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Kauffman Bracket Skein Module

@ M= oriented, compact 3-manifold.
@ R= commutative ring R with a distinguished invertible element A € R
@ S(M, R)=Kauffman bracket skein module of M

@ S(M, R)= quotient of the free R-module on all framed unoriented links in
M, including the empty link, by the relations:
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@ M= oriented, compact 3-manifold.
@ R= commutative ring R with a distinguished invertible element A € R
@ S(M, R)=Kauffman bracket skein module of M

@ S(M, R)= quotient of the free R-module on all framed unoriented links in
M, including the empty link, by the relations:
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@ Defined in the 80’s (Przytyck| Turaev).
@ Surface skein algebra: S(M), for M = surface x /.
e Used in constructions of Witten-Reshetikhin -Turaev TQFT theories.

o Relations with character varieties, cluster algebras, quantum field theories,
hyperbolic geometry.....

@ In this talk: M= closed 3-manifold, and R = Z[A*'] or R = Q(A).
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@ S(S% R) = R, generated by the empty link:
@ Kauffman bracket: (') : link diagrams — R such that

(D=4 ) (year( )
(D)= (a2 -a7y0)

(o )=1

@ For D = D(K) where K = trefoil knot :

ONION )
=y(@>+(@)+(@>”"<(@)>
=As<@)+/ﬂ<@)+ﬂ(@))+“(@)>

a

+A<@)+A-=<@)+A-l<@)“-s<60>.
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@ S(S% R) = R, generated by the empty link:
@ Kauffman bracket: (') : link diagrams — R such that

Sy=al ) Cyea( )
(D)= (a2 -a7y0)

(o )=1

@ For D = D(K) where K = trefoil knot :

Oy -«
O ONONTR)
- Dy e e @yw(@)

+A<@)+A-=<@ +A-1<M>+A—s<@> .

@ We obtain: K = J(A,A=") - 0, J(A, A~")= Jones polyn. of framed K.
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What about other 3-manifolds?

@ How is (M) reflected in Z[A*']? more later
@ Embedded surfaces: e.g. non separating spheres?

@ Such spheres create torsion in S(S? x S', Z[A*"]) (Hoste-Przytycki,
90’s). Similar phenomena with other 71-injective surfaces.
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Examples: S(M, Z[A*"]) can be “wild”

@ (Hoste-Przytycki, 90's) S(L(p, q), Z[A*1]) are free, finitely generated.
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@ However proving a conjecture of Witten

Theorem (Gunningham, Jordan and Safronov, 2019)
The skein module S(M, Q(A)) is finite dimensional for any closed M.

o dim@(,q) S(Sz X 81 s Q(A)) =1, and dImQ(A) S(RPsﬁ R PSQ(A)) =4,
@ (Gilmer-Masbaum, Detcherry-Wolf, 2020) >,=genus g surface

dimgea) S(Zg x ST, Q(A)) = 229" +2g — 1.
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Character variety connection

@ (2000, Przytycki-Sikora, Bullock) S(M, Z[A, A~']) is a “quantization” of the
SL,(C)-character variety of M.
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o C[X(M)]=coordinate ring of X(M) (i.e. is the algebra of global sections of
the structure sheaf of X' (M))

@ Fact 1. X(M) can be non-reduced (i.e. C[X(M)] may contain nilpotents)
Then,
C[X(M)] = C[xX(M)]/{Nil — radical}.

@ Fact2: p,p' : (M) — SL(2,C) are identified in X(M) iff trp = trp’.
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Character variety connection, con’t

@ The skein module “at A = —1 gives is the coordinate ring of the character
variety”.
@ Specifically: Let

S_1(M) := S(M, Z[A*"]) @zpa+1 C,

where the Z[A*']-module structure of C is given by sending Ato —1.

Theorem (Przytycki-Sikora, 2000)

S_1(M) has the structure of C-algebra that is isomorphic to the coordinate
ring C[xX (M)].

@ The isomorphism:

¥ S_4(M) — C[X(M)] sends K — —1i,
for any knot.
@ Trace function: tx : C[X(M)] — C, t([p]) = Trp([K]), for all
P 7T1(M) — SLg((C).
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@ Rest of the talk:
@ Question 1: When is S(M) finitely generating over Z[A*']?

@ Question 2: How does the skein module S(M, Q(A)) relate to X(M) and
X (M) for generic values of A?
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When S(M) finitely generating over Z[A*1]?

@ Defin. essential surface in M= embedded, orientable surfaces S ¢ M s.t.
@ S=2-sphere non-trivial in m2(M) or
@ S +# S%anditis m-injective.
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@ Defin. essential surface in M= embedded, orientable surfaces S ¢ M s.t.
@ S=2-sphere non-trivial in m2(M) or
@ S +# S%anditis m-injective.

Conjecture (

The skein module S(M, Z|A*1)) is finitely generated if and only if M contains
no essential surfaces.

@ Related. Przytycki’s conjecture (Kirby lisi): If M contains no essential
surfaces then S(M, Z|A*1]) is free.

@ Notes: Conjecture asserts S(M, Z[A*']) detects all essential surface.
@ SL,(C)-character variety of M detects some but not all essential surfaces!

@ (Culler-Shalen, 80’s):
X (M) is infinite = M contains essential surfaces.

@ However:
@ there are M containing essential surfaces but X(M) is finite!
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What is known:

@ Examples discussed above.
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Theorem (Detcherry-K.-Sikora, 2023)

If X(M) is infinite, then S(M, Z[A*1]) is not finitely generated.

@ Examples of M with essential surfaces and finite X(M)

Theorem (Mroczkowski, 2011, Belletti-Detcherry 2024)

S(M, Z[A*"]) is not finitely generated M := RP34#L(2p, 1), forany p > 1.

@ (Detcherry-K.-Sikora, 2024): Conjecture A for all Seifert fibered manifolds

A Seifert 3-manifold M contains no essential surfaces if and only if
S(M, Z[A®"]) is finitely generated.
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Applications: What is dimga) S(M) ?

@ Recall: At A= —1, the skein module S_1(M) is the coordinate ring the
SLy(C)-character variety of M.

@ Question.How does the skein module S(M) := S(M,Q(A)) relate to
X (M) and X(M) for generic values of A?
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Theorem (Detcherry-K.-Sikora, 2023)

If M is a closed 3-manifold with fiinitely generated S(M, Z[A*+"]), then
IX(M)| < dimga S(M) < dime C[X(M)].

In particular, if X(M) is reduced, then dimg(a) S(M) = |X(M)].

@ If X(M) is reduced we also.
@ obtain information about torsion in S(M, Z[A*"]);

@ we have a method to obtain a basis of S(M) from one of C[X(M)].
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Applications cont’

@ Computing X (M) and deciding whether its reduced is not easy
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Applications cont’

@ Computing X(M) and deciding whether its reduced is not easy ... We
computed and (and showed reducedness):

@ Computed S(M, Q(A)) for infinite families of hyperbolic 3-manifolds.

@ Computed X (M) for all Seifert 3-manifolds with out essential surfaces,
determined when it is reduced and computed dimg(4) S(M).

@ For instance: M := X (py, p2, p3) is a Brieskorn spheres

(pr —1)(P2 — 1)(ps — 1)

dimQ(A)S(M) =1+ 2

@ dimg(a) S(M) relates to the SLp(C)-Casson (Curtis, 1995)

@ dimg(a) S(M) is also the dimension of the zero degree part of
Abouzaid-Manolescu SLx(C)-Floer Homology.

@ |t is conjectured that this is always true.

E. Kalfagianni (MSU) 12/15



Outline of proof of Theorem B:

@ M=Seifert fibered 3-manifold
S(M, Z[A*"]) is finitely generated <> M contains no essential surfaces.

@ implication =: Uses
S(M, Z[AF"]) finitely generated = X(M) is finite
This is true for all 3-manifolds! The proof relies on
@ Major recent advances on structure of surface skein modules at roots of
unity by
Bonahon-Wong , Ganev-Jordan-Safronov, Frohman-Kania-Bartoszynska-Le....
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@ M=Seifert fibered 3-manifold
S(M, Z[A*"]) is finitely generated <> M contains no essential surfaces.

@ implication =: Uses
S(M, Z[AF"]) finitely generated = X(M) is finite
This is true for all 3-manifolds! The proof relies on
@ Major recent advances on structure of surface skein modules at roots of
unity by
Bonahon-Wong , Ganev-Jordan-Safronov, Frohman-Kania-Bartoszynska-Le....
@ The theory of the non-semisimple sk-quantum invariants of 3-manifolds
constructed by by Constantino, Geer and Patureau-Mirand.

@ implication «:

@ Use topological and character variety properties/results of Seifert fibered
3-manifolds to reduce the problem to a special class of Seifert fibered
3-manifolds: They fiber over S? with three exceptional spheres and have
non-zero Euler number.

@ Use Skein-theoretic techniques to prove that S(M, Z[A%"]) is finitely
generated, for the special class of 3-manifolds.

E. Kalfagianni (MSU) 13/15



The manifolds M = M(S?; 4, % %)

P1’ P2’ P3

@ Start with Sp3 x S' ( Sy 3="pair of pants”)

@ Obtain M by attaching solid Vi, Vo, V3 tori to 9N with meridians attached
to curves of slopes 2—1, %7 %.

o Euler number e(M) := 7t + 2 + 2.

@ The skein module S(Sp 3 x S, Z|A*']) generated by knots that “live” near
the boundary.
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The manifolds M = M(S?; 2 % &)

@ Start with Sp3 x S' ( Sy 3="pair of pants”)

@ Obtain M by attaching solid Vi, Vo, V3 tori to 9N with meridians attached

g1 @ G
to curves of slopes o b B

o Euler number e(M) := 7t + 2 + 2.
@ The skein module S(Sp 3 x S, Z|A*']) generated by knots that “live” near
the boundary.

@ Using the Frohman-Gelca basis for skein algebras of tori the skein
module S(Sp3 x S', Z[A*"]) corresponds to a subspace of Z°.

@ Adding the solid tori V; leads to between generators of
S(So3 x S',Z[A*"]) and a presentation of S(M, Z[A*1]).

@ This perspective allows to obtain an a complexity on S(M, Z[A*"]) that
under the hypothesis that e(M) # 0, can be used to reduce the set of
generators to finitely many.
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