Skein modules, character varieties and essential surfaces of 3-manifolds

joint w/ R. Detcherry and A. Sikora.

E. Kalfagianni, Michigan State University

Quantum Topology, Quantum Information and connections to Mathematical Physics (in honor of Professor Arthur Jaffe's 85th birthday), May 27 - 31, 2024 Texas A&M .

- *M*= oriented, compact 3-manifold.
- R= commutative ring R with a distinguished invertible element $A \in R$
- S(M, R)=Kauffman bracket skein module of M
- S(M, R)= quotient of the free R-module on all framed unoriented links in M, including the empty link, by the relations:

K1:
$$A = A + A^{-1} + A^{-1} + A^{-2} + A^{-2}$$

- *M*= oriented, compact 3-manifold.
- R= commutative ring R with a distinguished invertible element $A \in R$
- S(M, R)=Kauffman bracket skein module of M
- S(M, R)= quotient of the free R-module on all framed unoriented links in M, including the empty link, by the relations:

K1:
$$A = A + A^{-1} + A^{-1} + A^{-2} + A^{-2}$$

- M= oriented, compact 3-manifold.
- R= commutative ring R with a distinguished invertible element $A \in R$
- S(M, R)=Kauffman bracket skein module of M
- S(M, R)= quotient of the free R-module on all framed unoriented links in M, including the empty link, by the relations:

K1:
$$A = A + A^{-1} + A^{-1} + A^{-2} + A^{-2}$$

• Defined in the 80's (Przytycki, Turaev).

- M= oriented, compact 3-manifold.
- R= commutative ring R with a distinguished invertible element $A \in R$
- S(M, R)=Kauffman bracket skein module of M
- S(M, R)= quotient of the free R-module on all framed unoriented links in M, including the empty link, by the relations:

K1:
$$A = A + A^{-1} + A^{-1} + A^{-2} + A^{-2}$$

- Defined in the 80's (Przytycki, Turaev).
- Surface skein algebra: S(M), for M =surface $\times I$.
 - Used in constructions of Witten-Reshetikhin -Turaev TQFT theories.
 - Relations with character varieties, cluster algebras, quantum field theories, hyperbolic geometry.....
- In this talk: M= closed 3-manifold, and $R = \mathbb{Z}[A^{\pm 1}]$ or $R = \mathbb{Q}(A)$.

副 と く ヨ と く ヨ と 二 ヨ

Examples

- $S(S^3, R) \cong R$, generated by the *empty link*:
- Kauffman bracket: $\langle \rangle$: link diagrams $\longrightarrow R$ such that

$$\begin{array}{c|c} \langle & \swarrow & \rangle = A \langle & \rangle & \langle & \rangle + A^{-1} \langle & \swarrow & \langle & & \\ \langle & \bigcirc & D \rangle = (-A^2 - A^{-2}) \langle D \rangle \\ \langle & & \emptyset & \rangle = 1 \end{array}$$

• For D = D(K) where K = trefoil knot :

Examples

- $S(S^3, R) \cong R$, generated by the *empty link*:
- Kauffman bracket: ⟨ ⟩ : link diagrams → R such that

$$\langle \swarrow \rangle = A \langle \rangle \langle \rangle + A^{-1} \langle \checkmark \rangle$$

$$\langle \bigcirc D \rangle = (-A^2 - A^{-2}) \langle D \rangle$$

$$\langle \emptyset \rangle = 1$$

• For D = D(K) where K = trefoil knot :

• We obtain: $K = J(A, A^{-1}) \cdot \emptyset$, $J(A, A^{-1})$ = Jones polyn, of framed K.

What about other 3-manifolds?

- How is $\pi_1(M)$ reflected in $\mathbb{Z}[A^{\pm 1}]$? more later
- Embedded surfaces: e.g. non separating spheres?

• Such spheres create torsion in $S(S^2 \times S^1, \mathbb{Z}[A^{\pm 1}])$ (Hoste-Przytycki, 90's). Similar phenomena with other π_1 -injective surfaces.

(Hoste-Przytycki, 90's) S(L(p,q), ℤ[A^{±1}]) are free, finitely generated.

🗇 🕨 🗸 글 🕨 🖉 🖉 🖓

- (Hoste-Przytycki, 90's) S(L(p,q), ℤ[A^{±1}]) are free, finitely generated.
- (Hoste-Przytycki, 90's) $S(S^2 \times S^1, \mathbb{Z}[A^{\pm 1}])$ is not finitely generated:

$$\mathcal{S}(\mathcal{S}^2 \times \mathcal{S}^1, \mathbb{Z}[\mathcal{A}^{\pm 1}]) = \mathbb{Z}[\mathcal{A}^{\pm 1}] \bigoplus \big(\bigoplus_i \mathbb{Z}[\mathcal{A}^{\pm 1}]/(1 - \mathcal{A}^{2i+4}) \big).$$

- (Hoste-Przytycki, 90's) S(L(p,q), ℤ[A^{±1}]) are free, finitely generated.
- (Hoste-Przytycki, 90's) $S(S^2 \times S^1, \mathbb{Z}[A^{\pm 1}])$ is not finitely generated:

$$\mathcal{S}(\mathcal{S}^2 imes \mathcal{S}^1, \mathbb{Z}[\mathcal{A}^{\pm 1}]) = \mathbb{Z}[\mathcal{A}^{\pm 1}] igoplus igl(igl(igl)_i \mathbb{Z}[\mathcal{A}^{\pm 1}]/(1-\mathcal{A}^{2i+4}) igr).$$

(Mroczkowski, 2011) S(ℝP³ # ℝ P³, ℤ[A^{±1}]) not a direct sum of free and cyclic ℤ[A^{±1}]-modules.

🗇 🕨 🗸 글 🕨 🖉 🖉 🖓

- (Hoste-Przytycki, 90's) S(L(p,q), ℤ[A^{±1}]) are free, finitely generated.
- (Hoste-Przytycki, 90's) $S(S^2 \times S^1, \mathbb{Z}[A^{\pm 1}])$ is not finitely generated:

$$\mathcal{S}(\mathcal{S}^2 \times \mathcal{S}^1, \mathbb{Z}[\mathcal{A}^{\pm 1}]) = \mathbb{Z}[\mathcal{A}^{\pm 1}] \bigoplus \left(\bigoplus_i \mathbb{Z}[\mathcal{A}^{\pm 1}]/(1 - \mathcal{A}^{2i+4}) \right).$$

- (Mroczkowski, 2011) S(ℝP³ # ℝ P³, ℤ[A^{±1}]) not a direct sum of free and cyclic ℤ[A^{±1}]-modules.
- Hint. Both M contain an *essential* sphere ([S^2] \neq 0 in $\pi_2(M)$).

- (Hoste-Przytycki, 90's) S(L(p,q), ℤ[A^{±1}]) are free, finitely generated.
- (Hoste-Przytycki, 90's) S(S² × S¹, ℤ[A^{±1}]) is not finitely generated:

$$\mathcal{S}(\mathcal{S}^2 \times \mathcal{S}^1, \mathbb{Z}[\mathcal{A}^{\pm 1}]) = \mathbb{Z}[\mathcal{A}^{\pm 1}] \bigoplus \left(\bigoplus_i \mathbb{Z}[\mathcal{A}^{\pm 1}]/(1 - \mathcal{A}^{2i+4}) \right).$$

- (Mroczkowski, 2011) S(ℝP³ # ℝ P³, ℤ[A^{±1}]) not a direct sum of free and cyclic ℤ[A^{±1}]-modules.
- Hint. Both M contain an *essential* sphere ([S^2] \neq 0 in $\pi_2(M)$).
- However proving a conjecture of Witten

Theorem (Gunningham, Jordan and Safronov, 2019)

The skein module $S(M, \mathbb{Q}(A))$ is finite dimensional for any closed M.

◆□ ◆ □ ◆ □ ◆ □ ◆ ○ ◆ □ ◆ ○ ◆ ○ ◆ □ ◆

- (Hoste-Przytycki, 90's) S(L(p,q), ℤ[A^{±1}]) are free, finitely generated.
- (Hoste-Przytycki, 90's) S(S² × S¹, ℤ[A^{±1}]) is not finitely generated:

$$\mathcal{S}(\mathcal{S}^2 \times \mathcal{S}^1, \mathbb{Z}[\mathcal{A}^{\pm 1}]) = \mathbb{Z}[\mathcal{A}^{\pm 1}] \bigoplus \left(\bigoplus_i \mathbb{Z}[\mathcal{A}^{\pm 1}]/(1 - \mathcal{A}^{2i+4}) \right).$$

- (Mroczkowski, 2011) S(ℝP³ # ℝ P³, ℤ[A^{±1}]) not a direct sum of free and cyclic ℤ[A^{±1}]-modules.
- Hint. Both M contain an *essential* sphere ([S^2] \neq 0 in $\pi_2(M)$).
- However proving a conjecture of Witten

Theorem (Gunningham, Jordan and Safronov, 2019)

The skein module $S(M, \mathbb{Q}(A))$ is finite dimensional for any closed M.

• dim_{$\mathbb{Q}(A)$} $S(S^2 \times S^1, \mathbb{Q}(A)) = 1$, and dim_{$\mathbb{Q}(A)$} $S(RP^3 \sharp \mathbb{R} P^3, \mathbb{Q}(A)) = 4$.

◇●● 単 《目》《目》 目 のへの

- (Hoste-Przytycki, 90's) S(L(p,q), ℤ[A^{±1}]) are free, finitely generated.
- (Hoste-Przytycki, 90's) $S(S^2 \times S^1, \mathbb{Z}[A^{\pm 1}])$ is not finitely generated:

$$\mathcal{S}(\mathcal{S}^2 \times \mathcal{S}^1, \mathbb{Z}[\mathcal{A}^{\pm 1}]) = \mathbb{Z}[\mathcal{A}^{\pm 1}] \bigoplus \left(\bigoplus_i \mathbb{Z}[\mathcal{A}^{\pm 1}]/(1 - \mathcal{A}^{2i+4}) \right).$$

- (Mroczkowski, 2011) S(ℝP³ # ℝ P³, ℤ[A^{±1}]) not a direct sum of free and cyclic ℤ[A^{±1}]-modules.
- Hint. Both M contain an *essential* sphere ([S^2] \neq 0 in $\pi_2(M)$).
- However proving a conjecture of Witten

Theorem (Gunningham, Jordan and Safronov, 2019)

The skein module $S(M, \mathbb{Q}(A))$ is finite dimensional for any closed M.

- dim_{$\mathbb{Q}(A)$} $S(S^2 \times S^1, \mathbb{Q}(A)) = 1$, and dim_{$\mathbb{Q}(A)$} $S(RP^3 \sharp \mathbb{R} P^3, \mathbb{Q}(A)) = 4$.
- (Gilmer-Masbaum, Detcherry-Wolf, 2020) Σ_g =genus *g* surface

$$\dim_{\mathbb{Q}(\mathcal{A})} S(\Sigma_g \times S^1, \mathbb{Q}(\mathcal{A})) = 2^{2g+1} + 2g - 1.$$

Character variety connection

(2000, Przytycki-Sikora, Bullock) S(M, ℤ[A, A⁻¹]) is a "quantization" of the SL₂(ℂ)-character variety of M.

Character variety connection

- (2000, Przytycki-Sikora, Bullock) S(M, ℤ[A, A⁻¹]) is a "quantization" of the SL₂(ℂ)-character variety of M.
- More precisely: The SL₂(C)-character variety,

 $\mathcal{X}(M) := \operatorname{Hom}(\pi_1(M), \operatorname{SL}_2(\mathbb{C}))/\!\!/ \operatorname{SL}_2(\mathbb{C})$

Character variety connection

- (2000, Przytycki-Sikora, Bullock) S(M, ℤ[A, A⁻¹]) is a "quantization" of the SL₂(ℂ)-character variety of M.
- More precisely: The SL₂(C)-character variety,

 $\mathcal{X}(M) := \operatorname{Hom}(\pi_1(M), \operatorname{SL}_2(\mathbb{C})) / \!\!/ \operatorname{SL}_2(\mathbb{C})$

a scheme over \mathbb{C} (X(M))= the algebraic set underlying $\mathcal{X}(M)$).

 C[X(M)]=coordinate ring of X(M) (i.e. is the algebra of global sections of the structure sheaf of X(M))

- (2000, Przytycki-Sikora, Bullock) S(M, ℤ[A, A⁻¹]) is a "quantization" of the SL₂(ℂ)-character variety of M.
- More precisely: The SL₂(C)-character variety,

 $\mathcal{X}(M) := \operatorname{Hom}(\pi_1(M), \operatorname{SL}_2(\mathbb{C})) /\!\!/ \operatorname{SL}_2(\mathbb{C})$

a scheme over $\mathbb{C}(X(M))$ = the algebraic set underlying $\mathcal{X}(M)$).

- C[X(M)]=coordinate ring of X(M) (i.e. is the algebra of global sections of the structure sheaf of X(M))
- Fact 1. $\mathcal{X}(M)$ can be *non-reduced* (i.e. $\mathbb{C}[\mathcal{X}(M)]$ may contain nilpotents) Then,

$$\mathbb{C}[X(M)] = \mathbb{C}[\mathcal{X}(M)] / \{\text{Nil} - \text{radical}\}.$$

- (2000, Przytycki-Sikora, Bullock) S(M, ℤ[A, A⁻¹]) is a "quantization" of the SL₂(ℂ)-character variety of M.
- More precisely: The SL₂(C)-character variety,

 $\mathcal{X}(M) := \operatorname{Hom}(\pi_1(M), \operatorname{SL}_2(\mathbb{C})) /\!\!/ \operatorname{SL}_2(\mathbb{C})$

a scheme over $\mathbb{C}(X(M))$ = the algebraic set underlying $\mathcal{X}(M)$).

- C[X(M)]=coordinate ring of X(M) (i.e. is the algebra of global sections of the structure sheaf of X(M))
- Fact 1. $\mathcal{X}(M)$ can be *non-reduced* (i.e. $\mathbb{C}[\mathcal{X}(M)]$ may contain nilpotents) Then,

$$\mathbb{C}[X(M)] = \mathbb{C}[\mathcal{X}(M)] / \{\text{Nil} - \text{radical}\}.$$

• Fact 2: $\rho, \rho' : \pi_1(M) \to SL(2, \mathbb{C})$ are identified in X(M) iff $tr \rho = tr \rho'$.

→ □ → → 三 → → 三 → へ ○ → → □ → → ○ へ ○

Character variety connection, con't

- The skein module "at A = -1 gives is the coordinate ring of the character variety".
- Specifically: Let

$$S_{-1}(M) := S(M, \mathbb{Z}[A^{\pm 1}]) \otimes_{\mathbb{Z}[A^{\pm 1}]} \mathbb{C},$$

where the $\mathbb{Z}[A^{\pm 1}]$ -module structure of \mathbb{C} is given by sending A to -1.

Theorem (Przytycki-Sikora, 2000)

 $S_{-1}(M)$ has the structure of \mathbb{C} -algebra that is isomorphic to the coordinate ring $\mathbb{C}[\mathcal{X}(M)]$.

• The isomorphism:

$$\psi: S_{-1}(M) \longrightarrow \mathbb{C}[\mathcal{X}(M)] \text{ sends } K \longrightarrow -t_{\mathcal{K}},$$

for any knot.

• Trace function: $t_{\mathcal{K}} : \mathbb{C}[\mathcal{X}(M)] \longrightarrow \mathbb{C}, \quad t_{\mathcal{K}}([\rho]) = Tr\rho([\mathcal{K}]), \text{ for all } \rho : \pi_1(M) \longrightarrow SL_2(\mathbb{C}).$

- Rest of the talk:
- **Question 1:** When is S(M) finitely generating over $\mathbb{Z}[A^{\pm 1}]$?
- **Question 2:** How does the skein module $S(M, \mathbb{Q}(A))$ relate to $\mathcal{X}(M)$ and X(M) for generic values of A?

- Rest of the talk:
- **Question 1:** When is $\mathcal{S}(M)$ finitely generating over $\mathbb{Z}[A^{\pm 1}]$?
- **Question 2:** How does the skein module $S(M, \mathbb{Q}(A))$ relate to $\mathcal{X}(M)$ and X(M) for generic values of A?
- What we know about Questions 1 and 2: Conjectures and results
- How are the two questions related,
- How existence of *essential* surfaces contained in *M* affect the answers,

- Rest of the talk:
- **Question 1:** When is $\mathcal{S}(M)$ finitely generating over $\mathbb{Z}[A^{\pm 1}]$?
- **Question 2:** How does the skein module $S(M, \mathbb{Q}(A))$ relate to $\mathcal{X}(M)$ and X(M) for generic values of A?
- What we know about Questions 1 and 2: Conjectures and results
- How are the two questions related,
- How existence of *essential* surfaces contained in *M* affect the answers,
- How progress on them allows to
 - **(**) compute the dimension of $\mathcal{S}(M, \mathbb{Q}(A))$ over $\mathbb{Q}(A)$.
 - Subscription begin to establish instances of conjectural relations of $\mathcal{S}(M, \mathbb{Q}(A))$ with certain Floer theoretic invariants.

- Rest of the talk:
- **Question 1:** When is $\mathcal{S}(M)$ finitely generating over $\mathbb{Z}[A^{\pm 1}]$?
- **Question 2:** How does the skein module $S(M, \mathbb{Q}(A))$ relate to $\mathcal{X}(M)$ and X(M) for generic values of A?
- What we know about Questions 1 and 2: Conjectures and results
- How are the two questions related,
- How existence of *essential* surfaces contained in *M* affect the answers,
- How progress on them allows to
 - **(**) compute the dimension of $\mathcal{S}(M, \mathbb{Q}(A))$ over $\mathbb{Q}(A)$.
 - Subscription begin to establish instances of conjectural relations of $\mathcal{S}(M, \mathbb{Q}(A))$ with certain Floer theoretic invariants.

- **Defin.** essential surface in M= embedded, orientable surfaces $S \subset M$ s.t.
 - **(1)** S=2-sphere non-trivial in $\pi_2(M)$ or
 - 2 $S \neq S^2$ and it is π_1 -injective.

Defin. essential surface in M= embedded, orientable surfaces S ⊂ M s.t.

- **(1)** S=2-sphere non-trivial in $\pi_2(M)$ or
- 2 $S \neq S^2$ and it is π_1 -injective.

Conjecture (Conjecture A)

The skein module $S(M, \mathbb{Z}[A^{\pm 1}])$ is finitely generated if and only if M contains no essential surfaces.

Defin. essential surface in M= embedded, orientable surfaces S ⊂ M s.t.

- **(1)** S=2-sphere non-trivial in $\pi_2(M)$ or
- 2 $S \neq S^2$ and it is π_1 -injective.

Conjecture (Conjecture A)

The skein module $S(M, \mathbb{Z}[A^{\pm 1}])$ is finitely generated if and only if M contains no essential surfaces.

Related. Przytycki's conjecture (*Kirby list*): If *M* contains no essential surfaces then S(M, Z[A^{±1}]) is free.

Defin. essential surface in M= embedded, orientable surfaces S ⊂ M s.t.

- **(1)** S=2-sphere non-trivial in $\pi_2(M)$ or
- 2 $S \neq S^2$ and it is π_1 -injective.

Conjecture (Conjecture A)

The skein module $S(M, \mathbb{Z}[A^{\pm 1}])$ is finitely generated if and only if M contains no essential surfaces.

- Related. Przytycki's conjecture (*Kirby list*): If *M* contains no essential surfaces then S(M, Z[A^{±1}]) is free.
- Notes: Conjecture asserts $S(M, \mathbb{Z}[A^{\pm 1}])$ detects all essential surface.

→ ▲ 문 ▶ ▲ 문 ▶ ... 문

Defin. essential surface in M= embedded, orientable surfaces S ⊂ M s.t.

- **(1)** S=2-sphere non-trivial in $\pi_2(M)$ or
- 2 $S \neq S^2$ and it is π_1 -injective.

Conjecture (Conjecture A)

The skein module $S(M, \mathbb{Z}[A^{\pm 1}])$ is finitely generated if and only if M contains no essential surfaces.

- Related. Przytycki's conjecture (*Kirby list*): If *M* contains no essential surfaces then S(M, Z[A^{±1}]) is free.
- Notes: Conjecture asserts $S(M, \mathbb{Z}[A^{\pm 1}])$ detects all essential surface.
- SL₂(C)-character variety of *M* detects some but not all essential surfaces!
- (Culler-Shalen, 80's): X(M) is infinite $\Rightarrow M$ contains essential surfaces.

▲□ → ▲ □ → ▲ □ → □ □

Defin. essential surface in M= embedded, orientable surfaces S ⊂ M s.t.

- **(1)** S=2-sphere non-trivial in $\pi_2(M)$ or
- 2 $S \neq S^2$ and it is π_1 -injective.

Conjecture (Conjecture A)

The skein module $S(M, \mathbb{Z}[A^{\pm 1}])$ is finitely generated if and only if M contains no essential surfaces.

- Related. Przytycki's conjecture (*Kirby list*): If *M* contains no essential surfaces then S(M, Z[A^{±1}]) is free.
- Notes: Conjecture asserts $S(M, \mathbb{Z}[A^{\pm 1}])$ detects all essential surface.
- SL₂(C)-character variety of *M* detects some but not all essential surfaces!
- (Culler-Shalen, 80's): X(M) is infinite $\Rightarrow M$ contains essential surfaces.
- However:
- there are *M* containing essential surfaces but *X*(*M*) is finite!

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

• Examples discussed above.

æ

What is known:

- Examples discussed above.
- Conjecture A is true for M with infinite X(M):

Theorem (Detcherry-K.-Sikora, 2023)

If X(M) is infinite, then $S(M, \mathbb{Z}[A^{\pm 1}])$ is not finitely generated.

What is known:

- Examples discussed above.
- Conjecture A is true for M with infinite X(M):

Theorem (Detcherry-K.-Sikora, 2023)

If X(M) is infinite, then $S(M, \mathbb{Z}[A^{\pm 1}])$ is not finitely generated.

• Examples of M with essential surfaces and finite X(M)

Theorem (Mroczkowski, 2011, Belletti-Detcherry 2024)

 $\mathcal{S}(M, \mathbb{Z}[A^{\pm 1}])$ is not finitely generated $M := \mathbb{R}P^3 \# L(2p, 1)$, for any p > 1.

What is known:

- Examples discussed above.
- Conjecture A is true for M with infinite X(M):

Theorem (Detcherry-K.-Sikora, 2023)

If X(M) is infinite, then $S(M, \mathbb{Z}[A^{\pm 1}])$ is not finitely generated.

• Examples of M with essential surfaces and finite X(M)

Theorem (Mroczkowski, 2011, Belletti-Detcherry 2024)

 $\mathcal{S}(M, \mathbb{Z}[A^{\pm 1}])$ is not finitely generated $M := \mathbb{R}P^3 \# L(2p, 1)$, for any p > 1.

• (Detcherry-K.-Sikora, 2024): Conjecture A for all Seifert fibered manifolds

Theorem (Theorem B)

A Seifert 3-manifold M contains no essential surfaces if and only if $\mathcal{S}(M, \mathbb{Z}[A^{\pm 1}])$ is finitely generated.

Applications: What is $\dim_{\mathbb{Q}(A)} \mathcal{S}(M)$?

- Recall: At A = -1, the skein module $S_{-1}(M)$ is the coordinate ring the $SL_2(\mathbb{C})$ -character variety of M.
- **Question.**How does the skein module $S(M) := S(M, \mathbb{Q}(A))$ relate to $\mathcal{X}(M)$ and X(M) for generic values of *A*?

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ■ つくゆ

Applications: What is $\dim_{\mathbb{Q}(A)} \mathcal{S}(M)$?

- Recall: At A = -1, the skein module $S_{-1}(M)$ is the coordinate ring the $SL_2(\mathbb{C})$ -character variety of M.
- Question. How does the skein module S(M) := S(M, Q(A)) relate to X(M) and X(M) for generic values of A?
- We have an answer if $S(M, \mathbb{Z}[A^{\pm 1}])$ is finitely generated:

Theorem (Detcherry-K.-Sikora, 2023)

If M is a closed 3-manifold with fiinitely generated $S(M, \mathbb{Z}[A^{\pm 1}])$, then

$$|X(M)| \leq \dim_{\mathbb{Q}(A)} \mathcal{S}(M) \leq \dim_{\mathbb{C}} \mathbb{C}[\mathcal{X}(M)].$$

In particular, if $\mathcal{X}(M)$ is reduced, then $\dim_{\mathbb{Q}(A)} \mathcal{S}(M) = |X(M)|$.

• If $\mathcal{X}(M)$ is reduced we also.

|▲□ ▶ ▲ 三 ▶ ▲ 三 ▶ ● ○ ○ ○ ○

Applications: What is $\dim_{\mathbb{Q}(A)} \mathcal{S}(M)$?

- Recall: At A = -1, the skein module $S_{-1}(M)$ is the coordinate ring the $SL_2(\mathbb{C})$ -character variety of M.
- Question. How does the skein module S(M) := S(M, Q(A)) relate to X(M) and X(M) for generic values of A?
- We have an answer if $S(M, \mathbb{Z}[A^{\pm 1}])$ is finitely generated:

Theorem (Detcherry-K.-Sikora, 2023)

If M is a closed 3-manifold with fiinitely generated $S(M, \mathbb{Z}[A^{\pm 1}])$, then

 $|X(M)| \leq \dim_{\mathbb{Q}(A)} \mathcal{S}(M) \leq \dim_{\mathbb{C}} \mathbb{C}[\mathcal{X}(M)].$

In particular, if $\mathcal{X}(M)$ is reduced, then $\dim_{\mathbb{Q}(A)} \mathcal{S}(M) = |X(M)|$.

- If $\mathcal{X}(M)$ is reduced we also.
 - obtain information about torsion in $S(M, \mathbb{Z}[A^{\pm 1}])$;
 - **(2)** we have a method to obtain a basis of $\mathcal{S}(M)$ from one of $\mathbb{C}[X(M)]$.

・ロ・・母・・ヨ・・ヨ・ のへぐ

• Computing $\mathcal{X}(M)$ and deciding whether its reduced is not easy

æ

★ E ► ★ E ►

• Computing $\mathcal{X}(M)$ and deciding whether its reduced is not easy ... We computed and (and showed reducedness):

- E > - E >

- Computing X(M) and deciding whether its reduced is not easy ... We computed and (and showed reducedness):
- Computed $S(M, \mathbb{Q}(A))$ for infinite families of hyperbolic 3-manifolds.

★ E ► ★ E ►

- Computing X(M) and deciding whether its reduced is not easy ... We computed and (and showed reducedness):
- Computed $S(M, \mathbb{Q}(A))$ for infinite families of hyperbolic 3-manifolds.

★ E ► ★ E ►

- Computing $\mathcal{X}(M)$ and deciding whether its reduced is not easy ... We computed and (and showed reducedness):
- Computed $S(M, \mathbb{Q}(A))$ for infinite families of hyperbolic 3-manifolds.
- Computed $\mathcal{X}(M)$ for all *Seifert 3-manifolds* with out essential surfaces, determined when it is reduced and computed dim_{Q(A)} $\mathcal{S}(M)$.

- Computing X(M) and deciding whether its reduced is not easy ... We computed and (and showed reducedness):
- Computed $S(M, \mathbb{Q}(A))$ for infinite families of hyperbolic 3-manifolds.
- Computed X(M) for all Seifert 3-manifolds with out essential surfaces, determined when it is reduced and computed dim_{Q(A)} S(M).
- For instance: $M := \Sigma(p_1, p_2, p_3)$ is a Brieskorn spheres

$$\dim_{\mathbb{Q}(A)} \mathcal{S}(M) = 1 + \frac{(p_1 - 1)(p_2 - 1)(p_3 - 1)}{4}$$

- Computing X(M) and deciding whether its reduced is not easy ... We computed and (and showed reducedness):
- Computed $S(M, \mathbb{Q}(A))$ for infinite families of hyperbolic 3-manifolds.
- Computed X(M) for all Seifert 3-manifolds with out essential surfaces, determined when it is reduced and computed dim_{Q(A)} S(M).
- For instance: M := Σ(p₁, p₂, p₃) is a Brieskorn spheres

$$\dim_{\mathbb{Q}(A)} \mathcal{S}(M) = 1 + \frac{(p_1 - 1)(p_2 - 1)(p_3 - 1)}{4}$$

• $\dim_{\mathbb{Q}(A)} \mathcal{S}(M)$ relates to the $SL_2(\mathbb{C})$ -Casson (Curtis, 1995)

- Computing X(M) and deciding whether its reduced is not easy ... We computed and (and showed reducedness):
- Computed $S(M, \mathbb{Q}(A))$ for infinite families of hyperbolic 3-manifolds.
- Computed X(M) for all Seifert 3-manifolds with out essential surfaces, determined when it is reduced and computed dim_{Q(A)} S(M).
- For instance: M := Σ(p₁, p₂, p₃) is a Brieskorn spheres

$$\dim_{\mathbb{Q}(A)} \mathcal{S}(M) = 1 + \frac{(p_1 - 1)(p_2 - 1)(p_3 - 1)}{4}$$

- $\dim_{\mathbb{Q}(A)} \mathcal{S}(M)$ relates to the $SL_2(\mathbb{C})$ -Casson (Curtis, 1995)
- dim_{Q(A)} S(M) is also the dimension of the zero degree part of Abouzaid-Manolescu SL₂(ℂ)-Floer Homology.

<回> < 注)、< 注)、< 注)、 (注)、 (注)

- Computing X(M) and deciding whether its reduced is not easy ... We computed and (and showed reducedness):
- Computed $S(M, \mathbb{Q}(A))$ for infinite families of hyperbolic 3-manifolds.
- Computed X(M) for all Seifert 3-manifolds with out essential surfaces, determined when it is reduced and computed dim_{Q(A)} S(M).
- For instance: M := Σ(p₁, p₂, p₃) is a Brieskorn spheres

$$\dim_{\mathbb{Q}(A)} \mathcal{S}(M) = 1 + \frac{(p_1 - 1)(p_2 - 1)(p_3 - 1)}{4}$$

- $\dim_{\mathbb{Q}(A)} \mathcal{S}(M)$ relates to the $SL_2(\mathbb{C})$ -Casson (Curtis, 1995)
- dim_{Q(A)} S(M) is also the dimension of the zero degree part of Abouzaid-Manolescu SL₂(ℂ)-Floer Homology.
- It is conjectured that this is always true.

▲□ → ▲ □ → ▲ □ → □ □

Outline of proof of Theorem B:

• M=Seifert fibered 3-manifold

 $\mathcal{S}(M, \mathbb{Z}[A^{\pm 1}])$ is finitely generated $\Leftrightarrow M$ contains no essential surfaces.

Implication ⇒: Uses

 $\mathcal{S}(M, \mathbb{Z}[A^{\pm 1}])$ finitely generated $\Rightarrow X(M)$ is finite

This is true for all 3-manifolds! The proof relies on

 Major recent advances on structure of surface skein modules at roots of unity by

Bonahon-Wong , Ganev-Jordan-Safronov, Frohman-Kania-Bartoszyńska-Le....

★ E ► < E ► E</p>

Outline of proof of Theorem B:

• M=Seifert fibered 3-manifold

 $\mathcal{S}(M, \mathbb{Z}[A^{\pm 1}])$ is finitely generated $\Leftrightarrow M$ contains no essential surfaces.

Implication ⇒: Uses

 $\mathcal{S}(M, \mathbb{Z}[A^{\pm 1}])$ finitely generated $\Rightarrow X(M)$ is finite

This is true for all 3-manifolds! The proof relies on

- Major recent advances on structure of surface skein modules at roots of unity by
- Bonahon-Wong , Ganev-Jordan-Safronov, Frohman-Kania-Bartoszyńska-Le....
 - The theory of the non-semisimple sl₂-quantum invariants of 3-manifolds constructed by by Constantino, Geer and Patureau-Mirand.

★ E ► < E ► E</p>

Outline of proof of Theorem B:

• M=Seifert fibered 3-manifold

 $\mathcal{S}(M, \mathbb{Z}[A^{\pm 1}])$ is finitely generated $\Leftrightarrow M$ contains no essential surfaces.

● implication ⇒: Uses

 $\mathcal{S}(M, \mathbb{Z}[A^{\pm 1}])$ finitely generated $\Rightarrow X(M)$ is finite

This is true for all 3-manifolds! The proof relies on

- Major recent advances on structure of surface skein modules at roots of unity by
- Bonahon-Wong , Ganev-Jordan-Safronov, Frohman-Kania-Bartoszyńska-Le....
 - The theory of the non-semisimple sl₂-quantum invariants of 3-manifolds constructed by by Constantino, Geer and Patureau-Mirand.

• *implication* \Leftarrow :

- Use topological and character variety properties/results of Seifert fibered 3-manifolds to reduce the problem to a special class of Seifert fibered 3-manifolds: They fiber over S² with three exceptional spheres and have non-zero Euler number.
- Use Skein-theoretic techniques to prove that S(M, Z[A^{±1}]) is finitely generated, for the special class of 3-manifolds.

The manifolds $M = M(S^2; \frac{q_1}{p_1}, \frac{q_2}{p_2}, \frac{q_3}{p_3})$

- Start with $S_{0,3} \times S^1$ ($S_{0,3}$ ="pair of pants")
- Obtain *M* by attaching solid V₁, V₂, V₃ tori to ∂N with meridians attached to curves of slopes ^{q₁}/_{p₁}, ^{q₂}/_{p₂}, ^{q₃}/_{p₃}.
- Euler number $e(M) := \frac{q_1}{p_1} + \frac{q_2}{p_2} + \frac{q_3}{p_3}$.
- The skein module S(S_{0,3} × S¹, ℤ[A^{±1}]) generated by knots that "live" near the boundary.

The manifolds $M = M(S^2; \frac{q_1}{p_1}, \frac{q_2}{p_2}, \frac{q_3}{p_3})$

- Start with $S_{0,3} \times S^1$ ($S_{0,3}$ ="pair of pants")
- Obtain *M* by attaching solid V₁, V₂, V₃ tori to ∂N with meridians attached to curves of slopes ^{q₁}/_{p₁}, ^{q₂}/_{p₂}, ^{q₃}/_{p₃}.
- Euler number $e(M) := \frac{q_1}{p_1} + \frac{q_2}{p_2} + \frac{q_3}{p_3}$.
- The skein module S(S_{0,3} × S¹, ℤ[A^{±1}]) generated by knots that "live" near the boundary.
- Using the Frohman-Gelca basis for skein algebras of tori the skein module S(S_{0,3} × S¹, ℤ[A^{±1}]) corresponds to a subspace of ℤ⁶.
- Adding the solid tori V_i leads to between generators of S(S_{0,3} × S¹, Z[A^{±1}]) and a presentation of S(M, Z[A^{±1}]).
- This perspective allows to obtain an a complexity on $\mathcal{S}(M, \mathbb{Z}[A^{\pm 1}])$ that under the hypothesis that $e(M) \neq 0$, can be used to reduce the set of generators to finitely many.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − のへで

- R. Detcherry, E. Kalfagianni, A. Sikora: Kauffman bracket skein modules of small 3-manifolds, math.ArXiv:2305.16188,
- R. Detcherry, E. Kalfagianni, A. Sikora: Skein modules and character varieties of Seifert manifolds, math.arXiv:2405.18557

- R. Detcherry, E. Kalfagianni, A. Sikora: Kauffman bracket skein modules of small 3-manifolds, math.ArXiv:2305.16188,
- R. Detcherry, E. Kalfagianni, A. Sikora: Skein modules and character varieties of Seifert manifolds, math.arXiv:2405.18557