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Settings and talk theme
3-manifolds: M=compact, orientable, with empty or tori boundary.
Links: Smooth embedding K :

∐
S1 → M.

Link complements: M r n(K ); toroidal boundary

Talk: Relations among three
perspectives.

Combinatorial presentations
knot diagrams, triangulations

3-manifold topology/geometry
Geometric structures on M and
geometric invariants (e.g. hyperbolic
volume)

Physics originated invariants
Quantum invariants of
knots/3-manifolds
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A: Warm up: 2-d Model Geometries:

For this talk, an n-dimensional model geometry is a simply connected
n-manifold with a “homogeneous” Riemannian metric.
In dimension 2, there are exactly three model geometries:

Spherical Eucledian Hyperbolic
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Geometrization (a.k.a. Uniformization) in 2-d:
Every (closed, orientable) surface can be written as S = X/G, where X is a
model geometry and G is a discrete group of isometries.

X = S2 X = E2 X = H2

Curvature: k = 1,0,−1
Geometry vs topology: k · Area(S) = 2πχ(S),
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B: Geometrization in 3-d:

In dimension 3, there are eight model geometries:

X = S3 E3 H3 , S2 × R, H2 × R, Sol , Nil , S̃L2(R)

Recall M= compact, oriented, ∂M=empty or tori

Theorem (Thurston 1980 + Perelman 2003)
For every 3-manifold M, there is a canonical way to cut M along spheres and
tori into pieces M1, . . . ,Mn, such that each piece is Mi = Xi/Gi , where Gi is a
discrete group of isometries of the model geometry Xi .

Canonical : “Unique” collection of spheres and tori.

Poincare conjecture: S3 is the only compact model.

Hyperbolic 3-manifolds form a rich and very interesting class.

Cutting along tori, manifolds with toroidal boundary will naturally arise.
Knot complements fit in this class.
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Knots complements; nice 3-manifolds with boundary:

Given K remove an open tube around K to obtain the Knot complement:
Notation. MK = S3 r n(K ) .

Knot complements can be visualized! (Picture credit: J. Cantarella, UGA)
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Geometric decomposition picture for this talk:

Theorem (Knesser, Milnor 60’s, Jaco-Shalen, Johanson 1970,
Thurston 1980 + Perelman 2003)
M=oriented, compact, with empty or toroidal boundary.

1 There is a unique collection of 2-spheres that decompose M

M = M1#M2# . . .#Mp#(#S2 × S1)k ,

where M1, . . . ,Mp are compact orientable irreducible 3-manifolds.
2 For M=irreducible, there is a unique collection of disjointly embedded

essential tori T such that all the connected components of the manifold
obtained by cutting M along T , are either Seifert fibered manifolds or
hyperbolic.

Seifert fibered manifolds: For this talk, think of it as

S1 × surface

Complete topological classification [Seifert, 60’]
Hyperbolic: Interior admits complete, hyperbolic metric of finite volume.

Effie Kalfagianni (MSU) J 7 / 23



Geometric decomposition picture for this talk:

Theorem (Knesser, Milnor 60’s, Jaco-Shalen, Johanson 1970,
Thurston 1980 + Perelman 2003)
M=oriented, compact, with empty or toroidal boundary.

1 There is a unique collection of 2-spheres that decompose M

M = M1#M2# . . .#Mp#(#S2 × S1)k ,

where M1, . . . ,Mp are compact orientable irreducible 3-manifolds.
2 For M=irreducible, there is a unique collection of disjointly embedded

essential tori T such that all the connected components of the manifold
obtained by cutting M along T , are either Seifert fibered manifolds or
hyperbolic.

Seifert fibered manifolds: For this talk, think of it as

S1 × surface

Complete topological classification [Seifert, 60’]
Hyperbolic: Interior admits complete, hyperbolic metric of finite volume.

Effie Kalfagianni (MSU) J 7 / 23



Thee types of knots:
Satellite Knots: Complement contains embedded “essential” tori; There is a
canonical (finite) collection of such tori.

Torus knots: Knot embeds on standard torus in T in S3 and is determined by
its class in H1(T ). Complement is SFM.

Hyperbolic knots: Rest of them.
Effie Kalfagianni (MSU) J 8 / 23



Rigidity for hyperbolic 3-manifolds:

Theorem (Mostow, Prasad 1973)
Suppose M is compact, oriented, and ∂M is a possibly empty union of tori. If
M is hyperbolic, then a hyperbolic metric on M is “essentially” unique.

M =hyperbolic 3-manifold:

By rigidity, every geometric measurement of M is a topological invariant
Example: Volume of hyperbolic manifolds (important for this talk).
In practice M is represented by combinatorial data such as, a
triangulation, or a knot diagram (in case of knot complements in S3).

Question: How do we “see” geometry in the combinatorial descriptions of M?
Can we calculate/estimate geometric invariants from combinatorial ones?

Effie Kalfagianni (MSU) J 9 / 23



Rigidity for hyperbolic 3-manifolds:

Theorem (Mostow, Prasad 1973)
Suppose M is compact, oriented, and ∂M is a possibly empty union of tori. If
M is hyperbolic, then a hyperbolic metric on M is “essentially” unique.

M =hyperbolic 3-manifold:

By rigidity, every geometric measurement of M is a topological invariant

Example: Volume of hyperbolic manifolds (important for this talk).
In practice M is represented by combinatorial data such as, a
triangulation, or a knot diagram (in case of knot complements in S3).

Question: How do we “see” geometry in the combinatorial descriptions of M?
Can we calculate/estimate geometric invariants from combinatorial ones?

Effie Kalfagianni (MSU) J 9 / 23



Rigidity for hyperbolic 3-manifolds:

Theorem (Mostow, Prasad 1973)
Suppose M is compact, oriented, and ∂M is a possibly empty union of tori. If
M is hyperbolic, then a hyperbolic metric on M is “essentially” unique.

M =hyperbolic 3-manifold:

By rigidity, every geometric measurement of M is a topological invariant
Example: Volume of hyperbolic manifolds (important for this talk).

In practice M is represented by combinatorial data such as, a
triangulation, or a knot diagram (in case of knot complements in S3).

Question: How do we “see” geometry in the combinatorial descriptions of M?
Can we calculate/estimate geometric invariants from combinatorial ones?

Effie Kalfagianni (MSU) J 9 / 23



Rigidity for hyperbolic 3-manifolds:

Theorem (Mostow, Prasad 1973)
Suppose M is compact, oriented, and ∂M is a possibly empty union of tori. If
M is hyperbolic, then a hyperbolic metric on M is “essentially” unique.

M =hyperbolic 3-manifold:

By rigidity, every geometric measurement of M is a topological invariant
Example: Volume of hyperbolic manifolds (important for this talk).
In practice M is represented by combinatorial data such as, a
triangulation, or a knot diagram (in case of knot complements in S3).

Question: How do we “see” geometry in the combinatorial descriptions of M?
Can we calculate/estimate geometric invariants from combinatorial ones?

Effie Kalfagianni (MSU) J 9 / 23



Gromov Norm/Volume highlights:

Recall M uniquely decomposes along spheres and tori into disjoint
unions of Seifert fibered spaces S and hyperbolic pieces H: So

M = S ∪ H.

Gromov norm of M: ( Gromov, Thurston, 80’s)

vtet.||M|| = Vol (H), where

Vol (H) = sum of the hyperbolic volumes of components of H,
vtet = constant=1.01494. . . .

Nice Properties:

||M|| is additive under glueing along essential 2-spheres and essential
tori

If M hyperbolic vtet||M|| = Vol (M)=volume of hyp. metric.

If M Seifert fibered then ||M|| = 0.
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C: Quantum invariants: Jones Polynomials
1980’s:(Jones, Witten, Atiyah, Turaev, Reshetikhin.....) Ideas from physics and
in representation theory led to invariants of knots and 3-manifolds. (Quantum
invariants/Quantum Topology)

Jones Polynomials: Discovered by V. Jones (1980’s); using braid group
representations coming from the theory of certain operator algebras.

Can be calculated from any link diagram:
Two choices of resolution for each crossing: A and B

1 state σ: Choice of A or B resolutions for all crossings:
2 Assign a “weight” to every state.
3 JP calculated as “state sum” over all states of any diagram.
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Calculation of CJP: Example.

Kauffman bracket: 〈 〉 : link diagrams −→ Z[A, A−1] such that

For D = D(K ) where K = trefoil knot :

We obtain: JK (t) = A−9

A2+A−2 〈D〉|t :=A−4 = t + t3 − t4.

Effie Kalfagianni (MSU) J 12 / 23



Generalization:Colored Jones Polynomials

The Colored Jones Polynomials: Infinite
sequence of Laurent polynomials {Jn

K (t)}n
encoding the Jones polynomial of K and these of
the links K s that are the parallels of K .

Formulae for Jn
K (t) come from representation

theory of Quantum groups!: representation
theory of SU(2) (decomposition of tensor
products of representations). For example,
They look like

J1
K (t) = 1, J2

K (t) = JK (t)- Original JP,

J3
K (t) = JK 2(t)− 1, J4

K (t) = JK 3(t)− 2JK (t), . . .

Jn
K (t) can be calculated from any knot diagram

via processes such as Skein Theory, State sums,
R-matrices, Fusion rules....
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C: The CJP predicts Volume?
Question: How do the CJP relate to geometry/topology of knot
complements?

Kashaev+ H. Murakami - J. Murakami (2000) proposed

Volume Conjecture. Suppose K is a knot in S3. Then

2π · lim
n→∞

log |Jn
K (e

2πi/n)|
n

= vtet||S3 r n(K )||

Wide Open!
41 (by Ekholm), knots up to 7 crossings (by Ohtsuki)
torus knots (by Kashaev and Tirkkonen); special satellites of torus knots
(by Zheng).

.

Some difficulties:
For families of links we have Jn

K (e
2πi/n) = 0, for all n.

“State sum” for Jn
K (e

2πi/n) has oscillation/cancelation.

No good behavior of Jn
K (e

2πi/n) with respect to geometric decompositions.
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D. Coarse relations: Colored Jones polynomial
For a knot K , and n = 1,2, . . . , we write its n-colored Jones polynomial:

Jn
K (t) := αntmn + βntmn−1 + · · ·+ β′ntkn+1 + α′ntkn ∈ Z[t , t−1]

For “nice” knots coefficients of Jn
K (t) stabilize:

(Dasbach-Lin, Armond, 2005)

|α′n| = |αn−1| = · · · = |α′2, |

|β′n| =
∣∣β′n−1

∣∣ = · · · = |β′2|,
· · · · · · · · · · · ·

|βn| =
∣∣β′n−1

∣∣ = · · · = |β2|,

|αn| = |αn−1| = · · · = |α2|,

Stable coefficients control the volume of the link complement.!!
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A Coarse Volume Conjecture?

Theorem (Dasbach-Lin, Futer-K.-Purcell, Giambrone, 05-’15’)
Suppose that K is a nice hyperbolic link. There are universal constants
C1,C2 > 0 such that for any hyperbolic link that is nice we have

C1 B(K ) ≤ Vol (S3 r K ) < C2 B(K ),

B(K ) =an explicit function of stable coefficients of the colored Jones
polynomials of K .

C. Lee, obtained stable coefficients; and
generalized above theorem,
for large classes of links that don’t satisfy the standard “nice” hypothesis (
2017)

Question. Does above theorem generalize to all hyperbolic links?
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E. A Volume Conjecture for all 3-manifolds

(Turaev-Viro, 1990): For odd integer r and q = e
2πi

r

TVr (M) := TVr (M,q),

a real valued invariant of compact oriented 3-manifolds M.

TVr (M,q) are combinatorially defined invariants and can be computed
from triangulations of M by a state sum formula. Sums involve quantum
6j -sympols.
Terms are highly “oscillating” and there is term canellation.
Combinatorics have roots in representation theory of quantum groups.

Volume Conjecture(Q. Chen- T. Yang, 2015) For M compact, orientable

lim
r→∞

2π
r

log(TVr (M,e
2πi

r )) = vtet||M||.
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What do we know?:

Quite a bit.....

(Detcherrry-K.-Yang, 2016) (First examples) of hyperbolic links in S3: The
complement of 41 knot and of the Borromean rings.

(Ohtsuki, 2017) Infinite families of closed hyperbolic 3-manifolds.

(Belletti-Detcherry-K- Yang, 2018) Infinite family of cusped hyperbolic
3-manifolds that are universal: They produce all M by a “standard”
topological operation ( Dehn filling).

(Detcherry-K, 2017) All links zero Gromov norm links in S3 and in
connected sums of copies of S1 × S2.

(Detcherry, Detcherry-K, 2017) Several families of 3-manifolds with
non-zero Gromov, with or with or without boundary.
(Kumar, 2019, Wong-Yang) Infinite families of hyperbolic links in S3.
(Kumar-Melby, 2021): infinite families of closed manifolds with arbitrarily
large number of hyperbolic pieces...
More, Kumar-Melby (2022), Belletti (2019), Wong, Yang-Wong...
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Links complements in S3?

For link complements TVr (S3 r K ,e
2πi

r ) are obtained from colored Jones link
polynomial.

Theorem (Detcherry-K., 2017)
For K ⊂ S3 and r = 2m + 1 there is a constant ηr independent of K so that

TVr (S3 r K ,e
2πi

r ) = η2
r

m∑
n=1

|Jn
K (e

4πi
r )|2.

Good news: no technical difficulties as in original Volume Conjecture (of
KMM)

TVr ((S3 r K ) are not identically zero for any link in S3!

The quantity log(TVr ((S3 r K )) is always well defined.

This version of VC behaves nicely under certain topological operationas
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F. Building blocks of TV invariants relate to volumes!!

Color the edges of a triangulation with certain “quantum ” data

Colored tetrahedra get “6j-symbol” Q := Q(a1,a2,a3,a4,a5,a6)= function
of the ai and r . TVr (M) is a weighted sum over all tetrahedra of
triangulation (State sum).

(BDKY) Asympotics of Q relate to volumes of geometric polyhedra:

2π
r

log (Q) 6 voct + O(
log r

r
).

Proved VC for 3-manifolds built by octahedra!

In general, hard to control term cancellation in state sum.
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A more robust statement?:

Consider

LTV (M) = lim sup
r→∞

2π
r

log(TVr (M)), and lTV (M) = lim inf
r→∞

2π
r

log(TVr (M))

Conjecture: There exists universal constants B,C such that for any compact
orientable 3-manifold M with empty or toroidal boundary we have

B ||M|| 6 lTV (M) 6 LTV (M) 6 C ||M||.

Half is done!:

Theorem (Detcherry-K., 2017)
There exists a universal constant C > 0 such that for any compact orientable
3-manifold M with empty or toroidal boundary we have

LTV (M) 6 C||M||,

Effie Kalfagianni (MSU) J 21 / 23



A more robust statement?:

Consider

LTV (M) = lim sup
r→∞

2π
r

log(TVr (M)), and lTV (M) = lim inf
r→∞

2π
r

log(TVr (M))

Conjecture: There exists universal constants B,C such that for any compact
orientable 3-manifold M with empty or toroidal boundary we have

B ||M|| 6 lTV (M) 6 LTV (M) 6 C ||M||.

Half is done!:

Theorem (Detcherry-K., 2017)
There exists a universal constant C > 0 such that for any compact orientable
3-manifold M with empty or toroidal boundary we have

LTV (M) 6 C||M||,
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Why are TV invariants “better” than CJP?

TV invariants are defined for all compact, oriented 3-manifolds.

TV invariants are defined on triangulations of 3-manifolds: For hyperbolic
3-manifolds the (hyperbolic) volume can be estimated/calculated from
appropriate triangulations.

TV invariants are part of a Topological Quantum Field Theory (TQFT) and
they can be computed by cutting and gluing 3-manifolds along surfaces.
The TQFT behaves particularly well when cutting along spheres and tori.
In particular it behaves well with respect to prime and JSJ
decompositions.
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