Skein modules, character varieties and essential surfaces of 3-manifolds

joint w/ R. Detcherry and A. Sikora.

E. Kalfagianni, Michigan State University

Quantum Topology, Quantum Information and connections to Mathematical Physics (in honor of Professor Arthur Jaffe's 85th birthday), May 27 - 31, 2024 Texas A&M .

[Qua](#page-1-0)[ntum T](#page-0-0)[op](#page-1-0)[olog](#page-0-0)[y, Qu](#page-53-0)[antu](#page-0-0)[m Inf](#page-53-0)[orm](#page-0-0)[ation a](#page-53-0)nd connections to Mathematical Physics (in honor of Professor Arthur Jaffe's 85th birthday), May 27 - 31, 2024 Texas A&M .

つのへ

- • M= oriented, compact 3-manifold.
- *R*= commutative ring *R* with a distinguished invertible element *A* ∈ *R*
- S(*M*, *R*)=*Kauffman bracket skein module* of *M*
- $S(M, R)$ = quotient of the free R-module on all framed unoriented links in *M*, including the empty link, by the relations:

$$
K1: \bigotimes_{\mathbf{A}} = A \bigvee_{\mathbf{A}} \bigotimes_{\mathbf{A}} + A^{-1} \bigotimes_{\mathbf{A}} K2: L \sqcup \bigotimes_{\mathbf{A}} = (-A^2 - A^{-2})L
$$

- • M= oriented, compact 3-manifold.
- *R*= commutative ring *R* with a distinguished invertible element *A* ∈ *R*
- S(*M*, *R*)=*Kauffman bracket skein module* of *M*
- $S(M, R)$ = quotient of the free R-module on all framed unoriented links in *M*, including the empty link, by the relations:

$$
K1: \bigotimes_{\mathbf{A}} = A \bigvee_{\mathbf{A}} \bigotimes_{\mathbf{A}} + A^{-1} \bigotimes_{\mathbf{A}} K2: L \sqcup \bigotimes_{\mathbf{A}} = (-A^2 - A^{-2})L
$$

- • M= oriented, compact 3-manifold.
- *R*= commutative ring *R* with a distinguished invertible element *A* ∈ *R*
- S(*M*, *R*)=*Kauffman bracket skein module* of *M*
- $S(M, R)$ = quotient of the free R-module on all framed unoriented links in *M*, including the empty link, by the relations:

$$
K1: \bigotimes_{\mathbf{A}} A = \mathbf{A} \bigotimes_{\mathbf{A}} A^{-1} \bigotimes_{\mathbf{A}} K2: L \sqcup \bigotimes_{\mathbf{A}} B = (-A^2 - A^{-2})L
$$

• Defined in the 80's (Przytycki, Turaev).

- • M= oriented, compact 3-manifold.
- *R*= commutative ring *R* with a distinguished invertible element *A* ∈ *R*
- S(*M*, *R*)=*Kauffman bracket skein module* of *M*
- $S(M, R)$ = quotient of the free R-module on all framed unoriented links in *M*, including the empty link, by the relations:

$$
K1: \bigotimes A \bigcirc \bigcirc (A - A^{-2})L
$$

$$
K2: L \sqcup \bigcirc (A - A^{-2})L
$$

$$
\hat{A}
$$

- Defined in the 80's (Przytycki, Turaev).
- *Surface skein algebra:* $S(M)$, for $M = \text{surface} \times I$.
	- Used in constructions of Witten-Reshetikhin -Turaev TQFT theories.
	- Relations with character varieties, cluster algebras, quantum field theories, hyperbolic geometry.....
- In this talk: $M =$ closed 3-manifold, and $R = \mathbb{Z}[A^{\pm 1}]$ or $R = \mathbb{Q}(A)$.

[Qua](#page-5-0)[nt](#page-0-0)[um](#page-1-0) [T](#page-4-0)[op](#page-5-0)[olog](#page-0-0)[y, Qu](#page-53-0)[antu](#page-0-0)[m Inf](#page-53-0)[orm](#page-0-0)[ation a](#page-53-0)nd connections to Mathematical Physics (in honor of Professor Arthur Jaffe's 85th birthday), May 27 - 31, 2024 Texas A&M .

- വെ വ

Examples

- $S(S^3, R) \cong R$, generated by the *empty link*:
- *Kauffman bracket:* $\langle \rangle$: link diagrams $→$ *R* such that

$$
\langle \bigtimes \rangle = A \langle \bigtimes \rangle + A^{-1} \langle \bigtimes \rangle
$$

$$
\langle \bigcirc D \rangle = (-A^2 - A^{-2}) \langle D \rangle
$$

$$
\langle \emptyset \rangle = 1
$$

• For $D = D(K)$ where $K = \text{trefoil knot}$:

[Qua](#page-6-0)[nt](#page-4-0)[um](#page-5-0) [T](#page-6-0)[op](#page-7-0)[olog](#page-0-0)[y, Qu](#page-53-0)[antu](#page-0-0)[m Inf](#page-53-0)[orm](#page-0-0)[ation a](#page-53-0)nd connections to Mathematical Physics (in honor of Professor Arthur Jaffe's 85th birthday), May 27 - 31, 2024 Texas A&M .

つひつ

Examples

- $S(S^3, R) \cong R$, generated by the *empty link*:
- *Kauffman bracket:* $\langle \rangle$: link diagrams \longrightarrow *R* such that

$$
\langle \bigtimes \rangle = A \langle \bigtimes \rangle + A^{-1} \langle \bigtimes \rangle
$$

$$
\langle \bigcirc D \rangle = (-A^2 - A^{-2}) \langle D \rangle
$$

$$
\langle \emptyset \rangle = 1
$$

• For $D = D(K)$ where $K = \text{trefoil}$ knot:

What about other 3-manifolds?

- How is $\pi_1(\textit{M})$ reflected in $\mathbb{Z}[\bar{A}^{\pm 1}]$? more later
- Embedded surfaces: e.g. non separating spheres?

Such spheres create torsion in $S(S^2 \times S^1, \mathbb{Z}[A^{\pm 1}])$ (Hoste-Przytycki, 90's). Similar phenomena with other π_1 -injective surfaces.

[Qua](#page-8-0)[nt](#page-6-0)[um T](#page-7-0)[op](#page-8-0)[olog](#page-0-0)[y, Qu](#page-53-0)[antu](#page-0-0)[m Inf](#page-53-0)[orm](#page-0-0)[ation a](#page-53-0)nd connections to Mathematical Physics (in honor of Professor Arthur Jaffe's 85th birthday), May 27 - 31, 2024 Texas A&M .

つひひ

(Hoste-Przytycki, 90's) $S(L(p, q), \mathbb{Z}[A^{\pm 1}])$ are free, finitely generated.

- (Hoste-Przytycki, 90's) $S(L(p, q), \mathbb{Z}[A^{\pm 1}])$ are free, finitely generated.
- (Hoste-Przytycki, 90's) $S(S^2 \times S^1, \mathbb{Z}[A^{\pm 1}])$ is not finitely generated:

$$
\mathcal{S}(S^2\times S^1,\mathbb{Z}[A^{\pm 1}])=\mathbb{Z}[A^{\pm 1}]\bigoplus\big(\underset{i}{\oplus}\mathbb{Z}[A^{\pm 1}]/(1-A^{2i+4})\big).
$$

- (Hoste-Przytycki, 90's) $S(L(p, q), \mathbb{Z}[A^{\pm 1}])$ are free, finitely generated.
- (Hoste-Przytycki, 90's) $S(S^2 \times S^1, \mathbb{Z}[A^{\pm 1}])$ is not finitely generated:

$$
\mathcal{S}(\mathcal{S}^2\times \mathcal{S}^1,\mathbb{Z}[A^{\pm 1}])=\mathbb{Z}[A^{\pm 1}]\bigoplus \big(\underset{i}{\oplus}\mathbb{Z}[A^{\pm 1}]/(1-A^{2i+4})\big).
$$

(Mroczkowski, 2011) $S(\mathbb{R}P^3 \sharp \mathbb{R}P^3, \mathbb{Z}[A^{\pm 1}])$ not a direct sum of free and cyclic Z[*A* ±1]-modules.

- (Hoste-Przytycki, 90's) $S(L(p, q), \mathbb{Z}[A^{\pm 1}])$ are free, finitely generated.
- (Hoste-Przytycki, 90's) $S(S^2 \times S^1, \mathbb{Z}[A^{\pm 1}])$ is not finitely generated:

$$
\mathcal{S}(\mathcal{S}^2\times \mathcal{S}^1,\mathbb{Z}[A^{\pm 1}])=\mathbb{Z}[A^{\pm 1}]\bigoplus \big(\underset{i}{\oplus}\mathbb{Z}[A^{\pm 1}]/(1-A^{2i+4})\big).
$$

- (Mroczkowski, 2011) $S(\mathbb{R}P^3 \sharp \mathbb{R}P^3, \mathbb{Z}[A^{\pm 1}])$ not a direct sum of free and cyclic Z[*A* ±1]-modules.
- **Hint.** Both M contain an *essential* sphere ($[S^2] \neq 0$ in $\pi_2(M)$).

- (Hoste-Przytycki, 90's) $S(L(p, q), \mathbb{Z}[A^{\pm 1}])$ are free, finitely generated.
- (Hoste-Przytycki, 90's) $S(S^2 \times S^1, \mathbb{Z}[A^{\pm 1}])$ is not finitely generated:

$$
\mathcal{S}(\mathcal{S}^2\times \mathcal{S}^1,\mathbb{Z}[A^{\pm 1}])=\mathbb{Z}[A^{\pm 1}]\bigoplus \big(\underset{i}{\oplus}\mathbb{Z}[A^{\pm 1}]/(1-A^{2i+4})\big).
$$

- (Mroczkowski, 2011) $S(\mathbb{R}P^3 \sharp \mathbb{R}P^3, \mathbb{Z}[A^{\pm 1}])$ not a direct sum of free and cyclic Z[*A* ±1]-modules.
- **Hint.** Both M contain an *essential* sphere ($[S^2] \neq 0$ in $\pi_2(M)$).
- However *proving a conjecture of Witten*

Theorem (Gunningham, Jordan and Safronov, 2019)

The skein module S(*M*, Q(*A*)) *is finite dimensional for any closed M.*

- (Hoste-Przytycki, 90's) $S(L(p, q), \mathbb{Z}[A^{\pm 1}])$ are free, finitely generated.
- (Hoste-Przytycki, 90's) $S(S^2 \times S^1, \mathbb{Z}[A^{\pm 1}])$ is not finitely generated:

$$
\mathcal{S}(\mathcal{S}^2\times \mathcal{S}^1,\mathbb{Z}[A^{\pm 1}])=\mathbb{Z}[A^{\pm 1}]\bigoplus \big(\underset{i}{\oplus}\mathbb{Z}[A^{\pm 1}]/(1-A^{2i+4})\big).
$$

- (Mroczkowski, 2011) $S(\mathbb{R}P^3 \sharp \mathbb{R}P^3, \mathbb{Z}[A^{\pm 1}])$ not a direct sum of free and cyclic Z[*A* ±1]-modules.
- **Hint.** Both M contain an *essential* sphere ($[S^2] \neq 0$ in $\pi_2(M)$).
- However *proving a conjecture of Witten*

Theorem (Gunningham, Jordan and Safronov, 2019)

The skein module S(*M*, Q(*A*)) *is finite dimensional for any closed M.*

 $\dim_{\mathbb{Q}(A)} S(S^2 \times S^1, \mathbb{Q}(A)) = 1$, and $\dim_{\mathbb{Q}(A)} S(RP^3 \sharp \mathbb{R} P^3, \mathbb{Q}(A)) = 4$.

- (Hoste-Przytycki, 90's) $S(L(p, q), \mathbb{Z}[A^{\pm 1}])$ are free, finitely generated.
- (Hoste-Przytycki, 90's) $S(S^2 \times S^1, \mathbb{Z}[A^{\pm 1}])$ is not finitely generated:

$$
\mathcal{S}(\mathcal{S}^2\times \mathcal{S}^1,\mathbb{Z}[A^{\pm 1}])=\mathbb{Z}[A^{\pm 1}]\bigoplus \big(\underset{i}{\oplus}\mathbb{Z}[A^{\pm 1}]/(1-A^{2i+4})\big).
$$

- (Mroczkowski, 2011) $S(\mathbb{R}P^3 \sharp \mathbb{R}P^3, \mathbb{Z}[A^{\pm 1}])$ not a direct sum of free and cyclic Z[*A* ±1]-modules.
- **Hint.** Both M contain an *essential* sphere ($[S^2] \neq 0$ in $\pi_2(M)$).
- However *proving a conjecture of Witten*

Theorem (Gunningham, Jordan and Safronov, 2019)

The skein module S(*M*, Q(*A*)) *is finite dimensional for any closed M.*

- $\dim_{\mathbb{Q}(A)} S(S^2 \times S^1, \mathbb{Q}(A)) = 1$, and $\dim_{\mathbb{Q}(A)} S(RP^3 \sharp \mathbb{R} P^3, \mathbb{Q}(A)) = 4$.
- (Gilmer-Masbaum, Detcherry-Wolf, 2020) Σ*g*=genus *g* surface

$$
\dim_{\mathbb{Q}(A)} S(\Sigma_g \times S^1, \mathbb{Q}(A)) = 2^{2g+1} + 2g - 1.
$$

(2000, Przytycki-Sikora, Bullock) $\mathcal{S}(M,\mathbb{Z}[A,A^{-1}])$ is a "quantization" of the SL2(C)-character variety of *M*.

- (2000, Przytycki-Sikora, Bullock) $\mathcal{S}(M,\mathbb{Z}[A,A^{-1}])$ is a "quantization" of the SL2(C)-character variety of *M*.
- More precisely: The $SL_2(\mathbb{C})$ -character variety,

 $\mathcal{X}(M) := \text{Hom}(\pi_1(M), \text{SL}_2(\mathbb{C})) / \!/\text{SL}_2(\mathbb{C})$

- (2000, Przytycki-Sikora, Bullock) $\mathcal{S}(M,\mathbb{Z}[A,A^{-1}])$ is a "quantization" of the SL2(C)-character variety of *M*.
- More precisely: The $SL_2(\mathbb{C})$ -character variety,

 $\mathcal{X}(M) := \text{Hom}(\pi_1(M), \text{SL}_2(\mathbb{C})) / \text{SL}_2(\mathbb{C})$

a scheme over \mathbb{C} ($X(M)$ = the algebraic set underlying $X(M)$).

 \bullet $\mathbb{C}[\mathcal{X}(M)]$ =coordinate ring of $\mathcal{X}(M)$ (i.e. is the algebra of global sections of the structure sheaf of $X(M)$)

- (2000, Przytycki-Sikora, Bullock) $\mathcal{S}(M,\mathbb{Z}[A,A^{-1}])$ is a "quantization" of the SL2(C)-character variety of *M*.
- More precisely: The $SL_2(\mathbb{C})$ -character variety,

 $\mathcal{X}(M) := \text{Hom}(\pi_1(M), \text{SL}_2(\mathbb{C})) / \text{SL}_2(\mathbb{C})$

a scheme over \mathbb{C} ($X(M)$ = the algebraic set underlying $X(M)$).

- \bullet $\mathbb{C}[\mathcal{X}(M)]$ =coordinate ring of $\mathcal{X}(M)$ (i.e. is the algebra of global sections of the structure sheaf of $X(M)$)
- **Fact 1.** $\mathcal{X}(M)$ can be *non-reduced* (i.e. $\mathbb{C}[\mathcal{X}(M)]$ may contain nilpotents) Then,

$$
\mathbb{C}[X(M)] = \mathbb{C}[\mathcal{X}(M)]/\{\mathrm{Nil}-\mathrm{radical}\}.
$$

- (2000, Przytycki-Sikora, Bullock) $\mathcal{S}(M,\mathbb{Z}[A,A^{-1}])$ is a "quantization" of the SL2(C)-character variety of *M*.
- More precisely: The $SL_2(\mathbb{C})$ -character variety,

 $\mathcal{X}(M) := \text{Hom}(\pi_1(M), \text{SL}_2(\mathbb{C})) / \text{SL}_2(\mathbb{C})$

a scheme over \mathbb{C} ($X(M)$ = the algebraic set underlying $X(M)$).

- \bullet $\mathbb{C}[\mathcal{X}(M)]$ =coordinate ring of $\mathcal{X}(M)$ (i.e. is the algebra of global sections of the structure sheaf of $X(M)$)
- **Fact 1.** $\mathcal{X}(M)$ can be *non-reduced* (i.e. $\mathbb{C}[\mathcal{X}(M)]$ may contain nilpotents) Then,

$$
\mathbb{C}[X(M)] = \mathbb{C}[\mathcal{X}(M)]/\{\mathrm{Nil}-\mathrm{radical}\}.
$$

Fact 2: $\rho, \rho' : \pi_1(M) \to SL(2, \mathbb{C})$ are identified in $X(M)$ iff $tr \rho = tr \rho'$.

Character variety connection, con't

- The skein module "at *A* = −1 gives is the coordinate ring of the character variety".
- Specifically: Let

$$
S_{-1}(M):=S(M,\mathbb{Z}[A^{\pm 1}])\otimes_{\mathbb{Z}[A^{\pm 1}]} \mathbb{C},
$$

where the Z[*A* ±1]-module structure of C is given by sending *A* to −1.

Theorem (Przytycki-Sikora, 2000)

S[−]1(*M*) *has the structure of* C*-algebra that is isomorphic to the coordinate ring* $\mathbb{C}[\mathcal{X}(M)]$ *.*

• The isomorphism:

$$
\psi : S_{-1}(M) \longrightarrow \mathbb{C}[\mathcal{X}(M)] \text{ sends } K \longrightarrow -t_K,
$$

for any knot.

• *Trace function:* t_K : ℂ[$X(M)$] \longrightarrow ℂ, $t_K([\rho]) = Tr \rho([K])$, for all $\rho : \pi_1(M) \longrightarrow SL_2(\mathbb{C}).$

- • Rest of the talk:
- **Question 1:** When is $S(M)$ finitely generating over $\mathbb{Z}[A^{\pm 1}]$?
- **Question 2:** How does the skein module $S(M, \mathbb{Q}(A))$ relate to $X(M)$ and *X*(*M*) for generic values of *A*?

- • Rest of the talk:
- **Question 1:** When is $S(M)$ finitely generating over $\mathbb{Z}[A^{\pm 1}]$?
- **Question 2:** How does the skein module $\mathcal{S}(M,\mathbb{Q}(A))$ relate to $\mathcal{X}(M)$ and *X*(*M*) for generic values of *A*?
- What we know about Questions 1 and 2: Conjectures and results
- How are the two questions related,
- How existence of *essential* surfaces contained in *M* affect the answers,
- • Rest of the talk:
- **Question 1:** When is $S(M)$ finitely generating over $\mathbb{Z}[A^{\pm 1}]$?
- **Question 2:** How does the skein module $\mathcal{S}(M,\mathbb{Q}(A))$ relate to $\mathcal{X}(M)$ and *X*(*M*) for generic values of *A*?
- What we know about Questions 1 and 2: Conjectures and results
- How are the two questions related,
- How existence of *essential* surfaces contained in *M* affect the answers,
- How progress on them allows to
	- **1** compute the dimension of $S(M, \mathbb{Q}(A))$ over $\mathbb{Q}(A)$.
	- 2 begin to establish instances of conjectural relations of $S(M, \mathbb{O}(A))$ with certain Floer theoretic invariants.

- • Rest of the talk:
- **Question 1:** When is $S(M)$ finitely generating over $\mathbb{Z}[A^{\pm 1}]$?
- **Question 2:** How does the skein module $\mathcal{S}(M,\mathbb{Q}(A))$ relate to $\mathcal{X}(M)$ and *X*(*M*) for generic values of *A*?
- What we know about Questions 1 and 2: Conjectures and results
- How are the two questions related,
- How existence of *essential* surfaces contained in *M* affect the answers,
- How progress on them allows to
	- **1** compute the dimension of $S(M, \mathbb{Q}(A))$ over $\mathbb{Q}(A)$.
	- 2 begin to establish instances of conjectural relations of $S(M, \mathbb{O}(A))$ with certain Floer theoretic invariants.

Defin. *essential surface in M*= embedded, orientable surfaces *S* ⊂ *M* s.t.

- **1** *S*=2-sphere non-trivial in $\pi_2(M)$ or
- **2** $S \neq S^2$ and it is π_1 -injective.

Defin. *essential surface in M*= embedded, orientable surfaces *S* ⊂ *M* s.t.

- **1** *S*=2-sphere non-trivial in $\pi_2(M)$ or
- **2** $S \neq S^2$ and it is π_1 -injective.

Conjecture (*Conjecture A*)

The skein module $\mathcal{S}(M,\mathbb{Z}[A^{\pm 1}])$ is finitely generated if and only if M contains *no essential surfaces.*

Defin. *essential surface in M*= embedded, orientable surfaces *S* ⊂ *M* s.t.

- **1** *S*=2-sphere non-trivial in $\pi_2(M)$ or
- **2** $S \neq S^2$ and it is π_1 -injective.

Conjecture (*Conjecture A*)

The skein module $\mathcal{S}(M,\mathbb{Z}[A^{\pm 1}])$ is finitely generated if and only if M contains *no essential surfaces.*

Related. Przytycki's conjecture (*Kirby list*): If *M* contains no essential surfaces then $\mathcal{S}(M,\mathbb{Z}[A^{\pm 1}])$ is free.

Defin. *essential surface in M*= embedded, orientable surfaces *S* ⊂ *M* s.t.

- **1** *S*=2-sphere non-trivial in $\pi_2(M)$ or
- **2** $S \neq S^2$ and it is π_1 -injective.

Conjecture (*Conjecture A*)

The skein module $\mathcal{S}(M,\mathbb{Z}[A^{\pm 1}])$ is finitely generated if and only if M contains *no essential surfaces.*

- **Related.** Przytycki's conjecture (*Kirby list*): If *M* contains no essential surfaces then $\mathcal{S}(M,\mathbb{Z}[A^{\pm 1}])$ is free.
- **Notes:** Conjecture asserts S(*M*, Z[*A* ±1]) detects all essential surface.

Defin. *essential surface in M*= embedded, orientable surfaces *S* ⊂ *M* s.t.

- **1** *S*=2-sphere non-trivial in $\pi_2(M)$ or
- **2** $S \neq S^2$ and it is π_1 -injective.

Conjecture (*Conjecture A*)

The skein module $\mathcal{S}(M,\mathbb{Z}[A^{\pm 1}])$ is finitely generated if and only if M contains *no essential surfaces.*

- **Related.** Przytycki's conjecture (*Kirby list*): If *M* contains no essential surfaces then $\mathcal{S}(M,\mathbb{Z}[A^{\pm 1}])$ is free.
- **Notes:** Conjecture asserts S(*M*, Z[*A* ±1]) detects all essential surface.
- \bullet SL₂(\mathbb{C})-character variety of *M* detects some but not all essential surfaces!
- (Culler-Shalen, 80's): $X(M)$ is infinite $\Rightarrow M$ contains essential surfaces.

Defin. *essential surface in M*= embedded, orientable surfaces *S* ⊂ *M* s.t.

- **1** *S*=2-sphere non-trivial in $\pi_2(M)$ or
- **2** $S \neq S^2$ and it is π_1 -injective.

Conjecture (*Conjecture A*)

The skein module $\mathcal{S}(M,\mathbb{Z}[A^{\pm 1}])$ is finitely generated if and only if M contains *no essential surfaces.*

- **Related.** Przytycki's conjecture (*Kirby list*): If *M* contains no essential surfaces then $\mathcal{S}(M,\mathbb{Z}[A^{\pm 1}])$ is free.
- **Notes:** Conjecture asserts S(*M*, Z[*A* ±1]) detects all essential surface.
- \bullet SL₂(\mathbb{C})-character variety of *M* detects some but not all essential surfaces!
- (Culler-Shalen, 80's): $X(M)$ is infinite $\Rightarrow M$ contains essential surfaces.
- **However:**
- \bullet there are *M* containing essential surfaces but $X(M)$ is finite!

Examples discussed above.

What is known:

- Examples discussed above.
- Conjecture A is true for *M* with infinite *X*(*M*):

Theorem (Detcherry-K.-Sikora, 2023)

If $X(M)$ *is infinite, then* $S(M, \mathbb{Z}[A^{\pm 1}])$ *is not finitely generated.*

What is known:

- Examples discussed above.
- Conjecture A is true for *M* with infinite *X*(*M*):

Theorem (Detcherry-K.-Sikora, 2023)

If $X(M)$ *is infinite, then* $S(M, \mathbb{Z}[A^{\pm 1}])$ *is not finitely generated.*

Examples of *M* with essential surfaces and finite *X*(*M*)

Theorem (Mroczkowski, 2011, Belletti-Detcherry 2024)

 $\mathcal{S}(\pmb{M},\mathbb{Z}[\pmb{A}^{\pm1}])$ is not finitely generated $\pmb{M}:=\mathbb{R} \pmb{P}^3\#\pmb{L}(2p,1),$ for any $p>1.$

What is known:

- Examples discussed above.
- Conjecture A is true for *M* with infinite *X*(*M*):

Theorem (Detcherry-K.-Sikora, 2023)

If $X(M)$ *is infinite, then* $S(M, \mathbb{Z}[A^{\pm 1}])$ *is not finitely generated.*

Examples of *M* with essential surfaces and finite *X*(*M*)

Theorem (Mroczkowski, 2011, Belletti-Detcherry 2024)

 $\mathcal{S}(\pmb{M},\mathbb{Z}[\pmb{A}^{\pm1}])$ is not finitely generated $\pmb{M}:=\mathbb{R} \pmb{P}^3\#\pmb{L}(2p,1),$ for any $p>1.$

(Detcherry-K.-Sikora, 2024): Conjecture A for all *Seifert fibered manifolds*

Theorem (*Theorem B*)

A Seifert 3-manifold M contains no essential surfaces if and only if $\mathcal{S}(M,\mathbb{Z}[A^{\pm 1}])$ is finitely generated.

Applications: What is dim_{$O(A)$} $S(M)$?

- Recall: At *A* = −1, the skein module *S*[−]1(*M*) is the coordinate ring the SL2(C)-character variety of *M*.
- Question. How does the skein module $\mathcal{S}(M) := \mathcal{S}(M, \mathbb{Q}(A))$ relate to $X(M)$ and $X(M)$ for generic values of A?

Applications: What is dim_{O(A)} S(M)?

- Recall: At *A* = −1, the skein module *S*[−]1(*M*) is the coordinate ring the SL2(C)-character variety of *M*.
- Question. How does the skein module $\mathcal{S}(M) := \mathcal{S}(M, \mathbb{Q}(A))$ relate to $X(M)$ and $X(M)$ for generic values of A?
- We have an answer if $\,\mathcal{S}(M,\mathbb{Z}[A^{\pm1}])$ is finitely generated:

Theorem (Detcherry-K.-Sikora, 2023)

If M is a closed 3*-manifold with fiinitely generated S*(*M*, Z[*A* ±1])*, then*

$$
|X(M)| \le \dim_{\mathbb{Q}(A)} S(M) \le \dim_{\mathbb{C}} \mathbb{C}[\mathcal{X}(M)].
$$

In particular, if $X(M)$ *is reduced, then* dim_{$O(A)$} $S(M) = |X(M)|$ *.*

 \bullet If $X(M)$ is reduced we also.

Applications: What is dim_{Q(A)} S(M)?

- Recall: At *A* = −1, the skein module *S*[−]1(*M*) is the coordinate ring the SL2(C)-character variety of *M*.
- **Question.**How does the skein module $S(M) := S(M, \mathbb{Q}(A))$ relate to $X(M)$ and $X(M)$ for generic values of A?
- We have an answer if $\,\mathcal{S}(M,\mathbb{Z}[A^{\pm1}])$ is finitely generated:

Theorem (Detcherry-K.-Sikora, 2023)

If M is a closed 3*-manifold with fiinitely generated S*(*M*, Z[*A* ±1])*, then*

 $|X(M)| \leq \dim_{\mathbb{O}(A)} S(M) \leq \dim_{\mathbb{C}} \mathbb{C}[\mathcal{X}(M)].$

In particular, if $X(M)$ *is reduced, then* dim_{$O(A)$} $S(M) = |X(M)|$ *.*

- \bullet If $X(M)$ is reduced we also.
	- \bullet obtain information about torsion in $S(M,\mathbb{Z}[A^{\pm 1}]);$
	- 2 we have a method to obtain a basis of $S(M)$ from one of $\mathbb{C}[X(M)]$.

• Computing $X(M)$ and deciding whether its reduced is not easy

• Computing $X(M)$ and deciding whether its reduced is not easy ... We computed and (and showed reducedness):

- • Computing $X(M)$ and deciding whether its reduced is not easy ... We computed and (and showed reducedness):
- Computed $S(M, \mathbb{Q}(A))$ for infinite families of hyperbolic 3-manifolds.

- • Computing $X(M)$ and deciding whether its reduced is not easy ... We computed and (and showed reducedness):
- Computed $S(M, \mathbb{Q}(A))$ for infinite families of hyperbolic 3-manifolds.

- \bullet Computing $\mathcal{X}(M)$ and deciding whether its reduced is not easy ... We computed and (and showed reducedness):
- Computed $S(M, \mathbb{Q}(A))$ for infinite families of hyperbolic 3-manifolds.
- \bullet Computed $X(M)$ for all *Seifert 3-manifolds* with out essential surfaces, determined when it is reduced and computed dim_{$O(A)$} $S(M)$.

AD - K E - K E - K

- • Computing $X(M)$ and deciding whether its reduced is not easy ... We computed and (and showed reducedness):
- Computed $S(M, \mathbb{Q}(A))$ for infinite families of hyperbolic 3-manifolds.
- \bullet Computed $X(M)$ for all *Seifert 3-manifolds* with out essential surfaces, determined when it is reduced and computed dim_{$O(A)$} $S(M)$.
- **•** For instance: $M := \Sigma(p_1, p_2, p_3)$ is a Brieskorn spheres

$$
\dim_{\mathbb{Q}(A)} S(M) = 1 + \frac{(p_1 - 1)(p_2 - 1)(p_3 - 1)}{4}.
$$

- \bullet Computing $\mathcal{X}(M)$ and deciding whether its reduced is not easy ... We computed and (and showed reducedness):
- Computed $S(M, \mathbb{Q}(A))$ for infinite families of hyperbolic 3-manifolds.
- \bullet Computed $X(M)$ for all *Seifert 3-manifolds* with out essential surfaces, determined when it is reduced and computed dim_{$O(A)$} $S(M)$.
- **•** For instance: $M := \Sigma(p_1, p_2, p_3)$ is a Brieskorn spheres

$$
\dim_{\mathbb{Q}(A)} S(M) = 1 + \frac{(\rho_1 - 1)(\rho_2 - 1)(\rho_3 - 1)}{4}.
$$

• dim_{$O(A)$} $\mathcal{S}(M)$ relates to the $SL_2(\mathbb{C})$ -Casson (Curtis, 1995)

- • Computing $X(M)$ and deciding whether its reduced is not easy ... We computed and (and showed reducedness):
- Computed $S(M, \mathbb{Q}(A))$ for infinite families of hyperbolic 3-manifolds.
- Computed X (*M*) for all *Seifert 3-manifolds* with out essential surfaces, determined when it is reduced and computed dim_{$O(A)$} $S(M)$.
- **•** For instance: $M := \Sigma(p_1, p_2, p_3)$ is a Brieskorn spheres

$$
\dim_{\mathbb{Q}(A)} S(M) = 1 + \frac{(\rho_1 - 1)(\rho_2 - 1)(\rho_3 - 1)}{4}.
$$

- dim_{Q(A)} $\mathcal{S}(M)$ relates to the SL₂(C)-Casson (Curtis, 1995)
- \bullet dim_{$O(A)$} $S(M)$ is also the dimension of the zero degree part of Abouzaid-Manolescu $SL_2(\mathbb{C})$ -Floer Homology.

- \bullet Computing $\mathcal{X}(M)$ and deciding whether its reduced is not easy ... We computed and (and showed reducedness):
- Computed $S(M, \mathbb{Q}(A))$ for infinite families of hyperbolic 3-manifolds.
- Computed X (*M*) for all *Seifert 3-manifolds* with out essential surfaces, determined when it is reduced and computed dim_{$O(A)$} $S(M)$.
- **•** For instance: $M := \Sigma(p_1, p_2, p_3)$ is a Brieskorn spheres

$$
\dim_{\mathbb{Q}(A)} S(M) = 1 + \frac{(\rho_1 - 1)(\rho_2 - 1)(\rho_3 - 1)}{4}.
$$

- dim_{$O(A)$} $S(M)$ relates to the $SL_2(\mathbb{C})$ -Casson (Curtis, 1995)
- \bullet dim_{$O(A)$} $S(M)$ is also the dimension of the zero degree part of Abouzaid-Manolescu $SL_2(\mathbb{C})$ -Floer Homology.
- It is conjectured that this is always true.

Outline of proof of Theorem B:

M=Seifert fibered 3-manifold

 $\mathcal{S}(M,\mathbb{Z}[A^{\pm 1}])$ is finitely generated $\Leftrightarrow M$ contains no essential surfaces.

implication ⇒: Uses

 $\mathcal{S}(M,\mathbb{Z}[A^{\pm 1}])$ finitely generated $\Rightarrow X(M)$ is finite

This is true for all 3-manifolds! The proof relies on

1 Major recent advances on structure of surface skein modules at roots of unity by

Bonahon-Wong, Ganev-Jordan-Safronov, Frohman-Kania-Bartoszyńska-Le....

Outline of proof of Theorem B:

M=Seifert fibered 3-manifold

 $\mathcal{S}(M,\mathbb{Z}[A^{\pm 1}])$ is finitely generated $\Leftrightarrow M$ contains no essential surfaces.

implication ⇒: Uses

 $\mathcal{S}(M,\mathbb{Z}[A^{\pm 1}])$ finitely generated $\Rightarrow X(M)$ is finite

This is true for all 3-manifolds! The proof relies on

- **1** Major recent advances on structure of surface skein modules at roots of unity by
- Bonahon-Wong, Ganev-Jordan-Safronov, Frohman-Kania-Bartoszyńska-Le....
	- ² The theory of the *non-semisimple sl*2-quantum invariants of 3-manifolds constructed by by Constantino, Geer and Patureau-Mirand.

Outline of proof of Theorem B:

M=Seifert fibered 3-manifold

 $\mathcal{S}(M,\mathbb{Z}[A^{\pm 1}])$ is finitely generated $\Leftrightarrow M$ contains no essential surfaces.

implication ⇒: Uses

 $\mathcal{S}(M,\mathbb{Z}[A^{\pm 1}])$ finitely generated $\Rightarrow X(M)$ is finite

This is true for all 3-manifolds! The proof relies on

¹ Major recent advances on structure of surface skein modules at roots of unity by

Bonahon-Wong, Ganev-Jordan-Safronov, Frohman-Kania-Bartoszyńska-Le....

² The theory of the *non-semisimple sl*2-quantum invariants of 3-manifolds constructed by by Constantino, Geer and Patureau-Mirand.

• *implication* ←:

- ¹ Use topological and character variety properties/results of Seifert fibered 3-manifolds to reduce the problem to a special class of Seifert fibered 3-manifolds: They fiber over *S* ² with three exceptional spheres and have non-zero Euler number.
- 2 Use Skein-theoretic techniques to prove that $\mathcal{S}(M,\mathbb{Z}[A^{\pm 1}])$ is finitely generated, for the special class of 3-manifolds[.](#page-48-0)

The manifolds $M = M(S^2; \frac{q_1}{p_1})$ *g*₁, *g*₂
*p*₁</sub>, *p*₂ *<u><i>g*₂</u>, *g*₃
*p*₂</sub>, *p*₃ *p*3)

- Start with $\mathcal{S}_{0,3} \times \mathcal{S}^1$ ($\mathcal{S}_{0,3}$ ="pair of pants")
- Obtain *M* by attaching solid *V*1, *V*2, *V*³ tori to ∂*N* with meridians attached to curves of slopes $\frac{q_1}{p_1}, \frac{q_2}{p_2}, \frac{q_3}{p_3}$.
- Euler number $e(M) := \frac{q_1}{p_1} + \frac{q_2}{p_2} + \frac{q_3}{p_3}$.
- The skein module $\mathcal{S}(\mathcal{S}_{0,3} \times \mathcal{S}^1, \mathbb{Z}[A^{\pm 1}])$ generated by knots that "live" near the boundary.

The manifolds $M = M(S^2; \frac{q_1}{p_1})$ *g*₁, *g*₂
*p*₁</sub>, *p*₂ *<u><i>g*₂</u>, *g*₃
*p*₂</sub>, *p*₃ *p*3)

- Start with $\mathcal{S}_{0,3} \times \mathcal{S}^1$ ($\mathcal{S}_{0,3}$ ="pair of pants")
- Obtain *M* by attaching solid *V*1, *V*2, *V*³ tori to ∂*N* with meridians attached to curves of slopes $\frac{q_1}{p_1}, \frac{q_2}{p_2}, \frac{q_3}{p_3}$.
- Euler number $e(M) := \frac{q_1}{p_1} + \frac{q_2}{p_2} + \frac{q_3}{p_3}$.
- The skein module $\mathcal{S}(\mathcal{S}_{0,3} \times \mathcal{S}^1, \mathbb{Z}[A^{\pm 1}])$ generated by knots that "live" near the boundary.
- Using the Frohman-Gelca basis for skein algebras of tori the skein module $\mathcal{S}(\mathcal{S}_{0,3} \times \mathcal{S}^1, \mathbb{Z}[\mathcal{A}^{\pm 1}])$ corresponds to a subspace of $\mathbb{Z}^6.$
- Adding the solid tori *Vⁱ* leads to between generators of $\mathcal{S}(\mathcal{S}_{0,3} \times \mathcal{S}^1, \mathbb{Z}[A^{\pm 1}])$ and a presentation of $\mathcal{S}(M,\mathbb{Z}[A^{\pm 1}]).$
- This perspective allows to obtain an a complexity on $\mathcal{S}(M,\mathbb{Z}[A^{\pm 1}])$ that under the hypothesis that $e(M) \neq 0$, can be used to reduce the set of generators to finitely many.

- R. Detcherry, E. Kalfagianni, A. Sikora: *Kauffman bracket skein modules of small 3-manifolds*, math.ArXiv:2305.16188,
- R. Detcherry, E. Kalfagianni, A. Sikora: *Skein modules and character varieties of Seifert manifolds*, math.arXiv:2405.18557

- R. Detcherry, E. Kalfagianni, A. Sikora: *Kauffman bracket skein modules of small 3-manifolds*, math.ArXiv:2305.16188,
- R. Detcherry, E. Kalfagianni, A. Sikora: *Skein modules and character varieties of Seifert manifolds*, math.arXiv:2405.18557