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CONSTRUCTIONS OF q-HYPERBOLIC KNOTS

by Efstratia KALFAGIANNI & Joseph M. MELBY (*)

Abstract. — We use Dehn surgery methods to construct infinite families of hy-
perbolic knots in the 3-sphere satisfying a weak form of the Turaev–Viro invariants
volume conjecture. The results have applications to a conjecture of Andersen, Mas-
baum, and Ueno about quantum representations of surface mapping class groups.
We obtain an explicit family of pseudo-Anosov mapping classes acting on surfaces
of any genus and with one boundary component that satisfy the conjecture.

Résumé. — "Nous utilisons des méthodes de chirurgie de Dehn pour construire
des familles infinies de noeuds hyperboliques dans S3 vérifiant une forme faible
de la conjecture du volume pour les invariants de Turaev-Viro. Ces résultats ont
des applications à la conjecture d’Andersen-Masbaum-Ueno sur les représentations
quantiques des groupes de difféotopie des surfaces. Nous obtenons une famille ex-
plicite de difféotopie pour les surfaces de chaque genre à une composante de bord
qui vérifient la conjecture

1. Introduction

The Turaev–Viro invariants of a compact 3-manifold M are a family
of R-valued homeomorphism invariants TVr(M ; q) parameterized by an
integer r ⩾ 3 depending on a 2r-th root of unity q. They were originally
defined in terms of triangulations of compact 3-manifolds [30] and were
later related to skein-theoretic quantum invariants such as the Reshetikhin–
Turaev and colored Jones invariants [6, 26, 5, 17]. In this paper, we are
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pseudo-Anosov mapping class, q-hyperbolic knot, quantum representation, Turaev-Viro
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primarily concerned with the geometric data recovered from the asymptotic
behavior of the Turaev–Viro invariants at the root q = e

2πi
r .

For a compact 3-manifold M , that is closed or has toroidal boundary, let

lTV(M) := lim inf
r→∞, r odd

2π

r
log

∣∣∣TVr

(
M ; q = e

2πi
r

)∣∣∣ ,

A 3-manifold M with lTV(M) > 0 is called q-hyperbolic. We will say
that a knot K is q-hyperbolic if the complement MK := S3 \ n(K) is q-
hyperbolic, where n(K) is a tubular neighborhood of K.

Chen and Yang [11] conjectured that if M is hyperbolic, with volume
vol(M), then lTV(M) = vol(M) > 0. A related weaker conjecture, which
was stated and studied by Detcherry and Kalfagianni [14, 15, 16], is the
following:

Conjecture 1.1. — (Exponential Growth Conjecture) Let M be a
compact, oriented 3-manifold with empty or toroidal boundary with Gro-
mov norm ||M ||. Then, M is q-hyperbolic if and only if ||M || > 0.

By the geometrization theorem, a compact, oriented 3-manifold M with
empty or toroidal boundary can be cut along a canonical collection of tori
into pieces that are either Seifert fibered manifolds or hyperbolic. More-
over, M has positive Gromov norm precisely when this decomposition
contains hyperbolic pieces. In this language, Conjecture 1.1 asserts that
M is q-hyperbolic if and only if its geometric decomposition contains hy-
perbolic manifolds. One direction of the conjecture, namely that if M is
q-hyperbolic, then ||M || > 0, follows from the main result of [15]. The
other direction was shown in [14] to imply a conjecture of Andersen, Mas-
baum, and Ueno [4] on the geometric content of quantum representations
of mapping class groups of surfaces.

The purpose of this paper is to give constructions of the first infinite fam-
ilies of hyperbolic knots in the 3-sphere that are shown to be q-hyperbolic.
The only knot complements in the 3-sphere for which the asymptotic be-
havior of the Turaev–Viro invariants has been explicitly understood is the
figure-eight and all of its 2-cables [17, 13]. The only hyperbolic knot among
these is the figure-eight knot. On the other hand, the volume conjecture
of [11] has been proved for all hyperbolic 3-manifolds that are obtained
by Dehn filling the figure-eight knot complement [23, 31]. Our construc-
tions combine these results, with a result of [15] about the behavior of the
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Turaev–Viro invariants under Dehn-filling, and with several Dehn surgery
techniques. Our results also have new applications to the conjecture of [4].

1.1. Main results

Given a knot K, let µ, λ denote a set of canonical generators for the
homology group H1(∂(n(K))). For a simple closed curve s on ∂(n(K)), we
denote by [s] = pµ + qλ its class in H1(∂(n(K))), where p, q are relatively
prime integers. Recall that s is completely determined, up to isotopy, by
the fraction p/q ∈ Q∪{∞}. We will use MK(p/q) to denote the 3-manifold
obtained by Dehn-filling MK along the slope s determined by p/q.

For m, n ∈ Z, let the double twist knot D(m, n) with m vertical half-
twists and n horizontal half-twists be as in Figure 1.1. For example, D(2, −2)
is the figure-eight knot and D(2, 2) is the left-handed trefoil. With the
exception of the unknot and the two trefoils, the double twist knots are
hyperbolic. We show the following:

Figure 1.1. A double twist knot D(m, n) diagram with m vertical half-
twists and n horizontal half-twists.

Theorem 1.2. — For any integer n ̸= 0, −1, the following are true:
(a) The knots Dn := D(2n, −3) and D′

n := D(2n, −2) are q-hyperbolic.
(b) The 3-manifolds Mn := MDn

(4n + 1) and M ′
n := MD′

n
(1) are hyper-

bolic and q-hyperbolic.
(c) We have

lTV(MDn) ⩾ vol(Mn), and lTV(MD′
n
) ⩾ vol(M ′

n).
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Using Theorem 1.2, we may conclude that many low-crossing knots are
q-hyperbolic. We refer to Tables 5.1 and 5.2 in Section 5.

The knots D(2n, −3) are fibered when n < −1 and the monodromies of
their fibrations provide explicit families of pseudo-Anosov mapping classes
acting on surfaces with a single boundary component that satisfy the AMU
conjecture. See Theorem 4.3. These are the first examples known to satisfy
this conjecture that are constructed as monodromies of fibered knots in
S3. The examples of [14] are coming from monodromies of fibered links of
multiple components, while the examples [16] come from monodromies of
fibered knots in closed q-hyperbolic 3-manifolds.

A slope p/q is called non-characterizing for a knot K ⊂ S3 if there is a
knot K ′ that is not equivalent to K and such that MK(p/q) is homeomor-
phic to MK′(p/q). The articles [2, 1, 3] give constructions of knots that ad-
mit infinitely many non-characterizing slopes. Combining their techniques
and results with Theorem 1.2, we are able to construct new infinite families
of q-hyperbolic knots.

Theorem 1.3. — There is an infinite set of knots K such that:
(a) Every knot in K is q-hyperbolic.
(b) For every K ∈ K, MK(−7) is homeomorphic to M41(−7/2) and it is

q-hyperbolic.
(c) We have

lTV(MK) ⩾ vol(M41(−7/2)) ≈ 1.649610.

(d) No two knots in K are equivalent.

To apply the methods of [1] one needs to start with a knot K0 that admits
an “annulus presentation". Then, for any non-zero n ∈ N, one applies a
certain operation called an “n-fold annulus twist" repeatedly to generate a
family of knots K, so that for any K ∈ K we have MK(n) ∼= MK0(n). The
method of the proof of Theorem 1.3 is as follows: First we show that the six
crossing knot 62 is q-hyperbolic and that the 3-manifold M62(−7), obtained
by −7-surgery on 62, is homeomorphic to M41(−7/2) and is q-hyperbolic.
Then we verify that the knot 62 has an “annulus presentation" to which we
apply a “−7-fold annulus twist" inductively, to generate a family of knots
K. In this case, the annulus presentation of 62 is nice in a certain sense
(see Remark 3.7), and we are able to argue that the resulting knots have
mutually distinct Alexander polynomials. The reader is referred to Section
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3 for the definitions of annulus presentations and annulus twists and for
the details of our construction. The annulus twisting technique also applies
to each of the knots D′

n := D(2n, −2) to produce families of q-hyperbolic
knots. However, in this case we don’t know whether the resulting knots are
necessarily distinct. We have the following:

Theorem 1.4. — For any |n| > 1, let D′
n := D(2n, −2). There is a

sequence knots {Ki
n}i∈N such that, for any i ∈ N,

(a) the knot Ki
n is q-hyperbolic;

(b) the 3-manifold MKi
n
(1) is homeomorphic to MD′

n
(1) and it is q-

hyperbolic.

1.2. Organization

The paper is organized as follows: We give a proof of Theorem 1.2 in
Section 2. In Section 3, first we recall the definitions and results from
[2, 1, 3] relevant here, and then we prove Theorems 1.3 and 1.4. We apply
our results to the conjecture of [4] in Section 4. Finally, in Section 5 we
list all knots up to ten crossings, and all knots from the SnapPy census of
hyperbolic cusped 3-manifolds with triangulation complexity at most nine,
that can be shown to be q-hyperbolic using our methods.

Acknowledgements. — The authors thank Dave Futer for several
helpful discussions during this project, and Futer, Purcell and Schleimer
for generously sharing the data in Tables 5.3 and 5.4 with us.

2. q-hyperbolic double twist knots

In this section, we will show the q-hyperbolicity of two families of knots
in S3 which share hyperbolic Dehn surgeries with the figure-eight knot.

Suppose M is a compact 3-manifold with empty or toroidal boundary.
If M is hyperbolic, by Mostow rigidity the volume of a hyperbolic metric
is a topological invariant of M denoted by vol(M). If M is disconnected
the total volume is the sum of volumes over all connected components. In
general, by the geometrization theorem, M admits a unique decomposition
along tori into manifolds with toroidal boundary that are Seifert fibered
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spaces or hyperbolic. Let HM denote the union of the hyperbolic compo-
nents in the geometric decomposition of M . For the purposes of this paper
we define the Gromov norm of M by

||M || := vol(HM )
vtet

,

where vtet = 1.01494 . . . is the volume of a regular ideal tetrahedron and
vol(HM ) denotes the total volume of HM . By work of Thurston [28], the
Gromov norm of 3-manifolds with toroidal boundary does not increase
under Dehn-filling. That is, if M is a 3-manifold with toroidal bound-
ary, and M ′ is obtained by Dehn-filling of some components of ∂M , then
||M ′|| ⩽ ||M ||.

The asymptotics of the Turaev–Viro invariants have an analogous prop-
erty, as shown by Detcherry-Kalfagianni [15].

Theorem 2.1 ([15], Corollary 5.3). — Let M be a compact oriented
3-manifold with nonempty toroidal boundary and let M ′ be a manifold
obtained from M by Dehn-filling some of the boundary components. Then

lTV (M ′) ⩽ lTV (M).

In particular, if M ′ is q-hyperbolic then M is q-hyperbolic.

Let K be a knot in the 3-sphere with complement MK . Recall that
isotopy classes of simple closed curves on ∂MK are in one to one corre-
spondence with slopes p/q ∈ Q ∪ {1/0}. Slopes of the form p/1 we will be
denoted by p. Given a slope p/q, let MK(p/q) denote the 3-manifold ob-
tained by p/q-surgery along K (i.e. MK(p/q) is obtained by a Dehn-filling
of MK along the simple closed curve of slope p/q on ∂MK). If K is hy-
perbolic and MK(p/q) is not hyperbolic, we say that p/q is an exceptional
slope of K.

Let M41 denote the complement of figure-eight knot 41. The following is
well known:

Proposition 2.1. — The set of the exceptional slopes of the figure-
eight knot is E41 := {0, 1/0, ±1, ±2, ±3, ±4}. Thus for any p/q /∈ E41 the
3-manifold M41(p/q) is hyperbolic.

The asymptotics of the Turaev–Viro invariants of hyperbolic manifolds
obtained by surgery on the figure-eight knot are well understood. Ohtsuki
[23] proved that hyperbolic manifolds obtained by integral surgeries on
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41 satisfy the volume conjecture, and the result was extended to rational
surgeries by Wong and Yang [31]. Hence we have the following:

Theorem 2.2 ([23, 31]). — For any non-exceptional slope p/q of the
knot 41 we have

lTV (M41(p/q)) = vol(M41(p/q)),

and hence, in particular, M41(p/q) is q-hyperbolic.

Recall that for m, n ∈ Z, we denote by D(m, n) the double twist knot
shown in Figure 1.1.

Next we construct two families of q-hyperbolic double twist knots. The
families are parametrized by integers n, and are denoted by

{Dn := D(2n, −3)}n∈Z and {D′
n := D(2n, −2)}n∈Z.

Theorem 1.2. — For any integer n ̸= 0, −1, the following are true:
(a) The knots Dn := D(2n, −3) and D′

n := D(2n, −2) are q-hyperbolic.
(b) The 3-manifolds Mn := MDn

(4n + 1) and M ′
n := MD′

n
(1) are hyper-

bolic and q-hyperbolic.
(c) We have

lTV(MDn
) ⩾ vol(Mn), and lTV(MD′

n
) ⩾ vol(M ′

n).

For the proof of Theorem 1.2 we will need the following lemma:

Lemma 2.3. — For any n ∈ Z we have the following:
(a) The 3-manifold M41((−4n−1)/n) is homeomorphic to MDn

(4n+1).
(b) The 3-manifold M41(−1/n) is homeomorphic to MD′

n
(1).

Proof. — For n = 0 both (a) and (b) are trivially true: For, both D0, D′
0

are the trivial knot and we have: M41(1/0) ∼= MD0(1) = MD′
0
(1) ∼= S3.

Next suppose that n ̸= 0. Part (a) follows from the fact that the 3-
manifold M41(−(4n + 1)/n) is related to MDn(4n + 1) by a sequence of
Kirby-Rolfsen-Rourke moves. These moves are well known to preserve 3-
manifolds up to homeomorphism. See for example [27, Chapter 9]. The
particular sequence of moves required in this case is shown in Figure 2.1.

To describe the moves required in more detail, let us recall that, as
is customary in the Kirby-Rolfsen-Rourke calculus, one indicates the 3-
manifold M obtained by Dehn-filling along a link L in S3 by a diagram of L

with each component labeled by the surgery slope used for the component.
For components where the surgery coefficient is 1/0, we will omit the label

TOME 1 (-1), FASCICULE 0
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(such surgery is called ∞-surgery and it produces back S3). Such a diagram
is called a surgery diagram of M .

1

1

Figure 2.1. Kirby-Rolfsen-Rourke calculus moves showing that
M41((−4n − 1)/n) is homeomorphic to MDn(4n + 1).

(i) The 3-manifold M41(−(4n+1)/n) has a surgery diagram consisting
of a knot diagram for 41 labeled by (−4n − 1)/n = −4 − 1/n. In
the leftmost panel of Figure 2.1, we have inserted an unknotted
component U , shown in blue, on which the surgery coefficient is
1/0 = ∞ and such that it has linking number ±2 with the figure-
eight knot component. That is |lk(U, 41)| = 2. A −1-twist along
U produces produces the second surgery diagram in the sequence.
Note that the surgery coefficient of the component corresponding
to 41 has now changed to −(4n + 1)/n + (lk(U, 41))2 = −1/n. This
operation is also known as a blow up.

(ii) The surgery diagram shown in the third panel of Figure 2.1 is ob-
tained by that of the second panel by ambient isotopy that inter-
changes the two components of the underlying link.

(iii) Finally, performing n-twists on the component labelled by −1/n

gives the rightmost panel of Figure 2.1, which represents a surgery
diagram of MDn

(4n+1). The operation of performing this (−1/n)-
surgery on an unknotted component is also known as a blow down.

For part (b), a similar sequence of Kirby-Rolfsen-Rourke calculus moves,
shown in Figure 2.2, proves that M41(−1/n) is homeomorphic MD′

n
(1).

Note that this time the inserted unknotted component U , drawn in blue
in the leftmost panel of Figure 2.2, has zero linking number with 41. That
is, lk(U, 41) = 0. In this case, the surgery coefficient of the component
corresponding to 41 is unchanged under the blow up operation since −1/n+
(lk(U, 41))2 = −1/n. □

We are now ready to give the proof of Theorem 1.2:

ANNALES DE L’INSTITUT FOURIER
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1

1

1

Figure 2.2. Kirby-Rolfsen-Rourke calculus moves showing that
M41(−1/n) is homeomorphic to MD′

n
(1).

Proof of Theorem 1.2. — By Lemma 2.3, for any n ∈ Z, the 3-manifolds
Mn := MDn(4n + 1) is obtained by −(4n + 1)/n-surgery along the knot
41. Since n ̸= 0, −1, by Proposition 2.1, the slope −(4n + 1)/n is not
exceptional for 41. Hence Mn is hyperbolic. Similarly, since M ′

n := MD′
n
(1)

is also obtained by a −1/n-surgery along 41, it is hyperbolic for n ̸= 0, ±1.
By Theorem 2.2, we conclude that the manifolds MDn(4n+1) and MD′

n
(1)

are q-hyperbolic for n ̸= ±1. Hence, part (b) of the statement follows.
Theorem 2.1 implies that the growth rates of the Turaev–Viro invariants

of the unfilled twist knot complements MDn
and MD′

n
are bounded below

by the growth rates of Mn and M ′
n respectively. That is we have

0 < lTV (Mn) ⩽ lTV (MDn
) and 0 < lTV (M ′

n) ⩽ lTV (MD′
n
).

Hence, by their definitions, the double twist knots Dn and D′
n are also

q-hyperbolic, concluding the proof of part (a).
Now we prove part (c): Since Mn and M ′

n are hyperbolic 3-manifolds
obtained by surgery of 41, by Theorem 2.2, lTV (Mn) = vol(Mn) and
lTV (M ′

n) = vol(M ′
n). Combining these equations with the last displayed

inequalities gives part (c).
□

3. Non-characterizing slopes and q-hyperbolicity

A slope p/q is called non-characterizing for a knot K ⊂ S3 if there is
a knot K ′ that is not equivalent to K and such that MK(p/q) is homeo-
morphic to MK′(p/q). For the viewpoint of this paper, non-characterizing
slopes are useful in the following sense: If we know that MK(p/q) is q-
hyperbolic then, arguing as in the proof Theorem 1.2, we conclude that

0 < lTV (MK(p/q)) = lTV (MK′(p/q)) ⩽ lTV (MK′),

TOME 1 (-1), FASCICULE 0
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and hence K ′ is a q-hyperbolic knot.
In the articles, [2, 1, 3], the authors provide constructions of knots

that admit many non-characterizing slopes. The techniques of these pa-
pers apply to many double twist knots to conclude that they admit non-
characterizing slopes. On the other hand, these knots can be seen to be
q-hyperbolic by Theorem 1.2. Using this approach, one starts with a dou-
ble twist knot, say K, to which both the techniques of [2, 1, 3] and Theorem
1.2 apply, and builds a family of q-hyperbolic knots that have a common
surgery with K.

To illustrate this, we note that the knot 62 is isotopic to the double twist
knot D(−4, −3); we will write 62 = D(−4, −3). See Section 5 for more
details. By Theorem 1.2, M62(−7) ∼= M41(−7/2) and 62 is q-hyperbolic.
We will use the approach discussed above to prove the following theorem
stated in the Introduction:

Theorem 1.3. — There is an infinite set of knots K such that:
(a) Every knot in K is q-hyperbolic.
(b) For every K ∈ K, MK(−7) is homeomorphic to M41(−7/2) and it is

q-hyperbolic.
(c) We have

lTV(MK) ⩾ vol(M41(−7/2)) ≈ 1.649610.

(d) No two knots in K are equivalent.

In order to prove Theorem 1.3 and to discuss further applications of the
techniques of [2, 1, 3] in constructions of q-hyperbolic knots, we need some
preparation.

3.1. Annulus presentations and twists

We begin by recalling the notion of annulus presentations of knots and
the operation of annulus twists for knots admitting annulus presentations.
The latter operation takes a surgery presentation along a particular class of
knots and returns a different knot which shares a surgery with the original
knot.

Definition 3.1. — We will say that a knot K ⊂ S3 admits an annulus
presentation if it can be constructed in the following way:

ANNALES DE L’INSTITUT FOURIER
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(1) Start with standardly embedded annulus A ⊂ R2 ∪ {∞} ⊂ S3

together with an an unknotted curve c that is disjoint from A that
bounds a disc Σ whose interior intersects ∂A twice; once for each
component of ∂A. Consider c as a framed knot with framing ±1.

(2) Consider an embedded band b : I × I → S3 such that
(i) b(I × I) ∩ ∂A = b(∂I × I),
(ii) b(I × I)∩intA consists of ribbon singularities,
(iii) A ∪ b(I × I) is an immersed orientable surface, and
(iv) b(I × I) ∩ c = ∅,
where I = [0, 1]. See the right hand side panel of Figure 3.1 for an
illustration of an annulus presentation (A, b, c).

(3) Performing the ±1 surgery on c (i.e blowing down along c) trans-
forms the curve (∂A \ b(∂I × I)) ∪ b(I × ∂I) into a knot that is
isotopic to K in S3.

A

b(I⨉I)

⬊

c

Figure 3.1. Annulus presentation of the knot 62 in S3.

Remark 3.2. — We note that the definition of annulus presentation
differs slightly across the literature. Namely, in [3], the authors use a more
general definition of annulus presentation that allows the annulus A to be
any embedding. They define a special annulus presentation equivalently
to the above definition except that the presentation includes the single
full crossing (either positive or negative) in the Hopf band resulting from
surgery along the (±1)-framed unknotted component c. Here we use the
definition given by Abe–Jong–Omae–Takeuchi [2] and Abe–Jong–Luecke–
Osoinach [1]. Note that in [2], the authors use the term band presentation
rather than annulus presentation.

To continue, note that given an annulus presentation (A, b, c), the com-
plement of the annulus A ⊂ R2 ∪ {∞} consists of two disk components D

and D′. Take D to be the component corresponding to the finite region in
R2 (see the leftmost panel of Figure 3.2) and assume that ∞ ∈ D′.

TOME 1 (-1), FASCICULE 0
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Definition 3.3. — The annulus presentation (A, b, c) is called simple
if we have b(I × I) ∩ intD = ∅.

The middle panel of Figure 3.2 illustrates a simple annulus presentation
of the knot 62 while the rightmost panel illustrates a non-simple annulus
presentation for the knot 52.

A

D

Figure 3.2. Left: One of the two connected components, D, of R2 ∪
{∞} \ intA. Middle: Simple annulus presentation of the knot 62.
Right: Non-simple annulus presentation of the knot 52.

-1 -1

Blow
down

n

-1 -1

Figure 3.3. Top row: Simple annulus presentation of 62 and the an-
nulus twist (A). Bottom row: Introduction of (−1/n)-framed com-
ponent and blow down.

The following lemma of [2] gives a family of knots which admit annu-
lus presentations. In particular, the double twist knots D′

n = D(2n, −2),
including those listed in Table 5.2, satisfy the assumptions of Lemma 3.4.

Lemma 3.4 ([2], Lemma 2.2). — If K is a knot with unknotting number
one, then K admits an annulus presentation.

ANNALES DE L’INSTITUT FOURIER
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Abe and Tagami [3] give a tabulation of all prime knots with 8 or fewer
crossings admitting an annulus presentation (see Table 1 of [3]).

We now define an operation known as an n-fold annulus twist. We refer
the reader to [1, 2] for further details of this construction. This operation
can be applied to a knot K with an annulus presentation (A, b, c), and
surgery slope given by an integer n ∈ Z, to produce another knot K ′, with
annulus presentation (A, b′, c), so that the 3-manifold MK(n) ∼= MK′(n).

Definition 3.5. — Let K be a knot with annulus presentation (A, b, c)
with ∂A = l1 ⊔ l2, and let n ∈ Z. We define the n-fold annulus twist
operation, denoted by (∗n), as follows:

(1) First apply an annulus twist (A). This involves performing Dehn
surgery on l1 and l2 along slopes 1 and −1, respectively, and gives
rise to a homeomorphism of the complement Ml1⊔l2 . An example is
illustrated in the top row of Figure 3.3. Note that in the leftmost
panel we have two vertical arcs α1, α2 ⊂ ∂A that intersect the
interior of a disk Σ bounded by the −1 framed unknot c exactly
twice. After the operation (A) is applied, the disk Σ is intersected
by four vertical arcs, two of which are between α1 and α2.

(2) Apply the operation (Tn), which is defined by
(i) adding another (−1/n)-framed unknot engulfing all but α1 of

the vertical arcs going through c. An illustration is given in
the rightmost panel of the second row of Figure 3.3.

(ii) blowing down along the (−1/n)-framed component, as shown
in the leftmost panel of the second row of Figure 3.3.

An important property of the n-fold annulus twist operation is the fol-
lowing result of Abe-Jong-Luecke-Osoinach [1].

Theorem 3.6 ([1], Theorem 3.10). — Let K be a knot with an annulus
presentation and K ′ be the knot obtained by the n-fold twist (∗n). Then
the 3-manifold MK(n) is homeomorphic to MK′(n). That is we have

MK(n) ∼= MK′(n).

A proof of Theorem 3.6 for the knot K = 62 is given in Figure 3.4, which
is summarized as follows:

(i) First we perform a blow up operation, which changes the framing
of the n-framed component to 0 and introduces a (−1/n)-framed
component as shown in the middle panel of the first row.
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Figure 3.4. A proof that MK(n) ∼= MK′(n) for K = 62 starting with an
annulus presentation of K in the top-left and ending with an annulus
presentation of K ′ = (∗n)K in the bottom-right.

(ii) After introducing 1 and −1-framed components (in red) in the right
most panel of the first row, we slide the 1-framed component across
the −1-framed component to get the right most panel of the second
row. Note that the 1 and −1-framed components (in red) in the
right most panel of the second row correspond to the boundary
components of the annulus A and give the surgery description for
the move (A).

(iii) Next we slide the (−1/n)-framed component across both the 1-
framed component (in red) and the −1-framed component (in green)
to get the left most panel of the third row.

(iv) To get from the left most panel to the middle panel of the third
row, we perform surgery on the red 1 and −1-framed components,
corresponding to the annulus twist (A), and isotope the (−1/n)-
framed component. Finally, we blow down, which introduces n full
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positive twists and changes the framing from 0 to n. This isotopy
and blow down correspond to the operation (Tn). Hence the se-
quence of operations in the third row contains an (A) move and a
(Tn) move.

Remark 3.7. — If a knot K admits an annulus presentation and a knot
K ′ is obtained from K by an n-fold annulus twist (∗n), then, in general,
K ′ can be far more complicated than K. However, if K admits a simple
annulus presentation, then the annulus presentation of K ′ is also simple
and is not quite as complicated.

Since the n-fold annulus twist operation on a knot produces another knot
which also admits an annulus presentation, this operation can be iterated.
Indeed, Theorem 3.6 implies that for any knot K which admits an annulus
presentation and any integer n ̸= 0, there is a set K = {Ki}i∈N of knots
such that

....MKi
(n) ∼= MKi−1(n) ∼= · · · ∼= MK1(n) ∼= MK(n).

In general, we don’t know that the knots Ki are necessarily distinct, so
the set K may be finite. However, we will see in the proof of Theorem 1.3
that in the case of 62, iterating the twist operation produces an infinite
sequence of mutually distinct knots.

3.2. Applications to q-hyperbolicity

In order to prove Theorem 1.3, we recall some definitions from Section
3.3.1 of [1]. There the authors use the surgery description of the infinite
cyclic covering Ẽ(K) of the exterior E(K) of a knot K to distinguish knots
obtained by applying the operation (∗n) iteratively, provided that the an-
nulus presentation of the knot to begin with is “good” in the sense of
Definition 3.8 below.

Let K be a knot with a simple annulus presentation (A, b, c). If we ignore
the (−1)-framed loop c, the knot U := (∂A\ b(∂I × I))∪ b(I ×∂I) is trivial
in S3. Consider the link U ∪c in S3. The component U bounds an immersed
disk with ribbon singularities while the component c bounds an embedded
disk Σ whose interior is pierced twice by U . We may isotope U ∪ c so that
the immersed disk bounded by U becomes an embedded flat disk, denoted
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by D, contained in R2 ⊂ (R2 ∪ {∞}). This isotopy, which we denote by
ϕ, will gradually shrink the band b(I × I) till it is eliminated, and will
introduce ribbon singularities between the (isotopic image of c) and the
interior of D. Abusing our notation, we will continue to denote the image
of c under ϕ by c, and we will continue to use Σ to denote the image of
Σ under ϕ. Note that after the isotopy Σ may become an immersed disk.
We also note that in Figure 3.5 (middle panel) the disk Σ after the isotopy
is not entirely depicted shaded; we only indicate the shading in a small
portion we wish to highlight in Figure 3.6 below where we show the ribbon
singularities of a disk Σ after isotopy of U ∪ c that makes U bound a flat
disk D.

Fix orientations on U and c and cut the complement of U after the isotopy
in S3 along the flat disk D. This gives a solid cylinder D × [−1, 1]. We will
denote the two copies of D resulting from this cutting by D−1 and D1.
The cutting separates the oriented loop c (after the isotopy) into a set A
oriented arcs with endpoints on D±1, and the endpoints of each arc α ∈ A
may be labelled by “ + ” (resp. “−") according to whether the algebraic
intersection number of α with the disk D ilies on is positive (resp. negative).
This categorizes α as one of four types: (++), (−−), (+−), and(−+). An
illustration of the process for the 62 knot is shown in Figure 3.5. We refer
the reader to [1, Section 3.3.1] for further details of this construction.

We need the following definition of [1].

Figure 3.5. The isotopy ϕ applied to the simple annulus presentation
of 62. In the collar D × [−1, 1], the (+−) arc (in pink) and the (−+)
arc (in green) have linking number −1 relative to D−1 ⊔ D1.

Definition 3.8. — ([1, Definition 3.14]) A simple annulus presentation
(A, b, c) is good if b(I × ∂I) ∩ intA ̸= ∅ and the set of arcs A in D × [−1, 1]
obtained by cutting along D satisfies the following up to isotopy.
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(1) A contains exactly one (+−) arc and exactly one (−+) arc, and the
linking number of these arcs rel(D−1 ⊔ D1) is ±1.

(2) For α ∈ A, if α ∩ intΣ ̸= ∅, then α is of type (++) (resp. (−−)) and
the sign of each intersection point in α ∩ Σ is + (resp. −). Note that
here we refer to the immersed Σ after the isotopy ϕ, and so the arcs
A intersect intΣ.

Figure 3.6. Left: The isotopy ϕ applied to the simple annulus presen-
tation of (A)62. In this form, Part (2) of Definition 3.8 fails. Right:
Good annulus presentation of (A)62.

To illustrate and motivate Definition 3.8, we apply the isotopy ϕ shown
in Figure 3.5 for the simple annulus presentation of 62 to the simple annulus
presentation obtained by applying the annulus twist (A) shown in the top
row of Figure 3.3. The left panel of Figure 3.6 shows the result of applying
ϕ to (A)62. However, since there is a (+−) arc intersecting the interior of
Σ, it does not satisfy Part (2) of Definition 3.8.

To remedy this, we apply an isotopy to move the (−) intersection point
between the disk D and the (+−) and (−−) arcs, as shown in the right panel
of Figure 3.6. This isotopy moves this intersection through Σ and results
in a diagram satisfying Part (2) of Definition 3.8. In particular, since the
only arcs intersecting intΣ are of type (++) and (−−), the diagram in the
right panel of Figure 3.6 corresponds to a good annulus presentation. After
this isotopy, further applications of the annulus twist (A) leave the (+−)
and (−+) arcs fixed since they are now disjoint from intΣ.

The importance of having a good annulus presentation for a knot K lies
in the fact that, as shown in [1], the number of intersection points between
(++) arcs and intΣ determines the degree of its Alexander polynomial.
As Figure 3.6 illustrates, each annulus twist increases the number of such
intersections with intΣ, hence increasing the degree of the Alexander poly-
nomial.

TOME 1 (-1), FASCICULE 0



18 Efstratia KALFAGIANNI & Joseph M. MELBY

The following lemma of [1] will be used in the proof of Theorem 1.3.

Lemma 3.9 ([1], Lemma 3.12). — Let n ∈ Z and suppose the knot
K admits a good annulus presentation. Let K ′ be the knot obtained by
applying the operation (∗n) to K. Then, we have the following:

(a) The knot K ′ also admits a good annulus presentation.
(b) If ∆K(t) and ∆K′(t) denote the Alexander polynomials of K and

K ′, respectively, then deg∆K(t) < deg∆K′(t).

Remark 3.10. — As shown in [1], if a knot K admits a good annulus
presentation, then its Alexander polynomial ∆K(t) is monic.

We may now prove Theorem 1.3.
Proof of Theorem 1.3. — As noted earlier the knot K0 := 62 admits

a simple annulus presentation. We will consider K0 with framing −7 and
apply the sequence of moves in Figure 3.4 to obtain a knot K1 with simple
annulus presentation and such that MK1(−7) ∼= M62(−7) ∼= M41(−7/2).
See Theorem 3.6. Since as discussed earlier M62(−7) is q-hyperbolic, we
obtain that K1 is q-hyperbolic and MK1(−7) is q-hyperbolic. Now we can
repeat the process for the knot K1, and apply Theorem 3.6 again to obtain
a knot K2 with simple annulus presentation and such that MK2(−7) ∼=
MK1(−7). Inductively, we create a set K = {Ki}i∈N of knots with simple
annulus presentations such that

....MKi
(−7) ∼= MKi−1(−7) ∼= · · · ∼= MK1(−7) ∼= M62(−7) ∼= M41(−7/2).

By construction, each Ki and MKi
(−7) are q-hyperbolic, hence the collec-

tion K satisfies parts (a)-(b) of the statement of the theorem.
By Theorem 2.2, 1.649610 ≈ vol(M41(−7/2)) = lTV(M41(−7/2)). Com-

bining this with part (b) and Theorem 2.1, we get

lTV(MKi) ⩾ lTV(M41(−7/2)) = vol(M41(−7/2)) ≈ 1.649610,

obtaining part (c) of the theorem statement.
Next we claim that the knots Ki ∈ K are distinct. Let U be the trivial

knot in S3 obtained by ignoring the (−1)-framed loop c in the simple
annulus presentation of K0 (see the middle panel of Figure 3.2). Let D be
the disk bounded by U , and let Σ be the disk bounded by c. Figure 3.5
gives the isotopy that flattens D so that it is contained in R2 ⊂ (R2 ∪{∞}).
Let D−1 = D × {−1} and D1 = D2 × {1} be copies of D in the bundle
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D2 × [−1, 1] obtained by cutting along D. Note that the resulting set of
oriented arcs A shown in the right panel of Figure 3.5 contains exactly one
(+−) arc and exactly one (−+) arc. Relative to D−1⊔D1 ⊂ D×[−1, 1], the
(+−) arc (in pink) links with the (−+) arc (in green) with linking number
−1. Moreover, α ∩ Σ = ∅ for any arc α ∈ A. By Definition 3.8, K0 admits
a good annulus presentation.

By Lemma 3.9, every Ki ∈ K admits a good annulus presentation, and
the Alexander polynomials of this family satisfy

deg∆K0(t) < deg∆K1(t) < · · · < deg∆Ki−1(t) < deg∆Ki(t) < · · ·

This establishes part (d) of the statement of the theorem. □

The above argument applies to any q-hyperbolic knot which admits a
good annulus presentation and an integer q-hyperbolic Dehn-filling. For any
such knot, analogously to 62, one may apply the same procedure to produce
an infinite family of distinct q-hyperbolic knots with homeomorphic n-
surgeries. For instance, the method can be applied to the knot 820. See
section 5 for more details. Hence we have the following:

Theorem 3.11. — Suppose that K is knot that admits a good annulus
presentation and such that MK(n) is q-hyperbolic for some 0 ̸= n ∈ Z.
Then there is an infinite family {Ki}i∈N of distinct q-hyperbolic knots,
such that MKi

(n) ∼= MK(n), for any i ∈ N.

We now turn our attention to the q-hyperbolic knots D′
n = D(2n, −2)

and their q-hyperbolic fillings D′
n(1). It is known that these double twist

knots have unknotting number 1, hence admit an annulus presentation by
Lemma 3.4. This gives rise to the following theorem.

Theorem 1.4. — For any |n| > 1, let D′
n := D(2n, −2). There is a

sequence of knots {Ki
n}i∈N such that for any i ∈ N, the following:

(a) the knot Ki
n is q-hyperbolic;

(b) the 3-manifold MKi
n
(1) is homeomorphic to MD′

n
(1) and it is q-

hyperbolic.

Proof. — Fix |n| > 1. The double twist knot D′
n := D(2n, −2) has un-

knotting number 1 and hence by Lemma 3.4, it admits an annulus presen-
tation. Let K0

n := D′
n. By Theorem 3.6 there is a sequence {Ki

n}i∈N such
that

....MKi
n
(1) ∼= MKi−1

n
(1) ∼= · · · ∼= MK1

n
(1) ∼= MD′

n
(1).
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Since D′
n(1) is q-hyperbolic, by Theorem 1.2, each manifold Ki

n(1) is q-
hyperbolic, and (b) follows. Furthermore, by Theorem 2.1, each knot Ki

n is
also q-hyperbolic, proving part (a). □

Remark 3.12. — We note that the knots considered in Theorem 1.4
are obtained by iteratively applying 1-fold annulus twists. While each knot
D′

n admits an annulus presentation, they do not have monic Alexander
polynomials. Indeed, for n ∈ Z, we have

∆D′
n
(t) .= nt − (2n + 1) + nt−1,

where .= is taken up to multiplication by ±tk. By Remark 3.10, for |n| > 1,
the knot D′

n does not admit a good annulus presentation. This means the
knots resulting from 1-fold annulus twists may not be distinct from D′

n,
so the resulting sequence {Kn

i }i∈N may only be a finite family of distinct
q-hyperbolic knots.

4. An application to quantum representations

In this section, we discuss an application to a conjecture of Andersen,
Masbaum, and Ueno known as the AMU conjecture [4] on quantum repre-
sentations of mapping class groups of surfaces.

Let Σg,n be a compact oriented surface of genus g with n boundary
components. Let Mod(Σg,n) denote its mapping class group, the group of
orientation-preserving homeomorphisms of Σg,n fixing the boundary point-
wise. The SO(3)-Witten-Reshetikhin-Turaev TQFTs [25, 29] give families
of finite-dimensional projective representations of Mod(Σg,n).

Fix an odd integer r ⩾ 3, which we refer to as the level, and let Ir =
{0, 2, . . . , r −3} be the set of non-negative even integers less than r −2. Fix
a primitive 2rth root of unity ζ2r and a coloring c of the components of
∂Σg,n by elements of Ir. Using the skein-theoretic framework of Blanchet,
Habegger, Masbaum, and Vogel [7], this gives a finite dimensional C-vector
space RTr(Σg,n, c) and a respresentation

ρr,c : Mod(Σg,n) → PAut(RTr(Σg,n, c)),

called the SO(3)-quantum representation of Mod(Σg,n) at level r.
The Nielsen-Thurston classification implies that mapping classes ϕ ∈

Mod(Σg,n) are either periodic, reducible, or pseudo-Anosov, and the geom-
etry of the mapping torus Mϕ = Σg,n × I/(x ∼ ϕ(x)) of ϕ is determined
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by this classification. The AMU conjecture [4] relates the Nielsen-Thurston
classification of mapping classes to their quantum representations.

Conjecture 4.1 (AMU Conjecture, [4]). — Let ϕ ∈ Mod(Σg,n) be a
pseudo-Anosov mapping class. Then for any big enough level r, there is
a choice of coloring c of the components of ∂Σg,n such that ρr,c(ϕ) has
infinite order.

Remark 4.2. — Note that if a mapping class ϕ ∈ Mod(Σg,n) satisfies
the AMU conjecture, then any mapping class that is a conjugate of a power
of ϕ also satisfies the conjecture.

Figure 4.1. The curves c, a1, b1, · · · , bg−1, ag on Σg,1.

For a simple closed curve a ⊂ Σg,n let τa ∈ Mod(Σg,n) denote the map-
ping class represented by a Dehn twist along a and τ−1

a denote the inverse
mapping class.

On the surface of genus g and with one boundary component Σg,1, con-
sider the simple closed curves c, a1, b1, · · · , bg−1, ag shown in Figure 4.1 and
the mapping classes

ϕg = τcτa1τ−1
b1

τa2 · · · τ−1
bg−1

τag , and ϕ′
g = τ−1

c τ−1
a1

τb1τ−1
a2

· · · τbg−1τ−1
ag

.

Theorem 4.3. — For g ⩾ 1, the mapping classes ϕg, ϕ′
g ∈ Mod(Σg,1)

are pseudo-Anosov and they satisfy the AMU conjecture.

Given ϕ ∈ Mod(Σg,1), the mapping torus

Tϕ = Σg,1 × [−1, 1]/(x,1)∼(ϕ(x),−1)

is a 3-manifold which fibers over S1 with fiber Σg,1 and monodromy ϕ.
By [14, Theorem 1.2], if Tϕ is q-hyperbolic, then ϕ satisfies the AMU con-
jecture. To prove Theorem 4.3, we will show that each of Tϕg and Tϕ′

g
is

homeomorphic to the complement of a q-hyperbolic double twist knot.
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4.1. Fibered double twist knots

The knot D(m, n) is the two-bridge knot associated with the rational
number

n

mn − 1 = [m, −n] = 1
m − 1

n

.

In general, we define the continued fraction expansion (CFE) by

[a1, a2, . . . , ak] :=
1

a1 +
1

a2 +
1

a3 +
1
ak

.

We note that a CFE for a rational number is not unique, hence a two-
bridge knot can have multiple associated CFEs. The following properties
of double twist knots will be useful:

(i) D(m, n) = D(n, m) are equivalent knots.
(ii) For a double twist knot D(m, n) with CFE [a1, . . . , ak], its mirror

image is D∗(m, n) := D(−m, −n) and has CFE [−a1 . . . , −ak].
We recall the following well known lemma that can be found, for example,

in [21].

Lemma 4.4. — A two-bridge knot is fibered if and only if it has a CFE
of the form [a1, . . . , ak] such that |ai| = 2 for i = 1, . . . , k and k is even.

As shown in [21], every fibered two-bridge knot can be identified with the
boundary of the Murasugi sum of a sequence of right and left Hopf bands
determined by the entries in its CFE. The monodromy of the left (resp.
right) Hopf band is the left (resp. right) Dehn twist, and the monodromy
of a fibered two-bridge knot with CFE [a1, . . . , ak] (with |ai| = 2) is given
by the product of k Dehn twists corresponding to each Hopf band in the
Murasugi sum. In this case, the resulting fiber is the surface of genus k

2
with one boundary component.

Proposition 4.1. — For any integer g > 0, the double twist knot
D(3, 2g) ⊂ S3 is fibered with monodromy ϕg ∈ Mod(Σg,1).

Proof. —
Let n ⩽ −1 be an integer, and set g := −n. By the properties of twist

knots, we have D(2n, −3) = D∗(3, 2g). The knot D(3, 2g) is the two-bridge
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knot associated to [3, −2g] = −2g
−6g+1 . By Lemma 4.4, D(2n, −3) is fibered

if and only if D(3, 2g) has a CFE of the form [a1, . . . , ak] with |ai| = 2. We
will show that D(3, 2g) has a CFE [2, 2, −2, 2, . . . , −2, 2] of length 2g.

We note this CFE alternates sign beginning with the second term. We
assume

−2g

−6g + 1 = [2, 2, −2, 2, . . . , (−1)2g−12, (−1)2g2] =
1

2 + Ag
,(4.1)

where Ag := [2, −2, 2, . . . , (−1)2g−12, (−1)2g2] of length 2g−1, and proceed
by induction. For D(3, 2(g + 1)), we have

[2, 2, −2, . . . , (−1)2g+22] =
1

2 +
1

2 +
1

−2 + Ag

= −2(g + 1)
−6(g + 1) + 1

= [3, −2(g + 1)],

where the second line follows from the identity Ag = [3, −2g] − 2. This
establishes the claim, which implies that the double twist knot D(2n, −3)
is fibered for n ⩽ −1.

Following [21], the knot D(3, 2g) can be identified with the boundary of
the Murasugi sum of 2g Hopf bands. The monodromy is then a product of
left and right Dehn twists corresponding to the sign of each entry of the
CFE [2, 2, −2, 2, . . . , (−1)2g−12, (−1)2g2]. These Dehn twists correspond to
the collection of curves on Σg,1 shown in Figure 4.1, and the monodromy
ϕg = τcτa1τ−1

b1
τa1 · · · τ−1

bg−1
τag . □

4.2. Proof of Theorem 4.3

By Proposition 4.1, the knot D(3, 2g), for g > 0, is fibered. Since these
knots are hyperbolic (see for example [18]), by the work of Thurston the
mapping class ϕg is pseudo-Anosov [28]. By Theorem 1.2, these knots are q-
hyperbolic. The mirror image D(−2g, −3) = D∗(3, 2g) is also hyperbolic, q-
hyperbolic, and fibered with monodromy ϕ′

g = τ−1
c τ−1

a1
τb1τ−1

a1
· · · τbg−1τ−1

a1
.

Hence, by [14, Theorem 1.2], ϕg and ϕ′
g satisfy the AMU conjecture. □
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5. Low crossing knots and low volume 3-manifolds

Tables 5.1 and 5.2 give the twist knots Dn = D(2n, −3) and D′
n =

D(2n, −2) up to 10 crossings, respectively. By Lemma 2.3, all of these
share surgeries with 41.

We identify these knots by giving an alternating projection realizing the
crossing numbers in conjunction with Rolfsen’s tabulation of low-crossing
knots [27]. We note that for the knot D(2n, −3), the resulting diagram with
2n + 3 crossings corresponding to Figure 1.1 is alternating when n ⩾ 1,
allowing us to identify the odd crossing knots of Table 5.1. To identify the
even crossing knots of Table 5.1, we see in Figure 5.1 that, after applying
Reidemeister moves, we obtain an alternating diagram for D(−2n, −3) with
2n + 2 crossings.

Figure 5.1. Alternating diagram of D(−2n, −3) realizing the even
crossing knots of Table 5.1.

Similarly, the original diagram for D(2n, −2) is also alternating with
2n + 2 crossings for n ⩾ 1, allowing us to identify the even crossing knots
of Table 5.2. Figure 5.2 gives an alternating diagram for D(−2n, −2) with
2n + 1 crossings, realizing the odd crossing knots of Table 5.2.

n -4 -3 -2 -1 1 2 3
Dn 102 82 62 41 52 73 93

Table 5.1. Low-crossing knots Dn = D(2n, −3).

By Proposition 4.1, for n ⩽ −1 the knot D(2n, −3) is fibered with genus
|n|. By Table 5.1, for n = −4, −3, −2, −1, the knot D(2n, −3) is identified
as the corresponding knot shown in the table. Indeed the knots 102, 82, 62,

and 41 are known to be fibered of genus, 4, 3, 2, and 1, respectively [22].
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Figure 5.2. Alternating diagram of D(−2n, −2) realizing the odd
crossing knots of Table 5.2.

n -4 -3 -2 -1 1 2 3 4
D′

n 92 72 52 31 41 61 81 101

Table 5.2. Low-crossing knots D′
n = D(2n, −2).

Remark 5.1. — The manifold M41(−5), which is homeomorphic to
M52(5) by Lemma 2.3 and Table 5.1, is known as the Meyerhoff manifold.
It is the second-smallest volume closed orientable hyperbolic 3-manifold,
with volume approximately 0.9814.

Futer, Purcell, and Schleimer recently wrote a software package [19], in
conjunction with the article [20], for testing the cosmetic surgery conjec-
ture. At our request, they extended the code to allow for testing whether
pairs of cusped 3-manifolds have common Dehn fillings as well as identi-
fying those fillings. Running the code for knots up to 12 crossings, as well
as on SnapPy’s census of the 1267 hyperbolic knot complements that can
be triangulated with fewer than 10 tetrahedra [12], they verified the data
given in Tables 5.1 and 5.2 and identified many additional knots which
share surgeries with 41.

Tables 5.3 and 5.4 list all the knot complements from the SnapPy census
of hyperbolic cusped 3-manifolds that admit triangulations with at most
nine tetrahedra and have shared Dehn fillings with the complement of 41.
The information on the tables is recorded as follows:

Column 1 presents the knot K with the notation used in the SnapPy
census, while Column 2 gives the approximate volume of MK . Column 3
gives the surgery slopes a/b, p/q, with MK(a/b) ∼= M41(p/q) and Column
4 gives the approximate volume of that manifold. All of these knots, many
of which are twisted torus knots, have known diagrams, but they may be
complicated and require hundreds of crossings. Using the tables of [8, 10, 9],
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we may identify some of the examples from the knot tables. Note that since
41 is amphicheiral, we have M41(−p/q) ∼= M41(p/q). Hence the slopes p/q

in the tables can be, equivalently, replaced with its negative.
The following estimate of the quantity lTV(MK)n applies to all the knots

in Tables 5.3 and 5.4:

Proposition 5.1. — Suppose that K is a hyperbolic knot in S3 such
that MK admits a triangulation with t tetrahedra. Suppose, moreover, that
MK(a/b) ∼= M41(p/q), for some slopes a/b, p/q ∈ Q, where p/q is a non-
exceptional slope of 41. Then we have

vol(MK(a/b)) ⩽ lTV(MK) ⩽ voct · t,

where voct ≈ 3.6638 is the volume of the ideal regular octahedron.

Proof. — The upper bound follows at once from [5, Corollary 3.9].
By Theorem 2.2, vol(M41(p/q)) = lTV(M41(p/q)) and, by assumption,

MK(a/b) ∼= M41(p/q). Combining these with Theorem 2.1, leads to the
lower bound of lTV(MK). □

Remark 5.2. — The four hyperbolic knots with the smallest volumes
are 41, 52, 61, and the (−2, 3, 7)-pretzel knot. In [11], Chen and Yang gave
computational evidence for the Turaev–Viro invariant volume conjecture
for each of these knots. By Lemma 2.3, 52 and 61 share surgeries with
41, hence are q-hyperbolic by Theorem 1.2. However, the (−2, 3, 7)-pretzel
knot was shown not to share any surgeries with 41 using the code of Futer–
Purcell–Schleimer [19]. Similarly the knot 63 was shown not to share any
surgeries with 41, making it the only hyperbolic knot with up to six cross-
ings for which q-hyperbolicity cannot be decided with the methods of this
paper.

Remark 5.3. — By Table 5.3, the knot K512 = 820 shares a surgery
with 41. In particular, M41(3/2) ∼= M820(3), which has volume ≈ 1.440699.
In addition, as shown in [1], 820 admits a good annulus presentation. This
means an analogous version of Theorem 1.3 also holds for 820.

Remark 5.4. — Table 5.3 includes the knots 820, 10132, 11n38, and 11n57.
According to KnotInfo [22], the complements M820 , M10132 , M11n38 , and
M11n57 are also fibered, so their associated monodromies (as well as pow-
ers of conjugates of those mapping classes) satisfy he AMU conjecture.
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K vol(MK) Slopes a/b, p/q vol(MK(a/b)) Knot
K21 2.029883 - - 41

K32 2.828122 5, -5 0.981369 52

1, 1/2 1.398509
K41 3.163963 1, −1/2 1.398509 61

K42 3.331744 1, 1/3 1.731983 72

K52 3.427205 1, −1/3 1.731983 81

K53 3.486660 1, 1/4 1.858138 92

K59 4.056860 −2, 2/3 1.737124 10132

K512 4.124903 3, 3/2 1.440699 820

K513 4.124903 1, 1/3 1.731983 11n38

K519 4.400833 −7, −7/2 1.649610 62

K520 4.592126 9, −9/2 1.752092 73

K61 3.526196 1, −1/4 1.858138 101

K62 3.553820 1, 1/5 1.918602 11a247

K68 4.293750 −3, 3/5 1.921026
K69 4.307917 −2, 2/5 1.919520
K623 4.935243 −11, −11/3 1.876053 82

K624 4.994856 13, −13/3 1.903695 93

K637 5.413307 7, 7/3 1.805827 15n41127

K71 3.573883 1, −1/5 1.918602 12a803

K72 3.588914 1, 1/6 1.952062 13a3143

K710 4.354670 −4, 4/7 1.973762
K711 4.359783 −3, 3/7 1.973161
K741 4.933530 −5, 5/4 1.873482
K744 4.993457 7, 7/5 1.932061
K745 5.114841 −15, −15/4 1.946574 102

K746 5.140207 17, −17/4 1.957888 11a364

K795 5.860539 11, 11/2 1.822675 10128

K796 5.860539 13, 13/3 1.903695 11n57

K798 5.904086 14, 14/3 1.915331 12n243

K7129 6.922634 −7, 7/3 1.805827

Table 5.3. Knots in the SnapPy census of cusped hyperbolic 3-
manifolds that share surgeries with 41.
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K vol(MK) Slopes a/b, p/q vol(MK(a/b)) Knot
K81 3.60046726278 1, −1/6 1.9520620754135 14a12741

K82 3.6095391745 1, 1/7 1.9724601973306 15a54894

K89 4.3790606712 −5, 5/9 1.9957717794010
K810 4.38145643736 −4, 4/9 1.9954776244141
K861 5.07001608898 9, 9/7 1.9788631982608
K862 5.0827080657 11, 11/8 1.9914466741922
K864 5.1955903246 −19, 19/5 1.9776430099735 12a722

K865 5.2086109485 −21, 21/5 1.983357467405 13a4874

K896 5.75222662008 11, 11/5 1.9478817102192
K8105 5.8281487245 −16, 16/7 1.9891579197851
K8133 6.1411744018 22, 22/5 1.9859441335531
K8135 6.1504206159 23, 23/5 1.9883610027459 T (7, 9, 6, −6, 5, −1)
K8143 6.2597017011 −13, 13/4 1.9334036965515
K8145 6.27237250941 1, 1/2 1.3985088841508 14n18212

K8268 7.26711903086 9, 9/4 1.9026876676640
K91 3.61679304740 −1, −1/7 1.9724601973306
K92 3.62268440821 1, 1/8 1.9857927453641
K98 4.3912243457 −6, 6/11 2.0069885249369
K99 4.39253386353 5, 5/11 2.0068241855029
K983 5.1043901461 13, 13/10 2.004926648441
K985 5.1089909300 −15, 15/11 2.0095023855854
K993 5.23864536794 23, −23/6 1.9940644235057 14a12197

K994 5.24618858374 25, −25/6 1.9973474789782 15a85258

K9152 5.8653629974 20, 20/9 2.004886373798
K9155 5.8812168764 −25, 25/11 2.0133867882020
K9242 6.2152290434 31, 31/7 2.007727892627
K9244 6.21858163948 −32, 32/7 2.0085996110216
K9282 6.5328202770 −21, 21/4 1.9754820965797
K9296 6.6272713527 27, 27/5 1.9965186652378
K9299 6.6445653099 19, 19/3 1.9565702867106
K9435 7.2356793751 −3, 3/4 1.8634426716184

Table 5.4. Knots in the SnapPy census of cusped hyperbolic 3-
manifolds that share surgeries with 41.
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