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Crossing numbers.

@ Knots: Smooth embeddings S' — S®, up to ambient isotopy in S°.

@ Knots are studied through generic projections (a.k.a. knot diagrams) on a
plane S? c S8.
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Crossing numbers.

@ Knots: Smooth embeddings S' — S®, up to ambient isotopy in S°.

@ Knots are studied through generic projections (a.k.a. knot diagrams) on a
plane S? c S8.
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@ Given a knot K, the crossing number c(K) is the smallest number of
crossings over all knot diagrams representing K.

@ Hard to calculate for arbitrary knots.

@ Behavior under basic topological operations (e.g. connected sum,
satellite operations) still poorly understood.
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Knot tables.

@ Enumeration techniques have produced knot tables of low crossing
numbers.

@ E. g. To find the crossing number of a knot given by a diagram of 7
crossings: List all knot diagrams that have 7 or less crossings. Use
topological methods/invariants to decide the different knot types.

@ Arrive at the table of 15 prime knot types (up to reflection/orientation
change):
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Knot tables.

@ Enumeration techniques have produced knot tables of low crossing
numbers.

@ E. g. To find the crossing number of a knot given by a diagram of 7
crossings: List all knot diagrams that have 7 or less crossings. Use
topological methods/invariants to decide the different knot types.

@ Arrive at the table of 15 prime knot types (up to reflection/orientation
change):
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@ There are 352,152,252 distinct knots up to 19 crossings!!.
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Topological operations: connected sums.

@ Oriented knot diagrams D(K), D(K") and connected sum D(K)#D(K").
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Topological operations: connected sums.

@ Oriented knot diagrams D(K), D(K") and connected sum D(K)#D(K").
DY T3

@ Connected sum is well defined on knots, not just diagrams. So
D(K)#D(K’) is a knot diagram of the connected sum K#K’.

@ In the example, D(K) and D(K’) are minimum (i.e. they realize the
crossing number of the knots they represent).

@ Does the knot K#K’ admit a projection with less than 7 crossings? Not in
this example, but

@ Conjecture. (open) Crossing number is additive under connected sum :
c(K#K') = ¢(K) + c(K").
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Topological operations: Satellites.

@ Satellites. Satellite knot with companion K and pattern U, : Start with U,
embedded “essentially” in standard solid torus V ¢ R®
@ Re-embed f: V — V(K) c S3, where V(K)=neighborhood of K.

@ Knot f(U,) is uniquely defined once the image of the canonical longitude
(unique generator of Hy (V) that is trivial in H; (S® <. V), is specified under

f. : Hi(0V) — H;1(0V(K)).
@ Untwisted satellite: f, takes the canonical longitude in H;(V) to the
canonical longitude in H;(V(K)).
@ Above Figure: Untwisted Whitehead double of figure-8 knot: W(K),
K =44.
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Crossing numbers of satellites?

@ What is the crossing number of W(41)? Is the diagram below minimum?

()

@ Yes in this case, but

@ in general, the behavior of crossing numbers of satellites and relation with
these of companions is not understood.

@ Question. (open) Suppose that S(K) is a satellite knot with companion
K. Is it true that

)

&

c(S(K)) > ¢(K)?
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Known results.

@ General bounds:
@ (Lakenby, 2005) For any knots Kj, K, we have

oK) + o(Ke) > c(Kihy) > Lo
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Known results.

@ General bounds:
@ (Lakenby, 2005) For any knots Kj, K, we have

c(Ki) + c(Ka)

(K1) + c(K2) > c(Ki#Kz) > 152

@ (Lakenby, 2005) If S(K) is satellite with companion K then,

c(S(K)) > 10~ 3¢(K).

@ Results support above mentioned conjectures and apply to all knots!
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Known results.

@ General bounds:

@ (Lakenby, 2005) For any knots Kj, K, we have

(K1) + c(K:
oK) + c(ke) > o(Kihg) > AL A

@ (Lakenby, 2005) If S(K) is satellite with companion K then,
c(S(K)) > 10~ 3¢(K).

@ Results support above mentioned conjectures and apply to all knots!

@ General bounds are not good enough to be used for determination of
crossing numbers of any knots.

@ For example, for W(44),

c(W(44)) >107"3¢(44) =4.107 1.

@ There are better bounds and exact determinations for important classes
of knots.
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Exact results for classes.

@ (Murasugi) Torus knots: For p,q > 0, Ty 4) = (P, q)-torus knots, then
c(Tip,9)) = min((p — 1)g, (g — 1)p).
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Exact results for classes.

@ (Murasugi) Torus knots: For p,q > 0, Ty 4) = (P, q)-torus knots, then
¢(T(p,)) = min((p —1)q,(q — 1)p).

@ Alternating knots: Diagrams w. over-under-over... crossings

@ (Kauffman, Murasugi, Thistlethwaite, 1980’s) A reduced alternating
diagram is minimum. This was the (Tait Conjecture) formulated in 1800’s.

@ Additivity Conjecture holds for alternating knots (Kauffman, Murasugi,
Thistlethwaite).
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Exact results for classes, cont.

@ (Lickosrish, Thistlethwaite, 80’s) Studied adequate knots; a broader class
than alternating knots and determined their crossing numbers.

@ Adequate knots admit “special” knot diagrams; these diagrams realize the
crossing number.

@ The writhe (algebraic crossing number) of such “special” diagram
D = D(K) is invariant of K.

@ (Lickorish-Thistlethwaite, 80’s) Crossing numbers for Montesinos knots
(sums of alternating tangles).

@ In above cases a “special” diagram of K gives ¢(K).
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Exact results for classes, cont.

@ (Lickosrish, Thistlethwaite, 80’s) Studied adequate knots; a broader class
than alternating knots and determined their crossing numbers.

@ Adequate knots admit “special” knot diagrams; these diagrams realize the
crossing number.

@ The writhe (algebraic crossing number) of such “special” diagram
D = D(K) is invariant of K.

@ (Lickorish-Thistlethwaite, 80’s) Crossing numbers for Montesinos knots
(sums of alternating tangles).

@ In above cases a “special” diagram of K gives ¢(K).

@ (K.-Lee, '21) Crossing numbers of first infinite families of prime satellites.

Let W(K)=untwisted Whitehead double of a knot K. If K is adequate with
crossing number ¢(K) and writhe number zero, then c(W(K)) = 4.c(K) + 2.
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Exact results for classes, cont.

@ “Doubling” an adequate diagram D = D(K), with writhe zero, produces a
minimum crossing number of W(K).

@ Crossing number of untwisted Whitehead doubles of figure-8 is 18.

Q) (£

@ Plenty of adequate knots with zero writhe number:

:

&

If K is adequate, with mirror image K*, then c(W(K#K™*)) = 8.¢(K) + 2.
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Alternating/Adequate knots.

Two choices for each crossing, of knot diagram D: A-resolution (middle) and
B-resolution (right).

XL

@ A Kauffman state (D) is a choice of A or B resolutions for all crossings.
@ o(D): state circles.
@ Form a fat graph H,, by adding edges at resolved crossings.

g
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Alternating/Adequate knots, con’d.

@ K is called A—adequate if has a diagram D = D(K) where the all-A state
graph Ha = Ha(D) has no 1-edge loops.

@ Similarly we have B-adequate

@ Left: graph from adequate state. Right: Graph from inadequate state.

@ K is adequate if it admits a diagram that is both A and B—adequate.

@ Introduced by (Lickorish—Thistlethwaite, 80’s) while studying Jones
polynomials.

@ Reduced alternating diagrams are A and B- adequate.
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Alternating/Adequate knots, con’d.

@ K is called A—adequate if has a diagram D = D(K) where the all-A state
graph Ha = Ha(D) has no 1-edge loops.

@ Similarly we have B-adequate

@ Left: graph from adequate state. Right: Graph from inadequate state.

@ K is adequate if it admits a diagram that is both A and B—adequate.

@ Introduced by (Lickorish—Thistlethwaite, 80’s) while studying Jones
polynomials.

@ Reduced alternating diagrams are A and B- adequate.

@ (Jones, 80’s) Constructed a Laurent polynomial invariant of knots
Jk(t) € Z[t, t~], that can be computed from any diagram D = D(K).

@ (KMT) The Tait conjecture is implied by: For any diagram D = D(K),

degree span of Ji(t) < number of crossings of D,

with equality if and only if D = D(K) is reduced alternating.
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Calculation of CJP: Example.

@ Kauffman bracket: () : link diagrams — Z[A, A~'] such that

a( Y (yea
OD) _A% _ A72)(D)

(o )=1

@ For D = D(K) where K = trefoil knot :

(-« My
Dy By or
-8 @W @)
@>+Al< % )+A 60)

@ We obtain: JK(t)—A2+A s (D) fmpa =t + 13 — 4.
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A correction term: Turaev genus.

@ Hence, for alternating knots we have
degree span of Jk(t) = ¢(K).
@ For adequate knots, that are not alternating,
degree span of Jk(t) = ¢(K) — gr(K) < ¢(K)

where gr(K)=Turaev genus= an invariant of K that measures how far K
is from being alternating.
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A correction term: Turaev genus.

@ Hence, for alternating knots we have

degree span of Jk(t) = ¢(K).
@ For adequate knots, that are not alternating,
degree span of Jk(t) = ¢(K) — gr(K) < ¢(K)

where gr(K)=Turaev genus= an invariant of K that measures how far K
is from being alternating.

@ To determine the crossing number must look at Jones polynomials of all
the “parallels” of adequate knots.

gl

@ (KMT) Adequate diagrams realize the crossing number of knots they
represent.
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The colored Jones polynomial knot invariants.

@ For non-adequate knots (with Lee) we use the colored Jones
polynomials.

@ Colored Jones function: sequence {Jk(n)}, of Laurent polynomials in t.
@ The Jones polynomial corresponds to n = 2.
@ (Garoufalidis - Le, 2005) {Jx(n)} satisfies a | linear recurrence relation

aq(t?", t)Jk(n+d) + - -- + ao(t?", t)Jk(n) = 0
for all n, where a;(u, v) € Clu, v]. g-holonomicity.
@ Example: for the only crossing number three knot (a.k.a. trefoil)

n—1

2
JK(n): t—e(n2_1) Z t24j2+12j

_n—1

/:2

t8j+2 _ t—(8j+2)
t2 _ t72

@ Recurrence relation
(t8n+12 _ 1)JK(n+ 2) + (t74n76 _ t712n710 _ t8n+10 + tiz)JK(n—F 1)

_(t—4n+4 _ t_12n_8)JK(n) —-0.
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Impact of g-holonomicity on the degree of CJP.

@ Let d;[Jk(n)] and d_[Jk(n)] denote the maximal and minimal degree of
Jk(n)in t, and set
d[Jk(n)] := 4d. [Jk(n)] — 4d_[Jk(n)] := Sa(M)rP + 1 (n)n + so(n),
si:N—Q, i=0,1,2.

@ “g-holonomicity” implies that the set of cluster points {sx(n)}/,_, .. is finite.

@ Point with the largest absolute value, denoted by djk, is called the Jones
diameter of K.

Theorem
(Lickorish-Thistlethwaite, 80’s) For any knot we have

dik < 2¢(K),

where ¢(K) is the crossing number of K.
If K is adequate then we have equality.

@ With Lee we prove the converse: djx = 2¢(K), implies K is adequate.
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Knots of maximal Jones diameter.

@ K.-Lee, 2021:

Let K be a knot with Jones diameter djx and crossing number c(K). Then,

de < ZC(K)7

with equality djx = 2¢(K) if and only if K is adequate.
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Knots of maximal Jones diameter.

@ K.-Lee, 2021:

Let K be a knot with Jones diameter djx and crossing number c(K). Then,

de < ZC(K)7

with equality djx = 2¢(K) if and only if K is adequate.

@ In fact, we show:

@ Suppose a knot K admits a diagram D = D(K), with ¢ := ¢(D), crossings
and such that djx = 2¢(D). Then D must be an adequate diagram.

@ So if D realizes ¢(K) and djx = 2¢(D) = 2¢(K), for some knot K, then D
is adequate.
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Crossing number application.

@ Theorem has immediate corollary: A diagram with number of crossings
“too close” to the Jones diameter gives the crossing number of the knot!!

Suppose K is a non-adequate knot admitting a diagram D = D(K) such that

dix = 2(c(D) — 1).

Then we have ¢(D) = c(K).

Proof. Since K is non-adequate, Theorem gives that 2¢(K) > djk. Hence we
get ¢(D) > ¢(K) > % = ¢(D) — 1, giving ¢(D) = ¢(K). O
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Crossing number application.

@ Theorem has immediate corollary: A diagram with number of crossings
“too close” to the Jones diameter gives the crossing number of the knot!!

Suppose K is a non-adequate knot admitting a diagram D = D(K) such that

dix = 2(c(D) — 1).

Then we have ¢(D) = c(K).

Proof. Since K is non-adequate, Theorem gives that 2¢(K) > djk. Hence we
get ¢(D) > ¢(K) > % = ¢(D) — 1, giving ¢(D) = ¢(K). O
o Example. For K = W(figure — 8), by Baker-Motegi-Takata,
dixk =34=217=2(18 —1).
@ Doubling the standard diagram of figure-8 produces a diagram of 18
crossings.
@ The knot K = W(figure — 8) is not adequate!
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Doubles of amphicheiral knots.

@ If K is amphicheiral adequate knot then wr(K) = 0.

Suppose that K is an amphicheiral adequate knot with crossing number c(K).
Then c(W(K)) = 4c(K) + 2.
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Doubles of amphicheiral knots.

@ If K is amphicheiral adequate knot then wr(K) = 0.

Suppose that K is an amphicheiral adequate knot with crossing number c(K).
Then c(W(K)) = 4c(K) + 2.

@ For any even n > 0 there are alternating, amphicheiral knots ¢(K) = n.
@ K= figure-8 knot is the 1st example: We have

c(W(#mK)) =16m+ 2.

@ Prime amphicheiral adequate knots with C(K) < 12. (Knotinfo
Cha-Livingston-Moore).

41 | 81g | 1043 | 12a435 | 12as06 | 12a1105 | 1281275

63 | 1047 | 1045 | 12a471 | 12as510 | 1281127 | 1285281

83 | 1033 | 1099 | 122477 | 1221019 | 1281202 | 1281287

89 | 1037 | 10423 | 128499 | 1281030 | 1281273 | 1281288

@ Out of the 2977 prime knots with up to 12 crossings, 1851 are listed as
adequate on Knotinfo and thus Corollary applies to K#K*.
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Crossing number bounds from the CJP.

@ Bounds obtained for families are much stronger than the known bounds
of general knots and are compatible with conjectural bounds for general
knots.

@ Whitehead doubles of non-zero writhe adequate knots:

Theorem (K.-Lee)

Suppose that K is an adequate knot with crossing number ¢(K) and writhe
wr(K). Then, the crossing number c(W(K)), of the untwisted Whitehead
double of K, satisfies the following inequalities.

4c(K) +1 < e(W(K)) < 4c(K) + 2 + 2|wr(K)).

In particular, if wr(K) = 0, then W(K) is non-adequate we have
c(W(K) =4c(K)+2
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Crossing number bounds from the CJP.

@ Bounds obtained for families are much stronger than the known bounds
of general knots and are compatible with conjectural bounds for general
knots.

@ Whitehead doubles of non-zero writhe adequate knots:

Theorem (K.-Lee)

Suppose that K is an adequate knot with crossing number ¢(K) and writhe
wr(K). Then, the crossing number c(W(K)), of the untwisted Whitehead
double of K, satisfies the following inequalities.

4c(K) +1 < e(W(K)) < 4c(K) + 2 + 2|wr(K)).

In particular, if wr(K) = 0, then W(K) is non-adequate we have
c(W(K) =4c(K)+2

4

@ Whitehead doubles of torus knots (non-adequate): For the torus knot 7, 4
we have

c(Wi(Tpq)) > 2¢(Tpq)-
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Mazur doubles.

(Baker-Motegi-Takata, 2022) Suppose that K is an adequate knot with
crossing number c¢(K) and writhe wr(K). Then, the crossing number
c(W(K)), of a Mazur double M(K), satisfies the following inequalities.

9¢(K) +2 < c(W(K)) < 9¢(K) + 3 + 6|wr(K)|.

Mazur double of K
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Questions:

@ wrapping number w = w(S(K)) of a of satellite knot S(K), is geometric
the intersection number of S(K) with a meridian disk of neighborhood of
the companion.

@ For Whitehead doubles w = 2 and for Mazur double w = 3.

@ Speculation. The lower bound on crossing numbers given by the degree
of the CJP should give the following: If S(K) is a satellite of an adequate
knot then ¢(S(K)) > w?. ¢(K).

E. Kalfagianni (MSU) 22/25



Questions:

@ wrapping number w = w(S(K)) of a of satellite knot S(K), is geometric
the intersection number of S(K) with a meridian disk of neighborhood of
the companion.

@ For Whitehead doubles w = 2 and for Mazur double w = 3.

@ Speculation. The lower bound on crossing numbers given by the degree
of the CJP should give the following: If S(K) is a satellite of an adequate
knot then ¢(S(K)) > w?. ¢(K).

algebraic intersection number of S(K) with a meridian disk of
neighborhood of the companion.

@ For Whitehead doubles w, = 0 and for Mazur double w, = 1.

@ For Whitehead doubles we determined the crossing numbers; for Mazur
doubles the method restricts the crossing number two possible values.

@ Question. Suppose that K is an adequate knot with wr(K) = 0. For what
zero winding number satellites of K, can we determine the crossing
number using the method used for W(K)?
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How do you compute the CJP?

@ Computing the n-th CJP of K involves computing Jones polynomials of all
ji-parallels of K, for 0 < i < n.

@ Process is facilitated by viewed knot diagrams as elements in a certain
“Temperlie-Lieb” algebra, decorated by “Jones-Wenzl” idempotents and
using “fusion algebra” underlying the combinatorics of the representation
theory of the “SU(2)-quantum group”.

@ “ Fusion Rules” also involve colored trivalent graphs that enter the picture
through: (Variable t = A=%).

I:h ln n n
n b. n _a: (g,@,n) Dg Q a: (flana") A" (71)"7%A4(2nia+#) a
= admissible 0(n,n,a) = admissible G(n, n, a)
EF qJ fusion @ untwisting I(a,r,n) K '
™™ z (‘la T n)

@ Additional rules allow to reduce complexity of resulting colored trivalent
graphs and reduce the calculation to “basic blocks”
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What is the function 6(a, b, ¢)?

@ To illustrate the complexity involved we furthers discuss the function
6(a, b, c).

@ For a, b, cintegers, witha+ b+ ciseven,a<b+c,b<a+c, and
¢ < a+ b, we have

Ax-§—y+z!Ax—1 !Ay—1 !Az—1 !
Ay+z—1 !Az+x—1 !Ax+y—1 ! ’

6(a,b,c) =

@ where,

_ atc=b __ btc—a __ atb—c
o X = 2 7y - 2 ,Z - 2 ’

e Apl = ApAp_1Dp_o---ANyand A_q = Ao =1.
o

CA2(c+1) — A—2(c+1)

AC:(i‘l) A2 _ A2

© Degree span d[Jk(n)], easy to compute for adequate knots.. hard in
general

E. Kalfagianni (MSU)
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Why compute the CJP?

@ There are open conjectures about the degrees d[Jx(n)].

@ The degrees d[Jk(n)] encodes important information about 71-injective
surfaces in the complement of K (Slopes Conjectures).

@ Slopes conjectures predict:

@ the degree d[Jk(n)] detects the trivial knot and torus knots
@ the degree d[Jk(n)] characterizes alternating knots

@ K is alternating if and only if

2d,[JR] —2d_[JE] = cr* + (2 - c)n -2, (%)

for some integer ¢ > 0.

@ The CJP conjecturally is related to character varieties of knots
(AJ-Conjecture).

@ Volume Conjecture: The colored Jones polynomials of a hyperbolic knot
determine the volume of the knot complement.
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