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Talk theme

Knots: Smooth embedding K : S1 → S3.
Equivalence: K1,K2 are equivalent if f (K1) = K2, f homeomorphism of S3.

Relations among the two knot theory perspectives:

3-manifold topology/geometry
Geometric structures and geometric invariants of the complement S3 rK .
Essential surfaces in the complement S3 r K .

Physics/ representation theory originated invariants.
Quantum invariants: Jones polynomial and Colored Jones polynomial.
Defined/computed from knot diagrams.

Effie Kalfagianni (MSU) J 2 / 23



Knots and 3-manifolds:

Given K remove an open tube around K to obtain the

Knot complement: MK = S3 r K
Compact, orientable 3-manifold with torus boundary.

Map π1(∂MK )→ π1(MK ) is injection unless K =Trivial Knot.
S properly embedded surface in MK with our without boundary.
Definition. S is essential if it is π1-injective and cannon be homotopied
onto ∂MK (i.e. not boundary parallel torus or annulus ).

Three distinct types of knot complements (after Thurston).

Satellites: MK contains essential tori. There is a canonical (finite)
collection of such tori.

Torus knots: MK contains no essential torus but contains essential
annulus (cabling annulus)

Hyperbolic Knots: MK can be given a complete Riemannian metric of
constant negative curvature–(metric is unique Mostow-Prasad Rigidity
Theorem)
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Boundary Slopes:

Recall MK = S3 r NK where NK = tubular neighborhood of K .

〈µ, λ〉 = meridian–canonical longitude basis of H1(∂NK ).

Defin. p/q ∈ Q ∪ {1/0} is called a boundary slope of K if there is an
essential surface (S, ∂S) ⊂ (MK , ∂NK ), such that ∂S represents
pµ+ qλ ∈ H1(∂NK ).

(Hatcher, 80’s) Every knot K ⊂ S3 has finitely many boundary slopes.

(Hatcher-Thurston, 80’s) Gave algorithm to find all boundary slopes of
2-bridge knots.

( Hatcher-Oertel) Gave algorithm to find all boundary slopes of
Montesinos knots. – Algorithm allows to find all essential surfaces.

(Jaco-Sedwick, 2003) Reproved Hatcher’s finiteness result and
generalized it to normal surfaces: There are finitely many slopes on ∂NK
that are realized by normal surfaces with respect to any “ nice” (= one
vertex) triangulation of MK .

Normal surface contain the essential ones–not every normal surface is
essential.
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Colored Jones Polynomials

For a knot K , the colored Jones function JK (n) is a sequence

JK : Z→ C[t±1]

of Laurent polynomials in t . Extended to Z by JK (n) = −JK (−n).
Normalized so that Junknot(n) = (t2n − t−2n)/(t2 − t−2).

Encodes information about the Jones polynomial
of K and its parallels K n. The Jones polynomial
corresponds to n = 2.
Technically, JK (n) is the quantum invariant using
the n-dimensional representation of SU(2).
Structure of quantum invariants and
representation theory of SU(2) (decomposition of
tensor products of representations) lead to
formulae in terms of “parallel” cables:

JK (1) = 1, JK (2)(t) = JK (t),
JK (3)(t) = JK 2(t)− 1, JK (4)(t) = JK 3(t)− 2JK (t), . . .
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Colored Jones Polynomials

(Garoufalidis- Le, 2005) The colored Jones function “t-holonomic”: It
satisfies satisfies non-trivial linear recurrence relations.
Given K , there are polynomials aj(t2n, t) ∈ C[t2n, t)], so that

ad (t2n, t)JK (n + d) + · · ·+ a0(t2n, t)JK (n) = 0,

for all n.
Example. K =right hand side trefoil.
Colored Jones Function

JK (n) = t−6(n2−1)

n−1
2∑

j=− n−1
2

t24j2+12j t8j+2 − t−(8j+2)

t2 − t−2 .

Linear recurrence relation

(t8n+12 − 1)JK (n + 2) + (t−4n−6 − t−12n−10 − t8n+10 + t−2)JK (n + 1)

−(t−4n+4 − t−12n−8)JK (n) = 0.
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Degree of CJP: Slope conjecture

d+[JK (n)]= highest degree of JK (n) in t
d−[JK (n)]=lowest degree.

Notation. {xn}′ = set of cluster points of the sequence {xn}.

The sets of cluster points

jsK :=
{

n−2d+[JK (n)]
}′

and js∗K :=
{

n−2d−[JK (n)]
}′
.

are finite. This follows by the “t-holonomicity” property of CJP.

The elements of jsK ∪ js∗K are called Jones slopes.

Conjecture 1. (Garoufalidis, ’10): For every knot the Jones slopes are
boundary slopes!
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The slope conjecture con’t

Warm up examples
Example 1. K = Tp,q= Torus knot.

Only two boundary slopes

{0,pq},

realized by a minimum genus Seifert surface and the cabling annulus.

Jones slopes jsK ∪ js∗K = {0,pq}.

Example 2. K = P(−2,3,7)-pretzel knot:

4d+[JK (n)] = 37/2n2 + 34n + e(n),
4d−[JK (n)] = 0n2 + 18n − 18,

where e(n) : Z→ Q is a periodic function of period p − 3.
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Slope Conjecture Con’t:

Hatcher-Oertel algorithm for finding boundary slopes applies to
K = P(−2,3,7). Dunfield has implemented the algorithm– (calculation is
fast for examples). We get

Boundary slopes = {37/2,0,16,20}.

The slope conjecture was confirmed for the following knots:
alternating knots and adequate knots
knots with up to nine crossings, torus knots,
“Most” of (p, q, r)-pretzel knots
families of closed 3-braids (2-fusion knots)
Iterated cables and connect sums of any of the above.

( Garoufalidis, Garoufalidis-Dunfield-Van der Veen, C. Lee- Van der Veen,
Futer-K.-Purcell, K.- A. Tran, Motegi-Takata ...)

Remark. Curtis and Taylor were one of the first authors to study the
relation between boundary slopes and the degree of the Jones
polynomial.
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More on the structure of the degree of CJP

Garoufalidis observed: Given K there is NK > 0, such that, for n ≥ NK ,

d+[JK (n)] = aK (n)n2 + bK (n)n + cK (n),

where aK (n),bK (n), cK (n) : Z→ Q are periodic functions.

We have bUnknot(n) = 1/2.
Conjecture 2 (K-Tran) If K 6= Unknot, we have

bK (n) ≤ 0.

That is bK (n) detects the unknot.

Results and numerical evidence suggest that if K is hyperbolic, then

bK (n) < 0.

In fact, if bK (n) = 0 then the complement of K contains an embedded
essential annulus.
Question. Does bK (n) represent Euler characteristic of surfaces in the
complement of K ? Does it predict the topology of essential surfaces
realizing the Jones slopes of K ?
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Some data on the degree of the CJP

K jsK {2bK (n)}′ χ(S) |∂S|
819 {12} {0} 0 2
820 {8/3} {−1,−5/3} −3 1
821 {1} {−2} −4 2
942 {6} {−1} −2 2
943 {32/3} {−1,−5/3} −3 1
944 {14/3} {−2,−8/3} −6 1
945 {1} {−2} −4 2
946 {2} {−1} −2 2
948 {11} {−3} −6 2

Table: Non-alternating Montesinos knots up to nine crossings.

s= denominator of Jones slope, |∂S| = # of boundary components.

χ(S)

s|∂S|
∈ {2bK (n)}′.

s|∂S| is called the number of sheets of S.
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Strong Slope Conjecture

Recall d+[JK (n)] = aK (n)n2 + bK (n)n + cK (n),
jsK := {2aK (n)}′=Jones slopes

Conjecture 3: Strong slope conjecture. (K.-Tran) Let K be a knot and
r/s ∈ jsK , with s > 0 and gcd(r , s) = 1, a Jones slope of K . Then there is
an essential surface S ⊂ MK with boundary slope r/s, and such that

χ(S)

|∂S|s
∈ {2bK (n)}′.

Conjecture 3 holds for:
adequate knots (including alternating ones) (Futer-K.-Purcell)
Knots up to nine crossings
Iterated torus knots (K.-Tian)
3-string Pretzel knots (Lee-Van der veen)
Conjecture 3 is closed under knot cabling (K.–Tran) and connect sums
(Montegi-Takata)
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Results:

Next:
Outline how Strong Slope Conjecture follows for
I. Adequate knots
II. Pretzel knots/ 2-fusion knots
III. Behavior of degree of CJP and boundary slopes under satellite
operations.
V. Further indirect evidence/topological consequences.
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I. Prelims:State Graphs
Two choices for each crossing, of knot diagram D: A or B resolution.

A Kauffman state σ(D) is a choice of A or B resolutions for all crossings.
σ(D): state circles
Form a fat graph Hσ by adding edges at resolved crossings.
Get a state surface Sσ: Each state circle bounds a disk in Sσ (nested
disks drawn on top).
At each edge (for each crossing) attach twisted band.
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States and “adequacy”

Definition. K is called A–adequate if has a diagram D = D(K ) where the
all-A state graph HA = HA(D) has no 1-edge loops. The K is called
adequate if has a diagram D = D(K ) such that both D and its mirror
image are adequate.

Key facts:
(Lickorish–Thistlethwaite, 80’s) Adequate diagrams behave well with
respect to the Kaufman state expansion of CJP. There is no cancellation
between states contributing to the maximum degree and minimum
degrees.
(Futer-K.-Purcell, Ozawa, 2011)The all-A and all-B state surfaces of
adequate knot diagrams are essential in the corresponding knot
complement.
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State surfaces and Slope Conjectures

Given a knot diagram D = D(K ), let
SA=all -A state surface for D, SB=all -B state surface.
c+ := c+(D) = number of positive crossings in D.

Theorem
Let D be an A–adequate diagram of a knot K . Then the surface SA is
essential in the knot complement MK , and it has boundary slope −2c+.
Furthermore, we have

4d+[JK (n)] = 2c+n2 + 2χ(SA)n + constant term.

Similarly for B-adequate diagrams
In particular, if K is adequate, then it satisfies the Strong Slope Conjecture.

Adequate knots have period one/Jones slopes are integers
Alternating knots are adequate.
All knots up to 10 crossings are A or B-adequate.
Montesinos Knots, sums of alternating tangles, Positive knots, all closed
3-braids, are A or B adequate.
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Pretzel knots family:

General pretzel knot K = P(n1, . . . ,ns,p1, . . . ,pr ), where pi > 0 and
nj < 0.
For r , s > 1 , K is adequate. Otherwise, K is only A or B adequate.
Key remaining case: K (n,q,p) (Lee-v.d. Veen):
4d+[JK (n)] is calculated using “fusion” (trivalent graphs and 6j-sympols).
The Hatcher-Oertel algorithm is used to produce essential surfaces
proving the the Strong Slope Conjecture.
Example. K = P(−2,3,p), where p ≥ 5 is an odd integer.

d+[JK (n)] = aK (n)n2 + bK (n)n + cK (n).

4aK (n) = 2(p2 − p − 5)/(p − 3) and 2bK (n) = −(p − 5)/(p − 3).

K has an essential surface S with slope 2(p2 − p − 5)/(p − 3), |∂S| = 2,
and

χ(S) = −(p − 5) = (p − 3)(2bK (n)).
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Satellites: Cabling and CJP

Quantum invariants admit satellite decomposition formulae. Simpler
case: “Cabling”
Suppose K is a knot, and p,q are co-prime integers:
Definition. The (p,q)-cable Kp,q of K is the satellite of K with pattern
(p,q)-torus knot.

Cabling formula: (Morton, v.d. Veen )
For n > 0 we have

JKp,q (n) = t−pq(n2−1)/4
∑
k∈Sn

t4pk(qk+1)JK (2qk + 1)

where Sn be the set of all k such that

|k | ≤ (n − 1)/2 and k ∈

{
Z if n is odd,
Z+ 1/2 if n is even.
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Cabling slopes

bsK =set of boundary slopes of K .
Klaff-Shalen studied boundary slopes of cables from the viewpoint of
character varieties.

Theorem
(K.-Tran) For every knot K ⊂ S3 and (p,q) co-prime integers we have(

q2bsK ∪ {pq}
)
⊂ bsKp,q .

Meanwhile.....
Using the cabling formula, we can see that under certain hypotheses,(

q2jsK ∪ {pq}
)
⊂ jsKp,q ,

and the change of linear term of d+[JK (n)], mimics that of the topology of
essential surfaces for boundary slopes.

Effie Kalfagianni (MSU) J 19 / 23



Cabling slopes

bsK =set of boundary slopes of K .
Klaff-Shalen studied boundary slopes of cables from the viewpoint of
character varieties.

Theorem
(K.-Tran) For every knot K ⊂ S3 and (p,q) co-prime integers we have(

q2bsK ∪ {pq}
)
⊂ bsKp,q .

Meanwhile.....
Using the cabling formula, we can see that under certain hypotheses,(

q2jsK ∪ {pq}
)
⊂ jsKp,q ,

and the change of linear term of d+[JK (n)], mimics that of the topology of
essential surfaces for boundary slopes.

Effie Kalfagianni (MSU) J 19 / 23



Cabling slopes Con’t

Proof allows to record “Euler characteristic behavior” under cabling. Say,
we have an integral boundary slope a ∈ bsK of K .
Suppose there is a essential surface S′ in the complement of K that
realizes the boundary slope a ∈ Z. Then we obtain an essential surface
S in the complement of Kp,q , that has boundary slope q2a, and

χ(S) = |q|χ(S′) + |∂S′|(1− |q|)|p − aq| and |∂S| = |∂S′|.

For instance, if K had Jones period one with d+[JK (n)] = an2 + bn + c.
Then.
Linear term for Kp,q will be

b1 = 2|q|b + (1− |q|)|p − 4aq|.

Corollary
SSS is true for iterated cables of adequate knots. In particular it holds for
iterated torus knots
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2-fusion knots:

2-fusion knots (a family of closed 3-braids)
Realize the knots as Dehn filling of a 3-component link (hyperbolic
complement)
Find a nice ideal triangulation. Use character variety methods
(Culler-Shalen theory) to “enumerate” the normal surfaces realizing the
boundary slopes.
(Dunfeld- Garoufalidis:) Prove a criterion for normal a surface to be
essential.
Study behavior of these surfaces under Dehn filling— get essential
surfaces to match the Jones slopes.
Jones slopes were calculated using “quadratic programing” (v. d. Veen)
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Indirect evidence

If the Strong Slope conjecture is true then we have the following
characterzation of alternating knots.
K is alternating if and only if admits Jones slopes s, s∗, realized by
essential spanning surfaces S, S∗, with

(s − s∗)/2 + χ(S) + χ(S∗) = 2 and (s − s∗) = 2c(K ), (1)

J. Howie and J. Greene have recently proved a stronger result that
implies above characterization!
SSS gives similar characterization for adequate knots: Lead to following
problem
Problem. K is an adequate knot if and only if it admits Jones slopes
s, s∗, realized by essential spanning surfaces S, S∗, with

(s − s∗)/2 + χ(S) + χ(S∗) = 2− 2gT (K ) and (s − s∗) = 2c(K ).

where gT (K )=the Turaev genus of K .
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