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Abstract. We study the large r asymptotic behavior of the Turaev-Viro invariants

TVr(M ; e
2πi
r ) of 3-manifolds with toroidal boundary, under the operation of gluing a

Seifert-fibered 3-manifold along a component of ∂M . We show that the Turaev-Viro
invariants volume conjecture is closed under this operation. As an application we
prove the volume conjecture for all Seifert fibered 3-manifolds with boundary and
for large classes of graph 3-manifolds.
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1. Introduction

Given a compact 3-manifold M the Turaev-Viro invariants TVr(M ; q2) are a family
of real-valued invariants depending on an odd integer r ≥ 3 and a primitive 2r-th

root of unity q. In this paper, we are concerned with the case of q = e
πi
r . The

invariants were originally constructed via state sums on triangulations of 3-manifolds
[24] and were later related to skein-theoretic quantum constructions of Reshetikhin-
Turaev invariants [2, 3, 12, 21]. In this paper we will follow this viewpoint. We will
view TVr(M ; q) through its relation to the skein theoretic SO3-TQFT as constructed
by Blanchet, Habegger, Masbaum and Vogel [4, 5].

All the 3-manifolds considered in this paper will be orientable and either closed or
with boundary consisting of tori (i.e. toroidal boundary) We prove the following:

Theorem 1.1. Let S be a Seifert fibered 3-manifold with at least two boundary compo-
nents and let M be any 3-manifold with toroidal boundary. Then, for any 3-manifold
M ′ obtained by gluing S along a component of ∂S to a component of ∂M , there exist
constants A and K > 0, and a finite set of integers I, such that

r−K

A
TVr(M) ⩽ TVr(M

′) ⩽ ArKTVr(M),

for all odd r not divisible by any p ∈ I.

Some of the most prominent open problems in quantum topology are the volume
conjectures, asserting that geometric invariants of 3-manifolds (e.g. hyperbolic vol-
ume) are determined by quantum invariants. Theorem 1.1 has applications to the
Turaev-Viro invariants volume conjecture. The conjecture, that is a natural 3-manifold
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generalization of the well known Kashaev, Murakami and Murakami [7] conjecture,
asserts that the large r asymptotics of the Turaev-Viro invariants determine the sim-
plicial volume of 3-manifolds. Specifically, Chen and Yang [8] conjectured that for
hyperbolic manifolds of finite volume, the growth rate of the Turaev-Viro invariants
is exponential and it determines the hyperbolic volume of the manifold.

By the geometrization theorem, any 3-manifold M with empty or toroidal boundary
admits a canonical decomposition, along essential spheres and tori, into pieces that
are either hyperbolic or Seifert fibered spaces. We will refer to this as the geometric
decomposition of M . The simplicial volume Vol(M) of M is defined as the sum
of the volumes of the hyperbolic pieces in this decomposition and it is equal to its
Gromov norm times v3 ≈ 1.01494 [23], which is the hyperbolic volume of a regular
ideal hyperbolic tetrahedron. The simplicial volume is additive under disjoint unions
and connected sums of 3-manifolds as well us under gluing along essential tori. The
following generalization of the Chen-Yang Conjecture was stated in [11].

Conjecture 1.2. For every compact orientable 3-manifold M , with empty or toroidal
boundary, we have

LTV (M) := lim sup
r→∞, r odd

2π

r
log |TVr(M)| = Vol(M),

where r runs over all odd integers.

The upper inequality of Theorem 1.1 follows from [11] and in fact it holds for all odd
r ≥ 3. The theorem implies that if Vol(M) = 0, then we have LTV (M) = LTV (M ′).
As a corollary we have the following:

Corollary 1.3. Suppose that S is an oriented Seifert fibered 3-manifold that either has
a non-empty boundary, or it is closed and admits an orientation reversing involution.
Then we have

LTV (S) = lim sup
r→∞, r odd

2π

r
log |TVr(S)| = Vol(S) = 0.

Theorem 1.1 generalizes to large families of 3-manifolds obtained by gluing together
Seifert fibered 3-manifolds (Corollary 4.5). As a result in Corollary 5.3 we also verify
Conjecture 1.2 for these manifolds.

We note that if M satisfies Conjecture 1.2 with “limsup” in the definition of
LTV (M) is actually a limit, then Theorem 1.1 implies that M ′ also satisfies the
conjecture. For hyperbolic M , the Chen-Yang conjecture is stated for LTV (M) be-
ing the limit and in this form it has been verified for large families 3-manifolds with
cusps. We note however that the restriction to “lim sup” for general 3-manifolds is
necessary. Indeed for Seifert fibered spaces the invariants TVr(M ; q) can vanish for
infinitely many integers r. See, for example, [19].

The hyperbolic links in S3 for which the volume conjecture has been verified include
the figure-eight knot, the Borromean rings [12], the twist knots [9], the Whitehead
chains [25], and large families of octahedral links in S3 including the octahedral aug-
mented links [16, 26]. The conjecture has also been verified for fundamental shadow
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links [2] which form a class of hyperbolic links in connected sums of S1×S2 that gives
all orientable 3-manifolds that are either closed or with toroidal boundary by Dehn
filling, and for additional families of hyperbolic links in connected sums of S1 × S2

[1]. For infinite families of non-hyperbolic links where Conjecture 1.2 holds when
LTV (M) the limit, see [17]. Theorem 1.1 can be applied to any of these families of
links to produce new families of satellite links satisfying Conjecture 1.2.

As an example we state the following:

Corollary 1.4. If L is a link obtained as an iterated satellite of the figure-eight with
patterns torus links, then

LTV(S3 \ L) = Vol(S3 \ L) ≈ 2.0298832.

Forming a satellite of a knot K with pattern a torus link amounts to gluing a Seifert
fibered 3-manifold with at least two boundary components to the boundary torus of
the knot complement [6]. Thus, Corollary 1.4 follows from Theorem 1.1 and above
discussion.

The proofs of many results in the area rely at least partially on analytic estimates
and direct analysis of the asymptotics of the Reshetikhin-Turaev and Turaev -Viro
invariants. See, for example, [2, 1, 9, 17, 26, 19] and references therein. In contrast
our proofs in this paper rely heavily on TQFT properties and 3-manifold topology.
In the process, we discuss an approach that could potentially lead to new progress
towards understanding the behavior of the asymptotics of the Turaev-Viro invariants
under hyperbolic Dehn filling. For details, the reader is referred to Section six.

Acknowledgement. The research of E.K. and S.M. is partially supported by
NSF grant DMS-2304033. The research of R.D. is partially supported by the ANR
project “NAQI-34T” (ANR-23-ERCS-0008) and by the project “CLICQ” of the Région
Bourgogne-Franche Comté.

2. TQFT and Turaev-Viro invariants

In this section we recall how to obtain the Turaev-Viro invariants from the Reshetikhin-
Turaev SO3-TQFT of [20]. We begin by summarizing some basic features of the SO3-
TQFT following skein-theoretic framework of [4, 5].

2.1. Preliminaries. For an odd integer r ⩾ 3 and a primitive 2r-th root of unity
q, the SO3-TQFT functor, denoted by RTr, associates a finite dimensional Hermitian
C-vector space RTr(Σ), to any closed oriented surface Σ, such that:

(a) For a disjoint union Σ
∐

Σ′ one has RTr(Σ
∐

Σ′) = RTr(Σ)⊗RTr(Σ
′).

(b) For a closed oriented 3-manifoldM , the value RTr(M) ∈ C is the SO3-Reshetikhin-
Turaev invariant and if ∂M ̸= ∅, RTr(M) is a vector in RTr(∂M).

(c) If (M,Σ,Σ′) is a a cobordism from a surface Σ to a surface Σ′, then

RTr(M) : RTr(Σ) → RTr(Σ
′),

is a linear map such that compositions of cobordisms are sent to compositions of
linear maps (up to powers of q).
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(d) The 3-manifold invariants RTr are multiplicative under disjoint union and for
connected sums we have

RTr(M#M ′) = η−1
r RTr(M)RTr(M

′),

where ηr =
2 sin(2πr )

√
r

. Furthermore we have RTr(S
2 × S1) = 1.

Remark 2.1. In this paper we will be concerned with the question of whether the
maps RTr(M) are invertible, and in the case we have inverses, we will study the r-
growth rate of the operator norm of the inverses. Since these properties are not affected
by multiplication by a power of q in the sequel we will assume that compositions of
cobordisms are sent to compositions of linear maps RTr.

The spaces RTr(Σ) are certain quotients of Kauffman bracket skein modules (at q)
of a handlebody bounded by Σ. In this paper we are interested in the case where Σ is
a the 2-torus T 2. In this case, [5], views T 2 as the boundary of a solid torus D2 × S1

and obtains elements ei ∈ RTr(T
2) by taking the core {0} × S1 of the solid torus

decorated with the i− 1 Jones-Wenzl idempotent. For r = 2m+ 1 and q a 2r-th root
of unity, this process gives a family e1, . . . , e2m−1 of elements in RTr(T

2) [5, Lemma
3.2]. We have the following:

Theorem 2.2. [5, Theorem 4.10] For r = 2m + 1 ⩾ 3, the Hermitian pairing of
RTr(T

2) is positive definite and the family e1, e2, . . . em is an orthonormal basis. More-
over, for 0 ⩽ i ⩽ m− 1, we have em−i = em+1+i.

The Turaev-Viro invariants of compact oriented 3-manifolds originally were defined
as state sums over triangulations of manifolds (see [24]). In this paper however, we
will only use the relation between the Turaev-Viro invariants and Reshetikhin-Turaev
invariants. This relation was first proved by Roberts [21] in the case of closed 3-
manifolds, and extended to manifolds with boundary by Benedetti and Petronio [3].
We state it only in the case of manifolds with toroidal boundary, which is what we
need.

Theorem 2.3. Let M be a compact oriented manifold with toroidal boundary, let
r ⩾ 3 be an odd integer and let q be a primitive 2r-th root of unity. Then,

TVr(M, q2) = ||RTr(M, q)||2

where || · || is the natural Hermitian norm on RTr(∂M).

Since for T 2 a torus, the natural Hermitian form on RTr(T
2) is definite positive for

any q, the invariants TVr(M) are non-negative.

Remark 2.4. Given a finite dimensional Hermitian C-vector space V , with a positive
Hermitian pairing ⟨., .⟩ : V ×V −→ C, as above, we use ||.|| to denote the norm induced
by the Hermitian pairing (i.e. ||x||2 := ⟨x, x⟩). Given a linear map A : V −→ V , we
will use |||A||| to denote the norm of the operator, that is

|||A||| := max
||x||=1

||A(x)||.
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where x ∈ RTr(T
′). We also define

n(A) := min
||x||=1

||A(x)||.

If we assume that A is invertible, then for any x ∈ V, one has

||x|| = ||A−1(Ax)|| ≤ |||A−1||| · ||Ax||,
with equality for some choice of x. Inverting the inequality, one gets:

n(A) = |||A−1|||−1.

Finally, if A is Hermitian, that is, ⟨Ax, y⟩ = ⟨x,Ay⟩ for any x, y ∈ V , then A has
an orthonormal basis of diagonalization, and

|||A||| = max
λ∈Spec(A)

(|λ|) and n(A) = min
λ∈Spec(A)

(|λ|).

2.2. Genus one mutation. Consider T 2 ≃ R2/Z2 as the quotient of R2 where
π1(T

2) ≃ Z2 acts by covering translations. The elliptic involution ι on T 2 is defined
by

ι : T 2 ≃ R2/Z2 −→ T 2 ≃ R2/Z2

(x, y) −→ (−x,−y).
,

and its isotopy class defines an element in the mapping class group of the torus Γ(T 2).
Given an element φ in Γ(T 2) consider

Mφ := [0, 1]× T 2 ∪
(x,1)∼φ(x)

T 2,

the mapping cylinder of φ. Now RTr(Mφ) is a vector in RTr(T )
2⊗RTr(T 2). The latter

space can be identified with End(RTr(T
2)) as RTr(T

2) ≃ RTr(T
2)∗ by the natural

Hermitian form. The assignment ρr(φ) = RTr(Mφ), defines a projective representation

(1) ρr : Γ(T
2) −→ End(RTr(T

2)).

Definition 2.5. A compact oriented 3-manifoldM ′ is said to be obtained from another
compact oriented 3-manifold M by genus one mutation, if M ′ is obtained from M by
cutting along an embedded torus in M and regluing using the elliptic involution of T 2.

We will make use of the following fact, which was proved by [22] for the 3-manifold
invariants, and which we state for cobordism invariants:

Lemma 2.6. If C and C ′ are two cobordisms, and C ′ is obtained from C by genus
one mutation, then RTr(C) = RTr(C

′) for any odd integer r ≥ 3.

Proof. Let T ≃ T 2 be a torus embedded in C such that C ′ is obtained by cutting C
along T and regluing using the elliptic involution. Equivalently, considering a regular
neighborhood N of T in C, one can say that C ′ is obtained from C by replacing a
trivial cylinder N ≃ T × [0, 1] by the mapping cylinder Mι of the elliptic involution
ι on T . Since the elliptic involution is in the kernel of the representation ρr (see for
example [13]), the mapping cylinder of the elliptic involution and the trivial cylinder
have the same image by RTr. Moreover, C \N and C ′ \Mι are equivalent cobordisms.
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Since RTr is a TQFT, the maps RTr(C) and RTr(C
′), are obtained from RTr(C \N)

and RTr(T
2 × [0, 1]) (resp. RTr(C \ N) and RTr(Mι)) by tensor contraction, and

therefore are the same map. □

3. TQFT maps of Seifert fibered spaces

Let S = S(B; q1
p1

. . . qnpn ) denote the orientable Seifert fibered 3-manifold with fiber

space 2-orbifold B and fiber invariants (q1, p1) . . . (qn, pn) in the notation of [15]. Recall
that , for i = 1, · · ·n, qi is co-prime to pi and that the integers p1, · · · , pn are called
the multiplicities of the exceptional fibers. In particular, if pi = 1, for all 1, · · · , n,
then S is an S1-bundle over the surface B. If the surface B has boundary then S also
has boundary which is union of tori. If ∂S has two components, say T and T ′, then
as discussed in Section 2, the Reshetikhin-Turaev SO3-TQFT gives a linear map

RTr(S) : RTr(T ) → RTr(T
′),

for any odd integer r ⩾ 3 and a primitive 2r-th root of unity q. As earlier we use || · ||
to denote is the norm induced by the Hermitian form on RTr(∂S) and we use ||| · ||| to
denote the operator norm of linear maps between TQFT spaces. That is, in the case
that RTr(S) is invertible, we will have

|||RTr(S)
−1||| := max

||x||=1
||RTr(S)

−1(x)||,

where x ∈ RTr(T
′).

Our main result in this section is the following:

Theorem 3.1. For S = S(B; q1
p1

. . . qnpn ) a Seifert fibered 3-manifold, with ∂S = T ∪T ′,

the linear map RTr(S) : RTr(T ) → RTr(T
′), is invertible for all odd r coprime to

p1, · · · , pn. Furthermore, there are constants C and N > 0 such that

|||RTr(S)
−1||| ⩽ CRN .

The last part of Theorem 3.1 says that the operator norm of the inverse of RTr(M)
grows at most polynomially. Next we prove couple of lemmas that we need for the
proof of the theorem.

Lemma 3.2. If Sp := Sp(A; q
p) fibers over an annulus A with an exceptional fiber of

multiplicity p > 1, the linear map RTr(Sp) is invertible for all r coprime to p and the
operator norm |||RTr(Sp)

−1||| grows at most polynomially in r.

Proof. It is known that Sp is a cable space and for such spaces the operators RTr(Sp)
and the growth of their norm were explicitly computed by Kumar and Melby [18,
Theorem 1.7]. □

We will use Σg,n (resp. Pg,n) to denote an orientable (resp. non-orientable), compact
surface of genus g and n boundary components. The second lemma we need is the
following:

Lemma 3.3. Suppose that S is one of the following Seifert fibered 3-manifolds:
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(a) The trivial S1 bundle over a torus with two holes Σ1,2.
(b) The twisted S1-bundle over the Klein bottle with two holes P1,2.
(c) The twisted S1-bundle over the Mobius band with one hole P0,2.

Then, the linear map RTr(S) is invertible for all odd r ≥ 3 and the operator norm
|||RTr(S)

−1||| grows at most polynomially in r.

Proof. Let S := S1 × Σ1,2 and ∂S = T ∪ T ′. For r = 2m+ 1, the operator RTr(S) is
exactly the operator K computed in [5, Section 5.10]. It is self-adjoint since it is sym-
metric with respect to the orthonormal basis e1, · · · , em of RTr(T

2). The eigenvalues
of K have been computed in there and show to be

λj :=
(−r)

(q2j − q−2j)2
=

r

4 sin2(2πjr )
, where j = 1, · · · ,m,

and q = e
2πi
r .

Since λj ̸= 0, the operator is invertible for all odd r ≥ 3 and the eigenvalues

of the inverse are λ−1
j := (q2j−q−2j)2

(−r) . Since the operator is self-adjoint, to bound

|||RTr(S)
−1|||, it is enough to bound the eigenvalues. Since

|λ−1
j | ⩽ 4

r
,

the result follows. This finishes the proof of (a).
Let us now prove (b). Let S′ := S1×̃P1,2, be the twisted S1-bundle over the Klein

bottle. We claim that S′ is obtained from S1×Σ1,2 by genus one mutation. To see this,
consider an orientation reversing simple closed curve γ on P1,2. Cutting P1,2 along γ
and regluing by a diffeomorphism of S1 that reverses the orientation, we get back Σ1,2.
In the same way, cutting S′ along S1×γ and regluing by the elliptic involution, we get
S, which finishes the proof of the claim. Now by Lemma 2.6 we get RTr(S

′) = RTr(S),
and the desired conclusion follows from part (a).

Next we prove (c). Let S′′ := S1×̃P0,2, be the twisted S1-bundle over the Mobius
band with one hole. Note that gluing two copies of P0,2 together along a boundary
component, one gets P1,2. We also have that the square of S′′ as a cobordism T 2 −→ T 2

satisfies S′′ ◦ S′′ = S′. Therefore,

RTr(S
′′ ◦ S′′) = RTr(S

′) = RTr(S).

Since RTr(S) is self-adjoint, it is diagonalizable in a Hermitian basis of RTr(T
2).

However, since the eigenvalues λj of RTr(S) are all distinct, RTr(S
′′) must be di-

agonalizable in the same basis, and its eigenvalues µj are square roots of the λj ’s.
Note that the λj ’s are positive, hence the µj ’s are all real and RTr(S

′′) is self-adjoint.
Therefore, we get the inequality

|µj |−1 ⩽
2√
r
,

which implies |||RTr(S
′′)−1||| ≤ 2√

r
.

□
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We are now ready to prove Theorem 3.1.

Proof. Let S = S(B; q1
p1

. . . qnpn ) be Seifert fibered 3-manifold, with ∂S = T ∪ T ′. The

surface B can be cut along a disjoint union of simple closed curves Γ into annuli each
of which contains exactly one orbifold point of the fibration, or two-holed tori or one-
holed Mobius bands that contain no orbifold point. Moreover, the curves of Γ may
be chosen so that each is separating in B. The inverse image of Γ under the Seifert
fibration map S −→ B is a collection T of tori in S each of which is vertical with
respect to the fibration. By construction, for each component Si of S \ T there are
the following possibilities:

(a) Si fibers over an annulus with one exceptional fiber.
(b) Si fibers over Σ1,2 with no exceptional fibers. Hence, it is the trivial S1 bundle

over Σ1,2.
(c) Si fibers over the Mobius band with one hole and no exceptional fibers. Hence, it

is the twisted S1-bundle over P0,2.

Moreover, since each curve of Γ is separating, S as a cobordism is a composition
of the cobordisms Si. Since RTr is a TQFT operator, and with the understanding of
Remark 2.1, we have

RTr(S) = RTr(Sm) ◦ · · · ◦RTr(S1) ◦RTr(S0).

By Lemma 3.3 if Si is as in (b)-(c) above, then RTr(Si) is invertible for all r and if
Si is as in case (a) then by Lemma 3.2 RTr(Si) is invertible for all r coprime to the
multiplicity of the exceptional fiber. It follows that, for all odd r coprime to p1, · · · , pn,
RTr(S) is invertible with inverse

RTr(S)
−1 = RTr(S0)

−1 ◦RTr(S1)
−1 ◦ · · · ◦RTr(Sm)−1.

Also by Lemmas 3.3 and 3.2, for i = 0, · · ·n, the operator norm of the inverses
|||RTr(Si)

−1||| grows at most polynomially in r. Since ||| · ||| is sub-multiplicative
under composition of linear operators it follows that there are constants C and N > 0
such that

|||RTr(S)
−1||| ⩽ CRN .

□

4. Gluing Theorems

4.1. Seifert cobordisms. In this section we prove the following theorem, which in
particular implies Theorem 1.1 of the Introduction.

Theorem 4.1. Let S = (B; q1
p1

. . . qnpn ) be a Seifert fibered 3-manifold with at least two

boundary components and let M be any 3-manifold with toroidal boundary. Then, for
any 3-manifold M ′ obtained by gluing S along a component of T ′ ⊂ ∂S to a component
of ∂M , there exist constants A and K > 0 such that

r−K

A
TVr(M) ⩽ TVr(M

′) ⩽ ArKTVr(M).
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Here the upper inequality holds for all odd r, while the lower inequality holds for all r
coprime to p1, · · · , pn.

In particular, if the limsup in the definition of LTV (M) is actually a limit, then
LTV (M ′) = LTV (M).

By the classification theorem of manifolds that admit Seifert fibrations manifolds
with more than two boundary components admit unique such fibrations. Hence the
integers p1, · · · , pn are uniquely determined by the the 3-manifold and vice versa.
Setting I := {p1, · · · , pn}, we obtain Theorem 1.1.

4.2. Invertible cable spaces. For the proof of Theorem 4.1 we need to recall the
notion of an invertible cable space from [11].

Definition 4.2. Let S be a 3-manifold with toroidal boundary with a distinguished
torus boundary component T and such that ∂S has at least three boundary compo-
nents. S is called an invertible cabling space if it has zero simplicial volume (i. e.
Vol(S) = 0) and there is a Dehn filling along some components of ∂S distinct from T
that produces a 3-manifold homeomorphic to T × [0, 1].

Corollary 4.3. [11, Corollary 8.3] Let M be a 3-manifold with toroidal boundary and
S be an invertible cabling space. Let M ′ be obtained by gluing a component of ∂S \ T
to a component of ∂M . Then, there exist constants A and K > 0 such that

TVr(M) ⩽ TVr(M
′) ⩽ ArKTVr(M)

for all odd r ≥ 3. In particular, we have LTV (M) = LTV (M ′).

We will need the following:

Lemma 4.4. For any n ≥ 3, S := S1 × Σ0,n is an invertible cable space.

Proof. Since S is an S1-bundle, Vol(S) = 0. Designate one component T ∈ ∂S as the
distinguished component. Now, the trivial Dehn filling along all but one of the tori in
∂S \T , produces the trivial S1- bundle over an annulus, that is S1×S1× [0, 1], where
T = S1 × S1.

□

4.3. Proof of Theorem 4.1. By construction, M ′ is obtained by gluing a boundary
component of S to a component of ∂M . Since S is a Seifert fibered manifold, by [11,
Theorem 5.2] (and its proof) we have

TVr(M
′) ⩽ TVr(S) · TVr(M),

for all odd integers r ≥ 3. On the other hand, since S is a Seifert fibered 3-manifold,
by [11, Theorem 5.2], there are constants A and N > 0 such that TVr(S

′) ⩽ ArN , for
all for all odd integers r ≥ 3. Thus, we have LTV (S) ⩽ 0. Hence, the upper inequality
in the statement of the theorem follows, and in particular, we have

LTV (M ′) ⩽ LTV (M).
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For the proof of the lower inequality we will distinguish two cases:

Case 1. Suppose that S has exactly two boundary components, say T and T ′. By
Theorem 3.1 the linear map RTr(S) : RTr(T ) → RTr(T

′), is invertible for all odd r
coprime to p1, · · · , pn. Furthermore, there are constants C and K > 0 such that

(2) |||RTr(S)
−1||| ⩽ CrN .

If M has only one boundary component, then RTr(M) is a vector in RTr(T
2), and

by the TQFT properties, we have that

RTr(M
′) = RTr(S)(RTr(M)).

Now we can write RTr(S)
−1(RTr(M

′)) = RTr(M), and hence

||RTr(M)|| ⩽ |||RTr(S)
−1||| · ||RTr(M

′)||,

which in turn gives

|||RTr(S)
−1|||−1 · ||RTr(M)|| ⩽ ||RTr(M

′)||.

The last inequality combined with (2) gives

(3)
r−N

C
TVr(M) ⩽ TVr(M

′).

Finally, by adjusting the constants K,N,A,C we get the desired result.

If M has more than one boundary components, let T1 denote the one that is used
to glue S. Then, M ′ may equivalently be seen as obtained from M by gluing the
cobordism

S′ := S
∐

(∂M \ T1)× [0, 1]

onto ∂M . The latter is a cobordism ∂M → ∂M , and by the TQFT properties, RTr(S
′)

is invertible. We claim that |||RTr(S
′)−1||| = |||RTr(S)

−1|||. Indeed, RTr is a monoidal
functor, so

RTr(S
′) = RTr(S)⊗ idRTr(∂M\T1).

Moreover, the operator norm ||| · ||| is multiplicative under tensor product of Hermitian
vector spaces and maps. The remaining of the claim follows exactly as before.

Case 2. Suppose that S has n ≥ 3 boundary components and n exceptional fibers of
orders p1, . . . , pn. Pick a curve γ in the orbifold B that separates it into a surface Σ0,n

(containing no orbifold point) and an orbifold B′ with exactly two boundary compo-
nents. We can furthermore assume that the boundary component of S glued onto M
corresponding to a curve in B′. Taking the pre-images under the Seifert fibration, we
see that M ′ is obtained from M by first gluing a Seifert manifold with two boundary
components on a torus boundary component of M, obtaining a 3-manifold M0, and
then gluing S1 × Σ0,n on a boundary component of M0.

By Case 1, there exists constants A,K > 0 such that

1

ArK
TVr(M) ⩽ TVr(M0) ⩽ ArKTVr(M)
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for any r coprime to all of the integers pi. By Corollary 4.3, there exists constants
B,L > 0 such that

1

BrL
TVr(M0) ⩽ TVr(M

′) ⩽ BrLTVr(M0)

for any odd r ≥ 3. Therefore, we get the desired inequalities in this case as well. □

4.4. Plumbed Cobordisms. A graph manifold G is a 3-manifold that can be de-
composed into Seifert fibered spaces by cutting along a collection T of incompressible
tori. To any graph manifold G we associate a graph T (G) with vertices corresponding
to components of G \ T and each edge corresponds to a torus in T along which the
manifolds corresponding are glued. The leaves are vertices of valence one. In the case
that above graph is a tree we will say that M is a plumbed manifold. The following
generalizes Theorem 4.1 to plumbed 3-manifolds.

Corollary 4.5. Let G be a plumbed 3-manifold such that each leaf on T (G) has at
least one boundary component coming from a component of ∂G, and let M be any
3-manifold with non-empty toroidal boundary. Then, for any 3-manifold M ′ obtained
by gluing G along a component T ′ ⊂ ∂G to a component of ∂M , there exist constants
A and K > 0 and a finite set I of non-zero integers such that

r−K

A
TVr(M) ⩽ TVr(M

′) ⩽ ArKTVr(M)

Here the upper inequality holds for all odd integers r > 2 and the lower inequality holds
for all r not divisible by any of the numbers in I.

In particular, if the limsup in the definition of LTV (M) is actually a limit, then
LTV (M ′) = LTV (M).

Proof. The proof is by induction on the number of edges of T (G). If there are no edges,
the conclusion follows from Theorem 4.1 where the set I is the set of multiplicities of
the exceptional fibers of G1.

Otherwise, remove from T (G) an edge e that ends to a leaf S to obtain a tree T (G1),
associated to a graph manifold G1. By hypothesis S has a boundary component which
comes from ∂G. Suppose that the edge e corresponds to a torus T ′ ∈ T . Now cutting
G along T ′ we obtain two 3-manifolds: One is the graph manifold G1 above and
the second is the Seifert fibered manifold S, which by hypothesis has at least two
boundary components. Let M1 denote the 3-manifold obtained by gluing G1 to M
along the component of ∂G1 that corresponds to the component of ∂G glued along ∂M
in the construction of M ′. Now M ′ is obtained by gluing S to M1 along a boundary
component. The result follows by applying the induction hypothesis to M and G1 and
Theorem 4.1 to M1 and S.

□
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5. Volume Conjecture applications

In this section, we discuss applications of Theorems 4.1 and 4.5 to Conjecture 1.2.
We will use properties about the behavior of the Gromov norm (and hence simplicial
volume) under the operation of gluing 3-manifolds along spheres and tori. For details
we refer the reader to [23].

Theorem 5.1. Let M be a 3-manifold with non-empty boundary such that

(4) lim
r→∞, r odd

2π

r
log |TVr(M)| = Vol(M).

Suppose that M ′ is obtained from M by gluing to a component T ′ ⊂ ∂M , either

(a) a Seifert fibered space S as in Theorem 4.1; or
(b) a plumbed 3-manifold G as in Corollary 4.5.

Then LTV(M ′) = Vol(M ′).

Proof. By Theorem 4.1, we have LTV (M ′) = LTV (M) in the case of (a) and by
Corollary 4.5, we have LTV (M ′) = LTV (M) in the case of (b). So in both cases we
only need to prove that Vol(M ′) = Vol(M). We will discuss the details for (a). The
proof of (b) is completely analogous.

The manifold M ′ is the gluing of M and the Seifert manifold S along a torus T .
Since S has at least two boundary components, in particular it is not a solid torus and
the torus T is incompressible in S. There are thus two cases:

Case 1: The torus T is also incompressible in M . Then the torus T is also in-
compressible in M ′ and we have Vol(M ′) = Vol(M) + Vol(S) = Vol(M) since the
simplicial volume is additive under gluing along an incompressible torus, and S is a
Seifert manifold.

Case 2: The torus T is compressible in M . Then M is the connected sum of a solid
torus V and another 3-manifold M0. Since the simplicial volume is additive under
disjoint union, connected sums we have Vol(M0) = Vol(M). Now we can obtain M ′

as a connected sum M ′ = M0#S′ where S′ is obtained by gluing S to the solid torus
V . Since S′ is a Seifert fibered manifold, Vol(S′′) = 0. Again by by additivity of the
simplicial volume under connected sum (and disjoint unions), we have

Vol(M ′) = Vol(M0) + Vol(S′) = Vol(M0) = Vol(M),

giving the desired result. □

Remark 5.2. Note that ifM in Theorem 5.1 has zero simplicial volume the conclusion
of the theorem follows if the limit in Equation (4) is replaced by suplim. Indeed,
Theorem 4.1 and Corollary 4.5 imply that if LTV(M) = 0 then LTV(M ′) = 0. On
the other hand, since the Gromov norm is subadditive under gluing 3-manifolds along
tori gluing manifolds of simplicial volume zero produces volume zero manifolds.

Next we have two results that prove the volume conjecture for Seifert fibered 3-
manifolds with non-empty boundary and for large classes of graph manifolds. Our
first result is the following:
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Corollary 1.3. Suppose that S is an oriented Seifert fibered 3-manifold that either has
a non-empty boundary, or it is closed and admits an orientation reversing involution.
Then we have

LTV (S) = lim sup
r→∞, r odd

2π

r
log |TVr(S)| = Vol(S) = 0.

Proof. First suppose that ∂S ̸= ∅. Removing from S the neighborhood of a regular
fiber of S, which is a solid torus M := D2 × S1, we obtain a Seifert manifold S′ that
has at least two boundary components and one of them will be glued to ∂M . On the
other hand, by Theorem 2.3, we have

TVr(M) = TVr(D
2 × S1) = RTr(S

2 × S1) = 1,

and hence we obtain LTV(M) = Vol(M) = 0. Now the result follows by part (a) of
Theorem 5.1.

Next suppose that S is closed and there is an orientation reversing involution i :
S −→ S. Then S is the double of a Seifert fibered manifold S1, where S1 has non
empty boundary. This is if we let S̄1 denote S1 with the opposite orientation, then
S is obtained by identifying S̄1 and S1 along their boundary. On one hand we have
Vol(S) = 0 = Vol(S1). On the other hand, by Theorem 2.3,

TVr(S, q
2) = ||RTr(S1), q)||2 = TVr(S1, q

2),

and hence LTV (S) = LTV (S1) = 0.
□

Now we turn to the second result that considers plumbed 3-manifolds.

Corollary 5.3. Let G be plumbed manifold with non-empty boundary and with an
associated tree T (G) where all but at most one leaf is a 3-manifold with at least one
boundary component coming from ∂G. Then,

LTV(G) = Vol(G) = 0.

Proof. Remove from G the neighborhood of a regular fiber of a leaf S. Then proceed
as in the proof of Corollary 1.3 using part (b) of Theorem 5.1. □

Remark 5.4. Some cases of Corollary 1.3 were also verified by the third author of this
paper using using different methods [19]. Note that in this paper for the sequence of
integers r → ∞ used to establish that LTV(S) = 0, r is co-prime to the multiplicities
of the exceptional fibers of Seifert fibrations. In contrast to that, in [19] the sequence
of integers r → ∞ is when r is divisible by the multiplicities of all fibers.

6. Hyperbolic cobordisms

In the view of our results here it is reasonable to ask what is the behavior of
the TQFT operator maps for cobordisms with non-zero simplicial volume. For ex-
ample, let M be a 3-manifold with two torus boundary components, ∂M = T ∪ T ′

whose interior admits a hyperbolic structure. As before we get operators RTr(M) :
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RTr(M) → RTr(T
′). If RTr(M) is invertible, one would hope that the operator norm

|||RTr(S)
−1||| grows exponentially as r → ∞. However, as we will see below this is

not always the case
With M as above, on the torus T ′ ⊂ ∂M take a simple closed curve representing

slope s, and let M(s) denote the 3-manifold obtained by Dehn filling M along s. If
the length of the geodesic representing s on T ′ is large enough, then M(s) is also
hyperbolic [23]. However, for slopes represented by shorter the resulting manifold can
be exceptional (i.e. non-hyperbolic) and in particular M(s) can be a Seifert fibered 3-
manifold. For example, M is the complement of the Whitehead link in S3 then a Dehn
filling along one of the components of ∂M produces a solid torus which has volume
0. The next proposition shows that in these cases the operator norm |||RTr(M)−1|||−1

grows at most polynomially.

Proposition 6.1. Let M be a cobordim from T to T ′ as above, and suppose the the
map RTr(M) is invertible. Suppose that M admits a Dehn filling with slope s along a
component of ∂M so that M(s) is a 3-manifold of zero simplicial volume. Then, the
operator norm |||RTr(M)−1|||−1 grows at most polynomially.

Proof. By assumption M(s) has boundary a single torus T and RTr(M(s)) is a vector
in RTr(T ). Since M(s) has zero simplicial volume, by [11, Theorem 11] its norm with
respect to the Hermitian pairing on RTr(T ), the norm ||RTr(M(s))|| grows at most
polynomially in r.

By Remark 2.4 we have

(5) |||RTr(M)−1|||−1 = min
||x||=1

||RTr(M)(x)||,

where x ∈ RTr(T
′). On the other hand, by the TQFT properties,

(6) RTr(M(s)) = RTr(M)(er(s)),

where er(s) ∈ RTr(T
′) is the vector the TQFT-functor RTr assigns to the solid torus

where the meridian is the curve representing the slope s.
We claim that er(s) is a vector of Hermitian norm 1. Indeed, er(s) is the RTr-vector

of a solid torus D2 ×S1 but with the meridian of D2 ×S1 identified with the curve of
slope s on T 2. Hence, it is the image of the basis vector e1 introduced in Theorem 2.2
by ρr(ϕs), where ρr is the quantum representation of the mapping class group class
group of T 2 (see Equation (1) in Section 2) and ϕs is any mapping class that sends the
meridian of T 2 to the curve of slope s. Since the image of the quantum representation
ρr consists only of unitary maps, er(s) has norm 1.

Now Equations (5) and (6) and the discussion in the beginning of the proof imply

(7) |||RTr(M)−1|||−1 ⩽ ||RTr(M(s))|| ⩽ A · rN ,

for some constants A, N > 0. □
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Note that the first part of inequality (7) implies that if |||RTr(M)−1|||−1 grows
exponentially with r, then the invariants TVr(M(s), q2) = ||RTr(M(s), q)||2 grow ex-
ponentially. Tools that allow to establish exponential growth of the Turaev-Viro in-
variants of Dehn fillings are highly desirable as they will lead to progress on the volume
conjecture as well as on another important conjecture in quantum topology; the AMU
conjecture [10]. We ask the following question:

Problem 6.2. Construct examples of hyperbolic cobordisms M : T −→ T ′ such that
RTr(M) : RTr(M) → RTr(T

′) is invertible and |||RTr(S)
−1|||−1 grows exponentially

with r.

In the view of Proposition 6.1 one has to look at hyperbolic cobordisms M : T −→
T ′, such that all the 3-manifolds by filling one of the components of ∂M have non-zero
simplicial volume. One way to obtain such cobordisms is to consider complements of
two component highly twisted links in S3 (see [14] and references therein). In these
cases all the Dehn fillings of either of the two boundary components produce hyperbolic
3-manifolds.
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