(M) → SL(2,C) are identified in X (M) iff trρ = trρ′.

E. Kalfagianni (MSU)
Quantum Topology, Quantum Information and connections to Mathematical Physics (in honor of Professor Arthur Jaffe’s 85th birthday), May 27 - 31, 2024 Texas A&M .
6 / 15



Character variety connection, con’t
The skein module “at A = −1 gives is the coordinate ring of the character
variety”.
Specifically: Let

S−1(M) := S(M,Z[A±1])⊗Z[A±1] C,

where the Z[A±1]-module structure of C is given by sending A to −1.

Theorem (Przytycki-Sikora, 2000)
S−1(M) has the structure of C-algebra that is isomorphic to the coordinate
ring C[X (M)].

The isomorphism:

ψ : S−1(M) −→ C[X (M)] sends K −→ −tK ,

for any knot.

Trace function: tK : C[X (M)] −→ C, tK ([ρ]) = Trρ([K ]), for all
ρ : π1(M) −→ SL2(C).
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Two questions:

Rest of the talk:

Question 1: When is S(M) finitely generating over Z[A±1]?

Question 2: How does the skein module S(M,Q(A)) relate to X (M) and
X (M) for generic values of A?

What we know about Questions 1 and 2: Conjectures and results

How are the two questions related,

How existence of essential surfaces contained in M affect the answers,

How progress on them allows to

1 compute the dimension of S(M,Q(A)) over Q(A).

2 begin to establish instances of conjectural relations of S(M,Q(A)) with
certain Floer theoretic invariants.
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When S(M) finitely generating over Z[A±1]?

Defin. essential surface in M= embedded, orientable surfaces S ⊂ M s.t.
1 S=2-sphere non-trivial in π2(M) or
2 S ̸= S2 and it is π1-injective.

Conjecture (Conjecture A)
The skein module S(M,Z[A±1]) is finitely generated if and only if M contains
no essential surfaces.

Related. Przytycki’s conjecture (Kirby list): If M contains no essential
surfaces then S(M,Z[A±1]) is free.
Notes: Conjecture asserts S(M,Z[A±1]) detects all essential surface.
SL2(C)-character variety of M detects some but not all essential surfaces!
(Culler-Shalen, 80’s):

X (M) is infinite ⇒ M contains essential surfaces.
However:
there are M containing essential surfaces but X (M) is finite!
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What is known:

Examples discussed above.

Conjecture A is true for M with infinite X (M):

Theorem (Detcherry-K.-Sikora, 2023)
If X (M) is infinite, then S(M,Z[A±1]) is not finitely generated.

Examples of M with essential surfaces and finite X (M)

Theorem (Mroczkowski, 2011, Belletti-Detcherry 2024)
S(M,Z[A±1]) is not finitely generated M := RP3#L(2p,1), for any p > 1.

(Detcherry-K.-Sikora, 2024): Conjecture A for all Seifert fibered manifolds

Theorem (Theorem B)
A Seifert 3-manifold M contains no essential surfaces if and only if
S(M,Z[A±1]) is finitely generated.

E. Kalfagianni (MSU)
Quantum Topology, Quantum Information and connections to Mathematical Physics (in honor of Professor Arthur Jaffe’s 85th birthday), May 27 - 31, 2024 Texas A&M .
10 / 15



What is known:

Examples discussed above.
Conjecture A is true for M with infinite X (M):

Theorem (Detcherry-K.-Sikora, 2023)
If X (M) is infinite, then S(M,Z[A±1]) is not finitely generated.

Examples of M with essential surfaces and finite X (M)

Theorem (Mroczkowski, 2011, Belletti-Detcherry 2024)
S(M,Z[A±1]) is not finitely generated M := RP3#L(2p,1), for any p > 1.

(Detcherry-K.-Sikora, 2024): Conjecture A for all Seifert fibered manifolds

Theorem (Theorem B)
A Seifert 3-manifold M contains no essential surfaces if and only if
S(M,Z[A±1]) is finitely generated.

E. Kalfagianni (MSU)
Quantum Topology, Quantum Information and connections to Mathematical Physics (in honor of Professor Arthur Jaffe’s 85th birthday), May 27 - 31, 2024 Texas A&M .
10 / 15



What is known:

Examples discussed above.
Conjecture A is true for M with infinite X (M):

Theorem (Detcherry-K.-Sikora, 2023)
If X (M) is infinite, then S(M,Z[A±1]) is not finitely generated.

Examples of M with essential surfaces and finite X (M)

Theorem (Mroczkowski, 2011, Belletti-Detcherry 2024)
S(M,Z[A±1]) is not finitely generated M := RP3#L(2p,1), for any p > 1.

(Detcherry-K.-Sikora, 2024): Conjecture A for all Seifert fibered manifolds

Theorem (Theorem B)
A Seifert 3-manifold M contains no essential surfaces if and only if
S(M,Z[A±1]) is finitely generated.

E. Kalfagianni (MSU)
Quantum Topology, Quantum Information and connections to Mathematical Physics (in honor of Professor Arthur Jaffe’s 85th birthday), May 27 - 31, 2024 Texas A&M .
10 / 15



What is known:

Examples discussed above.
Conjecture A is true for M with infinite X (M):

Theorem (Detcherry-K.-Sikora, 2023)
If X (M) is infinite, then S(M,Z[A±1]) is not finitely generated.

Examples of M with essential surfaces and finite X (M)

Theorem (Mroczkowski, 2011, Belletti-Detcherry 2024)
S(M,Z[A±1]) is not finitely generated M := RP3#L(2p,1), for any p > 1.

(Detcherry-K.-Sikora, 2024): Conjecture A for all Seifert fibered manifolds

Theorem (Theorem B)
A Seifert 3-manifold M contains no essential surfaces if and only if
S(M,Z[A±1]) is finitely generated.

E. Kalfagianni (MSU)
Quantum Topology, Quantum Information and connections to Mathematical Physics (in honor of Professor Arthur Jaffe’s 85th birthday), May 27 - 31, 2024 Texas A&M .
10 / 15



Applications: What is dimQ(A) S(M) ?

Recall: At A = −1, the skein module S−1(M) is the coordinate ring the
SL2(C)-character variety of M.

Question.How does the skein module S(M) := S(M,Q(A)) relate to
X (M) and X (M) for generic values of A?

We have an answer if S(M,Z[A±1]) is finitely generated:

Theorem (Detcherry-K.-Sikora, 2023)
If M is a closed 3-manifold with fiinitely generated S(M,Z[A±1]), then

|X (M)| ≤ dimQ(A) S(M) ≤ dimC C[X (M)].

In particular, if X (M) is reduced, then dimQ(A) S(M) = |X (M)|.

If X (M) is reduced we also.
1 obtain information about torsion in S(M,Z[A±1]);

2 we have a method to obtain a basis of S(M) from one of C[X (M)].
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Applications cont’

Computing X (M) and deciding whether its reduced is not easy

... We
computed and (and showed reducedness):

Computed S(M,Q(A)) for infinite families of hyperbolic 3-manifolds.

Computed X (M) for all Seifert 3-manifolds with out essential surfaces,
determined when it is reduced and computed dimQ(A) S(M).

For instance: M := Σ(p1,p2,p3) is a Brieskorn spheres

dimQ(A) S(M) = 1 +
(p1 − 1)(p2 − 1)(p3 − 1)

4
.

dimQ(A) S(M) relates to the SL2(C)-Casson (Curtis, 1995)

dimQ(A) S(M) is also the dimension of the zero degree part of
Abouzaid-Manolescu SL2(C)-Floer Homology.

It is conjectured that this is always true.
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Outline of proof of Theorem B:

M=Seifert fibered 3-manifold

S(M,Z[A±1]) is finitely generated ⇔ M contains no essential surfaces.

implication ⇒: Uses
S(M,Z[A±1]) finitely generated ⇒ X (M) is finite

This is true for all 3-manifolds! The proof relies on
1 Major recent advances on structure of surface skein modules at roots of

unity by
Bonahon-Wong , Ganev-Jordan-Safronov, Frohman-Kania-Bartoszyńska-Le....

2 The theory of the non-semisimple sl2-quantum invariants of 3-manifolds
constructed by by Constantino, Geer and Patureau-Mirand.

implication ⇐:
1 Use topological and character variety properties/results of Seifert fibered

3-manifolds to reduce the problem to a special class of Seifert fibered
3-manifolds: They fiber over S2 with three exceptional spheres and have
non-zero Euler number.

2 Use Skein-theoretic techniques to prove that S(M,Z[A±1]) is finitely
generated, for the special class of 3-manifolds.
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The manifolds M = M(S2; q1
p1
, q2

p2
, q3

p3
)

Start with S0,3 × S1 ( S0,3=“pair of pants”)

Obtain M by attaching solid V1,V2,V3 tori to ∂N with meridians attached
to curves of slopes q1

p1
, q2

p2
, q3

p3
.

Euler number e(M) := q1
p1

+ q2
p2

+ q3
p3

.

The skein module S(S0,3 × S1,Z[A±1]) generated by knots that “live” near
the boundary.

Using the Frohman-Gelca basis for skein algebras of tori the skein
module S(S0,3 × S1,Z[A±1]) corresponds to a subspace of Z6.

Adding the solid tori Vi leads to between generators of
S(S0,3 × S1,Z[A±1]) and a presentation of S(M,Z[A±1]).

This perspective allows to obtain an a complexity on S(M,Z[A±1]) that
under the hypothesis that e(M) ̸= 0, can be used to reduce the set of
generators to finitely many.
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