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Knot complement:

Given a knot K in S3 the complement M = S3 r K is a 3-manifold with
∂M= a torus.
For a slope σ on ∂M let M(σ) denote the 3-manifold obtained by Dehn
filling M along σ.
By the knot complement theorem of Gordon and Luecke, there is a
unique slope µ, called the meridian of K , such that M(µ) is S3.
A λ-curve of K is a slope on ∂M that intersects µ exactly once.
spanning surface of K : properly embedded surface in M whose boundary
is a λ-curve.
S is essential if it is π1-injective and cannot be homotoped onto ∂M (i.e.
not boundary parallel torus or annulus ).
Talk Theme. Restrict to hyperbolic knots: Give bounds of slope lengths
on the maximal cusp and of the cusp volume in terms of the the topology
of essential surfaces spanned by the knots
We show that there is an algorithmically checkable criterion to decide
whether a hyperbolic knot has meridian length less than a given bound,
and we use it to we obtain large families of knots with meridian lengths
bounded above by four.
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Hyperbolic knots: some terminology

hyperbolic knot K : The interior of M = S3 r K admits hyperbolic structure
of finite volume. Then, M has one end of the form T 2 × [1,∞), where T 2

denotes a torus.
H3= upper half space hyperbolic model and let ρ : H3 → M be the
covering map. {(x , y , z) : z > 0}
The end is geometrically realized as the image of some C = ρ(H) of
some horoball H ∈ H3 at∞. The pre-image ρ−1(C) is a collection of
horoballs in H3. H = {(x , y , z) : z > α}
There is an 1-parameter cusp family each obtained by each other by
expanding the horoball H (vary α) while keeping the same limiting point
on the sphere at infinity. By expanding the cusp until in the pre-image
ρ−1(C) each horosphere is tangent to another, we obtain a choice of
maximal cusps. Since M has a single end then there is a well defined
maximal cusp referred to as the maximal cusp of M.
The cusp of K , denoted by C, is the maximal cusp of M. The boundary
RH of the horoball H is a plane and the boundary of C, denoted by ∂C,
inherits a Euclidean structure from ρ|RH : RH −→ ∂C.
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Hyperbolic knots: some terminology

The cusp area of K , denoted by Area(∂C) is the Euclidean area of ∂C
and the cusp volume of K , denoted by Vol(C) is the volume of C. Note
that we have Area(∂C) = 2Vol(C).
Definition The meridian µ of M can be defined to be the geodesic
representative on ∂C of a meridian curve of K ; let `(µ) denote the
Euclidean length of µ on ∂C.
A λ-curve on ∂C is one that intersects the meridian exactly once. The
length of a geodesic representative of a shortest λ-curve on ∂C will be
denoted by `(λ). Note that there may be multiple shortest λ-curves.
the length of the shortest λ-curve on ∂C. The cusp volume is bounded
above by `(µ)`(λ).
Definition. A slope s on the boundary of a hyperbolic knot
complementMK is called exceptional if the 3-manifold M(σ) is not
hyperbolic.
(Possibilities: π1 may be finite or N may be reducible or toroidal or “small”
Seifert fibered space).
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Length of exceptional slopes

Gromov-Thurston “2π-theorem” asserts that if `(σ) > 2π then M(σ)
admits a Riem. metric of negative curvature. By the Geometrization
Theorem M(σ) is hyperbolic.
Agol and Lackenby independently improved 2π to 6. Thus exceptional
slopes must have length less or equal to 6.
There are examples of exceptional slopes with length 6 (Agol, Adams
etal)
If M = S3 r K , then `(µ) ≤ 6.
Adams showed that the meridian of a 2-bridge hyperbolic knot has length
less than 2.
Adams, Colestock, Fowler, Gillam, and Katerman showed that `(µ) < 6
and that for alternating knots `(µ) < 3.
Examples of knots whose meridian length approaches 4 below are given
by Agol. Purcell also gave examples and showed that for “ highly twisted”
knots `(µ) ≤ 4.

Question. It is true that `(µ) ≤ 4 for all hyperbolic knots in S3?
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Meridian length bounds

Theorem
Let K be hyperbolic knot with meridian length `(µ). Suppose that K admits
essential spanning surfaces S1 and S2 such that

|χ(S1)|+ |χ(S2)| ≤ b
6
· i(∂S1, ∂S2), (1)

where b is a positive real number and i(∂S1, ∂S2) the minimal intersection
number of the λ-curves ∂S1, ∂S2 on ∂M.
Then the meridian length satisfies `(µ) ≤ b. Moreover, given a hyperbolic knot
K and b > 0, there an algorithm which determines if there are essential
surfaces S1 and S2 satisfying inequality (1).

For b = 4 we have an algorithmic criterion to check if `(µ).

Proof Ingredients:
Pleated surface arguments reminiscent to proof of “6-Theorem” by Agol.
Algorithm relies on normal surface theory algorithms due to
Jaco-Rubinstein, Jaco-Tollefson, and Jaco-Sedwick.
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Example: Pretzel Knots

Example
Let K = P(a,−b,−c) where a,b, c > 1 are odd. The pretzel surface SP is a
minimum genus Seifert surface. K also has a spanning surface S of K is
given s(SA) = −2b − 2c and s(SP) = 0. The difference in slopes of two
surfaces is equal to the geometric intersection number, so we obtain that
i(∂SA, ∂SP) = 2b + 2c. An easy calculation shows that χ(SA) = 1− b − c and
χ(SP) = −1. Using above theorem we then see that `(µ) < 3.

Theorem can be applied to knots that admit alternating projections on
closed surfaces so that they define essential checkerboard surfaces.
General pretzel knot: K = P(n1, . . . ,ns,p1, . . . ,pr ), where pi > 0 and
nj < 0. For r , s > 1, K projects in alternating fashion on a torus and
admits essential checkerboard surfaces that give `(µ) ≤ 3. (more later)
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Example: Alternating Knots

Let D = D(K ) be a prime, reduced, alternating diagram that is not a
diagram of a (2,p) torus knot. Then
Menasco showed that K is hyperbolic.
Aumann showed that the checkerboard surfaces of D are essential in
S3 r K .
Adams, Colestock, Fowler, Gillam, and Katerman showed the following

Theorem
Let K be a hyperbolic alternating knot with crossing number c = c(K ). Let C
denote the maximal cusp of S3 r K and let Area(∂C) denote the cusp area.
Finally let `(µ) and `(λ) denote the length of the meridian and the shortest
λ-curve of K . Then we have

1 `(µ) ≤ 3− 6
c

2 `(λ) ≤ 3c − 6

3 Area(∂C) ≤ 9c
(

1− 2
c

)2
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“Complicated” positive/negative braids

Let Bn be the braid group on n strands, with n ≥ 3, and let σ1, . . . , σn−1 be
the elementary braid generators.
Let b = σr1

i1 σ
r2
i2 · · ·σ

rk
ik

be a braid in Bn.
Futer-K.-Purcell shoed that if either rj ≥ 3 for all j , or else rj ≤ −3 for all j ,
then the braid closure Db of b represents hyperbolic knot.

s

Corollary (Burton-K.)
Suppose that a knot K is represented by a braid closure Db such that either
rj ≥ 3 for all j , or else rj ≤ −3 for all j . Suppose moreover Db is prime diagram.
Then K is hyperbolic and the meridian length satisfies `(µ) < 4.

Remark. Similar claims hold for “complicated” plat closures.
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I. Prelims:State Graphs
Two choices for each crossing, of knot diagram D: A or B resolution.

A Kauffman state σ(D) is a choice of A or B resolutions for all crossings.
σ(D): state circles
Form a fat graph Hσ by adding edges at resolved crossings.
Get a state surface Sσ: Each state circle bounds a disk in Sσ (nested
disks drawn on top).
At each edge (for each crossing) attach twisted band.
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States and “adequacy”

Definition. K is called A–adequate if has a diagram D = D(K ) where the
all-A state graph HA = HA(D) has no 1-edge loops. The K is called
adequate if has a diagram D = D(K ) such that both D and its mirror
image are adequate.

Facts:
(Lickorish–Thistlethwaite, 80’s) Adequate diagrams behave well with
respect to the Kaufman state expansion of the Jones and colored Jones
polynomials. There is no cancellation between states contributing to the
maximum degree and minimum degrees.
(Futer-K.-Purcell, Ozawa )The all-A and all-B state surfaces of adequate
knot diagrams are essential in the corresponding knot complement.
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Turaev surfaces:

Given D:=knot diagram we have the Turaev surface F (D):
Let Γ ⊂ S2 be the planar, 4–valent graph of the diagram D.
Thicken the (compactified) projection plane to S2 × [−1,1], so that Γ lies
in S2 × {0}. Outside a neighborhood of the vertices (crossings),
Γ× [−1,1] will be part of F (D).
In the neighborhood of each vertex, we insert a saddle, so that the
boundary circles on S2 ×{1} are the components of the A–resolution and
the boundary circles on S2 × {−1} are the components of the
B–resolution.

Cap off each circle with a disk, obtaining a closed surface F (D).
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Properties:

F (D) is a Heegaard surface of S3. D is alternating on F (D); in particular
D is an alternating diagram if and only if gT (F (D)) = 0. SA, SB are the
checkerboard surfaces of alternating projection.
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Turaev genus:

The Turaev genus of a knot diagram D = D(K ) is defined by

gT (D) = (2− vA(D)− vB(D) + c(D))/2 (2)

vA(D), vB(D)=# of components of all A, all-B resolution
The Turaev genus of a knot K is defined by

gT (K ) = min {gT (D) | D = D(K )} (3)

We will need the following result of T. Abe.

Theorem
Suppose that D is an adequate diagram of a knot K . Then we have

gT (K ) = gT (D) = (2− vA(D)− vB(D) + c(D))/2.

if D is adequate c(D) = c(K )=knot invariant (Lickorish).
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Diagrammatic bounds of lengths and cusp shapes

Theorem
Let K be an adequate hyperbolic knot in S3 with crossing number c = c(K )
and Turaev genus gT . Let C denote the maximal cusp of S3 r K and let
Area(∂C) denote the cusp area. Finally let `(µ) and `(λ) denote the length of
the meridian and the shortest λ-curve of K . Then we have

1 `(µ) ≤ 3 +
6gT − 6

c
2 `(λ) ≤ 3c + 6gT − 6

3 Area(∂C) ≤ 9c
(

1− 2− 2gT

c

)2

For gT = 0 we have the estimates of Adams etal. So `(µ) < 3.
For gT = 1, also get `(µ) ≤ 3.
Given gT > 0, there can be at most finely many hyperbolic adequate
knots of Turaev genus gT with `(µ) > 4 . If gT ≤ 3 then `(µ) ≤ 4.
Let K be a hyperbolic knot with an adequate diagram D with c crossings
and t twist regions. If c ≥ 3t , we have `(µ) < 4.
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Proof idea
[adequate knot case]

M = S3 r K = hyperbolic knot complement ; K has adequate diagram D.
Let C the maximal cusp of K .
Consider S to be the disjoint union of the checkerboard surfaces SA,SB
corresponding to the Turaev surface F (D). and consider
f : S −→ M = S3 r K , where f (S) is the union of SA,SB in the
complement of K .
Since SA,SB is essential we can pleat f . Then we obtain a hyperbolic
structure on S by pulling back the metric from M via f . Understand the
cusp geometry of f (S); that is f (S) ∩ C.
Key point. Show that there are disjoint horocusps neighborhoods
H = HA ∪ HB, such that f (HA), f (HA) ⊂ C, `(∂H) = AreaH and such that
`(∂H) is at least as big as the length of f (∂H) measured on C. Thus we
have

`C(S) ≤ Area(H),

where `C(S) denote the total length of the intersection curves in
f (S) ∩ ∂C.
[The fact that S is boundary incompressible is important. ]
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Proof idea cont’n

A result of Böröczky on the density of horocycle packings on the
hyperbolic plane gives

AreaHA ≤
6

2π
Area(S) =

6
2π

(2π|χ(S)|),

where the last equation follows by the Gauss-Bonnet theorem.
We get

`C(S) ≤ 6|χ(S)|, (4)

where `C(S) is the total length of the curves f (S) ∩ ∂C.
Calculate `C(S) and show that

2c`(µ) ≤ `C(S),

where c = i(∂SA, ∂SB) is the number of crossings of D.
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Meridian length bound

Consider the curves ∂SA and ∂SB near two consecutive crossings of D. If
one crossing is an over-crossing and the other crossing is an
under-crossing in the diagram D, then the intersection curves look like:

∂SA and ∂SB form a diamond pattern on ∂C.
By the definitions of SA,SB, gT (D) and Abe’s result

|χ(SA)|+ |χ(SB)| = 2c − vA(D)− vB(D) = c + 2gT − 2.
Finally,

2c`(µ) ≤ 6(c + 2gT − 2).
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Shortest λ-curve length bound

Orient ∂SA, ∂SB and µ so that ∂SA, ∂SB have opposite algebraic
intersection numbers with µ.
By resolving the crossings of ∂SA with ∂SB in a manner not consistent
consistent with the orientations of ∂SA and ∂SB, one obtains two `-curves
in ∂C.
Thus 2`(λ) ≤ `C(S).
As before we get

2`(λ) < 6|χ(S1)|+ 6|χ(S2)| = 6c + 12gT − 12,

or

`(λ) < 3c + 6gT − 6.
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Dehn surgery

K hyperbolic adequate knot with M = S3 r K . Let δ =
2gT − 2

c
. It is an

invariant of K that is calculated from any adequate diagram and let σ be a
slope on ∂M. If

∆(µ, σ) >
18

3.35

(
1 +

2gT − 2
c

)
= 5.37(1 + δ),

then `(σ) > 6 and thus σ cannot be an exceptional slope.
If σ is a slope represented by p/q ∈ Q in H1(∂C) then ∆(µ, σ) = |q|.

Theorem
Let K be a hyperbolic adequate knot and let δ be as above. If |q| ≥ 6(1 + δ),
then the 3-manifold N obtained by p/q surgery along K is hyperbolic and the
volume satisfies the following

vol(S3 r K ) > vol(N) ≥
(

1− 36(1 + δ)2

q2

)3/2

vol(S3 r K ).

With Futer-Purcell we gave diagrammatic 2-sided bounds of vol(S3 r K ).
Thus the volume of N can be estimated from any adequate diagram of K .
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