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Abstract. We consider hyperbolic links that admit alternating pro-
jections on surfaces in compact, irreducible 3-manifolds. We show that,
under some mild hypotheses, the volume of the complement of such a
link is bounded below in terms of a Kauffman bracket function defined
on link diagrams on the surface.

In the case that the 3-manifold is a thickened surface, this Kauffman
bracket function leads to a Jones-type polynomial that is an isotopy in-
variant of links. We show that coefficients of this polynomial provide
2-sided linear bounds on the volume of hyperbolic alternating links in
the thickened surface. As a corollary of the proof of this result, we de-
duce that the twist number of a reduced, twist reduced, alternating link
projection with checkerboard disk regions, is an invariant of the link.

1. Introduction

The goal of the paper is to show that, under mild hypotheses, the volume
of a hyperbolic link in a compact, irreducible 3-manifold M that admits an
alternating projection on a closed surface F ⊂ M , is bounded below in
terms of a Kauffman bracket function defined on link diagrams on F . For
M = F × [−1, 1], this function leads to a Jones polynomial link invariant
and coefficients of it provide 2-sided linear bounds on the volume of hyper-
bolic alternating links. As a corollary, we obtain that the twist-number of a
reduced, twist-reduced, alternating link projection with checkerboard disk
regions, is an invariant of the link in F × [−1, 1]. Our results generalize
work of Dasbach and Lin [9] and Futer, Kalfagianni and Purcell [13,14] who
obtained similar results for families of links in S3.

Let M be an irreducible compact 3-manifold with or without boundary.
A link L admits a projection on an orientable embedded surface F in M ,
if L ⊂ F × [−1, 1] ⊂ M and it is projected via the obvious projection
π : F × [−1, 1] −→ F = F × {0}. Given a connected surface F in M, we
define a Kauffman bracket function and from this we construct a polynomial

J0(π(L)) = 〈π(L)〉0 = amt
m + am−1t

m−1 + . . .+ bn+1t
n+1 + bnt

n,
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in Z[t
1
4 , t−

1
4 ]. See Section 2 for the precise definition.

The polynomial J0(π(L)), depends on the topology of F , the projection
π(L) and apriori on the topology of the complementM\N(F ). In the special
case thatM = F×[−1, 1], it is an isotopy invariant of L inM , but we don’t
expect that it is an isotopy invariant of L in a general M . Nevertheless,
as our results below show, if π(L) is alternating on F , and under mild
additional hypotheses, J0(π(L)) encodes intrinsic geometric information of
the link complement M \ L.

Our first result is the following theorem, where the terms reduced and
twist-reduced are defined in Section 3.

Theorem 1.1. Let M be an irreducible, compact 3-manifold with empty or
incompressible boundary. Let F ⊂M be an incompressible, closed orientable
surface such that M \ N(F ) is atoroidal and ∂-anannular. Suppose that a
link L admits a reduced alternating projection π(L) ⊂ F that is checkerboard
colorable, twist-reduced and with all the regions of F \ π(L) disks. Then L

is hyperbolic and we have

vol(M \ L) ≥ v8 max
{
|am−1| − |am|, |bn+1| − |bn|

}
− 1

2
χ(∂M),

where am−1, am, bn+1, bn are the two first and two last coefficients of the
polynomial J0(π(L)), and v8 = 3.66386 · · · is the volume of a regular ideal
octahedron.

Given an alternating link projection π(L) as in the statement of The-
orem 1.1, let SA, SB denote the two checkerboard surfaces corresponding
to π(L). Also let MA and MB denote the manifolds obtained by cutting
M \L along SA and SB, respectively. By [20], SA, SB are essential in M \L,
and by Jaco-Shalen-Johannson theory MA and MB contain hyperbolic sub-
manifolds called the guts of SA and SB, respectively. We show that the
Euler characteristics of these guts and the twist number tF (π(L)) can be
calculated from J0(π(L)).

Theorem 1.2. Let M , F and π(L) be as in the statement of Theorem 1.1
and let tF (π(L)) denote the twist number of π(L). Also let guts(MA) and
guts(MB) denote the guts of SA and SB, respectively. We have the following.

(1) χ(guts(MA)) = |am| − |am−1|+ 1
2
χ(∂M),

(2) χ(guts(MB)) = |bn| − |bn+1|+ 1
2
χ(∂M),

(3) tF (π(L)) = |am−1|+ |bn+1| − |am| − |bm|+ χ(F ).

Theorem 1.1 follows by combining Theorem 1.2 with a result of Agol,
Storm and Thurston [2] asserting that the negative Euler characteristic of
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the guts of an essential surface in a hyperbolic 3-manifoldM bounds linearly
the volume of M from below.

For M = S3 and F = S2, the polynomial J0 is the classical Jones
polynomial. In the case that M = F × I, one can use the structure of
the Kauffman skein module of M , to see that J0(π(L)) is also an isotopy
invariant of the link L. In fact, for every link in M one obtains a finite
collection of Jones-type polynomial invariants that have been used to settle
open questions about the topology of alternating links in thickened surfaces
[1, 4]. As a corollary of Theorem 1.2 we obtain the following.

Corollary 1.3. Let L be a link in F × [−1, 1], that admits a checkerboard
colorable, reduced alternating projection π(L) ⊂ F that is twist-reduced has
all its regions disks. Then, any two such projections of L have the same
twist number. That is, tF (π(L)) is an isotopy invariant of L.

Note that Theorem 1.2 also implies that the quantities χ(guts(MB))

and χ(guts(MB)) are invariants of L in M = F × [−1, 1]. For reduced,
twist-reduced alternating diagrams on a 2-sphere in S3, invariance of the
twist number is a consequence of the Tait flyping conjecture [28]. The cor-
responding conjecture for links in thickened surfaces is currently open. A
second proof of the twist number invariance for alternating links in S3, fol-
lows from the work of Dasbach and Lin [9,10] that relates this twist number
to the Jones polynomial. Our approach generalizes their approach.

Several families of hyperbolic links in S3, including alternating ones,
satisfy a “coarse volume conjecture": coefficients of the Jones and colored
Jones polynomial provide two-sided linear bounds of the volume of the link
complement [9, 13–17, 25]. The next theorem provides a similar result for
alternating links in thickened surfaces and there is a similar result for links
with alternating projections on Heegaard tori in Lens spaces (see 4.2 ).

Theorem 1.4. Suppose that π(L) is a reduced alternating projection on F =

F × {0} in M = F × [−1, 1], that is twist-reduced, checkerboard colorable,
and with all the regions of F \π(L) disks. Then the interior of M \L admits
a hyperbolic structure. If F = T 2, then we have

v8
2
· βL ≤ vol(M \ L) < 10 v4 · βL,

and if F has genus at least two,

v8
2
· (βL − 2χ(F )) ≤ vol(M \ L) < 6 v8 · (βL + χ(F )) .
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Here βL := |am−1|+|bn+1|−|am|−|bn|, is obtained from the Jones polynomial
invariant J0 of L, and v4 = 1.01494 . . . is the volume of a regular ideal
tetrahedron.

A key idea in the proof of Theorem 1.2, is to relate the coefficients
of J0(π(L)) to the topology of the checkerboard graphs of any projection
π(L) ⊂ F . This idea is reminiscent of techniques that were used to study
the Jones polynomial of adequate and alternating links in S3 [8, 13, 26, 27].
Under a graph theoretic condition, that we call geometric adequacy, we show
that the first and last two coefficients of J0(π(L), can be calculated from
the checkerboard graphs. The checkerboard graphs of reduced, alternating
projections turn out to satisfy these graph theoretical conditions. On the
other hand, these graphs form spines of the checkerboard surfaces. We use
the work of Howie and Purcell [20] in a crucial way to we show that the
graph-theoretic combinatorics that determine the coefficients am−1 and bn+1

are exactly the ones dictating the calculation of the Euler characteristics of
the guts of the checkerboard surfaces.

There exist open conjectures predicting that the volume of hyperbolic
3-manifolds is determined by certain asymptotics of quantum invariants [5,
7,11,22]. For links in S3 these invariants include the Jones polynomial and
its generalizations. The relations of skein theoretic invariants and volume
via guts of surfaces established in [13,14] and in Theorems 1.4 and 1.2, are
robust and seem independent of these conjectures.

The paper is organized as follows: in Section 2, we consider projections of
links on a surface and we define the polynomial J0(π(L)). Then, we explain
how known results on the structure of Kauffman skein modules imply that
J0(π(L)) is an invariant of isotopy for links in F × [−1, 1]. Finally, we
restrict ourselves to projections π(L) ⊂ F that have disk regions. For such
projections we define the notion to geometric adequacy, under which we
obtain formulae for the coefficients |am−1|, |bn+1|, |am|, |bn| (Theorem 2.6).
We also compare the notion of geometric adequacy with other notions of
adequacy that have recently appeared in the literature [4].

In Section 3 we consider alternating projections π(L) ⊂ F ⊂M that are
checkerboard colorable and have disk regions. We define a notion of diagram
reducibility that generalizes the corresponding notion for link diagrams on
a 2-sphere in S3, and interplays nicely with the complexity of “edge repre-
sentativity" considered in [20] and with geometric adequacy (Proposition
3.5 and Lemma 3.8). This interplay allows us to relate our work in Section
2 to work of Howie and Purcell on weakly generalized alternating links.
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Figure 1. The A resolution(left) and the B resolution (right) of a crossing.

The main result in this section is Theorem 3.13 that is a generalized ver-
sion of Theorem 1.2. The more general version replaces the hypothesis that
F is incompressible in M with a hypothesis of “high representativity". We
also prove Corollary 1.3. In Section 4 we prove Theorem 1.1 and we derive
Theorem 1.4.

Acknowledgement. We thank Renaud Detcherry for helpful conversa-
tions about skein modules of 3-manifolds. We also thank Abhijit Champan-
erkar, Ilya Kofman and Slava Krushkal for their interest in this work and
for comments on earlier versions of the paper. The research of both authors
is partially supported by NSF Grants DMS-1708249 and DMS-2004155.

2. Skein polynomials and geometric adequacy

2.1. Bracket polynomials for link diagrams on surfaces. Let M be
a 3-manifold with or without boundary and let F be an orientable surface
in M . Given a link L ⊂ F × [−1, 1] ⊂ M we can consider its image under
the projection π : F × [−1, 1] −→ F = F × {0}. Throughout the paper we
will refer to π(L) ⊂ F as a link projection or a link diagram.

Given a crossing of a link diagram D = π(L), we define the A and B

resolutions of the crossing as indicated in Figure 1.
Let D(F ) denote the set of all (unoriented) link diagrams on F , taken up

isotopy on F. Also let XF denote the set of all collections of disjoint simple
closed curves (a.k.a multi-curves) on F . We define a Kauffman bracket

〈 〉 : D(F ) −→ Z[A,A−1, (A2 − A−2)−1]XF ,

by the following skein relations.

(1) 〈 〉 = A〈 〉+ A−1〈 〉
(2) 〈L t 〉 = (−A2 − A−2)〈L〉
(3) 〈 〉 = 1

As we are working on a surface that may have essential curves, we also
require that the unknots in the above relations bound disks on F .

To describe 〈D〉 as a function in Z[A,A−1, (A2 − A−2)−1]XF in more
detail we need some preparation.
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Definition 2.1. A Kauffman state for a link diagram diagram D ⊂ F is
an assignment of the A or B resolution for each crossing of D. The result
of applying any state to D is a collection of disjoint simple closed curves on
F called state circles.

Given a state s we will use |s| = |s(D)| to denote the number of state
circles resulting from D by applying s, and we let a(s) be the number of A
resolutions in s, and b(s) the number of B resolutions. Also, we will use st
and snt to denote the set of contractible and non-contractible state circles
resulting from s, and we will use |st| and |snt| to denote the cardinalities of
these sets.

Finally, we will use sA to denote the state where all the resolutions are
A, and sB to denote the state where all the resolutions are B.

Given a link projection D = π(L) in D(F ) we define

(2.1) 〈D〉0 =
∑

{s | snt=∅}

Aa(s)−b(s)(−A2 − A−2)|st|−1,

that is, we sum over all states that when applied to D produce only con-
tractible state circles. Similarly given a collection X of simple closed disjoint
curves on F , none of which is contractible, we define

(2.2) 〈D〉X =
∑

{s | snt=X}

Aa(s)−b(s)(−A2 − A−2)|st|−1,

where |st| is the number of contractible curves in s = s(D). Clearly, for a
givenD, the value of 〈D〉X will be non-zero for only finitely many collections
X.

Using the defining skein relations, for any D ∈ D(F ) we can write
Z[A,A−1]

(2.3) 〈D〉 = 〈D〉0 +
∑

X∈XF

〈D〉XX.

Note the by definition, 〈D〉0 is always a polynomial in Z[A,A−1] and
〈D〉X are not in Z[A,A−1] if there exist states for which st = 0, in which
case we get the factor (−A2−A−2)−1. Thus, in particular, (−A2−A−2)〈D〉X
and always lies in Z[A,A−1].

The argument used for S2 in the 3-sphere works to show that 〈D〉 is
invariant under Reidemeister moves II and III on F and that it changes by
a power of A under Reidemeister move I. Then, 〈D〉 = 〈D〉0 is an invariant
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of framed links and a normalization of it gives the Jones polynomial (see
e.g. [26]). We don’t expect that 〈π(L)〉 an isotopy invariant of the framed
link L in a general 3-manifold M .

A way to generalize the Jones polynomial for links in arbitrary 3-manifolds
is to consider skein modules: given a 3-manifold M , let L(M) denote the
set of isotopy classes of framed links in M . The Kauffman skein module of
a 3-manifold M , denoted by S(M), is the quotient of the free Z[A,A−1]

module generated by L(M), by the submodule generated by all relations of
the form

• − A − A−1

• L t − (−A2 − A−2)L
• − 1

Here the crossing modifications take place in a small 3-ball in M that in-
tersects the link to be modified at a single crossing and the notation is
used to define the isotopy class of the knot that bounds a smooth disk in
M . Given a link L ⊂ M, let L̄ denote the class of L in M . Now the image
of L̄ under the map

L(M) −→ S(M),

is an isotopy invariant of the framed link L.
Let us now discuss the special case where M = F × [−1, 1], a thickened

surface. It is known that S(F × [−1, 1]) is free over Z[A,A−1] with basis
XF ∪{∅}, where ∅ is the empty knot [29]. Now any framed link in F×[−1, 1]

can be projected on F = F ×{0}, and any two link diagrams of F represent
the same element in L(M) if and only if they are related by Reidemeister
moves II and III on F . Thus D = π(L), the expression in equation (2.2) can
immediately be viewed as the image of L in S(F × [−1, 1]). It follows that
〈D〉0, 〈D〉X are invariants of L in F × [−1, 1]. These invariants were recently
considered by Boden, Karimi and Sikora [4] and were used to prove versions
of two of the Tait conjectures for alternating links F × [−1, 1].

We will be concerned with 〈D〉0, the sum of elements that appear when,
after using the skein relations, we are left with just the empty knot. As
pointed out in [4], one can make 〈D〉0 an isotopy invariant of oriented non-
framed links by considering (−1)w(D)A−3w(D)〈D〉0, where w(D) is the writhe
number of D. Setting

J0(t) =
(
(−1)w(D)A−3w(D)〈D〉0

)
|t=A4 ,

we obtain a isotopy invariant of L. Note, our convention differs from [4], as
they set t = A−4. Let
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J0 = amt
m + am−1t

m−1 + . . .+ bn+1t
n+1 + bnt

n,

where m and n denote the highest and lowest degrees of J0, respectively.

Proposition 2.2. For any link L ⊂ M = F × [−1, 1], the polynomial
J0 = J0(L) is an isotopy invariant of L.

Remark 2.3. We are interested in the absolute values of the coefficients of
J0 which are the same as these of 〈D〉0, since as mentioned earlier remain
unchanged under Reidemeister move I on F . By slightly abusing our setting,
when talking about these coefficients, we will feel free to use J0(D) or 〈D〉0
interchangeably.

In general let us start with a 3-manifold M and a connected, closed,
orientable surface F embedded in M and a projection of π(L) ⊂ F of a
link L ⊂ F × [−1, 1] ⊂M . We can define 〈π(L)〉0 and J0(D) as above, but
general it is hard to decide when they descend to isotopy link invariants
in M : firstly, understanding the structure of S(M) is known to be a very
hard problem. There is no algorithm for computing S(M) in general, and
these modules have only been explicitly computed for some simple families
of 3-manifolds. See [12] and references therein. For our purposes here, we
will consider F × [−1, 1] embedded in a 3-manifold M that is closed or it
has incompressible boundary. The inclusion induces a map

(2.4) S(F × [−1, 1]) −→ S(M),

and the image of L in S(F × [−1, 1]) is easy to calculate as we said above.
However, in general very little is known about the structure of the map of
Equation (2.4). For instance, for closedM , if one works over the field Q(A),
then the skein module of M is finitely generated while the skein module of
F×[−1, 1] is infinitely generated [18]. Thus, in this case, the map in equation
(2.4) has a substantial kernel and it is expected that this is the case over
Z[A,A−1] as well. Given a link L ⊂ F × [−1, 1] ⊂ M , with D = π(L) on
F , in general we don’t expect that J0(π(L)) is an invariant of isotopy of L
in M . In the remaining of the paper, unless working with M = F × [−1, 1],
we will consider J0 as a function on the set of link projections π(L) on F.
In this setting, and it is rather striking that, as Theorems 1.1 and 4.1 show,
J0(π(L)) captures intrinsic geometric information of the complementM \L.
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2.2. Geometrically adequate links. Recall that M is a 3-manifold and
F ⊂ M is an embedded orientable surface and let D = π(L) ⊂ F be a
link projection. Given a Kauffman state s on D we define the state graph
Gs = Gs(D) as follows: The vertices of Gs correspond to state circles of s,
and the edges correspond to crossings of π(L). Each edge connects the sub-
arcs of the state circles that remaining from the splitting of that crossing
in s. We will use GA to denote the graph corresponding to sA, and GB to
denote the graph corresponding to sB. From now on we will restrict ourselves
to projections D where all the state circles in sA and in sB are contractible
on F . See Figure 3 for an example of a link diagram D with this property,
where we also show the graphs GA, GB.

Definition 2.4. We say that the diagramD = π(L) ⊂ F is geometrically A-
adequate if GA(D) has no 1-edge loops and all circles of sA are contractible.
Likewise, we say D is geometrically B-adequate if GB(D) has no 1-edge
loops and all circles of sB are contractible.

If D is both geometrically A-adequate and B-adequate, we say it is
geometrically adequate.

Definition 2.5. With the notation as above, suppose that the diagram
D = π(L) ⊂ F is geometrically adequate. Define the reduced graph of GA,
G′A, to be the graph where, if two edges e1 and e2 are adjacent to the same
pair of vertices, we remove one of them if e1 ∪ e2 bounds a disk on F . Let
e′A the number of edges of G′A.

Similarly define the reduced graph G′B and denote its number of edges
by e′B.

In S3 a link diagram D = D(L) on a projection 2-sphere is called is
called A-adequate, if GA(D) has no 1-edge loops and B-adequate GB(D)

has no 1-edge loops. For such diagrams, Futer, Kalfagianni and Purcell [13]
have established relations between coefficients of the Kauffman bracket of
D and geometric properties and invariants of the link complement S3 \ L.
In particular, they show that when D represents a hyperbolic link, coeffi-
cients of the Kauffman bracket of D provide linear bounds for the volume
of the complement of the link. In this paper, we will generalize these geo-
metric relations for links that admit alternating projections on surfaces in
3-manifolds. A key step for this generalization is Theorem 2.6 below that
also holds for projections on a sphere in S3.

Theorem 2.6. Suppose that D = π(L) ⊂ F ⊂M and let am, am−1, bn+1, bn

denote the two first and two last coefficients of J0(D).
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(1) If D is geometrically A-adequate then, we have |am| = 1 and |am−1| =
e′A − |sA|+ 1.

(2) If D is geometrically B-adequate then, we have |bn| = 1 and |bn+1| =
e′B − |sB|+ 1.

Theorem 2.6 and its proof should be compared with [9, Proposition 2.1]
and the usual calculation of the degrees of the Jones polynomial for ordinary
alternating links in [26]. We will split the proof into two lemmas. The first
one concerns the determination of |am| and |bn|.

Lemma 2.7. Suppose that D = π(L) ⊂ F ⊂ M is a link diagram and let
am, bn denote the first and last coefficients of J0(D).

(1) If D is geometrically A-adequate then, we have |am| = 1.
(2) If D is geometrically B-adequate then, we have |bn| = 1.

Proof. Let c = c(D), denote the number of crossings of D and consider the
all-A state, sA. Then, a(sA) = c and b(sA) = 0. By the definition of 〈D〉0
(see Equation (2.1), the contribution of sA is

Ac(−A2 − A−2)|sA|−1

The highest degree here, then, is c+ 2|sA|− 2, and the coefficient belonging
to it is (−1)|sA|−1 = ±1.

Now we will show that all the other states have degrees less that c +

2|sA|−2. We can view any state as being obtained from sA by a finite series
of changing an A resolution to a B resolution. We can write this series out
as sA → s1 → s2 → · · · → sk. We will show that si+1 has degree at most
si. First, note that a(si) = a(si−1) − 1 and b(si) = b(si−1) + 1. Next, by
changing a single resolution, we are doing one of the following:

• We merge two contractible circles to a contractible one (so |si| =

|si−1| − 1).
• We split a contractible circle into two contractible ones (so |si| =

|si−1|+ 1).
• We split a contractible circle into two non-contractible ones (so |si| =
|si−1| − 1).
• We merge two non-contractible circles into a contractible one (so
|si| = |si−1|+ 1).
• We merge a contractible and non-contractible circle into a non-
contractible one (so |si| = |si−1| − 1).
• We re-arrange a non-contractible circle of si−1 to a non-contractible
one of si (so |si| = |si−1|).
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In particular, each resolution change will either increase the number of
state circles by one, leave it the same, or decrease it by one. As a result, the
highest degree in the contribution of si to. 〈D〉0 will be less or equal to this
of si−1.

As the highest degree contribution to 〈D〉0 coming from sA is c+ 2|sA|,
while the highest degree contribution coming from sk 6= sA is c−2k+2|sk|−2,
in order for sk to contribute to the highest degree of 〈D〉0, we would need
to have

c+ 2|sA| − 2 ≤ c− 2k + 2|sk| − 2

=⇒ |sA| ≤ |sk| − k.

This would mean that each state change si−1 → si must increase the number
of state circles by by one, limiting what sort of changes we can make from
the five possibilities discussed above. However, since all the state circles in
sA are contractible and GA has no 1-edge loops the first change sA → s1,
will merge two contractible circles to one, so |s1| = |sA| − 1 and the highest
degree of s1 is strictly less that this of sA. Since this degree cannot increase
during the change from sA to sk, the contribution of sk has degree less than
the contribution of sA. So it does not contribute to the highest degree of
〈D〉0, and we are done with part (1).

To see part (2), let D∗ ⊂ F ⊂M denote the link diagram obtained from
D by switching all the crossings of D simultaneously. By the definition we
can see that 〈D∗〉0 is obtained from 〈D〉0 by changing A to A−1. Thus, we
have |bn(D)| = |am(D∗)| and the conclusion follows from part (1). �

Now we turn to the second lemma, that treats the second and penulti-
mate coefficients of J0(D).

Lemma 2.8. Suppose that D = π(L) ⊂ F ⊂ M is a link diagram and let
am−1, bn+1 denote the second and penultimate coefficients of J0(D).

(1) If D is geometrically A-adequate then, we have |am| = 1 and |am−1| =
e′A − |sA|+ 1.

(2) If D is geometrically B-adequate then, we have |bn| = 1 and |bn+1| =
e′B − |sB|+ 1.

Proof. Let c = c(D) denote the number of crossings of D. We know that
the highest degree of 〈D〉0 is c+ 2|sA|. Then the second highest degree has
exponent c+ 2|sA| − 4. A contribution to this degree can come from either
the second highest degree of sA, or from the highest degree of a state sk in
which k 6= 1 crossings of D are assigned the B resolution.
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First, we will deal with sA. Recall that the part of D0 coming from sA is

Ac(−A2 − A−2)|sA|−1 = (−1)|sA|−1Ac(A2 + A−2)|sA|−1

= (−1)|sA|Ac

|sA|∑
i=0

(
|sA| − 1

i

)
A2|sA|−2i−2A−2i

= (−1)|sA|−1
|sA|−1∑
i=0

(
|sA| − 1

i

)
Ac+2|sA|−4i−2.

In particular, the second highest degree is c + 2|sA| − 6 (when i = 1), and
the coefficient is (−1)|sA|−1(|sA| − 1). Next, we deal with states sk 6= sA. As
in the proof of Lemma 2.7, we can write sk as a finite series of resolution
changes, sA → s1 → · · · → sk. We claim that sk can only contribute to
the degree c+ 2|sA| − 6 if all resolution changes happen to parallel edges in
GA (i.e edges that are adjacent to the same pair of vertices and any two of
which encircle a disc on F ).

Recall that the highest degree sk contributes is c − 2k + 2|sk|. For this
to contribute to the second highest degree of 〈D〉0, we must have

c+ 2|sA| − 6 = c− 2k + 2|sk| − 2

=⇒ |sA| = |sk| − k + 2.

This means that, in our series from sA to sk, we must either increase
the number of state circles in all but exactly two resolution changes, where
we don’t change the number at all, or we must decrease the number of
state circles exactly once, and the rest of resolution changes must increase
it. As in Lemma 2.7, we know that sA → s1 must decrease the number of
state circles. As such, for sk to contribute to the second highest degree the
remaining resolution changes must increase the number of state circles.

As sA has no non-contractible circles, any following state will only have
them if we introduce them from a resolution change. Note, that we need to
change at least two resolutions from sA to create non-contractible state cir-
cles. However, turning these circles into contractible ones again will require
merging and this step will decreasing the number of state circles. Thus such
a sequence cannot contribute to am−1. Thus, to increase the number of state
circles, we must, after sA → s1, always split a single contractible circle into
two contractible circles. This can only happen in the change si−1 → si, how-
ever, if the there is a 1-edge loop in the state graph Gsi−1

. Such 1-edge loops
are created when we merge two state circles together. In our series, this can
only happen in the first state change, sA → s1, and so all other changes
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Figure 2. The two cases of changing two edges of GA adjacent to the
same pair of vertices to edges of GB .

must be adjacent to the same two state circles. There are now two cases
to consider. Let e1 be the edge of GA affected, during the change sA → s1.
Then either

• si−1 → si affects an edge ei, with e1 ∪ ei bounding a disk on F , or
• si−1 → si affects an edge ei, with e1 ∪ ei not bounding a disk on F .

The two cases are illustrated in Figure 2. If we are in the second case, we
will create two non-contractible circles, each parallel to the curve ei ∪ e2. If
we are in the first case, we create two contractible circles, and so are fine.
As such, sk only contributes to the second highest degree if all resolution
changes happen to parallel edges that bound a disk on F . We can view this
as a single edge of G′A.

Each family of parallel edges has several states associated to it: if the
family has k parallel edges (and thus k crossings), and we want a state to
have 1 ≤ j ≤ k differences from sA, then there are

(
k
j

)
such states. While

the highest degree remains the same, other values do change. If a state s
has j changes in resolutions from sA, then a(s) = c − j, b(s) = j, and
|s| = |sA| − 2 + j. Then the highest degree and coefficient such a state
contributes is

(−1)|s|Aa(s)−b(s)A2|s|−2 = (−1)|sA|+j−3Ac−2j+2|s|−2

= (−1)|sA|−3(−1)jAc+2|sA|−6.

Summing over all possible states for this family, then, the family contributes
the coefficient

(−1)|sA|−3
k∑

j=1

(
k

j

)
(−1)j.

Using the binomial theorem,

0 = (1 + (−1))k =
k∑

j=0

(
k

j

)
(−1)j

= 1 +
k∑

j=1

(
k

j

)
(−1)j

= 1 + (−1)

so the coefficient contributed by a single family is just (−1)|sA|−1.
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Now, adding the coefficient we get from sA to all the coefficients we get
from edges of G′A, we get the coefficient is:

|am−1| = |(−1)|sA|−2e′A + (−1)|sA|−1(|sA| − 1)|

= |(−1)|sA|−2(e′A − |sA|+ 1)

= e′A − |sA|+ 1

and we are done with part (1).
To prove part (2) we can apply the argument of (1) to the diagram D∗

as in the proof of Lemma 2.7. This finishes the proof of the lemma and that
of Theorem 2.6.

�

The notion of geometric adequacy is well suited for the connections of
skein invariants to geometry of the link complement that we explore in this
paper. Recently, Boden, Karimi and Sikora have considered link diagrams
on a surface F = F × {0} inside in thickened surfaces F × [−1, 1] and they
also defined notions of A-adequacy and B-adequacy. We now compare their
definitions to ours. In the terminology of [4] a link diagram D on F is called
A-adequate if for any state s that differs only by a single resolution from sA

we have the following: either |st| ≤ |sA| or the number of non-contractible
state circles in s is different than this in sA. One defines D being B-adequate
in a similar way.

Lemma 2.9. Suppose that D = π(L) ⊂ F ⊂M is a link diagram such that
all the state circles in sA are contractible on F . Then, if D is geometrically
A-adequate, it is also A-adequate.

Proof. To show that D is A-adequate, we must show that, for any state s
adjacent to sA, either |st| ≤ |sA| or s and sA have a different set of non-
contractible loops. There are two ways a state change sA → s can increase
|st|: either we split a contractible state circle into two such circles, or we
merge two essential circles in sA into a contractible circle. By assumption,
as sA has only contractible circles, we must split a single state circle into
two. However, in order to split a state circle, we must have an edge of GA

connecting that state circle to itself. As GA, by assumption, has no 1-edge
loops, this cannot happen, and so we are done. �

The converse of Lemma 2.9 is not true. The diagram D of Figure 3 is
A-adequate in the sense of [4] but is not geometrically A-adequate: indeed,
while the state circles in sA are contractible, each of the four states that
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Figure 3. A link diagram D = π(L) (left) together with the graphs
GA (center) and GB (right). All the state circles in sA and sB are con-
tractible on the torus. The diagram D geometrically B-adequate but
not geometrically A-adequate. In fact all the four edges of GA are 1-
edge loops.

are obtained from sA by a single by a single resolution change contains non-
contractible circles. Thus D is A-adequate. However, GA contains 1-edge
loops, hence D is not geometrically A-adequate.

3. Guts of surfaces and Kauffman brackets

In this section we focus on links that admit alternating projections on
surfaces in 3-manifolds. We find that under suitable diagrammatic condi-
tions such links are geometrically adequate on one hand, and on the other
hand they fit into the class of weakly generalized alternating links studied
in [20]. This will allow us to combine our work in the last section with the
geometric techniques of [20] and prove Theorems 1.2 and 1.1.

3.1. Reduced alternating link projections. Suppose M is a compact,
orientable, irreducible 3-manifold with empty or incompressible boundary
and F a closed, connected, orientable surface in M . Next we introduce sev-
eral properties and definitions about projections of links L ⊂ F × [−1, 1] ⊂
M on F . Some of these properties are directly quoted from [20] and others
are suitably adapted to fit our purposes better.

Definition 3.1. A link diagram π(L) ⊂ F is prime if, whenever a disk
D ⊂ F has ∂D intersecting π(L) transversely exactly twice, then either:

• F = S2, and either π(L) ∩D is a single arc or π(L) ∩ (F \D) is; or
• F has positive genus, and π(L) ∩D is a single arc.

Definition 3.2. We say a link diagram π(L) ⊂ F is reduced alternating if

(1) each component of L projects to at least one crossing in π(L),
(2) π(L) is prime and alternating on F, and
(3) for every essential, simple closed curve γ on F that intersects π(L)

at exactly two points near a crossing, one of the two sub-arcs of π(L)

with endpoints on γ contains no crossings of π(L).
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We note for Definition 3.1 the authors of [20] use the term “weakly
prime". We also note that Definition 3.2 is different than the definition
of reduced diagrams given in [20], in that condition condition (3) is not re-
quired in their definition. For alternating projections of F = S2 in M = S3

the two definitions are equivalent.
Given an alternating link projection π(L) ⊂ F ⊂ M for each crossing

of π(L) we can label the four regions around it by the letters A and B

in an alternating fashion. This is done so that the two opposite regions
of the crossing that are merged during the A splitting are labeled by A.
Similarly, the two opposite regions of the crossing that are merged during
the B splitting are labeled by B. This way the corners of every region of
F \ π(L) receive the label A or B.

Definition 3.3. With the notation and setting as above, we will say that
the link diagram π(L) is checkerboard colorable if for every region R of
F \ π(L) the letters at all corners of R are the same. Thus every region of
a checkerboard colorable diagram is labelled by A or B.

Next we recall two complexity functions for link diagrams π(L) ⊂ F ⊂M

from [20].

Definition 3.4. The edge representativity e(π(L), F ) is the minimum num-
ber of intersections between π(L) and any essential curve on F . If there are
no essential curves, then we say e(π(L), F ) =∞.

The representativity r(π(L), F ) is the minimum number of intersections
between π(L) and the boundary of any compressing disk for F . If there are
no compressing disks for F , then we say r(π(L), F ) =∞.

As an example to clarify the definitions above we discuss the alternating
link diagram π(L) of Figure 3 viewed on a standard Heegaard torus F = T 2

in S3. We have e(π(L), F ) = r(π(L), F ) = 2 and the diagram is checker-
board colorable, prime and all the regions of T 2 \ π(L) are disks. However,
π(L) is not reduced in the sense of Definition 3.2. The next proposition
shows this phenomenon doesn’t happen when e(π(L), F ) > 2.

Proposition 3.5. Let π(L) ⊂ F ⊂ M be an alternating link diagram such
that π(L) is checkerboard colorable and all the regions of F \π(L) are disks.
Then π(L) is reduced if and only if

• π(L) is prime,
• each component of L projects to at least one crossing in π(L), and
• the edge representativity satisfies e(π(L), F ) > 2.
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Proof. First, suppose e(π(L), F ) > 2 and π(L) is prime. We only need to
prove that π(L) satisfies part (3) of Definition 3.2. So suppose γ is a simple
closed curve on F intersecting π(L) exactly twice. Because e(π(L), F ) > 2,
we know that γ cannot be essential, and so must bound a disk E on F . If
F = S2, then, as π(L) is prime, either π(L) ∩E is a single arc without any
crossings, or π(L) ∩ (F \ E) is. If F 6= S2, then π(L) ∩ E is a single arc. In
either case, we have one of the sub-arcs of π(L) with endpoints on γ contain
no crossings, and so we are done.

Now suppose π(L) is reduced alternating. Then we already know that
π(L) is prime, and each component of L projects to at least one crossing in
π(L). We need to show e(π(L), F ) > 2. Suppose not. As D is checkerboard
colorable, we must have e(π(L), F ) be an even number. If e(D,F ) = 0, then
there is a region of F \ π(L) that contains an essential curve. This would
mean we have a non-disk region, and so cannot happen.

If e(π(L), F ) = 2, then we can find some essential closed curve γ in-
tersecting π(L) exactly twice. As π(L) is reduced, this means that one of
the two sub-arcs of π(L) with endpoints on γ must contain no crossings.
Call this sub-arc `. We also have γ split into two sub-arcs, γ1 and γ2. There
are four cases to consider. First, we could have ` ∪ γi bound a disk on F ,
for some i = 1, 2. We can use this disk to homotope γ off of D, and so
become an essential curve interesting our knot zero times, a contradiction.
Second, we could have ` form a single component. If it does, we then have
a component of L with no crossing in D, contradicting the assumption that
each component of L projects to at least one crossing on F , included in the
definition of reduced. Third, we could have ` ∪ γi essential and parallel to
all of γ, for some i, say i = 1. But then ` ∪ γ2 is homotopically trivial, and
so we are in the first case, and get a contradiction. Finally, we could have
`∪ γi essential and not parallel to γ. As π(L) is checkerboard colorable and
` contains no crossings, everything to one side of ` must be the same color.
But then we have a region adjacent to itself across a knot arc, contradicting
D being checkerboard colorable. In any of the cases where e(π(L), F ) = 2,
we contradict one of our assumptions, and so it cannot happen. So then we
are left with e(π(L), F ) > 2, and we are done. �

Definition 3.6. Following [20] we say a link diagram π(L) ⊂ F is weakly
generalized alternating if is prime, checkerboard colorable, alternating, and
the representativity satisfies r(π(L), F ) ≥ 4.

We have the following:
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Figure 4. A reduced, checkerboard colorable, alternating diagram π(L)
with disk regions, on a torus. In the terminology of [20] it is weakly
generalized alternating. Both GA (left) and GB (right) have no 1-edge
loops making π(L) geometrically adequate.

Corollary 3.7. A reduced alternating diagram π(L) ⊂ F that has disk
regions and is checkerboard colorable is also weakly generalized alternating.

Proof. We only need to check that the condition that r(π(L), F ) ≥ 4. By
Proposition 3.5, we have e(π(L), F ) > 2 which since the diagram is checker-
board colorable with disk regions, implies e(π(L), F ) ≥ 4. Since any curve
on F bounding a compression disk is also essential we are done. �

Our next lemma together with Corollary 3.7 allow us to relate our work
in Section 2 to the work of [20] on weakly generalized alternating links.

Lemma 3.8. Suppose π(L) is an alternating diagram on a projection sur-
face F of genus at least 1 in a 3-manifold M . Suppose that π(L) is reduced,
checkerboard colorable and all regions of F \ π(L) are disks. Then π(L) is
geometrically adequate.

Proof. First, as π(L) is alternating on F and all regions of F \D are disks,
we have that sA and sB must have only contractible circles.

We need to show that GA and GB have no 1-edge loops. The proof is
the same for both GA and GB, so we will focus on GA. Suppose π(L) is
as in the statement of the lemma, but GA has at least one 1-edge loop, `.
Then ` connects a state circle to itself, and ` crosses π(L) exactly twice at a
crossing. We may then find some simple arc γ in the state circle connecting
the two endpoints of `. But then γ ∪ ` is a simple closed curve intersecting
π(L) exactly twice. By Proposition 3.5 we have e(π(L), F ) ≥ 4. Thus γ ∪ `
must be contractible on F .

By homotoping γ ∪ ` we can get two such simple closed curves, one with
the crossing to the left of the curve, and the other with the crossing to
the right. One of them would bound a disk such that the existence of the
crossing corresponding to ` violates the primeness of π(L). Thus π(L) must
be geometrically A-adequate. See Figure 4 for an example. �
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3.2. Twist number relations and invariance. A twist region of an al-
ternating projection π(L) ⊂ F is either a string of bigons of π(L) arranged
vertex to vertex that is maximal in the sense that no larger string of bigons
contains it, or a single crossing adjacent to no bigon.

Definition 3.9. An alternating diagram π(L) ⊂ F is called twist reduced
if whenever there is a disc D ⊂ F such that ∂D intersects π(L) exactly four
times adjacent to two crossings, then one of the following holds:

• D contains a (possibly empty) sequence of bigons that is part of a
larger twist region containing the two crossings, or
• F \ D contains a disc D′, with ∂D′ intersecting π(L) four times
adjacent to the same two crossings as ∂D, and D′ contains a string
of bigons that forms a larger twist region containing the original two
crossings. See Figure 5.

The twist number tF (π(L)) of a diagram is the number of twist regions in
a twist-reduced diagram.

Lemma 3.10. Suppose that π(L) is a twist-reduced, reduced alternating
diagram with twist number tF (π(L)) on a projection surface F ⊂ M of
genus at least 1. Suppose that π(L) is checkerboard colorable and all regions
of F \ π(L) are disks. Then, we have

|am−1|+ |bn+1| − 2 = tF (π(L))− χ(F ),

where am−1 and bn+1 are the second and the penultimate coefficient of the
polynomial J0(π(L)).

Proof. By Lemma 3.8 π(L) is geometrically adequate; the state graphs GA

and GB have no 1-edge loops. Suppose that π(L) has c crossings. First note
that the twist number is

tF (π(L)) = c− (c− e′A)− (c− e′B) = e′A + e′B − c.

By definition, crossings that correspond to twist region of π(L) corre-
spond to edges of GA or GB that are parallel; every pair bounds bigon on
F . Call a twist region of π(L) an A (or B) twist region if, in GA (or GB), all
crossings of the twist region are represented by edges such that every pair
bounds a bigon on F . Then note that c−e′A is exactly the number of edges in
GA that aren’t in G′A, and so counts the number of crossings that are in an
A twist region except for one for each such twist region (that is represented
in G′A). Likewise, c − e′B is the number crossings in B twist regions minus
one for each such twist region. Then (c− e′A) + (c− e′B) = c− tF (π(L)).
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...D ⇒ Dor

D′

Figure 5. A twist reduced diagram. Figure modified from [21].

Next, note that

|sA|+ |sB| = c+ 2− 2g(F ) = c+ χ(F ).

Putting these together, along with Lemmas 2.7 and 2.8, we get:

|am−1|+ |bn+1| − 2 = e′A + e′B − |sA| − |sB|

= (tF (π(L)) + c)− (c+ χ(F ))

= tF (π(L))− χ(F ),

which finishes the proof of the lemma. �

It is known that the twist number of a reduced, twist-reduced alternating
projection π(L) on a 2-sphere in S3 is an isotopy invariant of L. This has
been proven in two ways. Firstly, it follows from work of Dasbach and Lin [9]
showing this twist number can be obtained from the Jones polynomial of
L. Secondly, it follows from the Tait flyping conjecture proved in Menasco
and Thistlewaite [28], which shows that any two reduced, prime alternating
link diagrams are related by a series of flypes. Following the approach of [9],
we have a generalization of twist number invariance for alternating links in
thickened surfaces.

Corollary 3.11. Let L be a link in F × [−1, 1], that admits a checkerboard
colorable, reduced alternating projection π(L) ⊂ F that is twist-reduced has
all its regions disks. Then, any two such projections of L have the same
twist number. That is, tF (π(L)) is an isotopy invariant of L.

Proof. By Lemma 3.10, |am−1|+|bn+1|−2+χ(F ) = tF (π(L)). Since |am−1|, |bn+1|
isotopy invariants of L in F × [−1, 1] (Proposition 2.2), the conclusion fol-
lows. �

The Tait flyping conjecture is unknown for links in thickened surfaces.
Hence the second method of deducing invariance of the twist number is
not currently available. However, Boden, Karimi, and Sikora were able to
show the first two Tait conjectures by proving that, for reduced alternating
diagrams in thickened surfaces, the crossing number and the writhe are
invariants [4].
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In general the twist number of weakly generalized alternating knots is
not an invariant. Howie has produced weakly alternating projections of the
same knot on a Heegaard torus of in S3 with different twist numbers (e.g.
the knot 929, is one example) [19]. On the other hand no such examples are
known for weakly alternating projections on incompressible surfaces. In the
view of this and Corollary 1.3 we ask the following:

Question 3.12. Let M be a 3-manifold that is closed or has incompress-
ible boundary and F ⊂ M an incompressible surface. Suppose that π(L) is
a reduced, twist-reduced, checkerboard colorable, alternating diagram on F

where all the regions of F \ π(L) are disks. Is tF (π(L)) is an invariant of
the isotopy type of L in M?

As Howie’s examples take place on the compressible Heegaard torus in
S3, these do not give an answer to this question.

3.3. Guts and Kauffman bracket. Here we will prove Theorem 1.2 stated
in the introduction. In fact we prove a more general result (Theorem 3.13) in
which the assumption that F is incompressible (r(π(L), F ) =∞) is relaxed
to r(π(L), F ) > 4.

Suppose that D = π(L) is a weakly generalized alternating diagram on a
surface F ⊂M such that the regions of F \π(L) are all disks. The projection
gives rise to two spanning surfaces of L, the checkerboard surfaces that we
will denote by SA = SA(D) and SB = SA(D). Our convention will be that
SA is constructed by attaching half twisted bands to the disks bounded
by the state circles sA(D), where we attach a half twisted band for each
crossing of D, so that the band retracts onto the corresponding edge of the
graph GA and the surface SA retracts to GA. Similarly we define SB that
retracts onto GB. See Figure 6.

Figure 6. The construction of SA and SB . The red lines indicate the
edge of SA and SB the corresponds to the bands shown.

By [20, Theorem 3.19] the surfaces SA and SB are π1-essential in the
complement of X = M \ L. Let MA = X\\SA := X \ N(SA) and let
MB = X\\SB := X \N(SB). Recall also that am, am−1, bn+1, and bn are the
first two and last two coefficients, respectively, in the polynomial J0(π(L)).
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Theorem 3.13. Let M be a 3-manifold that is closed or has incompress-
ible boundary and F ⊂ M a projection surface such that that M \ N(F )

is atoroidal and ∂-anannular. Let π(L)be a reduced, alternating diagram
on F that is twist-reduced with twist number tF (π(L)). Suppose that π(L)

is checkerboard colorable and all the regions of F \ π(L) are disks. Sup-
pose, moreover, that F has genus at least 1 and the representativity satisfies
r(π(L), F ) > 4. Then,

(1) we have χ(guts(MA)) = 1− |am−1|+ 1
2
χ(∂M),

(2) we have χ(guts(MB)) = 1− |bn+1|+ 1
2
χ(∂M),

(3) we have tF (π(L)) = |am−1|+ |bn+1| − 2 + χ(F ).

Let us first explain how to deduce Theorem 1.2: as discussed earlier, in
the case that F is incompressible in M we have r(π(L), F ) = ∞. Thus, in
particular, the condition r(π(L), F ) > 4 is satisfied and Theorem 1.2 is a
special case of Theorem 3.13. �

Proof. First note that by Lemma 3.8,D = π(L) is geometrically A-adequate
and geometrically B-adequate. We will give the proof for part (1) and MA.
The proof works the same, after swapping SA and SB to give part (2).
Finally, part (3) follows from Lemma 3.10.

The graph GA gives a cellular decomposition of the surface F . The num-
ber of 0-cells is the number of the vertices GA, denoted by |sA|, and the
number of 1-cells is the number of edges eA = c(π(L)). The number of 2-
cells is the number of complementary regions of GA which is the same as the
number |sB| of vertices of GB. If we consider π(L) as a 4-valent graph on F
we can label the components of F \ π(L) by A or B according to whether
they correspond to a vertex of GA or GB. We will refer to these as A-regions
and B-regions, respectively. Now let |s′B| denote the number of non-bigon
B-regions and recall that e′A denotes the number of edges in the reduced
graph G′A. We have,

(3.1) χ(F ) = |sA| − eA + |sB| = |sA| − e′A + |s′B|,

where the second equality follows since, by definition and the fact that
D is twist-reduced, the number of edges we remove from GA to obtain G′A is
exactly the number of bigon B-regions. Equation (3.1) gives the following.

(3.2) χ(F )− |s′B| = |sA| − e′A.
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Since, as we mentioned above, D is geometrically A-adequate by Theo-
rem 2.6 we have

(3.3) |sA| − e′A = 1− |am−1| = |am| − |am−1|.

By Corollary 3.7, D is weakly generalized alternating. Now we can ap-
ply [20, Theorem 6.6] to D to conclude that

(3.4) χ(guts(MA)) = χ(F ) +
1

2
χ(∂M)− |s′B|.

Now combining Equation (3.4) with Equations (3.2) and (3.3), we get

χ(guts(MA)) = 1− |am−1|+
1

2
χ(∂M),

which is part (1) of the theorem.
We will now sketch the proof of Equation 3.4, referring the reader to [20]

for precise definitions and details. We do this not only for reasons of com-
pleteness, but because it is interesting to see the correspondence between
the combinatorics in the calculation of |am−1| from the proof of 2.6 and
these involved in the calculation of χ(guts(MA)). On one hand, edges that
are parallel on GA (i.e that co-bound a disk on F ) don’t contribute due to
cancellations Kaufman state sum expression of |am−1|. On the other hand
strings of parallel edges on GA correspond components of I-bundle pieces
of the JSJ-decompositionMA and they don’t contribute χ(guts(MA)).

Setting S̃A = ∂N(SA), the parabolic locus P is ∂MA ∩ ∂N(L). Consid-
ering π(L) as a 4-valent graph on F , the authors in [20] define a chunk
decomposition ofMA: this decomposesMA into two compact, oriented, irre-
ducible 3-manifolds with boundary, say C1, C2, each containing a copy F as
a boundary component (and possibly more boundary components coming
from ∂M). The component of ∂Ci that corresponds to F comes equipped
with a checkerboard coloring with the regions of F \ π(F ) called faces. The
chunks are glued together along the B labeled faces. The decomposition
generalizes previously known polyhedral decompositions constructed from
alternating and adequate link projections in S3 (see, for example, [13] and
references therein). Even though the chunks are not simply connected, [20]
shows that techniques that were used for polyhedral decompositions gener-
alize and adapt in the setting of chunks.

Recall that M \ N(F ) is atoroidal and ∂-anannular. By the annulus
version of JSJ-decomposition one can cut MA along a collection of essential
annuli that are disjoint from P into I-bundles, Seifert fibered pieces and
hyperbolic pieces which are the ones that form the guts. Seifert fibered
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pieces turn out to be solid tori and as such they don’t contribute to the
Euler characteristic computation.

Let R be an essential annulus in MA, disjoint from P with ∂R ⊂ S̃A.
Such an annulus R is either parabolically compressible or not, in which case
they are called parabolically incompressible.

If R is parabolically incompressible, then [20, Lemma 6.9] argues that
F must be a 2-sphere, contradicting the assumption of F having genus at
least 1

Suppose now that R is parabolically compressible. This means that there
is a disk D with interior disjoint from R, with ∂D meeting R in an essential
arc α on R, and with ∂D\α lying on S̃A∪P , with α meeting P transversely
exactly once. If we do surgery along such a disk we obtain an essential
product disk : these are disks meeting P transversely exactly twice, with
boundary otherwise on S̃A. Such disks are known to correspond to I-bundle
components of above mentioned JSJ-decomposition (see [13, Definition 4.5]
or [20, Definition 6.7]).

Now let us look at an essential product disk E caused by surgering R. If
it meets SB, then SB cuts E into sub-rectangles E1, · · · , En. By looking how
such rectangles must sit in the diagram and in the chunk decomposition,
one can show that E must be boundary parallel, a contradiction to E being
essential.

However, if E doesn’t run through SB, then ∂E must meet the chunk in
two A-faces and two B-faces, and so ∂E must meet P exactly four times.
Such an E is parallel into F . However, as D is twist reduced, this implies
∂E contains a series of B-bigons.

Case 1: First suppose that we don’t have B-regions that are bigons. Then
guts(MA) = MA. Recall that MA is obtained by C1 and C2, where we glue
these chunks together along B-labeled faces. Then, as χ(Ci) = 1

2
χ(∂Ci), we

must have

χ(C1) =
1

2
χ(F ) +

1

2
χ(∂M |C1)

χ(C2) =
1

2
χ(F ) +

1

2
χ(∂M |C2).

Gluing the chunks together along white faces will add their Euler charac-
teristics together, and subtract one for every B-face we glue along. As there
are no white bigons, we glue along |sB| = |s′B| such faces, and so:

χ(guts(MA)) = χ(F ) +
1

2
χ(∂M)− |s′B|.
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Case 2: If F \ π(L) has B-regions that are bigons, then each such bigon
will form a quad, with two sides on P and two sides on S̃A. These will give
essential product disks and thus I-bundle parts. The existence of I-bundles
leads to parabolically compressible annuli and, as mentioned above, to es-
sential product disks. All the essential product disks parabolically compress
to the strings of the ones corresponding to bigons (see [13, Figure 4.2]).
Surgering along one of these basic essential product disks increases the Eu-
ler characteristic of the I-bundle sub-manifold by one and it doesn’t change
the guts. After we remove all B-bigons of π(L), we have replaced each B

twist region by a single crossing and we have eliminated all the I-bundle
components. This has modified SA into a new surface S ′A and guts(MA) is
the same as the guts of S ′A. But now we have no B-bigon regions left, and
the B-regions of the new link projection are exactly the non-bigon B-regions
of π(L), that is exactly |s′B|. �

4. Relations with hyperbolic geometry invariants

Let D = π(L) be a reduced, alternating link diagram on a surface
F ⊂ M , such that M \ L is hyperbolic. In this section we show that the
skein theoretic quantities |am−1(π(L))|, |bn+1(π(L))| provide bounds on the
volume of the complementM \L. The relations with volume come from two
sources: first, by a result of Agol, Storm and Thurston [2] the negative Euler
characteristic of the guts of an essential surface in a hyperbolic 3-manifold
M bounds linearly the volume ofM from below. We will apply this result to
the surfaces SA, SB associated to projections of weakly generalized alternat-
ing links. Second, by work of Kalfagianni and Purcell [21], if F is Heegaard
torus or M is a thickened surface, the twist number of weakly generalized
alternating projections provides two sided bounds of their volume.

We prove the following theorem which, in particular, implies Theorem
1.1 stated in the Introduction.

Theorem 4.1. Let M be a 3-manifold that is closed or has incompressible
boundary and F ⊂ M a projection surface such that that M \ N(F ) is
atoroidal and ∂-anannular. Let D = π(L) be a reduced and twist-reduced
alternating diagram on F, that is checkerboard colorable and all the regions
of F \D are disks. Suppose, moreover, that F has genus at least 1 and the
representativity satisfies r(D,F ) > 4. Then L is hyperbolic and we have

vol(M \ L) ≥ v8 max{|am−1|, |bn+1|} − 1− 1

2
χ(∂M),
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where am−1, bn+1 are the second and penultimate coefficient of the polynomial
J0(π(L)), and v8 = 3.66386 · · · is the volume of a regular ideal octahedron.

Proof. By Corollary 3.7, D is weakly generalized alternating. Let SA and SB

denote the checkerboard surfaces of the projection. By [20, Theorem 1.1],
SA, SB are π1-essential in X = M \ L, and X is hyperbolic. By cutting the
link complement along SA and SB we obtain manifolds MA = X\\SA and
MB = X\\SB, respectively. By [2, Theorem 9.1] we have

vol(M \ L) ≥ −v8 χ(guts(MA)), and vol(M \ L) ≥ −v8 χ(guts(MB)).

Since we assumed that π(L) is reduced by Lemma 3.8, it is geometrically
A-adequate and B-adequate. By Theorem 3.13 we have

χ(guts(MA)) = 1−|am−1|+
1

2
χ(∂M) and χ(guts(MB)) = 1−|bn+1|+

1

2
χ(∂M).

Thus we obtain

vol(M \ L) ≥ v8

(
|am−1| − 1− 1

2
χ(∂M)

)
,

and

vol(M \ L) ≥ v8

(
|bn+1| − 1− 1

2
χ(∂M)

)
,

and the result follows. �

To see how Theorem 1.1 follows note that if F is incompressible the
hypothesis r(D,F ) > 4 is satisfied.

Next we discuss two special cases where the quantity |am−1|+ |bn+1|− 2,

of Theorem 4.1 also provides an upper bounds of the volume. The first result
concerns weakly generalized alternating knots on a Heegaard torus.

Corollary 4.2. Let F be a Heegaard torus F in M = S3, or in a lens
space M = L(p, q). Let D = π(L) be a reduced and twist-reduced alternating
diagram on F, that is checkerboard colorable and all the regions of F \ D
are disks. Suppose, moreover that the representativity satisfies r(D,F ) > 4.
Then M \ L is hyperbolic, and

v8
2

(|am−1|+ |bn+1| − 2) ≤ vol(M \ L) < 10 v4 · (|am−1|+ |bn+1| − 2) ,

where v4 = 1.01494 . . . is the volume of a regular ideal tetrahedron.

Proof. By Corollary 3.7 the projection π(L) is weakly generalized alternat-
ing. Hyperbolicity follows from [20, Theorem 1.1]. By [21, Corollary 1.5],
which also relies on [20] for the lower bound, we have
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v8
2
tF (π(L)) ≤ vol(M \ L) < 10 v4 · tF (π(L)),

where tF (π(L)) is the twist number of π(L). By Lemma 3.10 tF (π(L)) =

|am−1|+ |bn+1| − |am| − |bn| = |am−1|+ |bn+1| − 2 and the result follows. �

Our second result is Theorem 1.4 which we now prove.

Proof. By Corollary 3.7 the projection π(L) is weakly generalized alternat-
ing. Hyperbolicity follows from [20, Theorem 1.1], where when F 6= T 2 the
hyperbolic structure is chosen so that non-torus boundary components of
M \ L are totally geodesic. By [21, Theorem 1.4], which relies on [20] for
the lower bound, we have

(4.1)
v8
2
tF (π(L)) ≤ vol(Y −K) < 10 v4 · tF (π(L)),

if F = T 2, and we have

v8
2

(tF (π(L))− 3χ(F )) ≤ vol(Y −K) < 6 v8 · tF (π(L)),

if F has genus bigger than one. Thus in both cases the result follows imme-
diately by Lemma 3.10. �

Remark 4.3. Theorem 1.4 is the analogue of the “volumish theorem" of [9]
for alternating links in thickened surfaces, where the authors relay on the
two sided bounds volume bounds in terms of the twist number of alternating
projections given by Lackenby [24].

Remark 4.4. In [6], Champanerkar and Kofman show that if π(L) is an
alternating projection as in Theorem 1.4, then π(L) admits two sided linear
bounds in terms of coefficients of a specialization of the Krushkal poly-
nomial [23]. Then they also combine this with equation (4.1) to conclude
that Krushkal’s polynomial also gives two-sided bounds of the volume of
alternating links in thickened surfaces. Krushkal informed the authors that
Andrew Will [30] also obtained a similar result. Their approach, however,
doesn’t lead to a proof of invariance of tF (π(L)).

Remark 4.5. In [3] Bavier shows that if M is closed and π(K) is a weakly
generalized alternating knot projection, that is twist-reduced, on a surface
F ⊂ M of genus at least 1, then the twist number tF (π(K) provides 2-
sided bounds on the cusp volume of M \K. We close the section by noting
that, by Lemma 3.10, Theorem 1.1 of [3] and the resulting applications to
Dehn filling given therein can also be stated in terms of the skein theoretic
quantity J0(π(K)).
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