Quantum representations and geometry of mapping class groups

E. Kalfagianni (w. Detcherry, and Belletti-Detcherry-Yang)

Michigan State University & IAS

December 11, 2019
Mod(\(\Sigma\)) = mapping class group of surface \(\Sigma\) (closed or with boundary)

- **Quantum Representations.** Given odd integer \(r \geq 3\), and a primitive \(2r\)-th root of unity there is a (projective) representation

\[
\rho_r : \text{Mod}(\Sigma) \rightarrow \mathbb{P}\text{Aut}(RT_r(\Sigma)).
\]

- “Large-\(r\)” behavior of \(\rho_r\) and Nielsen-Thurston Classification: Know facts and and open conjectures (*Andersen-Masbaum-Ueno Conjecture*).

Recall basics about TQFT underlying the quantum representations: In particular *Turaev-Viro* invariants of a mapping torus \(M_f\), denoted \(TV_r(M_f)\), are obtained from traces of \(\rho_r\).

- **Key point.** Exponential \(r\)-growth for \(TV_r(M_f)\) implies \(f\) satisfies the *AMU* conjecture.

- Manifolds with exponential \(r\)-growth for \(TV_r\)—Context/Setting (volume conjectures).

- Constructions of mapping tori with exponential \(r\)-growth of \(TV\) invariants using properties of fibered links (open book decompositions) in 3-manifolds.
Convention. $\Sigma = \Sigma_{g,n}$ is a surface of genus g and n-bdry components. Assume $3g - 3 + n > 0$.

Given a mapping class $f \in \text{Mod}(\Sigma)$ there is a representative $g : \Sigma \to \Sigma$ such that at least one holds:

1. g is periodic, i.e. some power of g is the identity;
2. g is reducible, i.e. preserves some finite union of disjoint simple closed curves Γ on Σ; or
3. g is pseudo-Anosov (never periodic or reducible)

- If $g : \Sigma \to \Sigma$ is reducible, then a power of g acts on each component of Σ cut along Γ.
- If at least one of the “pieces” is pseudo-Anosov, we say g has non-trivial pseudo-Anosov pieces.
For $f \in \text{Mod}(\Sigma)$ a mapping class let

$$M_f = \Sigma \times [0, 1]/(x,0) \sim (f(x),1)$$

be the mapping torus of f. We have:

- f is **reducible** iff M_f has **incompressible** tori. In that case M_f can be cut along a canonical collection of such tori into geometric pieces (JSJ decomposition-geometric decomposition).

- Each piece of the decomposition will be either **Seifert fibered manifold** or a **hyperbolic**.

- **Gromov norm of M_f:** $\nu_{\text{tet}} \|M_f\| = \text{Vol}(H)$, $\text{Vol}(H)$ is the sum of the hyperbolic volumes of components of the geometric decomposition.

- f is **periodic** iff M_f is a **Seifert fibered** manifold ($\|M_f\| = 0$).

- f is **pseudo-Anosov**, iff M_f has **hyperbolic structure**.

Summary: $f \in \text{Mod}(\Sigma)$ has non-trivial pseudo-Anosov pieces iff $\|M_f\| > 0$.
Quantum representations

- **Witten-Reshetikin-Turaev, SO(3)-representations:**
 - For each odd integer $r \geq 3$, let $U_r = \{0, 2, 4, \ldots, r - 3\}$.
 - Given a primitive $2r$-th root of unity ζ_r, a compact oriented surface Σ, and a coloring c of the components of $\partial \Sigma$ by elements of U_r,
 - there is a finite dimensional \mathbb{C}-vector space, $RT_r(\Sigma, c)$ and representations:
 $$\rho_{r,c} : \text{Mod}(\Sigma) \to \mathbb{P}\text{Aut}(RT_r(\Sigma, c)).$$

- We have $\dim(RT_r(\Sigma_{g,n}, c) \cong r^{3g-3+n}$. (dimensions grow polynomially in r; Verlinde formula.)
- We will work with $\zeta_r = e^{i\pi/r}$. (*TQFT is not unitary*)
Question. What geometric information of $\text{Mod}(\Sigma)$ do the representations $\rho_{r,c}$ detect?

The representations $\rho_{r,c}$ are not faithful! The images of Dehn twists have finite order! However, $\rho_{r,c}$ are asymptotically faithful:

Theorem

(Andersen, Freedman-Walker-Wang, Marché-Narimannejad) Let $f \in \text{Mod}(\Sigma)$. If $\rho_{r,c}(f) = 1$, for all r, c, then $f = 1$. *[except in the few cases when $\text{Mod}(\Sigma)$ has center and f is an involution.]*

Hence: There is n, such that

\[(\rho_{r,c}(f))^n = \lambda I_d \text{ for all } r, c, \text{ iff } f^n = 1.\]

(i.e f is periodic) *[again some exceptions].*

Conjecture. *(AMU, 2004)* $f \in \text{Mod}(\Sigma)$ has PA pieces iff for every $r >> 0$ there a choice of colors c such that $\rho_{r,c}(f)$ has infinite order.

Remark. $f \in \text{Mod}(\Sigma)$ satisfies the AMU iff at least of its PA pieces does.
What is known:

- **Andersen, Masbaum and Ueno (2004)** proved their conjecture when $\Sigma = \Sigma_{0,4}$ = the four-holed sphere.

- **Santharoubane** proved the conjecture for the one-holed torus.

- **Egsgaard and Jorgensen (2012) and Santharoubane (2015)** proved the conjecture for families for mapping classes in $\Sigma = \Sigma_{0,n}$, for all $n > 4$.

In all above cases the quantum representations turn out to be related to previously studied braid group representations: (specializations of Burau representations, McMullen’s representations related to actions on homology of branched covers of $\Sigma_{0,n}$.)

- For surfaces of genus $g > 1$ no examples known till 2016.

- Using **Birman exact sequences** of mapping class groups, one extracts representations of $\pi_1(\Sigma)$ from the representations $\rho_{r,c}$.

- **Marché and Santharoubane** used these representations to obtain examples of pseudo-Anosov mappings classes satisfying the AMU conjecture by exhibiting “appropriate” elements in $\pi_1(\Sigma)$. Gave explicit curves on genus 2 surfaces (more next).
Quantum representations of surface groups

- $\chi(\Sigma) < 0$ and x_0 a marked point in the interior of Σ and $\text{Mod}(\Sigma, x_0)$ group of classes preserving x_0.

- **Birman Exact Sequence.**

 $0 \longrightarrow \pi_1(\Sigma, x_0) \longrightarrow \text{Mod}(\Sigma, x_0) \longrightarrow \text{Mod}(\Sigma) \longrightarrow 0$.

- **Kra’s criterion.** $\gamma \in \pi_1(\Sigma, x_0)$ represents a pseudo-Anosov mapping class iff γ *fills* Σ.

- The quantum representations give representations:

 $\rho_{r,c} : \pi_1(\Sigma) \rightarrow \mathbb{P}\text{Aut}(RT_r(\Sigma, c))$.

- *(Koberda-Satharoubane)* used $\rho_{r,c}$ to answer an open question (asked by several people independently Kent, Kisin, Marché, McMullen, ...):

 - Constructed a linear representation of $\pi_1(\Sigma, x_0)$, that has infinite image, but the image of every simple closed curve has finite order!
 - Their work led to (another) algorithm that decides whether or not $\gamma \in \pi_1(\Sigma, x_0)$ is freely homotopic to a simple loop!
The examples of Marché-Satharoubane

- Gave first examples of pseudo-Anosov mapping classes, for surfaces of genus \(> 1 \), that satisfy the following \((\text{implied by AMU})\).

- **AMU Conjecture for surface groups.** If a non-trivial element \(\gamma \in \pi_1(\Sigma, x_0) \) is not a power of a class represented by a simple loop, then \(\rho_{r,c}(\gamma) \) has infinite order for \(r \gg 0 \) and a choice of \(c \).

- Their examples are realized by immersed curves that \textit{fill} \(\Sigma \) and satisfy an additional technical condition they called \textit{Euler incompressibility}.

- They use WRT-TQFT (at “usual” root of unity) to construct a \((\text{Jones-type})\) polynomial invariant for links in \(S^1 \times \Sigma \). Roughly speaking, non-triviality of the invariant for \(\gamma \in \pi_1(\Sigma, x_0) \), viewed as link in \(S^1 \times \Sigma \), implies that \(\gamma \) satisfies the AMU Conjecture for surface groups. \textit{Euler incompressibility} of \(\gamma \) is used to derive non-triviality.

- For fixed genus, their criterion, leads to finitely many (up to conjugation and powers) pseudo-Anosov mapping classes that satisfy the AMU Conjecture.

- Gave explicit examples in genus two. The first evidence for AMU conjecture for genus \(> 1 \).
Another approach: Growth of TV invariants and AMU

- \(r = \text{odd}, \ TV_r(M) := TV_r(M, e^{\frac{2\pi i}{r}}) = \) Turaev-Viro invariant at level \(r \),

\[
ITV(M) := \liminf_{r \to \infty} \frac{2\pi}{r} \log |TV_r(M)|.
\]

- (Generalized) Q. Chen- T. Yang volume conjecture:

\[
ITV(M) = \nu_{\text{tet}} ||M|| > 0
\]

- (Weaker) Exponential Growth Conjecture:

\[
ITV(M) > 0 \iff ||M|| > 0
\]

Relevance to AMU Conjecture: EGC imples AMU:

Proposition. (Detcherry-K., 2017) Let \(f \in \text{Mod}(\Sigma) \) mapping class and let \(M_f \) be the mapping torus of \(f \). If \(ITV(M_f) > 0 \), then \(f \) satisfies AMU.

Key point: View \(TV_r(M) \) as part of the \(SO(3) \)-TQFT theory rather than a combinatorial state sum defined on triangulations of \(M \).
TV invariants as part of a TQFT

- For $r \geq 3$ and $\zeta_r = e^{\frac{i\pi}{r}}$, we have a TQFT functor RT_r:
- $M=\text{closed, oriented 3-manifold } RT_r(M) = \mathbb{C}$-valued invariant.
- $\Sigma=\text{compact, oriented surface, w. } U_r$-coloring c of $\partial \Sigma$,
 $$RT_r(\Sigma, c) = f.d. \mathbb{C} - \text{vector space}.$$

- $M=\text{cobordism with } \partial M = -\Sigma_0 \cup \Sigma_1$, there is a map
 $$RT_r(M) \in \text{End}(RT_r(\Sigma_0), RT_r(\Sigma_1)).$$

- RT_r takes composition of cobordisms to composition of linear maps.
- We get
 $$\rho_{r,c} : \text{Mod}(\Sigma) \rightarrow \mathbb{P}\text{Aut}(RT_r(\Sigma, c)).$$

- If $\partial \Sigma = \emptyset$, and $C_f=\text{mapping cylinder of } f$, $\rho_r(f) = RT_r(C_f)$.
- If $\partial \Sigma \neq \emptyset$ we color $\partial \Sigma$ with elements of U_r. To define $\rho_{r,c}$ need RT_r for cobordisms w. colored tangles.
Proof of Proposition:

- By Beliakova, Roberts, Turaev, Walker, (Benediti-Pertronio) and TQFT structure

\[
TV_r(M_f) = \sum_c (\text{Tr} \rho_{r,c}(f))^2.
\]

where the sum ranges over all colorings of the boundary components of \(M_f \) by elements of \(U_r \).

- Since \(\text{ITV}(M_f) > 0 \), the sequence \(\{TV_r(M_f)\}_r \) is bounded below by a sequence that is exponentially growing in \(r \) as \(r \to \infty \).

- The sequence \(\sum_c \text{dim}(RT_r(\Sigma, c)) \) only grows polynomially in \(r \).

- So, there will be at least one \(c \) such that \(|\text{Tr} \rho_{r,c}(f)| > \text{dim}(RT_r(\Sigma, c)) \).

- Then \(\rho_{r,c}(f) \) must have an eigenvalue of modulus bigger than 1. Thus it has infinite order.
More detail: Torus orthonormal basis

- RHS evaluated at $\zeta_r = e^{i\pi r}$, and LHS at ζ_r^2, and $\langle .. \rangle =$Hermitian pairing of $RT_r(\Sigma, c)$.

$$TV_r(M_f) = ||RT_r(M_f)||^2 = \langle RT_r(M_f), RT_r(M_f) \rangle.$$

- $RT_r(\partial M_f)$ has orthonormal basis e_c, where c runs over all n-tuples; one for each boundary component.

- e_c is also the RT_r-vector of the cobordism of n solid tori, with the i-th solid torus containing the core colored by c_i.

- Write $RT_r(M_f) = \sum_c \lambda_c e_c$. Thus

$$TV_r(M_f) = \sum_c |\lambda_c|^2 = \sum_c |\langle RT_r(M_f), e_c \rangle|^2.$$

- to get $\langle RT_r(M_f), e_c \rangle$: fill ∂-components of M_f; add link $L = \text{union cores colored by } c_i$. Thus

$$\langle RT_r(M_f), e_c \rangle = RT_r(M_\tilde{f}, (L, c)) = \text{Tr}(\rho_{r,c}(f)).$$
Theorem

(Detcherry-K., 2017) There exists a universal constant $C > 0$ such that for any compact orientable 3-manifold M with empty or toroidal boundary we have

$$ITV(M) \leq C ||M||.$$

- **Remark.** if $ITV(M_f) > 0$, for some mapping class f, then f satisfies AMU.
- **Computing ITV is hard!** But we don’t always have to compute it to decide exponential growth!
- **Limits do not increase under Dehn filling.** (Detcherry-K) If M is obtained by Dehn filling from M' then

$$ITV(M) \leq ITV(M').$$

- **Example.** Adding components to a link preserves exponential growth of TV invariants of link complement.
An example: Knot 5_2 and parents

- $K(p)$ is a 3-manifold obtained by p-surgery on M.
- $ITV(4_1(-5)) = Vol(4_1(-5)) \approx 0.9813688 > 0$ [Ohtsuki, 2017]
- Observe $5_2(5)$ is homeomorphic to $4_1(-5)$.

Dehn filling result implies $ITV(S^3 \setminus 5_2) \geq ITV(5_2(5)) = ITV(4_1(-5)) > 0$

But Dehn filling result also implies that for any link containing 5_2 as a component we have **exponential growth**

$$ITV(S^3 \setminus L) \geq ITV(S^3 \setminus 5_2) > 0.$$
Manifolds with $ITV(M) = v_3 ||M|| > 0$

- (Detcherry-K.- Yang, 2016) Figure-8 knot and Borromean rings complements.
- (Ohtsuki, 2017) Infinite family of closed hyperbolic 3-manifolds: Manifolds obtained by integral integer fillings of S^3 along Figure-8 knot complement.
- (Belletti-Detcherry-K.- Yang, 2018) Infinite family of cusped hyperbolic 3-manifolds. These are the complements of Fundamental Shadow Links in connected sums of copies of $S^1 \times S^2$.
- (Constantino- D. Thurston, 2005) Every orientable 3-manifold M with empty or toroidal boundary contains a complement of a FSL: M contains links $L \subset M$ with $ITV(M \setminus L) > 0$. Doubles of link complements give closed 3-manifolds with $ITV > 0$.
- Kumar, Belletti, 2019: More octahedral link complements.
- For the AMU conjecture we need: mapping tori M_f with $ITV(M_f) > 0$.
- There exist many fibered links in all (closed) 3-manifolds. Look at fibered links in closed manifolds.
(Vague) Question. For $n > 0$. How large is the class of $f \in \text{Mod}(\Sigma_{g,n})$ realized as monodromies of fibered links in closed 3-manifolds we know to have $\mathcal{ITV} > 0$? All of them?

Theorem

(Detcherry-K, 2019) For $g \gg 0$, there is $f \in \text{Mod}(\Sigma_{g,1})$ and a rank $\left\lfloor \frac{g}{2} \right\rfloor$ free abelian subgroup

$$H < \text{Mod}(\Sigma_{g,1}),$$

such that any class in the coset fH is PA and satisfies the AMU conjecture.

• Similarly there is $g \in \text{Mod}(\Sigma_{g,1})$ there is a rank two free subgroup

$$F < \text{Mod}(\Sigma_{g,1}),$$

such that any class in the coset gF is PA and satisfies the AMU.

Note. No examples of PA mappings for closed surfaces of $g > 2$ that satisfy the AMU are known.
Constructions of PAs: Links in S^3

- Start with $L \subset S^3$ be a link with $ITV(S^3 \setminus L) > 0$.
- \textit{(Stallings, 60's)} We can add a component K so that $K \cup L$ is a fibered.
- In fact, $K \cup L$ will be a closed \textit{homogeneous braid} and fiber is a Seifert surface obtained from closed braid projection.

- Refine process so that $K \cup L$ is a hyperbolic and $ITV(S^3 \setminus (L \cup K)) > 0$.
- There are only finitely many f. m. link types in homogeneous closed braids of fixed genus! \textit{No problem:} Use Stallings twists....“wisely”.
Stallings twists

- L fibered link with fiber F and monodromy f.
- c a non-trivial s.c.c on the fiber with $lk(c, c^+) = 0$, c^+ is the curve c pushed along the positive normal of F. Need c not parallel to ∂F that bound a disc in $D \subset S^3$:

A Stallings twist of order m: A full twist of order m along D.

- Gives fibered links L_m with fiber F and monodromy $f \circ \tau_c^m$, where $\tau_c =$ Dehn-twist on F along c.

(Long-Morton, Fathi) If f pseudo-Anosov, for all $m \gg 0$, $f \circ \tau_c^m$ is pseudo-Anosov.
Concrete examples: start with $\text{ITV}(S^3 \setminus 4_1) > 0$.

- 4_1 = closure of the alternating braid $\sigma_2^{-1}\sigma_1\sigma_2^{-1}\sigma_1$.
- Fibered, hyperbolic, monodromies in $\text{Mod}(\Sigma_{7+2k,2})$, for $m = 4$, $l = 1$.
- Fiber supports k-Stallings twists.
Concrete examples Cont’n

- Take a monodromy \(f \) for \(L(4, 1, k) \). Dehn twists on Stallings curves generate Rank \(k \) abelian subgroup of \(H < \text{Mod}(\Sigma_{7+2k}, 2) \).
- Elements in coset \(fH \) satisfy AMU. For large powers of Dehn twists maps are all pseudo-Anosov.
- Dehn \((-5)\)-surgery on the figure-8 component with produces examples in \(N = 4_1(-5) \). This manifold is hyperbolic.
- The result of \(L(4, 1, k) \) in the closed manifold is a knot, \(K(k) \) that fibers with fiber the fiber of \(L(4, 1, k) \) with one boundary component capped-off. Monodromies are in \(\text{Mod}(\Sigma_{7+2k}, 1) \).
- The Stallings twists will survive the surgery along \(4_1 \). We get abelian subgroup of rank \(k \) in \(H_k < \text{Mod}(\Sigma_{7+2k}, 1) \).
- We have \(ITV(N) > 0 \) by Ohtsuki’s result! Hence, all link complements in \(N \) have same property.
- For \(k \) take \(f \) a monodromy so that \(N \setminus K(k) = M_f \). Now all mappings of the form \(fH_k \) are realized in \(N = 4_1(-5) \).
(D-K) Let M_f be the mapping torus of a periodic mapping class $f \in \text{Mod}(\Sigma)$ of order N. Then, for any odd integer $r \geq 3$, with $\gcd(r, N) = 1$, we have $TV_r(M_f) \in \mathbb{Z}$, for any choice of root of unity.

Corollary. For co-prime integers p, q let $T_{p,q}$ denote the (p, q)-torus link. Then, for any odd r co-prime with p and q, we have $TV_r(S^3 \setminus T_{p,q}) \in \mathbb{Z}$.

In particular: $TV_r(M_f) \in \mathbb{Z}$, for infinitely many r.

If $lTV(M_f) > 0$ at some root of unity, then there can be at most finitely many values r for which $TV_r(M_f) \in \mathbb{Z}$.

Conjecture. Suppose that $f \in \text{Mod}(\Sigma)$ contains a PA part. Then, there can be at most finitely many odd integers r such that $TV_r(M_f) \in \mathbb{Z}$.

