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1. Introduction

Given a compact oriented surface Σ, possibly with boundary, the mapping class group 
Mod(Σ) is the group of isotopy classes of orientation preserving homeomorphisms of Σ
that fix the boundary. The Witten-Reshetikhin-Turaev Topological Quantum Field The-
ories [24,32] provide families of finite dimensional projective representations of mapping 
class groups. For each semi-simple Lie algebra, there is an associated theory and an infi-
nite family of such representations. In this article we are concerned with the SO(3)-theory 
and we will follow the skein-theoretic framework given by Blanchet, Habegger, Masbaum 
and Vogel [9]: For each odd integer r � 3, let Ur = {0, 2, 4, . . . , r − 3} be the set of even 
integers smaller than r−2. Given a primitive 2r-th root of unity ζ2r, a compact oriented 
surface Σ, and a coloring c of the components of ∂Σ by elements of Ur, a finite dimensional 
C-vector space RTr(Σ, c) is constructed in [9], as well as a projective representation:

ρr,c : Mod(Σ) → PAut(RTr(Σ, c)).

For different choices of root of unity, the traces of ρr,c, that are of particular interest 
to us in this paper, are related by actions of Galois groups of cyclotomic fields. Unless 
otherwise indicated, we will always choose ζ2r = e

iπ
r , which is important for us in order 

to apply results from [11,12].
The representation ρr,c is called the SO(3)-quantum representation of Mod(Σ) at 

level r. Although the representations are known to be asymptotically faithful [1,14], the 
question of how well these representations reflect the geometry of the mapping class 
groups remains wide open.

By the Nielsen-Thurston classification, mapping classes f ∈ Mod(Σ) are divided into 
three types: periodic, reducible and pseudo-Anosov. Furthermore, the type of f deter-
mines the geometric structure, in the sense of Thurston, of the 3-manifold obtained 
as mapping torus of f . In [3] Andersen, Masbaum and Ueno formulated the following 
conjecture and proved it when Σ is the four-holed sphere.

Conjecture 1.1 (AMU conjecture). ([3]) Let φ ∈ Mod(Σ) be a pseudo-Anosov mapping 
class. Then for any big enough level r, there is a choice of colors c of the components of 
∂Σ, such that ρr,c(φ) has infinite order.

Note that it is known that the representations ρr,c send Dehn twists to elements 
of finite order and criteria for recognizing reducible mapping classes from their images 
under ρr,c are given in [2].

The results of [3] were extended by Egsgaard and Jorgensen in [13] and by San-
tharoubane in [27] to prove Conjecture 1.1 for some mapping classes of spheres with 
n � 5 holes. In [26], Santharoubane proved the conjecture for the one-holed torus. How-
ever, until recently there were no known cases of the AMU conjecture for mapping classes 
of surfaces of genus at least 2. In [21], Marché and Santharoubane used skein theoretic 
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techniques in Σ ×S1 to obtain such examples of mapping classes in arbitrary high genus. 
As explained by Koberda and Santharoubane [17], by means of Birman exact sequences 
of mapping class groups, one extracts representations of π1(Σ) from the representations 
ρr,c. Elements in π1(Σ) that correspond to pseudo-Anosov mappings classes via Birman 
exact sequences are characterized by a result of Kra [19]. Marché and Santharoubane 
used this approach to obtain their examples of pseudo-Anosov mappings classes sat-
isfying the AMU conjecture by exhibiting elements in π1(Σ) satisfying an additional 
technical condition they called Euler incompressibility. However, they informed us that 
they suspect their construction yields only finitely many mapping classes in any surface 
of fixed genus, up to mapping class group action.

The purpose of the present paper is to describe an alternative method for approach-
ing the AMU conjecture and use it to construct mapping classes acting on surfaces of 
any genus, that satisfy the conjecture. In particular, we produce infinitely many non-
conjugate mapping classes acting on surfaces of fixed genus that satisfy the conjecture. 
Our approach is to relate the conjecture with a question on the growth rate, with respect 
to r, of the SO(3)-Turaev-Viro 3-manifold invariants TVr.

For M a compact orientable 3-manifold, closed or with boundary, the invariants 
TVr(M) are real-valued topological invariants of M , that can be computed from state 
sums over triangulations of M and are closely related to the SO(3)-Witten-Reshetikhin-
Turaev TQFTs. For a compact 3-manifold M (closed or with boundary) we define:

lTV (M) = lim inf
r→∞, r odd

2π
r

log |TVr(M, q)|,

where q = ζ2
2r = e

2iπ
r .

Let f ∈ Mod(Σ) be a mapping class represented by a pseudo-Anosov homeomorphism 
of Σ and let Mf = F × [0, 1]/(x,1)∼(f(x),0) be the mapping torus of f .

Theorem 1.2. Let f ∈ Mod(Σ) be a pseudo-Anosov mapping class and let Mf be the 
mapping torus of f . If lTV (Mf ) > 0, then f satisfies the conclusion of the AMU con-
jecture.

The proof of the theorem relies heavily on the properties of TQFT underlying the 
Witten-Reshetikhin-Turaev SO(3)-theory as developed in [9].

As a consequence of Theorem 1.2 whenever we have a hyperbolic 3-manifold M with 
lTV (M) > 0 that fibers over the circle, then the monodromy of the fibration represents 
a mapping class that satisfies the AMU conjecture.

By a theorem of Thurston, a mapping class f ∈ Mod(Σ) is represented by a pseudo-
Anosov homeomorphism of Σ if and only if the mapping torus Mf is hyperbolic. In 
[10] Chen and Yang conjectured that for any hyperbolic 3-manifold with finite volume 
M we should have lTV (M) = vol(M). Their conjecture implies, in particular, that the 
aforementioned technical condition lTV (Mf ) > 0 is true for all pseudo-Anosov mapping 
classes f ∈ Mod(Σ). Hence, the Chen-Yang conjecture implies the AMU conjecture.
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Our method can also be used to produce new families of mapping classes acting on 
punctured spheres that satisfy the AMU conjecture (see Remark 5.7). In this paper 
we will be concerned with surfaces with boundary and mapping classes that appear as 
monodromies of fibered links in S3. In [5], with Belletti and Yang, we construct families 
of 3-manifolds in which the monodromies of all hyperbolic fibered links satisfy the AMU 
conjecture. In this paper show the following.

Theorem 1.3. Let L ⊂ S3 be a link with lTV (S3
�L) > 0. Then there are fibered hyperbolic 

links L′, with L ⊂ L′ and lTV (S3
�L′) > 0, and such that the complement of L′ fibers 

over S1 with fiber a surface of arbitrarily large genus. In particular, the monodromy of 
such a fibration gives a mapping class in Mod(Σ) that satisfies the AMU conjecture.

In [11] the authors gave criteria for constructing 3-manifolds, and in particular link 
complements, whose SO(3)-Turaev-Viro invariants satisfy the condition lTV > 0. Start-
ing from these links, and applying Theorem 1.3, we obtain fibered links whose mon-
odromies give examples of mapping classes that satisfy Conjecture 1.1. However, the 
construction yields only finitely many mapping classes in the mapping class groups of 
fixed surfaces. This is because the links L′ obtained by Theorem 1.3 are represented by 
closed homogeneous braids and it is known that there are only finitely many links of 
fixed genus and number of components represented that way. To obtain infinitely many 
mapping classes for surfaces of fixed genus and number of boundary components, we 
need to refine our construction. We do this by using Stallings twists and appealing to a 
result of Long and Morton [20] on compositions of pseudo-Anosov maps with powers of 
a Dehn twist. The general process is given in Theorem 5.4. As an application we have 
the following.

Theorem 1.4. Let Σ denote an orientable surface of genus g and with n-boundary com-
ponents. Suppose that either n = 2 and g � 3 or g � n � 3. Then there are infinitely 
many non-conjugate pseudo-Anosov mapping classes in Mod(Σ) that satisfy the AMU 
conjecture.

In the last section of the paper we discuss integrality properties of quantum represen-
tations for mapping classes of finite order (i.e. periodic mapping classes) and how they 
reflect on the Turaev-Viro invariants of the corresponding mapping tori. To state our 
result, we recall that the traces of the representations ρr,c are known to be algebraic 
numbers. For periodic mapping classes we have the following.

Theorem 1.5. Let f ∈ Mod(Σ) be periodic of order N . For any odd integer r � 3, with 
gcd(r, N) = 1, we have |Trρr,c(f)| ∈ Z, for any Ur-coloring c of ∂Σ, and any primitive 
2r-root of unity.

As a consequence of Theorem 1.5 we have the following corollary that was conjectured 
by Chen and Yang [10, Conjecture 5.1].
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Corollary 1.6. For integers p, q let Tp,q denote the (p, q)-torus link. Then, for any odd r
coprime with p and q, we have TVr(S3

�Tp,q) ∈ Z.

The paper is organized as follows: In Section 2, we summarize results from the 
SO(3)-Witten-Reshetikhin-Turaev TQFT and their relation to Turaev-Viro invariants 
that we need in this paper. In Section 3.2, we discuss how to construct families of links 
whose SO(3)-Turaev-Viro invariants have exponential growth (i.e. lTV > 0) and then 
we prove Theorem 1.2 that explains how this exponential growth relates to the AMU 
conjecture. In Section 4, we describe a method to get hyperbolic fibered links with any 
given sublink and we prove Theorem 1.3. In Section 5, we explain how to refine the 
construction of Section 4 to get infinite families of mapping classes on fixed genus sur-
faces that satisfy the AMU conjecture (see Theorem 1.4). We also provide an explicit 
construction that leads to Theorem 1.4.

Finally in Section 6, we discuss periodic mapping classes and we prove Theorem 1.5
and Corollary 1.6. We also state a non-integrality conjecture about Turaev-Viro invari-
ants of hyperbolic mapping tori.

Acknowledgments
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2. TQFT properties and quantum representations

In this section, we summarize some properties of the SO(3)-Witten-Reshetikhin-
Turaev TQFTs, which we introduce in the skein-theoretic framework of [9], and briefly 
discuss their relation to the SO(3)-Turaev-Viro invariants.

2.1. Witten-Reshetikhin-Turaev SO(3)-TQFTs

Given an odd r � 3, let Ur denote the set of even integers less than r − 2. A banded 
link in a manifold M is an embedding of a disjoint union of annuli S1× [0, 1] in M , and a 
Ur-colored banded link (L, c) is a banded link whose components are colored by elements 
of Ur. For a closed, oriented 3-manifold M , the Reshetikhin-Turaev invariants RTr(M)
are complex valued topological invariants. They also extend to invariants RTr(M, (L, c))
of manifolds containing colored banded links. These invariants are part of a compatible 
set of invariants of compact surfaces and compact 3-manifolds, which is called a TQFT. 
Below we summarize the main properties of the theory that will be useful to us in this 
paper, referring the reader to [8,9] for the precise definitions and details.
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Theorem 2.1. ([9, Theorem 1.4]) For any odd integer r � 3 and any primitive 2r-th root 
of unity ζ2r, there is a TQFT functor RTr with the following properties:

(1) For Σ a compact oriented surface, and if ∂Σ �= ∅ a coloring c of ∂Σ by elements of 
Ur, there is a finite dimensional C-vector space RTr(Σ, c), with a Hermitian form 
〈, 〉. Moreover for disjoint unions, we have

RTr(Σ
∐

Σ′) = RTr(Σ) ⊗RTr(Σ′).

(2) For M a closed compact oriented 3-manifold, containing a Ur-colored banded link 
(L, c), the value RTr(M, (L, c), ζ2r) ∈ Q[ζ2r] ⊂ C is the SO(3)-Reshetikhin-Turaev 
invariant at level r.

(3) For M a compact oriented 3-manifold with ∂M = Σ, and (L, c) a Ur-colored banded 
link in M , the invariant RTr(M, (L, c)) is a vector in RTr(Σ). Moreover, for compact 
oriented 3-manifolds M1, M2 with ∂M1 = −∂M2 = Σ, we have

RTr(M1 ∪
Σ
M2) = 〈RTr(M1), RTr(M2)〉.

Finally, for disjoint unions M = M1
∐

M2, we have

RTr(M) = RTr(M1) ⊗RTr(M2).

(4) For a cobordism M with ∂M = −Σ0 ∪ Σ1, there is a map

RTr(M) ∈ End(RTr(Σ0), RTr(Σ1)).

(5) The composition of cobordisms is sent by RTr to the composition of linear maps, up 
to a power of ζ2r.

In [9] the authors construct some explicit orthogonal basis Er for RTr(Σ, c): Let Σ be a 
compact, oriented surface that is not the 2-torus or the 2-sphere with less than four holes. 
Let P be a collection of simple closed curves on Σ that contains the boundary ∂Σ and 
gives a pants decomposition of Σ. The elements of Er are in one-to-one correspondence 
with colorings ĉ : P −→ Ur, such that ĉ agrees with c on ∂Σ and for each pant the colors 
of the three boundary components satisfy certain admissibility conditions. We will not 
make use of the general construction. What we need is the following:

Theorem 2.2. ([9, Theorem 4.11, Corollary 4.10])

(1) For Σ a compact, oriented surface, with genus g and n boundary components, such 
that (g, n) �= (1, 0), (0, 0), (0, 1), (0, 2), (0, 3), we have

dim(RTr(Σ, c)) � r3g−3+n.
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(2) If Σ = T is the 2-torus we actually have an orthonormal basis for RTr(T ). It consists 
of the elements e0, e2, . . . , er−3, where

ei = RTr(D2 × S1, ([0, 1
2 ] × S1, i))

is the Reshetikhin-Turaev vector of the solid torus with the core viewed as banded 
link and colored by i.

2.2. SO(3)-quantum representations of the mapping class groups

For any odd integer r � 3, any choice of a primitive 2r-root of unity ζ2r and a coloring 
c of the boundary components of Σ by elements of Ur, we have a finite dimensional 
projective representation,

ρr,c : Mod(Σ) → PAut(RTr(Σ, c)).

If Σ is a closed surface and f ∈ Mod(Σ), we simply have ρr(f) = RTr(Cφ), where the 
cobordism Cφ is the mapping cylinder of f :

Cf = Σ × [0, 1]
∐

(1,x)∼f(x)

Σ.

The fact that this gives a projective representation of Mod(Σ) is a consequence of points 
(4) and (5) of Theorem 2.1.

For Σ with non-empty boundary, giving the precise definition of the quantum repre-
sentations would require us to discuss the functor RTr for cobordisms containing colored 
tangles (see [9]). Since in this paper we will only be interested in the traces of the quan-
tum representations, we will not recall the definition of the quantum representations in 
its full generality. We will use the following theorem:

Theorem 2.3. For r � 3 odd, let Σ be a compact oriented surface with c a Ur-coloring on 
the components of ∂Σ. Let Σ̃ be the surface obtained from Σ by capping the components 
of ∂Σ with disks. For f ∈ Mod(Σ), let f̃ ∈ Mod(Σ̃), denote the mapping class of the 
extension of f on the capping disks by the identity. Let Mf̃ = F × [0, 1]/(x,1)∼(f̃(x),0) be 

the mapping torus of f̃ and let L ⊂ Mf̃ denote the link whose components consist of the 
cores of the solid tori in Mf̃ over the capping disks. Then, we have

Tr(ρr,c(f)) = RTr(Mf̃ , (L, c)).

2.3. SO(3)-Turaev-Viro invariants

In [33], Turaev and Viro introduced invariants of compact oriented 3-manifolds as state 
sums on triangulations of 3-manifolds. The triangulations are colored by representations 
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of a semi-simple quantum Lie algebra. In this paper, we are only concerned with the 
SO(3)-theory: Given a compact 3-manifold M , an odd integer r � 3, and a primitive 
2r-root of unity, there is an R-valued invariant TVr. We refer to [12] for the precise flavor 
of Turaev-Viro invariants we are using here, and to [33] and for the original definitions 
and proofs of invariance. We will make use the following theorem, which relates the 
Turaev-Viro invariants TVr(M) of a 3-manifold M with the Witten-Reshetikhin-Turaev 
TQFT RTr. For closed 3-manifolds it was proved by Roberts [25], and was extended 
to manifolds with boundary by Benedetti and Petronio [6]. In fact, as Benedetti and 
Petronio formulated their theorem in the case of SU2-TQFT, the adaptation of the 
proof in the setting of SO(3)-TQFT we use here can be found in [12].

Theorem 2.4. ([6, Theorem 3.2]) For M an oriented compact 3-manifold with empty or 
toroidal boundary and r � 3 an odd integer, we have:

TVr(M, q = e
2iπ
r ) = ||RTr(M, ζ = e

iπ
r )||2.

3. Growth of Turaev-Viro invariants and the AMU conjecture

In this section, first we explain how the growth of the SO(3)-Turaev-Viro invariants 
is related to the AMU conjecture. Then we give examples of link complements M for 
which the SO(3)-Turaev-Viro invariants have exponential growth with respect to r; that 
is, we have lTV (M) > 0.

3.1. Exponential growth implies the AMU conjecture

Let Σ denote a compact orientable surface with or without boundary and, as before, 
let Mod(Σ) denote the mapping class group of Σ fixing the boundary.

Theorem 1.2. Let f ∈ Mod(Σ) be a pseudo-Anosov mapping class and let Mf be the map-
ping torus of f . If lTV (Mf ) > 0, then f satisfies the conclusion of the AMU conjecture.

The proof of Theorem 1.2 relies on the following elementary lemma:

Lemma 3.1. If A ∈ GLn(C) is such that |Tr(A)| > n, then A has infinite order.

Proof. Up to conjugation we can assume that A is upper triangular. If the sum of the 
n diagonal entries has modulus bigger than n, one of these entries must have modulus 
bigger that 1. This implies that A has infinite order. �
Proof of Theorem 1.2. Suppose that for the mapping torus Mf of some f ∈ Mod(Σ), 
we have lTV (Mf ) > 0. We will prove Theorem 1.2 by relating TVr(Mf ) to traces of the 
quantum representations of Mod(Σ). By Theorem 2.4, we have
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TVr(Mf ) = ||RTr(Mf )||2 = 〈RTr(Mf ), RTr(Mf )〉,

where, with the notation of Theorem 2.1, 〈, 〉 is the Hermitian form on RTr(Σ, c).
Suppose that Σ has genus g and n boundary components. Now ∂Mf is a disjoint 

union of n tori. Note that by Theorem 2.2-(2) and Theorem 2.1-(1), RTr(∂Mf ) admits 
an orthonormal basis given by vectors

ec = ec1 ⊗ ec2 ⊗ . . . ecn ,

where c = (c1, c2, . . . cn) runs over all n-tuples of colors in Ur, one for each boundary 
component. By Theorem 2.1-(3) and Theorem 2.2-(2), this vector is also the RTr-vector 
of the cobordism consisting of n solid tori, with the i-th solid torus containing the core 
colored by ci.

We can write RTr(Mf ) =
∑
c
λcec where λc = 〈RTr(Mf ), ec〉. Thus we have

TVr(Mf ) =
∑
c

|λc|2 =
∑
c

|〈RTr(Mf ), ec〉|2,

where ec is the above orthonormal basis of RTr(∂Mf ) and the sum runs over n-tuples 
of colors in Ur. By Theorem 2.1-(3), the pairing 〈RTr(Mf ), ec〉 is obtained by filling the 
boundary components of Mf by solid tori and adding a link L which is the union of the 
cores and the core of the i-th component is colored by ci. Thus by Theorem 2.3, we have

〈RTr(Mf ), ec〉 = RTr(Mf̃ , (L, c)) = Tr(ρr,c(f)),

and thus

TVr(Mf ) =
∑
c

|Trρr,c(f)|2,

where the sum ranges over all colorings of the boundary components of Mf by elements 
of Ur. Now, on the one hand, since lTV (Mf ) > 0, the sequence {TVr(Mf )}r is bounded 
below by a sequence that is exponentially growing in r as r → ∞. On the other hand, 
by Theorem 2.2-(1), the sequence 

∑
c

dim(RTr(Σ, c)) only grows polynomially in r. For 

big enough r, there will be at least one c such that |Trρr,c(f)| > dim(RTr(Σ, c)). Thus 
by Lemma 3.1, ρr,c(φ) will have infinite order. �

By a theorem of Thurston [31], a mapping class f ∈ Mod(Σ) is represented by a 
pseudo-Anosov homeomorphism of Σ if and only if the mapping torus Mf is hyperbolic.

As a consequence of Theorem 1.2, whenever a hyperbolic 3-manifold M that fibers 
over the circle has lTV (M) > 0, the monodromy of the fibration represents a mapping 
class that satisfies the AMU conjecture.

In the remaining of this paper we will be concerned with surfaces with boundary and 
mapping classes that appear as monodromies of fibered links in S3.
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3.2. Link complements with lTV > 0

Links with exponentially growing Turaev-Viro invariants will be the fundamental 
building block of our construction of examples of pseudo-Anosov mapping classes satis-
fying the AMU conjecture. We will need the following result proved by the authors in 
[11].

Theorem 3.2. ([11, Corollary 5.3]) Assume that M and M ′ are oriented compact 
3-manifolds with empty or toroidal boundaries and such that M is obtained by a Dehn-
filling of M ′. Then we have:

lTV (M) � lTV (M ′).

Note that for a link L ⊂ S3, and a sublink K ⊂ L, the complement of K is obtained 
from that of L by Dehn-filling. Thus Theorem 3.2 implies that if K is a sublink of a link 
L ⊂ S3 and lTV (S3

�K) > 0, then we have lTV (S3
�L)) > 0.

Corollary 3.3. Let K ⊂ S3 be the knot 41 or a link with complement homeomorphic to 
that of the Boromean links or the Whitehead link. If L is any link containing K as a 
sublink then lTV (S3

�L)) > 0.

Proof. Denote by B the Borromean rings. By [12], lTV (S3
�41) = 2v3 � 2.02988 and 

lTV (S3
�B) = 2v8 � 7.32772; and hence the conclusion holds for B and 41. The comple-

ment of K = 41 is obtained by Dehn filing along one of the components of the Whitehead 
link W . Thus, by Theorem 3.2, lTV (S3

�W ) � 2v3 > 0. For links with homeomorphic 
complements the conclusion follows since the Turaev-Viro invariants are homeomorphism 
invariants of the link complement; that is, they will not distinguish different links with 
homeomorphic complements. �
Remark 3.4. Additional classes of links with lTV > 0 are given by the authors in [12] and 
[11]. Some of these examples are non-hyperbolic. However it is known that any link is a 
sublink of a hyperbolic link [4]. Thus one can start with any link K with lTV (S3

�K) > 0
and construct hyperbolic links L containing K as sublink; by Theorem 3.2 these will still 
have lTV (S3

�L) > 0.

4. A hyperbolic version of Stallings’s homogenization

A classical result of Stallings [29] states that every link L is a sublink of fibered links 
with fibers of arbitrarily large genera. Our purpose in this section is to prove the following 
hyperbolic version of this result.

Theorem 4.1. Given a link L ⊂ S3, there are hyperbolic links L′, with L ⊂ L′ and such 
that the complement of L′ fibers over S1 with fiber a surface of arbitrarily large genus.
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4.1. Homogeneous braids

Let σ1, . . . , σn−1 denote the standard braid generators of the n-strings braid group 
Bn. We recall that a braid σ ∈ Bn is said to be homogeneous if each standard generator 
σi appearing in σ always appears with exponents of the same sign. In [29], Stallings 
studied relations between closed homogeneous braids and fibered links. We summarize 
his results as follows:

(1) The closure of any homogeneous braid σ ∈ Bn is a fibered link: The complement 
fibers over S1 with fiber the surface F obtained by Seifert’s algorithm from the 
homogeneous closed braid diagram. The Euler characteristic of F is χ(F ) = n −c(σ)
where c(σ) is the number of crossings of σ.

(2) Given a link L = σ̂ represented as the closure of a braid σ ∈ Bn, one can add 
additional strands to obtain a homogeneous braid σ′ ∈ Bn+k so that the closure of 
σ′ is a link L ∪K, where K, the closure of the additional k-strands, represents the 
unknot. Furthermore, we can arrange σ′ so that the linking numbers of K with the 
components of σ̂ are any arbitrary numbers. The link L ∪K, as a closed homogeneous 
braid, is fibered.
Throughout the paper we will refer to the component K of L ∪K, as the Stallings 
component.

In order to prove Theorem 4.1, given a hyperbolic link L, we want to apply Stallings’ 
homogenizing method in a way such that the resulting link is still hyperbolic.

Let L be a hyperbolic link with n components L1, . . . , Ln. The complement ML :=
S3

�L is a hyperbolic 3-manifold with n cusps; one for each component. For each cusp, 
corresponding to some component Li, there is a conjugacy class of a rank two abelian 
subgroup of π1(ML). We will refer to this as the peripheral group of Li.

Definition 4.2. Let L be a hyperbolic link with n components L1, . . . , Ln. We say that 
an unknotted circle K embedded in S3

�L satisfies condition (♣) if (i) the free homo-
topy class [K] does not lie in a peripheral group of any component of L; and (ii) we 
have

gcd (lk(K,L1), lk(K,L2), . . . , lk(K,Ln)) = 1.

The rest of this subsection is devoted to the proof of the following proposition that is 
needed for the proof of Theorem 4.1.

Proposition 4.3. Given a hyperbolic link L, one can choose the Stallings component K
so that (i) K satisfies condition (♣); and (ii) the fiber of the complement of L ∪K has 
arbitrarily high genus.
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Since L is hyperbolic, we have the discrete faithful representation

ρ : π1(S3
�L) −→ PSL2(C).

We recall that an element of A ∈ PSL2(C) is called parabolic if Tr(A) = ±2, and 
that ρ takes elements in the peripheral subgroups of π1(S3

�L) to parabolic elements in 
PSL2(C). Since matrix trace is invariant under conjugation, in the discussion below we 
will not make distinction between elements in π1(ML) and their conjugacy classes. With 
this understanding we recall that if an element γ ∈ π1(S3

�L) satisfies Tr(ρ(γ)) �= ±2, 
then it does not lie in any peripheral subgroup [30, Chapter 5].

Lemma 4.4. Let A and B be elements in PSL2(C).

(1) If A and B are non-commuting parabolic elements then |Tr(AlB−l)| > 2 for some l.
(2) If |Tr(A)| > 2, then |Tr(AkB)| �= 2 for all k big enough.

Proof. For (1), note that after conjugation we can take A =
(

1 0
1 1

)
and B =

(
1 x
0 1

)
. 

Then

|Tr(AlB−l)| = |1 − l2x| →
l→∞

∞.

For (2), after conjugation take A =
(
λ 0
0 λ−1

)
where |λ| > 1 and write B =

(
u v
w x

)
. 

Then

Tr(AkB) = λku + λ−kx,

which as k → +∞ tends either to infinity if u �= 0 or to 0 else. In the first case we will 
have |Tr(AkB)| > 2 for k big enough; in the second case we will have |Tr(AkB)| < 2. In 
both cases we have |Tr(AkB)| �= 2 as desired. �

Next we will consider the Wirtinger presentation of π1(S3
�L) corresponding to a link 

diagram representing a hyperbolic link L as a closed braid σ̂. The Wirtinger generators 
are conjugates of meridians of the components of L and are mapped to parabolic elements 
of PSL2(C) by ρ. A key point in the proof of Proposition 4.3 is to choose the Stallings 
component K so that the word it represents in π1(S3

�L) is conjugate to one that 
begins with a sub-word (alb−l)k, where a and b are Wirtinger generators mapped to 
non-commuting elements under ρ. Then we will use Lemma 4.4 to prove that the free 
homotopy class [K] is not in a peripheral subgroup of any component of L. We first need 
the following lemma:

Lemma 4.5. Let L be a hyperbolic link in S3, with a link diagram of a closed braid σ̂. We 
can find two strands of σ meeting at a crossing so that if a and b are the Wirtinger gen-
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erators corresponding to an under-strand and the over-strand of the crossing respectively, 
then ρ(a) and ρ(b) don’t commute.

Proof. Suppose that for any pair of Wirtinger generators a, b corresponding to a crossing 
as above, ρ(a) and ρ(b) commute. Since ρ(a) and ρ(b) are commuting parabolic elements 
of infinite order in PSL2(C), elementary linear algebra shows that they share their unique 
eigenline. Then step by step, we get that the images under ρ of all Wirtinger genera-
tors share an eigenline. But this would imply that ρ 

(
π1(S3

�L)
)

is abelian which is a 
contradiction. �

We can now turn to the proof of Proposition 4.3, which we will prove by tweaking 
Stallings homogenization procedure.

Proof of Proposition 4.3. Let L be a hyperbolic link, with components, L1, . . . , Ln, 
represented as a braid closure σ̂. Let a, b be Wirtinger generators of π1(S3

�L) chosen 
as in Lemma 4.5.

Starting with the projection of σ̂, we proceed in the following way:
We arrange the crossings of σ̂ to occur at different verticals on the projection plane.

(1) Begin drawing the Stallings component so that near the strands where above chosen 
Wirtinger generators a, b occur, we create the pattern shown in the left of Fig. 2.

(2) We deform the strands of σ to create “zigzags” as shown in the second drawing of 
Fig. 1.

(3) We fill the empty spaces in verticals with new braid strands and choose the new 
crossings so that the resulting braid is homogeneous and so that the new strands meet 
the strands of σ both in positive and negative crossings. Adding enough “zigzags” at 
the previous step will ensure that there is enough freedom in choosing the crossings 
to make this second condition possible.

(4) At this stage, we have turned the braid σ into a homogeneous braid, say σh. The 
closure σ̂h contains L as a sublink and some number s � 1 of unknotted components. 
To reduce the number of components added, we connect the new components with 
a single crossing between each pair of neighboring new components. Doing so we 
may have to create new crossings with the components of L, but we can always 
choose them to preserve homogeneousness. Thus we homogenized L by adding a 
single unknotted component K to it.

The four step process described above is illustrated in Fig. 1.
Now, because we have positive and negative crossings of K with each component of 

L, we can set the linking numbers as we want just by adding an even number of positive 
or negative crossings between K and a component of L locally. If the strands a and 
b correspond to the same component L1, we simply ask that lk(K, L1) = 1. If they 
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Fig. 1. The four step homogenization process.

Fig. 2. Changing [K] from a conjugate of w ∈ π1(S3
�L) (left), to a conjugate of w(a−lbl)k (right), for any 

non-negative l and k. Here l = k = 2.

correspond to two distinct components L1 and L2, we choose (lk(K, L1), lk(K, L2)) =
(1, 0).

Recall that we have chosen a, b to be Wirtinger generators of π1(S3
�L), as in 

Lemma 4.5, and so that K is added to L so that the pattern shown on the left hand side 
of Fig. 2 occurs near the corresponding crossing. Assume that [K] is conjugate to a word 
w ∈ π1(S3

�L). Now one may modify the diagram of L ∪K locally, as shown in the right 
hand side of Fig. 2, to make [K] conjugate to (a−lbl)kw for any non-negative k and l. 
Notice also this move leaves K unknotted and that L ∪K is still a closed homogeneous 
braid. Also notice that doing so, we left lk(K, L1) unchanged if a and b were part of 
the same component L1, and we turned (lk(K, L1), lk(K, L2)) into (1 − kl, kl) if they 
correspond to different components L1 and L2. In both cases, we preserved the fact that

gcd(lk(K,L1), lk(K,L2), . . . , lk(K,Ln)) = 1

and K satisfies part (ii) of Condition (♣).
To ensure that part (i) of the condition is satisfied, note that since ρ(a) and ρ(b)

are non-commuting, Lemma 4.4 (1) implies |Tr(ρ(a)−lρ(b)l)| > 2 for l >> 0. Thus by 
choosing k >> 0, and using Lemma 4.4 (2), we may assume that |Tr(AkB)| �= 2, where 
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A = ρ(a)−lρ(b)l and B = ρ(w). Then [K] = AkB is not in a peripheral subgroup of 
π1(S3

�L).
Now notice that as above mentioned positive integers k, l become arbitrarily large, 

the crossing number of the resulting homogeneous braid projections becomes arbitrarily 
large while the braid index remains unchanged. Since the fiber of the fibration of a closed 
homogeneous braid is the Seifert surface of the closed braid projection it follows that as 
k, l → ∞, the genus of the fiber becomes arbitrarily large. �
4.2. Ensuring hyperbolicity

In this subsection we will finish the proof of Theorem 4.1. For this we need the 
following:

Proposition 4.6. Suppose that L is a hyperbolic link and let L ∪ K be a homogeneous 
closed braid obtained from L by adding a Stallings component K that satisfies condition 
(♣). Then L ∪K is a hyperbolic link.

Before we can proceed with the proof of Proposition 4.6 we need some preparation: 
We recall that when an oriented link L is embedded in a solid torus, the total winding 
number of L is the non-negative integer n such that L represents n times a generator 
of H1(V, Z). When convenient we will consider ML∪K to be the compact 3-manifold 
obtained by removing the interiors of neighborhoods of the components of L ∪K; the 
interior of ML∪K is homeomorphic to S3

�(L ∪ K). In the course of the proof of the 
proposition we will see that condition (♣) ensures that the complement of L ∪K cannot 
contain embedded tori that are not boundary parallel or compressible (i.e. ML∪K is 
atoroidal). We need the following lemma that provides restrictions on winding numbers 
of satellite fibered links.

Lemma 4.7. We have the following:

(1) Suppose that L is an oriented fibered link in S3 that is embedded in a solid torus V
with boundary T incompressible in S3

�L. Then, some component of L must have 
non-zero winding number.

(2) Suppose that L is an oriented fibered link in S3 such that only one component K is 
embedded inside a solid torus V . If K has winding number 1, then K is isotopic to 
the core of V .

Though this statement is fairly classical in the context of fibered knots [16], we include 
a proof as we are working with fibered links.

Proof. The complement ML = S3
�N(L) fibers over S1 with fiber a surface (F, ∂F ) ⊂

(ML, ∂ML). Then S3
�L cut along F = F × {0} = F × {1} is homeomorphic to F ×
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[0, 1]. It is known that F maximizes the Euler characteristic in its homology class in 
H2(ML, ∂ML) and thus F is incompressible and ∂-incompressible.

(1) Assume that the winding number of every component of L is zero, and consider 
the intersection of F with T , the boundary of the solid torus containing L. Since F×[0, 1]
is irreducible, and F is incompressible in the complement of L, up to isotopy, one can 
assume that the intersection T ∩ F consists of a collection of parallel curves in T , each 
of which is homotopically essential in T . The hypothesis on the winding number implies 
that the intersection F ∩ T is null-homologous in T , where each component of F ∩ T is 
given the orientation inherited by the surface V ∩ F . Thus the curves in F ∩ T can be 
partitioned in pairs of parallel curves with opposite orientations in T ∩F . Each such pair 
bounds an annulus in T and in F × (0, 1) each of these annuli has both ends on F ×{0}
or on F ×{1}. This implies that we can find 0 < t < 1 such that Ft = F ×{t} misses the 
torus T . This in turn implies that T must be an essential torus in the manifold obtained 
by cutting S3

�L along the fiber Ft. But this is impossible since the later manifold is 
Ft × I which is a handlebody and cannot contain essential tori; contradiction.

(2) By an argument similar to that used in case (1) above, we can simplify the inter-
section of the fiber surface F with T until it consists of one curve only. This curve, say γ, 
cuts T into an essential annulus embedded in F × (0, 1) with one boundary component 
on F × {0} and the other on F × {1}. As the annulus closes up, the curve γ must be 
fixed by the monodromy of the fibration and one can isotope T to make it compatible 
with the fibration. Then one has that K is fibered in V , and as the winding number of 
K is 1, by Corollary 1 in [16], K must be isotopic to the core of V . �

We are now ready to give the proof of Proposition 4.6.

Proof of Proposition 4.6. First we remark that S3
�(L ∪K) is non-split as S3

�L is and 
K represents a non-trivial element in π1(S3

�L).
Next we argue that S3

�(L ∪K) is atoroidal: Assume that we have an essential torus, 
say T , in ML∪K = S3

�(L ∪ K). Since L is hyperbolic, in ML = S3
�L the torus T

becomes either boundary parallel or compressible. Moreover, the torus T bounds a solid 
torus V in S3.

Suppose that T becomes boundary parallel in the complement of L. Then, we may 
assume that V is a tubular neighborhood of a component Li of V . Then K must lie 
inside V ; for otherwise T would still be boundary parallel in ML∪K . Then the free 
homotopy class [K] would represent a conjugacy class in the peripheral subgroup of 
π1(ML) corresponding to Li. However this contradicts condition (♣); thus this case 
cannot happen.

Suppose now that we know that T becomes compressible in ML. In S3, the torus T
bounds a solid torus V that contains a compressing disk of T in ML. If V contains no 
component of L ∪ K, the torus T is still compressible in ML∪K . Otherwise, there are 
again two cases:



692 R. Detcherry, E. Kalfagianni / Advances in Mathematics 351 (2019) 676–701
Case 1: The solid torus V contains some components of L. We claim that V actually 
contains all the components of L. Otherwise, after compressing T in ML, one would get 
a sphere that separates the components of L, which can not happen as L is non-split. 
Moreover, as the compressing disk is inside V , all components of L have winding number 
zero in V .

Since T is incompressible in the complement of ML∪K , the component K must also 
lie inside V . Note that V has to be knotted since otherwise T would compress outside V
and thus in ML∪K . But then since K is unknotted, it must have winding number zero 
in V . Thus we have the fibered link L ∪K lying inside V so that each component has 
winding number zero. But then T can not be incompressible in ML∪K by Lemma 4.7-(1); 
contradiction. Thus this case will not happen.

Case 2: The solid torus V contains only K. Since T is incompressible in ML∪K , K
must be geometrically essential in V ; that is it doesn’t lie in a 3-ball inside V . Since K
is unknotted, it follows that V is unknotted. For each component Li of L, we have

lk(K,Li) = w · lk(c, Li),

where c is the core of V , and w denote the winding number of K in V . Since K satisfies 
condition (♣), we know that

gcd (lk(K,L1), lk(K,L2), . . . , lk(K,Ln)) = 1,

which implies that we must have w = 1. Thus by Lemma 4.7-(2), K is isotopic to the 
core of V and T is boundary parallel, contradicting the assumption that T is essential 
in ML∪K . This finishes the proof that ML∪K is atoroidal.

Since ML∪K contains no essential spheres or tori, and has toroidal boundary, it is 
either a Seifert fibered space or a hyperbolic manifold. But ML is a Dehn-filling of 
ML∪K which is hyperbolic. Since the Gromov norm || · || does not increase under Dehn 
filling [30] we get ||ML∪K || ≥ ||ML|| > 0. The Gromov norm of Seifert 3-manifolds is 
zero, thus L ∪K must be hyperbolic. �

We can now finish the proof of Theorem 4.1 and the proof of Theorem 1.3 stated in 
the Introduction.

Proof of Theorem 4.1. Let L be any link. If L is not hyperbolic, then we can find a 
hyperbolic link L′, that contains L as a sub-link. See for example [4]. If L is hyperbolic 
then set L = L′. Then apply Proposition 4.3 to L′ to get links L′ ∪ K that are closed 
homogeneous braids with arbitrarily high crossing numbers and fixed braid index. By 
[29], the links L′ ∪ K are fibered and the fibers have arbitrarily large genus and by 
Proposition 4.6 they are hyperbolic. �
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Proof of Theorem 1.3. Suppose that L is a link with lTV (S3
�L) > 0. By Theorem 4.1

we have fibered hyperbolic links L′ that contain L as sublink and whose fibers have 
arbitrarily large genus. By Theorem 3.2 we have lTV (S3

�L) > 0. �
5. Stallings twists and the AMU conjecture

By our results in the previous sections, starting from a hyperbolic link L ⊂ S3 with 
lTV (S3

�L) > 0, one can add an unknotted component K to obtain a hyperbolic fibered 
link L ∪K, with lTV (S3

�(L ∪K)) > 0. The monodromy of a fibration of L ∪K provides 
a pseudo-Anosov mapping class on the surface Σ = Σg,n, where g is the genus of the 
fiber and n is the number of components of L ∪K.

One can always increase the number of boundary components n by adding more com-
ponents to L and appealing to Theorem 3.2. However since L ∪K is a closed homogeneous 
braid this construction alone will not provide infinite families of examples for fixed genus 
and number of boundary components.

In this section we show how to address this problem and prove Theorem 1.4 stated in 
the introduction and which, for the convenience of the reader we restate here.

Theorem 1.4. Let Σ denote an orientable surface of genus g and with n-boundary com-
ponents. Suppose that either n = 2 and g � 3 or g � n � 3. Then there are infinitely 
many non-conjugate pseudo-Anosov mapping classes in Mod(Σ) that satisfy the AMU 
conjecture.

5.1. Stallings twists and pseudo-Anosov mappings

Stallings [29] introduced an operation that transforms a fibered link into a fibered 
link with a fiber of the same genus: Let L be a fibered link with fiber F and let c be 
a simple closed curve on F that is unknotted in S3 and such that lk(c, c+) = 0, where 
c+ is the curve c pushed along the normal of F in the positive direction. The curve c
bounds a disk D ⊂ S3 that is transverse to F . Let Lm denote the link obtained from L
by a full twist of order m along D. This operation is known as Stallings twist of order 
m. Alternatively, one can think the Stallings twist operation as performing 1/m surgery 
on c, where the framing of c is induced by the normal vector on F .

Theorem 5.1. ([29, Theorem 4]) Let L be a link whose complement fibers over S1 with 
fiber F and monodromy f . Let Lm denote a link obtained by a Stallings twist of order 
m along a curve c on F . Then, the complement of Lm fibers over S1 with fiber F and 
the monodromy is f ◦ τmc , where τc is the Dehn-twist on F along c.

Note that when c is parallel to a component of L, then such an operation does not 
change the homeomorphism class of the link complement; we call these Stallings twists 
trivial.
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Fig. 3. A crossing and its A and B resolutions.

Fig. 4. Left: Pattern in the state graph exhibiting a non-trivial Stallings twist. Right: The curve c obtained 
as a connected sum the curves c1, c2 with self linking +2 and −2.

To facilitate the identification of non-trivial Stallings twists on link fibers, we recall 
the notion of state graphs:

Recall that the fiber for the complement of a homogeneous closed braid σ̂ is obtained 
as follows: Resolve all the crossings in the projection of σ̂ in a way consistent with the 
braid orientation. The result is a collection of nested embedded circles (Seifert circles) 
each bounding a disk on the projection plane; the disks can be made disjoint by pushing 
them slightly above the projection plane. Then we construct the fiber F by attaching 
a half twisted band for each crossing. The state graph consists of the collection of the 
Seifert circles together with an edge for each crossing of σ̂. We will label each edge by 
A or B according to whether the resolution of the corresponding crossing during the 
construction of F is of type A or B shown in Fig. 3, if viewed as unoriented resolution.

Remark 5.2. As the homogeneous braids get more complicated the fiber is more likely 
to admit a non-trivial Stallings twist. Indeed, if the state graph of L = σ̂ exhibits the 
local pattern shown in the left hand side of Fig. 4, we can perform a non-trivial Stallings 
twist along the curve c which corresponds to the connected sum of the two curves c1 and 
c2 shown in the Figure. We can see that lk(c1, c+1 ) = +2 and lk(c2, c+2 ) = −2, and the 
mixed linkings are zero. In the end, lk(c, c+) = 2 − 2 = 0.

We will need the following theorem, stated and proved by Long and Morton [20] for 
closed surfaces. Here we state the bounded version and for completeness we sketch the 
slight adaptation of their argument in this setting.

Theorem 5.3. ([20, Theorem A]) Let F be a compact oriented surface with ∂F �= 0. Let 
f be a pseudo-Anosov homeomorphism on F and let c be a non-trivial, non-boundary 
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parallel simple closed curve on F . Let τc denote the Dehn-twist along c. Then, the family 
{f ◦ τmc }m contains infinitely many non-conjugate pseudo-Anosov homeomorphisms.

Proof. The proof rests on the fact that the mapping torus of fm = f ◦ τmc is obtained 
from Mf by performing 1/m-surgery on the curve c with framing induced by a normal 
vector in F . Once we prove that Mf�c is hyperbolic, Thurston’s hyperbolic Dehn surgery 
theorem implies, for m big enough, that the mapping tori Mfm are hyperbolic and all 
pairwise non-homeomorphic (as their hyperbolic volumes differ). Since conjugate maps 
have homeomorphic mapping tori the non-finiteness statement follows.

We will consider the curve c as embedded on the fiber F × {1/2} ⊂ Mf . Notice that 
Mf�c is irreducible, as c is non-trivial in π1(F ) and thus in π1(Mf ).

We need to show that Mf�c contains no essential embedded tori: Let T be a torus 
embedded in Mf�c. If T is boundary parallel in Mf , it will also be in Mf�c, otherwise 
one would be able to isotope c onto the boundary of Mf , and as c is actually a curve 
on F × {1/2}, c would be conjugate in π1(F ) to a boundary component. As we chose c
non-boundary parallel in F , this does not happen.

Now, assume that T is non-boundary parallel in Mf . Then we can put T in general 
position and consider of T∩F×{1/2}. If this intersection is empty then T is compressible 
as F × [0, 1] does not contain any essential tori. After isotopy we can assume that T ∩
F × [0, 1] is a collection of properly embedded annuli in F × [0, 1], each of which either 
misses a fiber F or is vertical with respect to the I-bundle structure. Now note that if 
one of these annuli misses a fiber then we can remove it by isotopy in Mf�c, unless if it 
connects to curves parallel to c on opposite sides of c on F ×{1/2}. Also observe that we 
cannot have annuli that connect a non-boundary parallel curve c ⊂ F × {1/2} to f(c):
For, since f is pseudo-Anosov, the curves fk(c) and f l(c) are freely homotopic on the 
fiber if and only if k = l; and thus the annuli would never close up to give T . In the end, 
and since Mf is hyperbolic, we are left with two annuli connecting both sides of c and 
T is boundary parallel in Mf�c.

Finally, Mf�c is irreducible and atoroidal and since its Gromov norm satisfies 
||Mf�c|| > ||Mf || > 0, it is hyperbolic. �
5.2. Infinite families of mapping classes

We are now ready to present our examples of infinite families of non-conjugate pseudo-
Anosov mapping classes of fixed surfaces that satisfy the AMU conjecture. The following 
theorem gives the general process of the construction.

Theorem 5.4. Let L be a hyperbolic fibered link with fiber Σ and monodromy f . Sup-
pose that L contains a sublink K with lTV (S3

�K) > 0. Suppose, moreover, that the 
fiber Σ admits a non-trivial Stallings twist along a curve c ⊂ Σ such that the interior 
of the twisting disc D intersects K at most once geometrically. Let τc denote the Dehn 
twist of Σ along c. Then the family {f ◦ τmc }m of homeomorphisms gives infinitely many 
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non-conjugate pseudo-Anosov mappings classes in Mod(Σ) that satisfy the AMU conjec-
ture.

Proof. Since L contains K as sublink we have lTV (S3
�L) � lTV (S3

�K) > 0. Since D
intersects K at most once, each of the links L′ obtained by Stallings twists along c, will 
also contain a sublink isotopic to K and hence lTV (S3

�L′) � lTV (S3
�K) > 0. The 

conclusion follows by Theorems 5.1, 5.3 and 1.2. �
We finish the section with concrete constructions of infinite families obtained by ap-

plying Theorem 5.4. Start with K1 = 41 represented as the closure of the homogeneous 
braid σ−1

2 σ1σ
−1
2 σ1. We construct a 2-parameter family of links Ln,m where n � 2, m � 1, 

defined as follows:
The link L4,m is shown in the left panel of Fig. 5, where the box shown contains 2m

crossings. It is obtained from K1 by adding three unknotted components.
The link L3,m is obtained from L4,m by removing the unknotted component corre-

sponding to the outermost string of the braid.
The link Ln+1,m for n � 4 is obtained from Ln,m adding one strand in the following 

way: denote by K1, . . . , Kn the components of Ln,m from innermost to outermost, K1
being the 41 component. To get Ln+1,m, we add one strand Kn+1 to Ln,m, so that 
traveling along Kn one finds 2 crossings with Kn−1, then 2 crossings with Kn+1, then 2
crossings with Kn−1, then 2 crossings with Kn+1, and, moreover, the crossings with Kn−1
and Kn+1 have opposite signs. There is only one way to choose this new strand, and 
doing so we added one unknotted component to Ln,m, thus Ln+1,m has n +1 components 
and 4 more crossings than Ln,m.

In the special case n = 2, the link L2,m is obtained from the link L3,m by replacing 
the box with 2m crossings with a box with 2m − 1 crossings. The links L2,m are then 
2-components links. We note that all the links Ln,m contain the component K1 we started 
with.

Proposition 5.5. The link Ln,m is hyperbolic, fibered and satisfies the hypotheses of The-
orem 5.4. The fiber has genus g = m + 2 if n = 2, g = n + m − 1 otherwise.

Proof. For every n � 2 and any m � 1, the link Ln,m contains the knot K1 = 41 as 
sublink and as said earlier we have lTV (S3

�K1) > 0. Since Ln,m is alternating, hyper-
bolicity follows from Menasco’s criterion [22]: any prime non-split alternating diagram of 
a link that is not the standard diagram of the T (2, q) torus link, represents a hyperbolic 
link. Since Ln,m is represented by an alternating (and thus homogeneous) closed braid, 
fiberedness follows from Stallings’ criterion. For n � 3, the resulting closed braid dia-
gram has braid index 2 + n and 2 + 4n + 2m crossings. Hence the Euler characteristic is 
−3n −2m and the genus is m +n −1, as the fiber has n boundary components. In the case 
n = 2, the braid index is 5, number of crossings 9 + 2m, thus the Euler characteristic of 
the fiber is −4 −2m and the genus is m +2. Using Remark 5.2 and the state graph given 
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Fig. 5. The link L4,m and the state graph for L4,2.

in Fig. 5 we can easily locate a simple closed curve c on the fiber with the properties in 
the statement of Theorem 5.4. �

Now Proposition 5.5 and Theorem 5.4 immediately give Theorem 1.4 stated in the 
beginning of the section.

Remark 5.6. Note that if we restrict ourselves to closed homogeneous braids to get 
explicit examples of links satisfying the hypotheses of Theorem 5.4, it seems necessary 
that the genus will grow with the number of components. However, one could consider 
other methods, that can increase the number of components, while keeping the fiber 
genus low, to produce links satisfying the hypotheses of Theorem 5.4. One way would 
be to take a Murasugi sum of the link L2,m with links of arbitrarily large number of 
components and whose complement fibers over S1 with fiber of genus 0. This should be 
done so that the Murasugi sum operation leaves the component 41 ⊂ L2,m unaffected 
and it produces hyperbolic links. It seems plausible that combining homogeneous braids 
and Murasugi sums should give explicit examples of infinite families of mapping classes 
that satisfy the AMU conjecture, for all surfaces Σ with genus g � 2 and n � 2 boundary 
components.

Remark 5.7. Our methods also apply to surfaces of genus zero to produce examples of 
mapping class that satisfy the conclusion of the AMU conjecture. Given that such ex-
amples were previously known, we just outline an explicit construction without pursuing 
the details of determining the Nielsen-Thurston types of the resulting mapping classes or 
discussing how the construction relates to that of Santharoubane [27]: Let Σ0,n denote 
the sphere with n holes. A mapping class in Mod(Σ0,n+1) can be thought as an element 
in the pure braid group on n-strings, say Pn. It is known that for n > 3, Pn is a semi-
direct product of a subgroup Wn that is itself a semi-direct product of free subgroups 
of Pn and of P3. See, for example, [7, Theorem 1.8]. As result any braid b ∈ Pn can be 
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uniquely written as a product β · w where β ∈ P3 and w ∈ Wn. Now take any b = β · w
for which the closure of β ∈ P3 represents the Borromean rings B. The braid b represents 
an element in Mod(Σ0,n+1) whose mapping torus is the complement of the link Lb that 
is the closure of b together with the braid axis. The link Lb contains B as a sublink and 
hence lTV (S3

�Lb) > lTV (S3
�B) > 0. Thus by Theorem 1.2, for r big enough, there is 

a choice of colors c of the components of Σ0,n+1 such that ρr,c(φ) has infinite order.

Remark 5.8. Theorem 5.4 leads to constructions of mapping classes on surfaces with at 
least two boundary components that satisfy the AMU conjecture. Furthermore, all these 
mapping classes are obtained as monodromies of fibered links in S3. In [5] we prove 
the Turaev-Viro invariants volume conjecture for an infinite family of cusped hyperbolic 
3-manifolds. Considering the doubles of these 3-manifolds we obtain an infinite family of 
closed 3-manifolds M with lTV (M) > 0. It is known that every closed 3-manifold con-
tains hyperbolic fibered knots [28]. By Theorem 1.2, monodromies of such knots provide 
examples of pseudo-Anosov mappings on surfaces with a single boundary component 
that satisfy the AMU conjecture.

6. Integrality properties of periodic mapping classes

In this section we give the proofs of Theorem 1.5 and Corollary 1.6 stated in the 
Introduction. We also state a conjecture about traces of quantum representations of 
pseudo-Anosov mapping classes and we give some supporting evidence.

Theorem 1.5. Let f ∈ Mod(Σ) be periodic of order N . For any odd integer r � 3, with 
gcd(r, N) = 1, we have |Trρr,c(f)| ∈ Z, for any Ur-coloring c of ∂Σ, and any primitive 
2r-root of unity.

Proof. For any choice of a primitive 2r-root of unity ζ2r, the traces Trρr,c(f) lie in the 
field Q[ζ2r]. Since the Z is invariant under the action of the Galois group of the field, 
the property |Trρr,c(f)| ∈ Z, does not depend on the choice of root of unity to define 
the TQFT.

In the rest of the proof, for any positive integer n, we write ζn = e
2iπ
n .

By choosing a lift we can consider ρr,c(f) as an element of Aut(RTr(Σ, c)) instead of 
PAut(RTr(Σ, c)). Since fN = id and ρr,c is a projective representation with projective 
ambiguity a 2r-root of unity, we have ρr(f)N = ζk2r IdRTr(Σ,c). Since N and r are 
coprime, by changing the lift ρr,c(f) by a power of ζ2r we can assume actually that 
ρr,c(f)N = ±IdRTr(Σ,c). Then ρr,c(f) is diagonalizable, with eigenvalues that are 2N -th 
roots of unity. This implies that |Trρr,c(f)| ∈ Z[ζ2N ].

On the other hand we know that the traces of quantum representations ρr,c take 
values in Q[ζ2r], and the same is true for RTr invariants of any closed 3-manifold with 
a colored link (see Theorem 2.1-(2)). Thus we have

|Trρr,c(f)| ∈ Z[ζ2N ] ∩Q[ζ2r].
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By elementary number theory, it is known that

Q[ζm] ∩Q[ζn] = Q[ζd],

where d = gcd(m, n). See, for example, [18, Theorem 3.4] for a proof of this fact. Hence, 
since Q[ζ2] = Q[−1] = Q and the algebraic integers in Q are the integers, we have 
Z[ζ2N ] ∩Q[ζ2r] = Z. Thus we obtain |Trρr,c(f)| ∈ Z. �

It is known that the mapping torus of a class f ∈ Mod(Σ) is a Seifert fibered manifold 
if and only if f is periodic. In particular, the complement S3

�Tp,q of a (p, q) torus link 
is fibered with periodic monodromy of order pq [23]. As a corollary of Theorem 1.5 we 
have the following result which in particular implies Corollary 1.6 that settles a question 
of [10].

Corollary 6.1. Let Mf be the mapping torus of a periodic mapping class f ∈ Mod(Σ) of 
order N . Then, for any odd integer r � 3, with gcd(r, N) = 1, we have TVr(Mf ) ∈ Z, 
for any choice of root of unity.

Proof. As in the proof of Theorem 1.2, we write

TVr(Mf ) =
∑
c
|Trρr,c(f)|2

where f is the monodromy and the sum is over Ur-colorings of the components of ∂Σ. 
But if r is coprime with N this sum is a sum of integers by Theorem 1.5. �

Corollary 6.1 implies that for mapping tori of periodic classes the Turaev-Viro in-
variants take integer values at infinitely many levels and this property is independent of 
the choice of the root of unity. In contrast with this we have the following, were lTV is 
defined in the Introduction.

Proposition 6.2. Let f ∈ Mod(Σ) such that lTV (Mf ) > 0. Then, there can be at most 
finitely many odd integers r such that TVr(Mf ) ∈ Z.

Proof. As in the proof of Corollary 6.1 and Theorem 1.5 for any odd r ≥ 3 and any 
choice of a primitive 2r-root of unity ζ2r the invariant TVr(Mf , e

2iπ
r ) lies in F = Q[e iπ

r ].
Suppose that there are arbitrarily large odd levels r such that TVr(Mf , e

2iπ
r ) ∈ Z. 

Then since Z is left fixed under the action of the Galois group of F , we would have 
TVr(Mf , e

iπ
r ) = TVr(Mf , e

2iπ
r ), for all r as above.

But this is contradiction: Indeed, on the one hand, the assumption lTV (Mf ) > 0, im-
plies that the invariants TVr(Mf , e

2iπ
r ) grow exponentially in r; that is TVr(Mf , e

2iπ
r ) >

expBr, for some constant B > 0. On the other hand, by combining results of [15] and 
[6], the invariants TVr(Mf , e

iπ
r ) grow at most polynomially in r; that is TVr(Mf , e

iπ
r ) �

DrN , for some constants D > 0 and N . �
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As discussed earlier the Turaev-Viro invariants volume conjecture of [10] implies that 
for all pseudo-Anosov mapping classes we have lTV (Mf ) > 0, and the later hypothesis 
implies the AMU conjecture. These implications and Proposition 6.2 prompt the follow-
ing conjecture suggesting that the Turaev-Viro invariants of mapping tori distinguish 
pseudo-Anosov mapping classes from periodic ones.

Conjecture 6.3. Suppose that f ∈ Mod(Σ) is pseudo-Anosov. Then, there can be at most 
finitely many odd integers r such that TVr(Mf ) ∈ Z.
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