Jones diameter and crossing number of knots

joint w/ Christine Lee, Texas State University.

Michigan State University

73rd BMC: Geometry workshop, London, UK, June 6-9, 2022

Crossing numbers.

- **Knots**: Smooth embeddings $S^1 \longrightarrow S^3$, up to ambient isotopy in S^3 .
- Knots are studied through generic projections (a.k.a. *knot diagrams*) on a plane S² ⊂ S³.

Crossing numbers.

- **Knots**: Smooth embeddings $S^1 \longrightarrow S^3$, up to ambient isotopy in S^3 .
- Knots are studied through generic projections (a.k.a. *knot diagrams*) on a plane S² ⊂ S³.

- Given a knot *K*, the *crossing number c*(*K*) is the smallest number of crossings over all knot diagrams representing *K*.
- Hard to calculate for arbitrary knots.
- Behavior under basic topological operations (e.g. *connected sum, satellite operations*) still poorly understood.

Knot tables.

- Enumeration techniques have produced knot tables of low crossing numbers.
- E. g. To find the crossing number of a knot given by a diagram of 7 crossings: List all knot diagrams that have 7 or less crossings. Use topological methods/invariants to decide the different knot types.
- Arrive at the table of 15 *prime* knot types (up to reflection/orientation change):

Knot tables.

- Enumeration techniques have produced knot tables of low crossing numbers.
- E. g. To find the crossing number of a knot given by a diagram of 7 crossings: List all knot diagrams that have 7 or less crossings. Use topological methods/invariants to decide the different knot types.
- Arrive at the table of 15 *prime* knot types (up to reflection/orientation change):

• There are 352,152,252 distinct knots up to 19 crossings!!.

Topological operations: connected sums.

• Oriented knot diagrams D(K), D(K') and connected sum D(K) # D(K').

 \mapsto

the second second the second second

Image: Image:

<- ≣> < ≣>

Topological operations: connected sums.

• Oriented knot diagrams D(K), D(K') and connected sum D(K) # D(K').

- Connected sum is well defined on knots, not just diagrams. So D(K)#D(K') is a knot diagram of the connected sum K#K'.
- In the example, D(K) and D(K') are *minimum* (i.e. they realize the crossing number of the knots they represent).
- Does the knot K#K' admit a projection with less than 7 crossings? Not in this example, but
- **Conjecture.** (open) Crossing number is additive under connected sum : c(K # K') = c(K) + c(K').

Topological operations: Satellites.

- Satellites. Satellite knot with companion K and pattern U_+ : Start with U_+ embedded "essentially" in standard solid torus $V \subset R^3$.
- Re-embed $f: V \longrightarrow V(K) \subset S^3$, where V(K)=neighborhood of K.

• Knot $f(U_+)$ is uniquely defined once the image of the *canonical longitude* (unique generator of $H_1(V)$ that is trivial in $H_1(S^3 \setminus V)$, is specified under

$$f_*: H_1(\partial V) \longrightarrow H_1(\partial V(K)).$$

- Untwisted satellite: f_* takes the canonical longitude in $H_1(V)$ to the canonical longitude in $H_1(V(K))$.
- Above Figure: Untwisted Whitehead double of figure-8 knot: W(K),
 K = 4₁.

Crossing numbers of satellites?

• What is the crossing number of $W(4_1)$? Is the diagram below minimum?

- Yes in this case, but
- in general, the behavior of crossing numbers of satellites and relation with these of companions is not understood.
- **Question.** (open) Suppose that *S*(*K*) is a satellite knot with companion *K*. Is it true that

$$c(S(K)) > c(K)?$$

General bounds:

• (Lakenby, 2005) For any knots K₁, K₂ we have

$$c(K_1) + c(K_2) \ge c(K_1 \# K_2) \ge \frac{c(K_1) + c(K_2)}{152}$$

< ∃→

General bounds:

• (Lakenby, 2005) For any knots K_1, K_2 we have

$$c(K_1) + c(K_2) \ge c(K_1 \# K_2) \ge \frac{c(K_1) + c(K_2)}{152}$$

• (Lakenby, 2005) If S(K) is satellite with companion K then,

$$c(S(K)) \ge 10^{-13}c(K).$$

Results support above mentioned conjectures and apply to all knots!

General bounds:

• (Lakenby, 2005) For any knots K_1, K_2 we have

$$c(K_1) + c(K_2) \ge c(K_1 \# K_2) \ge \frac{c(K_1) + c(K_2)}{152}$$

• (Lakenby, 2005) If S(K) is satellite with companion K then,

$$c(S(K)) \ge 10^{-13}c(K).$$

- Results support above mentioned conjectures and apply to all knots!
- General bounds are not good enough to be used for determination of crossing numbers of any knots.
- For example, for $W(4_1)$,

$$c(W(4_1)) \ge 10^{-13}c(4_1) = 4.10^{-13}.$$

 There are better bounds and exact determinations for important classes of knots.

Exact results for classes.

• (Murasugi) *Torus knots*: For p, q > 0, $T_{(p,q)} = (p, q)$ -torus knots, then $c(T_{(p,q)}) = \min((p-1)q, (q-1)p).$

< 문 ▶ < 문 ▶ ...

Image: Image:

Exact results for classes.

• (Murasugi) *Torus knots*: For p, q > 0, $T_{(p,q)} = (p, q)$ -torus knots, then $c(T_{(p,q)}) = \min((p-1)q, (q-1)p)$.

Alternating knots: Diagrams w. over-under-over... crossings

- (Kauffman, Murasugi, Thistlethwaite, 1980's) A reduced alternating diagram is minimum. This was the (Tait Conjecture) formulated in 1800's.
- Additivity Conjecture holds for alternating knots (Kauffman, Murasugi, Thistlethwaite).

Exact results for classes, cont.

- (Lickosrish, Thistlethwaite, 80's) Studied *adequate knots*; a broader class than alternating knots and determined their crossing numbers.
- Adequate knots admit "special" knot diagrams; these diagrams realize the crossing number.
- The *writhe* (algebraic crossing number) of such "special" diagram D = D(K) is invariant of K.
- (Lickorish-Thistlethwaite, 80's) Crossing numbers for Montesinos knots (sums of alternating tangles).
- In above cases a "special" diagram of K gives c(K).

Exact results for classes, cont.

- (Lickosrish, Thistlethwaite, 80's) Studied adequate knots; a broader class than alternating knots and determined their crossing numbers.
- Adequate knots admit "special" knot diagrams; these diagrams realize the crossing number.
- The *writhe* (algebraic crossing number) of such "special" diagram D = D(K) is invariant of K.
- (Lickorish-Thistlethwaite, 80's) Crossing numbers for Montesinos knots (sums of alternating tangles).
- In above cases a "special" diagram of K gives c(K).
- (K.-Lee, '21) Crossing numbers of first infinite families of prime satellites.

Theorem

Let W(K)=untwisted Whitehead double of a knot K. If K is adequate with crossing number c(K) and writhe number zero, then c(W(K)) = 4.c(K) + 2.

< ロ > < 同 > < 臣 > < 臣 > -

Exact results for classes, cont.

- "Doubling" an adequate diagram D = D(K), with writhe zero, produces a minimum crossing number of W(K).
- Crossing number of untwisted Whitehead doubles of figure-8 is 18.

• Plenty of adequate knots with zero writhe number:

Corollary

If K is adequate, with mirror image K^* , then $c(W(K \# K^*)) = 8.c(K) + 2$.

Alternating/Adequate knots.

Two choices for each crossing, of knot diagram *D*: *A*-resolution (middle) and *B*-resolution (right).

- A Kauffman state $\sigma(D)$ is a choice of A or B resolutions for all crossings.
- $\sigma(D)$: state circles.
- Form a fat graph H_{σ} by adding edges at resolved crossings.

Alternating/Adequate knots, con'd.

- *K* is called *A*-adequate if has a diagram D = D(K) where the all-*A* state graph $H_A = H_A(D)$ has no 1-edge loops.
- Similarly we have B-adequate
- Left: graph from adequate state. Right: Graph from inadequate state.

- *K* is *adequate* if it admits a diagram that is both *A* and *B*-adequate.
- Introduced by (Lickorish–Thistlethwaite, 80's) while studying *Jones* polynomials.
- Reduced alternating diagrams are A and B- adequate.

Alternating/Adequate knots, con'd.

- *K* is called *A*-adequate if has a diagram D = D(K) where the all-*A* state graph $H_A = H_A(D)$ has no 1-edge loops.
- Similarly we have B-adequate
- Left: graph from adequate state. Right: Graph from inadequate state.

- *K* is *adequate* if it admits a diagram that is both *A* and *B*-adequate.
- Introduced by (Lickorish–Thistlethwaite, 80's) while studying *Jones polynomials*.
- Reduced alternating diagrams are A and B- adequate.
- (Jones, 80's) Constructed a Laurent polynomial invariant of knots $J_{\mathcal{K}}(t) \in \mathbb{Z}[t, t^{-1}]$, that can be computed from any diagram $D = D(\mathcal{K})$.
- (KMT) The Tait conjecture is implied by: For any diagram D = D(K),

degree span of $J_{\mathcal{K}}(t) \leq$ number of crossings of D,

with equality if and only if D = D(K) is reduced alternating.

Calculation of CJP: Example.

• Kauffman bracket: $\langle \rangle$: link diagrams $\longrightarrow \mathbb{Z}[A, A^{-1}]$ such that

$$\begin{array}{c} \left\langle \begin{array}{c} \swarrow \end{array} \right\rangle = A \left\langle \begin{array}{c} \right\rangle \left\langle \end{array} \right\rangle + A^{-1} \left\langle \begin{array}{c} \end{array} \right\rangle \left\langle \\ \left\langle \end{array} \right\rangle \\ \left\langle \begin{array}{c} O \\ D \right\rangle = (-A^2 - A^{-2}) \langle D \rangle \\ \left\langle \end{array} \right\rangle = 1 \end{array}$$

• For D = D(K) where K = trefoil knot :

• We obtain:
$$J_{\mathcal{K}}(t) = rac{A^{-9}}{A^2 + A^{-2}} \langle D \rangle|_{t:=A^{-4}} = t + t^3 - t^4$$
.

A correction term: Turaev genus.

Hence, for alternating knots we have

degree span of $J_{\mathcal{K}}(t) = c(\mathcal{K})$.

For adequate knots, that are not alternating,

degree span of $J_{\mathcal{K}}(t) = c(\mathcal{K}) - g_{\mathcal{T}}(\mathcal{K}) < c(\mathcal{K})$

where $g_T(K)$ =Turaev genus= an invariant of K that measures how far K is from being alternating.

A correction term: Turaev genus.

Hence, for alternating knots we have

degree span of $J_{\mathcal{K}}(t) = c(\mathcal{K})$.

For adequate knots, that are not alternating,

degree span of
$$J_{\mathcal{K}}(t) = c(\mathcal{K}) - g_{\mathcal{T}}(\mathcal{K}) < c(\mathcal{K})$$

where $g_T(K)$ =Turaev genus= an invariant of K that measures how far K is from being alternating.

• To determine the crossing number must look at Jones polynomials of all the "parallels" of adequate knots.

 (KMT) Adequate diagrams realize the crossing number of knots they represent.

The colored Jones polynomial knot invariants.

- For non-adequate knots (with Lee) we use the *colored Jones* polynomials.
- Colored Jones function: sequence $\{J_{\mathcal{K}}(n)\}_n$ of Laurent polynomials in *t*.
- The Jones polynomial corresponds to n = 2.
- (Garoufalidis Le, 2005) $\{J_{\mathcal{K}}(n)\}$ satisfies a l linear recurrence relation

 $a_d(t^{2n},t)J_K(n+d) + \cdots + a_0(t^{2n},t)J_K(n) = 0$

for all *n*, where $a_j(u, v) \in \mathbb{C}[u, v]$. *q*-holonomicity.

Example: for the only crossing number three knot (a.k.a. trefoil)

$$J_{K}(n) = t^{-6(n^{2}-1)} \sum_{j=-\frac{n-1}{2}}^{\frac{n-1}{2}} t^{24j^{2}+12j} \frac{t^{8j+2}-t^{-(8j+2)}}{t^{2}-t^{-2}}.$$

Recurrence relation

$$(t^{8n+12}-1)J_{K}(n+2) + (t^{-4n-6} - t^{-12n-10} - t^{8n+10} + t^{-2})J_{K}(n+1) - (t^{-4n+4} - t^{-12n-8})J_{K}(n) = 0.$$

Impact of q-holonomicity on the degree of CJP.

Let d₊[J_K(n)] and d₋[J_K(n)] denote the maximal and minimal degree of J_K(n) in t, and set

 $d[J_{\mathcal{K}}(n)] := 4d_{+}[J_{\mathcal{K}}(n)] - 4d_{-}[J_{\mathcal{K}}(n)] := s_{2}(n)n^{2} + s_{1}(n)n + s_{0}(n),$

 $s_i : \mathbb{N} \longrightarrow \mathbb{Q}, i = 0, 1, 2.$

- "q-holonomicity" implies that the set of cluster points $\{s_2(n)\}'_{n\to\infty}$ is finite.
- Point with the largest absolute value, denoted by *dj_K*, is called the *Jones diameter* of *K*.

Theorem

(Lickorish-Thistlethwaite, 80's) For any knot we have

$$dj_{K} \leq 2c(K),$$

where c(K) is the crossing number of K. If K is adequate then we have equality.

• With Lee we prove the converse: $dj_K = 2c(K)$, implies K is adequate.

Knots of maximal Jones diameter.

• K.-Lee, 2021:

Theorem

Let K be a knot with Jones diameter d_{j_K} and crossing number c(K). Then,

 $dj_{K} \leq 2c(K),$

with equality $dj_K = 2c(K)$ if and only if K is adequate.

• K.-Lee, 2021:

Theorem

Let K be a knot with Jones diameter d_{j_K} and crossing number c(K). Then,

 $dj_{K} \leq 2c(K),$

with equality $dj_K = 2c(K)$ if and only if K is adequate.

- In fact, we show:
- Suppose a knot K admits a diagram D = D(K), with c := c(D), crossings and such that dj_K = 2c(D). Then D must be an adequate diagram.
- So if D realizes c(K) and dj_K = 2c(D) = 2c(K), for some knot K, then D is adequate.

Crossing number application.

 Theorem has immediate corollary: A diagram with number of crossings "too close" to the Jones diameter gives the crossing number of the knot!!

Corollary

Suppose K is a non-adequate knot admitting a diagram D = D(K) such that

$$dj_{K}=2(c(D)-1).$$

Then we have c(D) = c(K).

Proof. Since *K* is non-adequate, Theorem gives that $2c(K) > dj_K$. Hence we get $c(D) \ge c(K) > \frac{dj_K}{2} = c(D) - 1$, giving c(D) = c(K).

Crossing number application.

 Theorem has immediate corollary: A diagram with number of crossings "too close" to the Jones diameter gives the crossing number of the knot!!

Corollary

Suppose K is a non-adequate knot admitting a diagram D = D(K) such that

$$dj_K = 2(c(D) - 1).$$

Then we have c(D) = c(K).

Proof. Since *K* is non-adequate, Theorem gives that $2c(K) > dj_K$. Hence we get $c(D) \ge c(K) > \frac{dj_K}{2} = c(D) - 1$, giving c(D) = c(K).

- **Example.** For K = W(figure 8), by Baker-Motegi-Takata, $dj_K = 34 = 2.17 = 2(18 1)$.
- Doubling the standard diagram of figure-8 produces a diagram of 18 crossings.
- The knot K = W(figure 8) is not adequate!

・ロン ・回 と ・ ヨン ・ ヨ

Doubles of amphicheiral knots.

• If K is amphicheiral adequate knot then wr(K) = 0.

Corollary

Suppose that K is an amphicheiral adequate knot with crossing number c(K). Then c(W(K)) = 4c(K) + 2.

Doubles of amphicheiral knots.

• If K is amphicheiral adequate knot then wr(K) = 0.

Corollary

Suppose that K is an amphicheiral adequate knot with crossing number c(K). Then c(W(K)) = 4c(K) + 2.

- For any even n > 0 there are alternating, amphicheiral knots c(K) = n.
- K= figure-8 knot is the 1st example: We have

$$c(W(\#_m K)) = 16m + 2.$$

 Prime amphicheiral adequate knots with C(K) ≤ 12. (Knotinfo Cha-Livingston-Moore).

4 ₁	8 ₁₈	10 ₄₃	12 <i>a</i> 435	12 <i>a</i> ₅₀₆	12 <i>a</i> 1105	12 <i>a</i> ₁₂₇₅
6 ₃	10 ₁₇	10 ₄₅	12 <i>a</i> 471	12 <i>a</i> ₅₁₀	12 <i>a</i> 1127	12 <i>a</i> ₁₂₈₁
8 3	10 ₃₃	10 ₉₉	12 <i>a</i> 477	12 <i>a</i> ₁₀₁₉	12 <i>a</i> ₁₂₀₂	12 <i>a</i> ₁₂₈₇
8 9	10 ₃₇	10 ₁₂₃	12 <i>a</i> ₄₉₉	12 <i>a</i> ₁₀₃₉	12 <i>a</i> ₁₂₇₃	12 <i>a</i> ₁₂₈₈

 Out of the 2977 prime knots with up to 12 crossings, 1851 are listed as adequate on Knotinfo and thus Corollary applies to K#K*.

Crossing number bounds from the CJP.

- Bounds obtained for families are much stronger than the known bounds of general knots and are compatible with conjectural bounds for general knots.
- Whitehead doubles of non-zero writhe adequate knots:

Theorem (K.-Lee)

Suppose that K is an adequate knot with crossing number c(K) and writhe wr(K). Then, the crossing number c(W(K)), of the untwisted Whitehead double of K, satisfies the following inequalities.

$$4c(K) + 1 \leq c(W(K)) \leq 4c(K) + 2 + 2|wr(K)|.$$

In particular, if wr(K) = 0, then W(K) is non-adequate we have c(W(K) = 4c(K) + 2

・ロト ・回ト ・ヨト ・ヨト

Crossing number bounds from the CJP.

- Bounds obtained for families are much stronger than the known bounds of general knots and are compatible with conjectural bounds for general knots.
- Whitehead doubles of non-zero writhe adequate knots:

Theorem (K.-Lee)

Suppose that K is an adequate knot with crossing number c(K) and writhe wr(K). Then, the crossing number c(W(K)), of the untwisted Whitehead double of K, satisfies the following inequalities.

$$4c(K) + 1 \leq c(W(K)) \leq 4c(K) + 2 + 2|wr(K)|.$$

In particular, if wr(K) = 0, then W(K) is non-adequate we have c(W(K) = 4c(K) + 2

Whitehead doubles of torus knots (non-adequate): For the torus knot T_{p,q} we have

$$c(W_{\pm}(T_{p,q})) > 2c(T_{p,q}).$$

Theorem

(Baker-Motegi-Takata, 2022) Suppose that K is an adequate knot with crossing number c(K) and writhe wr(K). Then, the crossing number c(W(K)), of a Mazur double M(K), satisfies the following inequalities.

 $9c(K) + 2 \leq c(W(K)) \leq 9c(K) + 3 + 6|wr(K)|.$

Questions:

- wrapping number $\omega = \omega(S(K))$ of a of satellite knot S(K), is geometric the intersection number of S(K) with a meridian disk of neighborhood of the companion.
- For Whitehead doubles $\omega = 2$ and for Mazur double $\omega = 3$.
- **Speculation.** The lower bound on crossing numbers given by the degree of the CJP should give the following: If S(K) is a satellite of an adequate knot then $c(S(K)) \ge \omega^2$. c(K).

Questions:

- wrapping number $\omega = \omega(S(K))$ of a of satellite knot S(K), is geometric the intersection number of S(K) with a meridian disk of neighborhood of the companion.
- For Whitehead doubles $\omega = 2$ and for Mazur double $\omega = 3$.
- **Speculation.** The lower bound on crossing numbers given by the degree of the CJP should give the following: If S(K) is a satellite of an adequate knot then $c(S(K)) \ge \omega^2$. c(K).
- winding number ω_h = ω_h(S(K)) of a of satellite knot S(K), is the algebraic intersection number of S(K) with a meridian disk of neighborhood of the companion.
- For Whitehead doubles $\omega_h = 0$ and for Mazur double $\omega_h = 1$.
- For Whitehead doubles we determined the crossing numbers; for Mazur doubles the method restricts the crossing number two possible values.
- **Question.** Suppose that *K* is an adequate knot with wr(K) = 0. For what zero winding number satellites of *K*, can we determine the crossing number using the method used for *W*(*K*)?

・ロン ・四 と ・ 回 と ・ 回 と

How do you compute the CJP?

- Computing the *n*-th CJP of *K* involves computing Jones polynomials of all *i*-parallels of *K*, for 0 < *i* ≤ *n*.
- Process is facilitated by viewed knot diagrams as elements in a certain "Temperlie-Lieb" algebra, decorated by "Jones-Wenzl" idempotents and using "fusion algebra" underlying the combinatorics of the representation theory of the "SU(2)-quantum group".
- "Fusion Rules" also involve *colored trivalent graphs* that enter the picture through: (Variable $t = A^{-4}$).

 Additional rules allow to reduce complexity of resulting colored trivalent graphs and reduce the calculation to "basic blocks"

What is the function $\theta(a, b, c)$?

- To illustrate the complexity involved we furthers discuss the function $\theta(a, b, c)$.
- For a, b, c integers, with a + b + c is even, $a \le b + c$, $b \le a + c$, and $c \le a + b$, we have

$$\theta(a, b, c) = \frac{\triangle_{x+y+z}! \triangle_{x-1}! \triangle_{y-1}! \triangle_{z-1}!}{\triangle_{y+z-1}! \triangle_{z+x-1}! \triangle_{x+y-1}!},$$

where,

- $x = \frac{a+c-b}{2}, y = \frac{b+c-a}{2}, z = \frac{a+b-c}{2},$ • $\triangle_n! := \triangle_n \triangle_{n-1} \triangle_{n-2} \cdots \triangle_1 \text{ and } \triangle_{-1} = \triangle_0 := 1.$ • $\triangle_c = (-1)^c \frac{A^{2(c+1)} - A^{-2(c+1)}}{A^2 - A^{-2}}.$
- Degree span d[J_K(n)], easy to compute for adequate knots.. hard in general

Why compute the CJP?

- There are open conjectures about the degrees $d[J_K(n)]$.
- The degrees d[J_K(n)] encodes important information about π₁-injective surfaces in the complement of K (Slopes Conjectures).
- Slopes conjectures predict:
- the degree $d[J_{\mathcal{K}}(n)]$ detects the trivial knot and torus knots
- the degree $d[J_{\mathcal{K}}(n)]$ characterizes alternating knots
- K is alternating if and only if

$$2d_{+}[J_{K}^{n}] - 2d_{-}[J_{K}^{n}] = cn^{2} + (2 - c)n - 2, \qquad (*)$$

for some integer $c \ge 0$.

- The CJP conjecturally is related to character varieties of knots (*AJ-Conjecture*).
- *Volume Conjecture*: The colored Jones polynomials of a hyperbolic knot determine the volume of the knot complement.

イロン イヨン イヨン -