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Crossing numbers.

Knots: Smooth embeddings S1 −→ S3, up to ambient isotopy in S3.
Knots are studied through generic projections (a.k.a. knot diagrams) on a
plane S2 ⊂ S3.

Given a knot K , the crossing number c(K ) is the smallest number of
crossings over all knot diagrams representing K .
Hard to calculate for arbitrary knots.
Behavior under basic topological operations (e.g. connected sum,
satellite operations) still poorly understood.
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Knot tables.

Enumeration techniques have produced knot tables of low crossing
numbers.

E. g. To find the crossing number of a knot given by a diagram of 7
crossings: List all knot diagrams that have 7 or less crossings. Use
topological methods/invariants to decide the different knot types.

Arrive at the table of 15 prime knot types (up to reflection/orientation
change):

There are 352,152,252 distinct knots up to 19 crossings!!.
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Topological operations: connected sums.

Oriented knot diagrams D(K ),D(K ′) and connected sum D(K )#D(K ′).

Connected sum is well defined on knots, not just diagrams. So
D(K )#D(K ′) is a knot diagram of the connected sum K#K ′.
In the example, D(K ) and D(K ′) are minimum (i.e. they realize the
crossing number of the knots they represent).
Does the knot K#K ′ admit a projection with less than 7 crossings? Not in
this example, but
Conjecture. (open) Crossing number is additive under connected sum :
c(K#K ′) = c(K ) + c(K ′).
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Topological operations: Satellites.

Satellites. Satellite knot with companion K and pattern U+: Start with U+

embedded “essentially” in standard solid torus V ⊂ R3.
Re-embed f : V −→ V (K ) ⊂ S3, where V (K )=neighborhood of K .

Knot f (U+) is uniquely defined once the image of the canonical longitude
(unique generator of H1(V ) that is trivial in H1(S3 r V ), is specified under

f∗ : H1(∂V ) −→ H1(∂V (K )).

Untwisted satellite: f∗ takes the canonical longitude in H1(V ) to the
canonical longitude in H1(V (K )).
Above Figure: Untwisted Whitehead double of figure-8 knot: W (K ),
K = 41.
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Crossing numbers of satellites?

What is the crossing number of W (41)? Is the diagram below minimum?

Yes in this case, but
in general, the behavior of crossing numbers of satellites and relation with
these of companions is not understood.
Question. (open) Suppose that S(K ) is a satellite knot with companion
K . Is it true that

c(S(K )) > c(K )?
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Known results.

General bounds:
(Lakenby, 2005) For any knots K1,K2 we have

c(K1) + c(K2) ≥ c(K1#K2) ≥
c(K1) + c(K2)

152
.

(Lakenby, 2005) If S(K ) is satellite with companion K then,

c(S(K )) ≥ 10−13c(K ).

Results support above mentioned conjectures and apply to all knots!
General bounds are not good enough to be used for determination of
crossing numbers of any knots.
For example, for W (41),

c(W (41)) ≥ 10−13c(41) = 4.10−13.

There are better bounds and exact determinations for important classes
of knots.
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Exact results for classes.

(Murasugi) Torus knots: For p,q > 0, T(p,q) = (p,q)-torus knots, then

c(T(p,q)) = min((p − 1)q, (q − 1)p).

Alternating knots: Diagrams w. over-under-over... crossings

(Kauffman, Murasugi, Thistlethwaite, 1980’s) A reduced alternating
diagram is minimum. This was the (Tait Conjecture) formulated in 1800’s.
Additivity Conjecture holds for alternating knots (Kauffman, Murasugi,
Thistlethwaite).
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Exact results for classes, cont.

(Lickosrish, Thistlethwaite, 80’s) Studied adequate knots; a broader class
than alternating knots and determined their crossing numbers.
Adequate knots admit “special” knot diagrams; these diagrams realize the
crossing number.
The writhe (algebraic crossing number) of such “special” diagram
D = D(K ) is invariant of K .

(Lickorish-Thistlethwaite, 80’s) Crossing numbers for Montesinos knots
(sums of alternating tangles).

In above cases a “special” diagram of K gives c(K ).

(K.-Lee, ’21) Crossing numbers of first infinite families of prime satellites.

Theorem
Let W (K )=untwisted Whitehead double of a knot K . If K is adequate with
crossing number c(K ) and writhe number zero, then c(W (K )) = 4.c(K ) + 2.
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Exact results for classes, cont.

“Doubling” an adequate diagram D = D(K ), with writhe zero, produces a
minimum crossing number of W (K ).

Crossing number of untwisted Whitehead doubles of figure-8 is 18.

Plenty of adequate knots with zero writhe number:

Corollary
If K is adequate, with mirror image K ∗, then c(W (K#K ∗)) = 8.c(K ) + 2.
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Alternating/Adequate knots.

Two choices for each crossing, of knot diagram D: A-resolution (middle) and
B-resolution (right).

A Kauffman state σ(D) is a choice of A or B resolutions for all crossings.
σ(D): state circles.
Form a fat graph Hσ by adding edges at resolved crossings.
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Alternating/Adequate knots, con’d.

K is called A–adequate if has a diagram D = D(K ) where the all-A state
graph HA = HA(D) has no 1-edge loops.
Similarly we have B-adequate
Left: graph from adequate state. Right: Graph from inadequate state.

K is adequate if it admits a diagram that is both A and B–adequate.
Introduced by (Lickorish–Thistlethwaite, 80’s) while studying Jones
polynomials.
Reduced alternating diagrams are A and B- adequate.

(Jones, 80’s) Constructed a Laurent polynomial invariant of knots
JK (t) ∈ Z[t , t−1], that can be computed from any diagram D = D(K ).
(KMT) The Tait conjecture is implied by: For any diagram D = D(K ),

degree span of JK (t) ≤ number of crossings of D,

with equality if and only if D = D(K ) is reduced alternating.
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Calculation of CJP: Example.

Kauffman bracket: 〈 〉 : link diagrams −→ Z[A, A−1] such that

For D = D(K ) where K = trefoil knot :

We obtain: JK (t) = A−9

A2+A−2 〈D〉|t :=A−4 = t + t3 − t4.
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A correction term: Turaev genus.

Hence, for alternating knots we have

degree span of JK (t) = c(K ).

For adequate knots, that are not alternating,

degree span of JK (t) = c(K )− gT (K ) < c(K )

where gT (K )=Turaev genus= an invariant of K that measures how far K
is from being alternating.

To determine the crossing number must look at Jones polynomials of all
the “parallels” of adequate knots.

(KMT) Adequate diagrams realize the crossing number of knots they
represent.
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The colored Jones polynomial knot invariants.

For non-adequate knots (with Lee) we use the colored Jones
polynomials.

Colored Jones function: sequence {JK (n)}n of Laurent polynomials in t .

The Jones polynomial corresponds to n = 2.

(Garoufalidis - Le, 2005) {JK (n)} satisfies a l linear recurrence relation

ad (t2n, t)JK (n + d) + · · ·+ a0(t2n, t)JK (n) = 0

for all n, where aj(u, v) ∈ C[u, v ]. q-holonomicity.
Example: for the only crossing number three knot (a.k.a. trefoil)

JK (n) = t−6(n2−1)

n−1
2∑

j=− n−1
2

t24j2+12j t8j+2 − t−(8j+2)

t2 − t−2 .

Recurrence relation

(t8n+12 − 1)JK (n + 2) + (t−4n−6 − t−12n−10 − t8n+10 + t−2)JK (n + 1)

−(t−4n+4 − t−12n−8)JK (n) = 0.
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Impact of q-holonomicity on the degree of CJP.

Let d+[JK (n)] and d−[JK (n)] denote the maximal and minimal degree of
JK (n) in t , and set

d [JK (n)] := 4d+[JK (n)]− 4d−[JK (n)] := s2(n)n2 + s1(n)n + s0(n),

si : N −→ Q, i = 0,1,2.

“ q-holonomicity” implies that the set of cluster points {s2(n)}′n→∞ is finite.
Point with the largest absolute value, denoted by djK , is called the Jones
diameter of K .

Theorem
(Lickorish-Thistlethwaite, 80’s) For any knot we have

djK ≤ 2c(K ),

where c(K ) is the crossing number of K .
If K is adequate then we have equality.

With Lee we prove the converse: djK = 2c(K ), implies K is adequate.
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Knots of maximal Jones diameter.

K.-Lee, 2021:

Theorem
Let K be a knot with Jones diameter djK and crossing number c(K ). Then,

djK ≤ 2c(K ),

with equality djK = 2c(K ) if and only if K is adequate.

In fact, we show:

Suppose a knot K admits a diagram D = D(K ), with c := c(D), crossings
and such that djK = 2c(D). Then D must be an adequate diagram.

So if D realizes c(K ) and djK = 2c(D) = 2c(K ), for some knot K , then D
is adequate.
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Crossing number application.

Theorem has immediate corollary: A diagram with number of crossings
“too close” to the Jones diameter gives the crossing number of the knot!!

Corollary
Suppose K is a non-adequate knot admitting a diagram D = D(K ) such that

djK = 2(c(D)− 1).

Then we have c(D) = c(K ).

Proof. Since K is non-adequate, Theorem gives that 2c(K ) > djK . Hence we
get c(D) ≥ c(K ) > djK

2 = c(D)− 1, giving c(D) = c(K ).

Example. For K = W (figure − 8), by Baker-Motegi-Takata,
djK = 34 = 2.17 = 2(18− 1).

Doubling the standard diagram of figure-8 produces a diagram of 18
crossings.

The knot K = W (figure − 8) is not adequate!
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Doubles of amphicheiral knots.

If K is amphicheiral adequate knot then wr(K ) = 0.

Corollary
Suppose that K is an amphicheiral adequate knot with crossing number c(K ).
Then c(W (K )) = 4c(K ) + 2.

For any even n > 0 there are alternating, amphicheiral knots c(K ) = n.
K = figure-8 knot is the 1st example: We have

c(W (#mK )) = 16m + 2.

Prime amphicheiral adequate knots with C(K ) ≤ 12. (Knotinfo
Cha-Livingston-Moore).

41 818 1043 12a435 12a506 12a1105 12a1275

63 1017 1045 12a471 12a510 12a1127 12a1281

83 1033 1099 12a477 12a1019 12a1202 12a1287

89 1037 10123 12a499 12a1039 12a1273 12a1288

Out of the 2977 prime knots with up to 12 crossings, 1851 are listed as
adequate on Knotinfo and thus Corollary applies to K#K ∗.
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Crossing number bounds from the CJP.

Bounds obtained for families are much stronger than the known bounds
of general knots and are compatible with conjectural bounds for general
knots.
Whitehead doubles of non-zero writhe adequate knots:

Theorem (K.-Lee)
Suppose that K is an adequate knot with crossing number c(K ) and writhe
wr(K). Then, the crossing number c(W (K )), of the untwisted Whitehead
double of K , satisfies the following inequalities.

4c(K ) + 1 ≤ c(W (K )) ≤ 4c(K ) + 2 + 2|wr(K )|.

In particular, if wr(K ) = 0, then W (K ) is non-adequate we have
c(W (K ) = 4c(K ) + 2

Whitehead doubles of torus knots (non-adequate): For the torus knot Tp,q
we have

c(W±(Tp,q)) > 2c(Tp,q).
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Mazur doubles.

Theorem
(Baker-Motegi-Takata, 2022) Suppose that K is an adequate knot with
crossing number c(K ) and writhe wr(K). Then, the crossing number
c(W (K )), of a Mazur double M(K ), satisfies the following inequalities.

9c(K ) + 2 ≤ c(W (K )) ≤ 9c(K ) + 3 + 6|wr(K )|.
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Questions:

wrapping number ω = ω(S(K )) of a of satellite knot S(K ), is geometric
the intersection number of S(K ) with a meridian disk of neighborhood of
the companion.

For Whitehead doubles ω = 2 and for Mazur double ω = 3.

Speculation. The lower bound on crossing numbers given by the degree
of the CJP should give the following: If S(K ) is a satellite of an adequate
knot then c(S(K )) ≥ ω2. c(K ).

winding number ωh = ωh(S(K )) of a of satellite knot S(K ), is the
algebraic intersection number of S(K ) with a meridian disk of
neighborhood of the companion.

For Whitehead doubles ωh = 0 and for Mazur double ωh = 1.

For Whitehead doubles we determined the crossing numbers; for Mazur
doubles the method restricts the crossing number two possible values.

Question. Suppose that K is an adequate knot with wr(K) = 0. For what
zero winding number satellites of K , can we determine the crossing
number using the method used for W (K )?
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How do you compute the CJP?

Computing the n-th CJP of K involves computing Jones polynomials of all
i-parallels of K , for 0 < i ≤ n.
Process is facilitated by viewed knot diagrams as elements in a certain
“Temperlie-Lieb” algebra, decorated by “Jones-Wenzl” idempotents and
using “fusion algebra” underlying the combinatorics of the representation
theory of the “SU(2)-quantum group”.
“ Fusion Rules” also involve colored trivalent graphs that enter the picture
through: (Variable t = A−4).

Additional rules allow to reduce complexity of resulting colored trivalent
graphs and reduce the calculation to “basic blocks”
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What is the function θ(a,b, c)?

To illustrate the complexity involved we furthers discuss the function
θ(a,b, c).

For a,b, c integers, with a + b + c is even, a ≤ b + c, b ≤ a + c, and
c ≤ a + b, we have

θ(a,b, c) =
4x+y+z !4x−1!4y−1!4z−1!

4y+z−1!4z+x−1!4x+y−1!
,

where,

1 x = a+c−b
2 , y = b+c−a

2 , z = a+b−c
2 ,

2 4n! := 4n4n−14n−2 · · ·41 and 4−1 = 40 := 1.

3

4c = (−1)c A2(c+1) − A−2(c+1)

A2 − A−2 .

4 Degree span d [JK (n)], easy to compute for adequate knots.. hard in
general
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Why compute the CJP?

There are open conjectures about the degrees d [JK (n)].

The degrees d [JK (n)] encodes important information about π1-injective
surfaces in the complement of K (Slopes Conjectures).

Slopes conjectures predict:
the degree d [JK (n)] detects the trivial knot and torus knots

the degree d [JK (n)] characterizes alternating knots

K is alternating if and only if

2d+[Jn
K ]− 2d−[Jn

K ] = cn2 + (2− c)n − 2, (∗)

for some integer c ≥ 0.

The CJP conjecturally is related to character varieties of knots
(AJ-Conjecture).

Volume Conjecture: The colored Jones polynomials of a hyperbolic knot
determine the volume of the knot complement.
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