See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/317417526

Normal and Jones Surfaces (talk slides)

$\textbf{Presentation} \cdot \text{May 2017}$

DOI: 10.13140/RG.2.2.13563.31527

SEE PROFILE

citations 0		reads 4
1 author	:	
	Efstratia Kalfagianni Michigan State University 72 PUBLICATIONS 547 CITATIONS	

All content following this page was uploaded by Efstratia Kalfagianni on 09 June 2017.

Normal and Jones surfaces

Effie Kalfagianni

Michigan State University

May 6, 2017

Effie Kalfagianni (MSU)

May 6, 2017 1 / 12

Boundary Slopes:

- Recall $M_K = S^3 \setminus N_K$ where N_K = tubular neighborhood of K.
- $\langle \mu, \lambda \rangle$ = meridian–*canonical* longitude basis of $H_1(\partial N_K)$.
- **Defin.** $p/q \in \mathbb{Q} \cup \{1/0\}$ is called a *boundary slope* of *K* if there is an essential surface $(S, \partial S) \subset (M_K, \partial N_K)$, such that ∂S represents $p\mu + q\lambda \in H_1(\partial N_K)$.

Boundary Slopes:

- Recall $M_K = S^3 \setminus N_K$ where N_K = tubular neighborhood of K.
- $\langle \mu, \lambda \rangle$ = meridian–*canonical* longitude basis of $H_1(\partial N_K)$.
- **Defin.** $p/q \in \mathbb{Q} \cup \{1/0\}$ is called a *boundary slope* of *K* if there is an essential surface $(S, \partial S) \subset (M_K, \partial N_K)$, such that ∂S represents $p\mu + q\lambda \in H_1(\partial N_K)$.
- (Hatcher, 80's) Every knot $K \subset S^3$ has finitely many boundary slopes.
- (Hatcher-Thurston, 80's) Gave algorithm to find all boundary slopes of 2-bridge knots.
- (Hatcher-Oertel) Gave algorithm to find all boundary slopes of Montesinos knots. – Algorithm allows to find all essential surfaces.
- (Jaco-Sedwick, 2003) Reproved Hatcher's finiteness result and generalized it to *normal surfaces*: There are finitely many slopes on ∂N_K that are realized by normal surfaces with respect to any "nice" (= one vertex) triangulation of M_K .
- Normal surfaces "contain" the essential ones-not every normal surface is essential.

Colored Jones Polynomials

• For a knot K, the colored Jones function $J_K(n)$ is a sequence

$$J_{\mathcal{K}}:\mathbb{Z}\to\mathbb{C}[t^{\pm 1}]$$

of Laurent polynomials in *t*. Extended to \mathbb{Z} by $J_{\mathcal{K}}(n) = -J_{\mathcal{K}}(-n)$.

- Normalized so that $J_{\text{unknot}}(n) = (t^{2n} t^{-2n})/(t^2 t^{-2}).$
 - Encodes information about the Jones polynomial of K and its parallels K^n . The Jones polynomial corresponds to n = 2.
 - Technically, $J_{\mathcal{K}}(n)$ is the quantum invariant using the *n*-dimensional representation of SU(2).
 - Structure of quantum invariants and representation theory of SU(2) (decomposition of tensor products of representations) lead to formulae in terms of "parallel" cables:

 $J_{\mathcal{K}}(1) = 1, \qquad J_{\mathcal{K}}(2)(t) = J_{\mathcal{K}}(t),$ $J_{\mathcal{K}}(3)(t) = J_{\mathcal{K}^2}(t) - 1, \quad J_{\mathcal{K}}(4)(t) = J_{\mathcal{K}^3}(t) - 2J_{\mathcal{K}}(t), \dots$

Colored Jones Polynomials

- (Garoufalidis- Le, 2005) The colored Jones function "*t-holonomic*": It satisfies satisfies non-trivial linear recurrence relations.
- Given *K*, there are polynomials $a_j(t^{2n}, t) \in \mathbb{C}[t^{2n}, t)]$, so that

$$a_d(t^{2n},t)J_K(n+d) + \cdots + a_0(t^{2n},t)J_K(n) = 0,$$

for all *n*.

- **Example.** *K*=right hand side trefoil.
- Colored Jones Function

$$J_{\mathcal{K}}(n) = t^{-6(n^2-1)} \sum_{j=-\frac{n-1}{2}}^{\frac{n-1}{2}} t^{24j^2+12j} \frac{t^{8j+2}-t^{-(8j+2)}}{t^2-t^{-2}}$$

• Linear recurrence relation

$$(t^{8n+12} - 1)J_{\mathcal{K}}(n+2) + (t^{-4n-6} - t^{-12n-10} - t^{8n+10} + t^{-2})J_{\mathcal{K}}(n+1) - (t^{-4n+4} - t^{-12n-8})J_{\mathcal{K}}(n) = 0.$$

More on the structure of the degree of CJP

• Holonomicity property implies: Given K there is $N_K > 0$, such that, for $n \ge N_K$,

$$d_+[J_{\mathcal{K}}(n)] = a_{\mathcal{K}}(n) n^2 + b_{\mathcal{K}}(n)n + c_{\mathcal{K}}(n),$$

- where $a_{\mathcal{K}}(n), b_{\mathcal{K}}(n), c_{\mathcal{K}}(n) : \mathbb{Z} \to \mathbb{Q}$ are periodic functions.
- d₊[J_K(n)] =maximum degree of CJP
- We have finitely many cluster points $js_{\mathcal{K}} = \{4b_{\mathcal{K}}(n)\}'$ (Jones Slopes) and $js_{\mathcal{K}} = \{2b_{\mathcal{K}}(n)\}'$.

Definition. A Jones surface of *K* is an essential surface $S \subset M_K = S^3 \setminus K$

• ∂S represents a Jones slope $a/b \in js_K$, b > 0 and gcd(a, b) = 1, and

$$\frac{\chi(S)}{|\partial S|b} \in jx_{\mathcal{K}}.$$

- Conjecture. (Garoufalidis, K+Tran) All Jones slopes are realized by Jones surfaces.
- Question. How do we recognize Jones surfaces?

Some data on the degree of the CJP

K	js _K	$\{2b_{K}(n)\}'$	$\chi(S)$	$ \partial S $
8 ₁₉	{12}	{0}	0	2
8 ₂₀	{8/3}	$\{-1, -5/3\}$	-3	1
8 ₂₁	{1 }	{-2}	-4	2
9 ₄₂	{6}	{-1}	-2	2
9 ₄₃	{32/3}	{ -1 , -5/3 }	-3	1
944	{14/3}	{ -2 , -8/3 }	-6	1
9 ₄₅	{1}	{-2}	-4	2
9 ₄₆	{2}	{-1}	-2	2
9 ₄₈	{11}	{-3}	-6	2

Table: Non-alternating Montesinos knots up to nine crossings.

• *s*= denominator of Jones slope, $|\partial S| = #$ of boundary components.

$$rac{\chi(\mathcal{S})}{|s\partial S|} \in \{2b_{\mathcal{K}}(n)\}'.$$

 $s|\partial S|$ is called the number of sheets of S.

What is known

The Strong Slope Conjecture is known for the following classes of knots.

- Alternating knots (Garoufalidis)
- Adequate knots (Futer-K.-Purcell)
- Iterated torus knots (K.-Tran)
- Families of 3-tangle pretzel knots (Lee-van der Veen)
- Knots with up to 9 crossings (Garoufalidis, K.-Tran, Howie)
- Graph knots (Motegi-Takata)
- An infinite family of arborescent non-Montesinos (Do-Howie)
- "Near-adequate" knots constructed by taking Murasugi sums of an alternating diagram with a non-adequate diagram (Lee)
- Knots obtained by iterated cabling and connect sums of knots from any of the above classes, since the conjecture was shown to be closed under these operations (K.- Tran)
- Jones slopes (but no Jones surfaces) found for family of 2-fusion knots (Garoufalidis-Veen)

Jones period/vs number of sheets of Jones surfaces

 The least common multiple of the periods of all the coefficient functions of degrees of CJP is called the *Jones period* p of K.

Lemma (K.-Lee) Suppose that $K \subset S^3$ is a knot of Jones period *p*. Let $a/b \in js_K \cup js_K^*$ be a Jones slope and let *S* be a corresponding Jones surface. Then *b* divides p^2 and $b|\partial S|$ divides $2p\chi(S)$.

- Numerical data suggests stronger relation:
- We call a Jones surface *S* of a knot *K* characteristic if the number of sheets of *S* divides the Jones period of *K*.
- In all all examples where Jones surfaces have been found, we have characteristic ones
- Two Interesting Examples The pretzel knot P(-1/101, 1/35, 1/31) has a Jones slope s = 1345/8 and realized by a Jones surface with number of sheets 32 and 4 boundary components. The Jones period is also 32 !
- P(-1/101, 1/61, 1/65), which has p = 62. It has a Jones slope 4280/31 from a Jones surface with number of sheets 31, which divides the Jones period 62, but is not equal to it.
- Question. Is it true that for every Jones slope of a knot *K* we can find a characteristic Jones surface?

• Starting point Since Jones surfaces are essential they can be isotoped to be in normal form with respect to any triangulation of the knot complement!

Theorem. (Lee-K.) Given a knot *K* with known sets $js_K \cup js_K^*$, $jx_K \cup jx_K^*$ and Jones period *p*, there is a normal surface theory algorithm that decides whether *K* satisfies the Strong Slope Conjecture.

- **KEY POINT.** Fix a Jones slope $a/b \in js_K$, with b > 0 and gcd(a, b) = 1, and suppose that we have Jones surfaces corresponding to it. Let *S* be such a surface with $\beta := \frac{\chi(S)}{|\partial S|b} \in jx_K$.
- Since $|\partial S|b$ divides $2p\chi(S)$, where *p* is the Jones period of *K*. Thus

$$2p\chi(S) - \lambda |\partial S| b = 0$$
 where $\lambda = 2p\beta \in Z$. (1)

Algorithm

- There is an algorithm to determine whether $M_K = S^3 \setminus K$ is a solid torus and thus if K is the unknot (Jaco-Tollefson, Haken) If K is the unknot then the Strong Slope Conjecture is known and we are done.
- If *K* is not the unknot apply an algorithms of Jaco and Rubinstein to obtain a "NICE" triangulation \mathcal{T} of the complement M_{K} . NICE, allows to control how far normal Jones surfaces are from being fundamental.
- There are finitely many fundamental surfaces in \mathcal{T} and there is an algorithm to find them $\mathcal{F} = \{F_1, \ldots, F_k\}$
- There is an algorithm to compute χ(F) for all surfaces F ∈ F, and to compute their boundary slopes of the ones with boundary. Let

$$\mathcal{A} = \{a_1/b_1, \ldots, a_s/b_s\}$$

denote the list of distinct boundary slopes in \mathcal{F} .

 Check whether *js_K* ⊂ A and *js^{*}_K* ⊂ A. If one of the two inclusions fails then K does not satisfy the Slope Conjecture. (This uses work of Jaco-Sedgwick)

イロト イヨト イヨト イヨ

Algorithm cont'

- If \mathcal{F} contains no closed surfaces move to the next step. If we have closed surfaces we need to find any incompressible ones among them. There is an algorithm that decides whether a given 2-sided surface is incompressible and boundary incompressible if the surface has boundary. Apply the algorithm to each closed surface in \mathcal{F} to decide whether they are incompressible. Let $\mathcal{C} \subset \mathcal{F}$ denote the set of incompressible surfaces found.
- For every $s := a/b \in js_K \subset A$ consider the set $\mathcal{F}_s \subset \mathcal{F}$ that have boundary slope a/b. By of Jaco-Sedgwick we know that $\mathcal{F}_s \neq \emptyset$. Decide whether \mathcal{F}_s contains essential surfaces and find them. Call the set found \mathcal{EF}_s .
- For every $\lambda \in 2pjx_K$ and every $F \in \mathcal{EF}_s$ calculate the quantity

$$x(F) := 2p\chi(F) - \lambda b |\partial F|.$$

Suppose that there is $F \in \mathcal{EF}_s$ with x(F) = 0. Then any such *F* is a Jones surface corresponding to *s*.

• Suppose $\mathcal{E}F_s := {\Sigma'_1, ..., \Sigma'_r} \neq \emptyset$ and that we have $x(F) \neq 0$, for all $F \in \mathcal{E}F_s$. Then consider

$$x(\Sigma'_1)n_1+\ldots x(\Sigma'_r)n_r+2p\chi(C_1)m_1+\ldots+2p\chi(C_t)m_t=0,$$

where C_i runs over all the surfaces in C.

Find and enumerate all the fundamental solutions of the equation. Among these solutions pick the *admissible* ones: That is solutions for which, for any incompatible pair of surfaces in $C \cup \mathcal{E}F_s$, at most one of the corresponding entries in the solution should be non-zero. Hence pairs of non-zero numbers correspond to pairs of compatible surfaces. Every admissible fundamental solution represents a normal surface. If a surface in this set is essential, then it is a Jones surface, otherwise, *K* fails the Strong Slope Conjecture.