Quantum representations and geometry of mapping class groups

E. Kalfagianni (w. Detcherry, and Belletti-Detcherry-Yang)

Michigan State University & IAS

December 11, 2019

Outline

 $Mod(\Sigma)$ =mapping class group of surface Σ (closed or with boundary)

• **Quantum Representations.** Given odd integer $r \ge 3$, and a primitive 2r-th root of unity there is a (projective) representation

$$\rho_r: \operatorname{Mod}(\Sigma) \to \mathbb{P}\operatorname{Aut}(RT_r(\Sigma)).$$

- "Large-r" behavior of ρ_r and Nielsen-Thurston Classification : Know facts and and open conjectures (*Andersen-Masbaum-Ueno Conjecture*).
- Recall basics about TQFT underlying the quantum representations: In particular *Turaev-Viro* invariants of a mapping torus M_f , denoted $TV_r(M_f)$, are obtained from traces of ρ_r .
- **Key point.** Exponential r-growth for $TV_r(M_f)$ implies f satisfies the AMU conjecture.
- Manifolds with exponential r-growth for TV_r-Context/Setting (volume conjectures).
- Constructions of mapping tori with exponential r-growth of TV invariants using properties of fibered links (open book decompositions) in 3-manifolds.

Nielsen-Thurston classification

Convention. $\Sigma = \Sigma_{g,n}$ = surface of genus g and n-bdry components.

Assume 3g - 3 + n > 0.

Given a mapping class $f \in \operatorname{Mod}(\Sigma)$ there is a representative $g : \Sigma \longrightarrow \Sigma$ such that at least one holds:

- \bigcirc *g* is *periodic*, i.e. some power of *g* is the identity;
- ② g is reducible, i.e. preserves some finite union of disjoint simple closed curves Γ on Σ ; or
- g is pseudo-Anosov (never periodic or reducible)
- If g : Σ → Σ reducible, then a power of g acts on each component of Σ cut along Γ.
- If at least one of the "pieces" is pseudo-Anosov, we say *g has non-trivial pseudo-Anosov pieces.*

4ロ > 4回 > 4 重 > 4 重 > 1 更 の Q ○

Mapping tori and Nielsen-Thurston classification

For $f \in \operatorname{Mod}(\Sigma)$ a mapping class let

$$\textit{M}_f = \Sigma \times [0,1]/_{(x,0)\cong (f(x),1)}$$

be the mapping torus of f. We have:

- f is reducible iff M_f has incompressible tori. In that case M_f can be cut along a canonical collection of such tori into geometric pieces (JSJ decomposition-geometric decomposition).
- Each piece of the decomposition will be either Seifert fibered manifold or a hyperbolic.
- Gromov norm of M_f : $v_{tet}||M_f|| = Vol(H)$, Vol(H) is the sum of the hyperbolic volumes of components of the geometric decomposition.
- f is periodic iff M_f is a Seifert fibered manifold ($||M_f|| = 0$).
- f is pseudo-Anosov, iff M_f has hyperbolic structure.
- Summary: $f \in \operatorname{Mod}(\Sigma)$ has non-trivial pseudo-Anosov pieces iff $||M_f|| > 0$.

Quantum representations

- Witten-Reshetikin-Turaev, SO(3)-representations:
- For each odd integer $r \ge 3$, let $U_r = \{0, 2, 4, ..., r 3\}$.
- Given a primitive 2r-th root of unity ζ_r , a compact oriented surface Σ , and a coloring c of the components of $\partial \Sigma$ by elements of U_r ,
- there is a finite dimensional \mathbb{C} -vector space, $RT_r(\Sigma, c)$ and representations:

$$\rho_{r,c}: \operatorname{Mod}(\Sigma) \to \mathbb{P}\operatorname{Aut}(RT_r(\Sigma,c)).$$

- We have $\dim(RT_r(\Sigma_{g,n},c)\cong r^{3g-3+n}$. (dimensions grow polynomially in r; Verlinde formula.)
- We will work with $\zeta_r = e^{\frac{i\pi}{r}}$. (TQFT is not unitary)

◆□▶◆□▶◆□▶◆□▶ ■ 釣९♡

Context:

- **Question.** What geometric information of $Mod(\Sigma)$ do the representations $\rho_{r,c}$ detect?
- The representations $\rho_{r,c}$ are not faithful! The images of Dehn twists have finite order! However, $\rho_{r,c}$ are asymptotically faithful:

Theorem

(Andersen, Freedman-Walker-Wang, Marché-Narimannejad) Let $f \in \operatorname{Mod}(\Sigma)$. If $\rho_{r,c}(f) = 1$, for all r, c, then f = 1. [except in the few cases when $\operatorname{Mod}(\Sigma)$ has center and f is an involution.]

Hence: There is n, such that

$$(\rho_{r,c}(f))^n = \lambda Id$$
 for all r, c , iff $f^n = 1$.

(i.e *f* is periodic) [again some exceptions].

• Conjecture. (AMU, 2004) $f \in \operatorname{Mod}(\Sigma)$ has PA pieces iff for every r >> 0 there a choice of colors c such that $\rho_{r,c}(f)$ has infinite order.

Remark. $f \in \operatorname{Mod}(\Sigma)$ satisfies the AMU iff at least of its PA pieces does.

December 11, 2019 6/3

What is known:

- Andersen, Masbaum and Ueno (2004) proved their conjecture when $\Sigma = \Sigma_{0,4}$ = the four-holed sphere.
- Santharoubane proved the conjecture for the one-holed torus.
- Egsgaard and Jorgensen (2012) and Santharoubane (2015) proved the conjecture for families for mapping classes in $\Sigma = \Sigma_{0,n}$, for all n > 4.
- In all above cases the quantum representations turn out to be related to previously studied braid group representations: (specializations of Burau representations, McMullen's representations related to actions on homology of branched covers of $\Sigma_{0,n}$.)
- For surfaces of genus g > 1 no examples known till 2016.
- Using *Birman exact sequences* of mapping class groups, one extracts representations of $\pi_1(\Sigma)$ from the representations $\rho_{r,c}$.
- Marché and Santharoubane used these representations to obtain examples of pseudo-Anosov mappings classes satisfying the AMU conjecture by exhibiting "apppropriate" elements in $\pi_1(\Sigma)$. Gave explicit curves on genus 2 surfaces (more next).

E. Kalfagianni (MSU)

Quantum representations of surface groups

- $\chi(\Sigma)$ < 0 and x_0 a marked point in the interior of Σ and $\operatorname{Mod}(\Sigma, x_0)$ group of classes preserving x_0 .
- Birman Exact Sequence.

$$0 \longrightarrow \pi_1(\Sigma, x_0) \longrightarrow \operatorname{Mod}(\Sigma, x_0) \longrightarrow \operatorname{Mod}(\Sigma) \longrightarrow 0.$$

- Kra's criterion. $\gamma \in \pi_1(\Sigma, x_0)$ represents a pseudo-Anosov mapping class iff γ *fills* Σ .
- The quantum representations give representations:

$$\rho_{r,c}: \pi_1(\Sigma) \to \mathbb{P}\mathrm{Aut}(RT_r(\Sigma,c)).$$

- (*Koberda-Satharoubane*) used $\rho_{r,c}$ to answer an open question (asked by several people independently *Kent, Kisin, Marché, McMullen, ...*):
- Constructed a linear representation of $\pi_1(\Sigma, x_0)$, that has infinite image, but the image of every simple closed curve has finite order!
- Their work led to (another) algorithm that decides whether or not $\gamma \in \pi_1(\Sigma, x_0)$ is freely homotopic to a simple loop!

E. Kalfagianni (MSU) December 11, 2019 8 / 23

The examples of Marché-Satharoubane

- Gave first examples of pseudo-Anosov mapping classes, for surfaces of genus > 1, that satisfy the following (implied by AMU).
- AMU Conjecture for surface groups. If a non-trivial element $\gamma \in \pi_1(\Sigma, x_0)$ is not a power of a class represented by a simple loop, then $\rho_{r,c}(\gamma)$ has infinite order for r >> 0 and a choice of c.
- Their examples are realized by immersed curves that $fill \Sigma$ and satisfy an additional technical condition they called *Euler incompressibility*.
- They use WRT-TQFT (at "usual" root of unity) to construct a (*Jones-type*) polynomial invariant for links in in $S^1 \times \Sigma$. Roughly speaking, non-triviality of the invariant for $\gamma \in \pi_1(\Sigma, x_0)$, viewed as link in $S^1 \times \Sigma$, implies that γ satisfies the AMU Conjecture for surface groups. *Euler incompressibility* of γ is used to derive non-triviallity.
- For fixed genus, their criterion, leads to finitely many (up to conjugation and powers) pseudo-Anosov mapping classes that satisfy the AMU Conjecture.
- Gave explicit examples in genus two. The first evidence for AMU conjecture for genus > 1.

Another approach: Growth of TV invariants and AMU

• r = odd, $TV_r(M) := TV_r(M, e^{\frac{2\pi i}{r}}) = Turaev$ -Viro invariant at level r,

$$ITV(M) := \liminf_{r \to \infty} \frac{2\pi}{r} \log |TV_r(M)|.$$

• (Generalized) Q. Chen- T. Yang volume conjecture:

$$ITV(M) = v_{\text{tet}}||M|| > 0$$

(Weaker) Exponential Growth Conjecture:

$$|TV(M) > 0 \text{ iff } ||M|| > 0$$

- Relevance to AMU Conjecture: EGC imples AMU:
- **Proposition.** (*Detcherry-K.*, 2017) Let $f \in \text{Mod}(\Sigma)$ mapping class and let M_f be the mapping torus of f. If $ITV(M_f) > 0$, then f satisfies AMU.
- **Key point:** View $TV_r(M)$ as part of the SO(3)-TQFT theory rather than a combinatorial *state sum* defined on triangulations of M.

10 / 23

TV invariants as part of a TQFT

- Witten-Reshetikhin-Turaev TQFT/ Blanchet-Habegger-Masbaum-Vogel.
- For $r \ge 3$ and $\zeta_r = e^{\frac{i\pi}{r}}$, we have a TQFT functor RT_r :
- M=closed, oriented 3-manifold RT_r(M)=C-valued invariant.
- Σ =compact, oriented surface, w. U_r -coloring c of $\partial \Sigma$,

$$RT_r(\Sigma, c) = f.d. \mathbb{C}$$
 -vector space.

• M=cobordism with $\partial M = -\Sigma_0 \cup \Sigma_1$, there is a map

$$RT_r(M) \in \operatorname{End}(RT_r(\Sigma_0), RT_r(\Sigma_1)).$$

- RT_r takes composition of cobordisms to composition of linear maps.
- We get

$$\rho_{r,c}: \operatorname{Mod}(\Sigma) \to \mathbb{P}\operatorname{Aut}(RT_r(\Sigma,c)).$$

- If $\partial \Sigma = \emptyset$, and C_f =mapping cylinder of f, $\rho_r(f) = RT_r(C_f)$.
- If $\partial \Sigma \neq \emptyset$ we color $\partial \Sigma$ with elements of U_r . To define $\rho_{r,c}$ need RT_r for cobordisms w. colored tangles.

E. Kalfagianni (MSU)

Proof of Proposition:

 By Beliakova, Roberts, Turaev, Walker, (Benediti-Pertronio) and TQFT structure

$$TV_r(M_f) = \sum_c (\operatorname{Tr} \rho_{r,c}(f))^2$$
.

where the sum ranges over all colorings of the boundary components of M_f by elements of U_r .

- Since $ITV(M_f) > 0$, the sequence $\{TV_r(M_f)\}_r$ is bounded below by a sequence that is exponentially growing in r as $r \to \infty$.
- The sequence $\sum_{c} \dim(RT_r(\Sigma, c))$ only grows polynomially in r.
- So, there will be at least one c such that $|\operatorname{Tr}\rho_{r,c}(f)| > \dim(RT_r(\Sigma,c))$.
- Then $\rho_{r,c}(f)$ must have an eigenvalue of modulus bigger than 1. Thus it has infinite order.

E. Kalfaqianni (MSU) December 11, 2019 12 / 23

More detail: Torus orthonormal basis

• RHS evaluated at $\zeta_r = e^{\frac{i\pi}{r}}$, and LHS at ζ_r^2 , and $\langle ... \rangle$ =Hermitian pairing of $RT_r(\Sigma,c)$.

$$TV_r(M_f) = ||RT_r(M_f)||^2 = \langle RT_r(M_f), RT_r(M_f) \rangle.$$

- $RT_r(\partial M_f)$ has orthonormal basis \mathbf{e}_c , where c runs over all n-tuples; one for each boundary component.
- \mathbf{e}_c is also the RT_r -vector of the cobordism of n solid tori, with the i-th solid torus containing the core colored by c_i .
- Write $RT_r(M_f) = \sum\limits_c \lambda_c \mathbf{e}_c$. Thus

$$TV_r(M_f) = \sum_c |\lambda_c|^2 = \sum_c |\langle RT_r(M_f), \mathbf{e}_c \rangle|^2.$$

• to get $\langle RT_r(M_f), \mathbf{e}_c \rangle$: fill ∂ -components of M_f ; add link L= union cores colored by c_i . Thus

$$\langle RT_r(M_f), \mathbf{e}_c \rangle = RT_r(M_{\tilde{f}}, (L, c)) = \operatorname{Tr}(\rho_{r,c}(f)).$$

E. Kalfagianni (MSU) December 11, 2019 13 / 23

|TV(M) > 0 implies ||M|| > 0

Theorem

(Detcherry-K., 2017) There exists a universal constant C > 0 such that for any compact orientable 3-manifold M with empty or toroidal boundary we have

$$|TV(M) \leq C||M||.$$

- **Remark.**if $ITV(M_f) > 0$, for some mapping class f, then f satisfies AMU.
- Computing ITV is hard! But we don't always have to compute it to decide exponential growth!
- Limits do not increase under Dehn filling.(Detcherry-K) If M is obtained by Dehn filling from M' then

$$ITV(M) \leq ITV(M')$$

• **Example.** Adding components to a link preserves exponential growth of TV invariants of link complement.

E. Kalfagianni (MSU) December 11, 2019 14 / 23

An example: Knot 52 and parents

- K(p)= 3-manifold obtained by p-surgery on M.
- $ITV(4_1(-5)) = Vol(4_1(-5)) \simeq 0.9813688 > 0$ [Ohtsuki, 2017]
- Observe $5_2(5)$ is homeomorphic to $4_1(-5)$.

- Dehn filling result implies $ITV(S^3 \setminus 5_2) \geqslant ITV(5_2(5)) = ITV(4_1(-5)) > 0$
- But Dehn filling result also implies that for any link containing 5₂ as a component we have exponential growth

$$ITV(S^3 \setminus L) \geqslant ITV(S^3 \setminus 5_2) > 0.$$

Manifolds with $|TV(M) = v_3||M|| > 0$

- (Detcherry-K- Yang, 2016) Figure-8 knot and Borromean rings complements.
- (Ohtsuki, 2017) Infinite family of closed hyperbolic 3-manifolds: Manifolds obtained by integral integer fillings of S³ along Figure-8 knot complement.
- (Belletti-Detcherry-K.- Yang, 2018) Infinite family of cusped hyperbolic 3-manifolds. These are the complements of Fundamental Shadow Links in connected sums of copies of $S^1 \times S^2$.
- (Constantino- D. Thurston, 2005) Every orientable 3-manifold M with empty or toroidal boundary contains a complement of a FSL: M contains links $L \subset M$ with $ITV(M \setminus L) > 0$. Doubles of link complements give closed 3-manifolds with ITV > 0
- Kumar, Belletti, 2019: More octahedral link complements.
- For the AMU conjecture we need: mapping tori M_f with $ITV(M_f) > 0.1$
- There exist many fibered links in all (closed) 3-manifolds!. Look at fibered links in closed manifolds.

E. Kalfagianni (MSU) December 11, 2019

16 / 23

Pseudo-Anosov mappings

• (Vague) Question. For n > 0. How large is the class of $f \in \text{Mod}(\Sigma_{g,n})$ realized as monodromies of fibered links in closed 3-manifolds we know to have |TV| > 0? All of them?

Theorem

(Detcherry-K, 2019) For g>>0, there is $f\in \mathrm{Mod}(\Sigma_{g,1})$ and a rank $\left\lfloor \frac{g}{2}\right\rfloor$ free abelian subgroup

$$H < \text{Mod}(\Sigma_{g,1}),$$

such that any class in the coset fH is PA and satisfies the AMU conjecture.

• Similarly there is $g \in \operatorname{Mod}(\Sigma_{g,1})$ there is a rank two free subgroup

$$F < \text{Mod}(\Sigma_{g,1}),$$

such that any class in the coset gF is PA and satisfies the AMU.

 Note. No examples of PA mappings for closed surfaces of g > 2 that satisfy the AMU are known.

17/23

Constructions of PAs: Links in S^3

- Start with $L \subset S^3$ be a link with $ITV(S^3 \setminus L) > 0$.
- (Stallings, 60's) We can add a component K so that $K \cup L$ is a fibered.
- In fact, K ∪ L will be a closed homogeneous braid and fiber is a Seifert surface obtained from closed braid projection.

- Refine process so that $K \cup L$ is a hyperbolic and $ITV(S^3 \setminus (L \cup K)) > 0$.
- There are only finitely many f. m. link types in homogeneous closed braids of fixed genus! No problem: Use Stallings twists.... "wisely".

E. Kalfaqianni (MSU) December 11, 2019 18 / 23

Stallings twists

- L fibered link with fiber F and monodromy f.
- c= a non-trivial s.c.c on the fiber with $lk(c, c^+) = 0$, c^+ is the curve c pushed along the positive normal of F. Need c not parallel to ∂F that bound a disc in $D \subset S^3$:

- A Stallings twist of order m: A full twist of order m along D.
- Gives fibered links L_m with fiber F and monodromy $f \circ \tau_c^m$, where τ_c = Dehn-twist on F along c.
- (Long-Morton, Fathi) If f pseudo-Anosov, for all m >> 0, $f \circ \tau_c^m$ is pseudo-Anosov.

E. Kalfagianni (MSU) December 11, 2019

19/23

Concrete examples: start with $ITV(S^3 \setminus 4_1) > 0$.

- 4_1 =closure of the alternating braid $\sigma_2^{-1}\sigma_1\sigma_2^{-1}\sigma_1$.
- Fibered, hyperbolic, monodromies in $Mod(\Sigma_{7+2k,2})$, for m=4, l=1.
- Fiber supports *k*-Stallings twists.

Concrete examples Cont'n

- Take a monodromy f for L(4, 1, k). Dehn twists on Stallings curves generate Rank k abelian subgroup of $H < \text{Mod}(\Sigma_{7+2k,2})$.
- elements in coset fH satisfy AMU. For large powers of Dehn twists maps are all pseudo-Anosov.
- Dehn (-5)-surgery on the figure-8 component with produces examples in N = 4₁(-5). This manifold is hyperbolic.
- The result of L(4,1,k) in the closed manifold is a knot, K(k) that fibers with fiber the fiber of L(4,1,k) with one boundary component capped-off. Monodromies are in $Mod(\Sigma_{7+2k,1})$.
- The Stallings twists will survive the surgery along 4₁. We get abelian subgroup of rank k in $H_k < \text{Mod}(\Sigma_{7+2k,1})$.
- We have ITV(N) > 0 by Ohtsuki's result! Hence, all link complements in N have same property.
- For k take f a monodromy so that $N \setminus K(k) = M_f$. Now all mappings of the form fH_k are realized in $N = 4_1(-5)$.

E. Kalfagianni (MSU) December 11, 2019 21 / 23

Mapping Tori: Integer and non integer values of TV_r

- (D-K) Let M_f be the mapping torus of a periodic mapping class $f \in \operatorname{Mod}(\Sigma)$ of order N. Then, for any odd integer $r \geqslant 3$, with $\gcd(r,N)=1$, we have $TV_r(M_f) \in \mathbb{Z}$, for any choice of root of unity.
- **Corollary.** For co-prime integers p, q let $T_{p,q}$ denote the (p, q)-torus link. Then, for any odd r co-prime with p and q, we have $TV_r(S^3 \setminus T_{p,q}) \in \mathbb{Z}$.
- In particular: $TV_r(M_f) \in \mathbb{Z}$, for infinitely many r.
- If $ITV(M_f) > 0$ at some root of unity, then there can be at most finitely many values r for which $TV_r(M_f) \in \mathbb{Z}$.
- Conjecture. Suppose that $f \in \operatorname{Mod}(\Sigma)$ contains a PA part. Then, there can be at most finitely many odd integers r such that $TV_r(M_f) \in \mathbb{Z}$.

22 / 23

References

- J. Andersen, G. Masbaum, K. Ueno, 'Topological quantum field theory and the Nielsen-Thurston classification of M(0,4)." Math Proc. Cambridge Philos. Soc. 141, 477–488 (2006)
- G. Belletti, R. Detcherry, E. Kalfagianni, T. Yang "Growth of quantum 6j-symbols and applications to the Volume Conjecture." arXiv:1807.03327
- T. Koberda, R. Santharoubane, 'Quotients of surface groups and homology of finite covers via quantum representations." Invent. Math. 206(2), 2016.
- J. Marche, R. Santharoubane, 'Asymptotics of the quantum representations of surface groups. arXiv:1607.00664.
- R. Detcherry, E. Kalfagianni "Quantum representations and monodromies of fibered links." Advances in Math., 351, 676-701 (2019).
- R. Detcherry, E. Kalfagianni "Gromov norm and Turaev-Viro invariants of 3-manifolds.", Ann. Sci. de l'Ecole Normale Sup., to appear (2019).
- Detcherry, E. Kalfagianni, T. Yang "*Turaev-Viro invariants, colored Jones polynomial and volume.*" Quantum Top., 9 (4), 775-813(2018).

E. Kalfagianni (MSU) December 11, 2019 23 / 23