Crosscap numbers and relations to other knot invariants

joint w/ Christine Lee (UT, Austin)

Invariants in Low Dimensional Geometry, Gazi University, Ankara, Turkey, August 10-14, 2015

Setting and outline of talk

C(K)= crosscap number (a. k. a. non-orientable genus) of a knot K= smallest genus over all non-orientable surfaces spanned by K.

Plan:

- Review what is known- Compare with the (oriented) genus.
- There is an algorithm to compute knot genus.
- No algorithm is known to compute crosscap number. Indicate progress/difficulties.
- Discuss calculations for knots up to 12 crossings.

Restrict to alternating knots:

- Classical genus results:
- Genus is calculated from alternating diagrams (*Seifert's algorithm*).
- Genus is calculated from the Alexander polynomial.
- Discuss non-orientable counterparts:
- Crosscap number is calculated from alternating diagrams (*state surfaces*).
- Crosscap number is estimated/calculated from the Jones polynomial.

Definitions etc

• Knots span surfaces: both orientable and non-orientable.

Definitions etc

• Knots span surfaces: both orientable and non-orientable.

• **Definition.** *S* non-orientable surface spanned by a *k*-component link *K*. *crosscap number of S*

$$C(S) = 2 - \chi(S) - k.$$

- The *crosscap number of a link K* is the minimum crosscap number over all non-orientable surfaces spanned by *K*.
- Crosscap numbers first studied by B. E. Clark– made several observations (1978).

E. Kalfagianni

Facts, bounds and algorithms:

- Convention: C(Unknot) = 0.
- g(K)= genus of K. Then, $C(K) \leq 2g(K) + 1$.
- C(K) = 1 iff K is a (2, p) torus knot or a (2, p) cable.
 skip
- If K alternating, then C(K) = 1 iff K is a (2, p) torus knot.
- (H. Murakami- Yasuhara) If c(K)=crossing number of K, then

$$C(K) \leq \left\lfloor \frac{c(K)}{2} \right\rfloor.$$

and the bound is sharp.

 Crosscap numbers are known for families: (*e.g. 2-bridge knots, pretzel knots*)– Bessho, Hirasawa, Teragaito, Ichiharra, Mizushima.....

However

Facts, bounds and algorithms:

- Convention: C(Unknot) = 0.
- g(K)= genus of K. Then, $C(K) \leq 2g(K) + 1$.
- C(K) = 1 iff K is a (2, p) torus knot or a (2, p) cable.
 skip
- If K alternating, then C(K) = 1 iff K is a (2, p) torus knot.
- (H. Murakami- Yasuhara) If c(K)=crossing number of K, then

$$C(K) \leq \left\lfloor \frac{c(K)}{2} \right\rfloor.$$

and the bound is sharp.

 Crosscap numbers are known for families: (*e.g. 2-bridge knots, pretzel knots*)– Bessho, Hirasawa, Teragaito, Ichiharra, Mizushima.....

However

- C(K) not known for a lot of knots up to 12 crossings (g(K) is known).
- There is no known algorithm to calculate C(K) (there is for g(K))
- Issue: A surface realizing C(K) need not be ∂- incompressible (for g(K) is).

Facts, bounds and algorithms con't:

- **Pathology:** In fact, all surfaces realizing *C*(*K*) may be obtained from oriented ones by adding a "*trivial crosscap*".
- This creates a ∂ -compression disk in $M_K = S^3 \setminus K$. (Red line below).

- Pathology Example: The knot $K = 7_4$: We have g(K) = 1. Murasugi-Yasuhara calculated C(K) = 3 = 2g(K) + 1.
- All surfaces for 7_4 , realizing C(K) = 3, are obtained from a genus 1 Seifert surface by adding a trivial crosscap.

Facts, bounds and algorithms: Normal surface theory

- Oriented genus g(K):
- Algorithm and computational complexity (Hass-Lagarias-Pippenger -1999).
- An important point noted by H-L-P is that "normalization" process gives:

Theorem

Let \mathcal{T} be a triangulation of a knot complement M_K . Then there is a fundamental, normal, orientable spanning surface of genus g(K).

Facts, bounds and algorithms: Normal surface theory

- Oriented genus g(K):
- Algorithm and computational complexity (Hass-Lagarias-Pippenger -1999).
- An important point noted by H-L-P is that "normalization" process gives:

Theorem

Let T be a triangulation of a knot complement M_K . Then there is a fundamental, normal, orientable spanning surface of genus g(K).

- Basic steps of Algorithm: Given K,
- Obtain a "<u>suitable</u>" triangulation \mathcal{T} of $M_{\mathcal{K}}$.
- 2 Enumerate all fundamental normal surfaces in \mathcal{T} .
- Identify the spanning oriented ones among surfaces in step 2.
- Identify the smallest genus surface that appears in step 3.

Algorithms: Normal surface theory

• What about C(K)?

August 2015

Algorithms: Normal surface theory

- What about C(K)?
- Above discussed pathology creates complications:
- B. Burton and Burton-Ozlen (2012) made progress. First they note the following:

Theorem (Burton-Ozlen)

Let T be a triangulation of a knot complement M_K . Then, either

- there is a fundamental, normal, non-orientable spanning surface with C(S) = C(K); or
- $C(K) \in \{2g(K), 2g(K) + 1\}.$
- They obtain an Algorithm: Given K
- Obtain a single value that is C(K); or
- Solution Narrow the values for C(K) to two possible ones.

Algorithms: Normal surface theory

- What about C(K)?
- Above discussed pathology creates complications:
- B. Burton and Burton-Ozlen (2012) made progress. First they note the following:

Theorem (Burton-Ozlen)

Let T be a triangulation of a knot complement M_K . Then, either

- there is a fundamental, normal, non-orientable spanning surface with C(S) = C(K); or
- $C(K) \in \{2g(K), 2g(K) + 1\}.$
- They obtain an Algorithm: Given K
- Obtain a single value that is C(K); or
- Solution 8 Narrow the values for C(K) to two possible ones.
 - Burton-Olsen used integer programing techniques to get upper bounds for C(K) calculated several previously unknown values.

E. Kalfagianni

Low crossing data: up to 12 crossings

Info copied from KnotInfo (Cha- Livingston).

- $C(7_4) = 3$ (Murakami-Yasuhara)
- 2-bridge cases; C(K) determined by Teragaito and Hirasawa
- Typically KnotInfo gives upper bounds that were obtained by finding non-orientable surfaces *state surfaces*.
- Burton-Ozlen: Used normal surfaces and integer programming to find non-orientable surfaces of small crosscap number. They got new bounds for 778 of the knots in the table.
- (2012) Adams and Kindred: Method that determines the crosscap number of an alternating knot. They got previously unknown values for:

 $8_{10,15,16,17,18} \ and \ 9_{16,22,24,25,28,29,30,32,33,34,36,37,38,39,40,41}.$

 (2014) K.- Lee: Bounds in terms of the Jones polynomial. Improved the bounds for **almost half** of the table knots, and precisely determined the number for **283** of the 12-crossing knots.

State surfaces

For a Kauffman state σ of a link diagram, form a *state surface* S_{σ} :

- Each state circle bounds a disk in S_{σ} (nested disks drawn on top).
- At each edge (for each crossing) attach twisted band.

• Special Cases: Seifert state, checkerboard states of alternating knots.

- [Murasugi (1960)]. The Seifert state applied to a reduced alternating diagram D(K) gives a minimum genus surface.
- [Adams-Kindred (2013)]. Gave an algorithm to calculate C(K) of alternating knots, from state surfaces.
- The Algorithm: D = D(K) alternating knot diagram. Think of D as a 4=valent graph.
- If *D* has regions that 1-gons or 2-gons resolve the corresponding crossings so that the region becomes a state circle.
- Suppose *D* has no 1-gons or 2-gons; then it has triangles.
- Pick a triangle region on *D*. Create two branches as shown below:

- Repeat until each branch reaches a projection without crossings.
- Choose the resulting surfaces *S* that have maximal Euler characteristic.

Theorem (Adams-Kindred, 2013)

After applying the algorithm to an alternating diagram of k-component link K:

- If there is S as above that is non-orientable then $C(K) = 2 \chi(S) k$.
- If all surfaces produced by the algorithm are orientable, S is a minimal genus Seifert surface of K and C(K) = 2g(K) + 1.

An example: Fig-8:

• Bigons labeled 1 and 2 and diagram resulting from applying the first step of the Algorithm. New bigon regions labeled 1, 2, and 3.

• State surfaces from different choices of bigon regions.

• Left one gives a non-orientable surface of maximal Euler characteristic $\chi(S) = -1$. Hence, C(K) = C(S) = 2.

Knot polynomial bounds:

• **Genus:** (Crowell, Murasugi, 1960) For *K* alternating, *g*(*K*) is half the degree span of the *Alexander polynomial of K*.

Knot polynomial bounds:

• **Genus:** (Crowell, Murasugi, 1960) For *K* alternating, *g*(*K*) is half the degree span of the *Alexander polynomial of K*.

Let

$$J_{\mathcal{K}}(t) = \alpha_{\mathcal{K}}t^{n} + \beta_{\mathcal{K}}t^{n-1} + \ldots + \beta_{\mathcal{K}}'t^{s+1} + \alpha_{\mathcal{K}}'t^{s}$$

denote the Jones polynomial of K.

Knot polynomial bounds:

• **Genus:** (Crowell, Murasugi, 1960) For *K* alternating, *g*(*K*) is half the degree span of the *Alexander polynomial of K*.

Let

$$J_{\mathcal{K}}(t) = \alpha_{\mathcal{K}}t^{n} + \beta_{\mathcal{K}}t^{n-1} + \ldots + \beta_{\mathcal{K}}'t^{s+1} + \alpha_{\mathcal{K}}'t^{s}$$

denote the Jones polynomial of K.

• Set
$$T_K := |\beta_K| + |\beta'_K|$$
.

Theorem (K.-Lee, 2014)

Let K be a non-split, prime, non-torus, alternating link with k-components and with crosscap number C(K). We have

$$\left[\frac{T_{\mathcal{K}}}{3}\right]+2-k \leq C(\mathcal{K}) \leq T_{\mathcal{K}}+2-k,$$

Furthermore, both bounds are sharp.

Sharpness:

• Knots: For K =alternating, non-torus knot we have

$$\left\lceil \frac{T_{\mathcal{K}}}{3} \right\rceil + 1 \leq C(\mathcal{K}) \leq \min \left\{ T_{\mathcal{K}} + 1, \left\lfloor \frac{s_{\mathcal{K}}}{2} \right\rfloor \right\}$$

where $T_{\mathcal{K}}$ as above and $s_{\mathcal{K}}$ =degree span of $J_{\mathcal{K}}(t)$. Bounds are sharp.

 Some examples: Knotinfo C(K) upper bound agrees with above lower bound. T_K value also from Knotinfo. We determine that C(K) = 3.

K	T_K	K	T_K	K	T_K	K	T_K
10 ₈₅	6	10 ₉₃	6	10 ₁₀₀	6	11a ₇₄	5
11a ₉₇	5	11a ₂₂₃	5	11a ₂₅₀	5	11a ₂₅₉	5
11a ₂₆₃	4	11a ₂₇₉	6	11a ₂₉₃	6	11a ₃₁₃	6
11a ₃₂₃	6	11a ₃₃₀	6	11a ₃₃₈	4	11a ₃₄₆	6
12a ₀₆₃₆	5	12a ₀₆₄₁	4	12a ₀₇₅₃	5	12a ₀₈₂₇	5
12a ₀₈₄₅	5	12a ₀₉₇₀	6	12a ₀₉₈₄	6	12a ₁₀₁₇	6
12a ₁₀₃₁	5	12a ₁₀₉₅	6	12a ₁₁₀₇	6	12a ₁₁₁₄	6
12a ₁₁₄₂	5	12a ₁₁₇₁	6	12a ₁₁₇₉	6	12a ₁₂₀₅	6
12a ₁₂₂₀	6	12a ₁₂₄₀	6	12a ₁₂₄₃	4	12a ₁₂₄₇	6

Calculating T_K and s_K :

- Let D = D(K) reduced alternating knot diagram.
- (Murasugi, Kauffman '80s) We have s_k = c(D) = c(K)=number of crossings
- Let \mathbb{G}_A and \mathbb{G}_B the reduced checkerboard graphs (a.k.a. reduced Tait graphs) of D.
- (Dasbach-Lin) We have

$$T_{\mathcal{K}} = 2 - \chi(\mathbb{G}_{\mathcal{A}}) - \chi(\mathbb{G}_{\mathcal{B}}).$$

- If *D* is *twist reduced*, with twist number t = t(D), then $T_k = t$.
- **Definition.** *twist region* = maximal string of bigons *Twist reduced:* A or B must be a string of bigons.

Theorem (K.- Lee, 2014)

Let D(K) a twist reduced, prime, alternating diagram with twist number $t \ge 2$ and crossing number c. We have sharp bounds:

$$1+\left\lceil \frac{t}{3} \right\rceil \leq C(K) \leq \min\left\{t+1, \left\lfloor \frac{c}{2} \right\rfloor\right\}.$$

- Sharp upper bound: $K = 10_3$ (left) C(K) = 2g(K) + 1 = 3 = t + 1.
- Sharp lower bound: $K = 10_{123}$ Both bounds give 5. We get C(K) = 5.

Theorem (K.- Lee, 2014)

Let D(K) a twist reduced, prime, alternating diagram with twist number $t \ge 2$ and crossing number c. We have sharp bounds:

$$1+\left\lceil \frac{t}{3} \right\rceil \leq C(K) \leq \min\left\{t+1, \left\lfloor \frac{c}{2} \right\rfloor\right\}.$$

- Sharp upper bound: $K = 10_3$ (left) C(K) = 2g(K) + 1 = 3 = t + 1.
- Sharp lower bound: $K = 10_{123}$ Both bounds give 5. We get C(K) = 5.

• Note: Upper bound of theorem follows easily. Discuss the lower bound.

Getting the lower bound: Outline

- D = D(K) prime, reduced, twist-reduced alternating diagram, with t > 1.
 - **Step 1.** Show there is a surface *S* coming from the Adams-Kindred algorithm, and an *augmented link L*, obtained from *D*, such that "augmentation components" added to *D* don't intersect *S*.
 - **Step 2.** Use geometry of *L* (*angled polyhedral structures*) and normal surface theory to obtain a surface *S*', such that
 - S' is a normal surface,
 - 2 C(K) can be calculated from S'
 - Step 3. To obtain the lower bound of C(K) in terms of t, combine
 - a combinatorial notion of area that satisfies Gauss-Bonnet (Casson),
 - Estimates of slope lengths on cusps of augmented links (Futer-Purcell based using work of Lackenby).

Step1: Augmenting:

- Starting with D = D(K) a prime, reduced, twist-reduced alternating diagram, we want to augment "around" the Adams-Kindred algorithm.
- Augmenting around bigon regions of *D* and creating a state surface disjoint from the augmentation component:

 Augmenting around triangle regions and creating a state surface disjoint from the augmentation components:

"Nice" polyhedral decomposition:

Alternating link K, augmented and fully augmented links IJ and a L.

- $M_L = S^3 \setminus L$ has a "nice" decomposition (Adams) into two convex ideal polyhedra P_1 and P_2 in the hyperbolic 3-space. (truncated vertices).
- Dihedral angles of P_i are $\pi/2$. Thus M_L is hyperbolic.
- Edges of $P_i \cap \partial M_L$ called *boundary edges*.
- Faces of P_i ∩ ∂M_L called *boundary faces*. They subdivide ∂M_L into rectangles.
- Interior faces of P_i admit checker-board coloring: opposite sides of $P_i = -\infty$

Step 2:"Normalizing C(K):"

- **Recall:** For K=alternating, have augmented link L and surface S in M_L such that C(S) = C(K).(S need not be ∂ -incompressible).
- Going through the normalization process: There is a normal surface, S' in M_L so that either C(K) = 1 − χ(S') or C(K) = 2 − χ₍S').
- combinatorial area $A_c(S')$ = Sum of areas of all normal disks of S'.
- Normal disks look like:

Combinatorial area of a normal disk D that crosses m interior edges of P_i:

$$A_c(D) = \frac{m\pi}{2} + \pi |D \cap \partial E(L)| - 2\pi.$$

We have

$$A_c(S') = -2\pi\chi(S')$$

There is a notion of combinatorial length also due to Lackenby, such that

 $A_c(S')$ > total length of $\partial S'$ on ∂M_L .

• Futer-Purcell: Found lower bounds of combinatorial curve lengths on ∂M_L in terms of the twist number of knot diagram to begin with.

We have

$$A_c(S') = -2\pi\chi(S')$$

There is a notion of combinatorial length also due to Lackenby, such that

 $A_c(S')$ > total length of $\partial S'$ on ∂M_L .

- Futer-Purcell: Found lower bounds of combinatorial curve lengths on ∂M_L in terms of the twist number of knot diagram to begin with.
- **Non-alternating knots:** Futer-Purcell used similar methods to estimate the oriented genus of "highly twisted" knots (a. k. a. knots with diagrams that have at least 7 crossings per twist region).
- Argument also goes through to estimate crosscap numbers of highly twisted knots in terms of twist number.
- Jones polynomial coarsely determines crosscap numbers of highly twisted knots

We have

$$\mathsf{A}_{c}(\mathcal{S}') = -2\pi\chi(\mathcal{S}')$$

There is a notion of combinatorial length also due to Lackenby, such that

 $A_c(S')$ > total length of $\partial S'$ on ∂M_L .

- Futer-Purcell: Found lower bounds of combinatorial curve lengths on ∂M_L in terms of the twist number of knot diagram to begin with.
- **Non-alternating knots:** Futer-Purcell used similar methods to estimate the oriented genus of "highly twisted" knots (a. k. a. knots with diagrams that have at least 7 crossings per twist region).
- Argument also goes through to estimate crosscap numbers of highly twisted knots in terms of twist number.
- Jones polynomial coarsely determines crosscap numbers of highly twisted knots
- Question: Does the Jones polynomial (coarsely) determine the crosscap number of all knots?

We have

$$A_c(S') = -2\pi\chi(S')$$

There is a notion of combinatorial length also due to Lackenby, such that

 $A_c(S')$ > total length of $\partial S'$ on ∂M_L .

- Futer-Purcell: Found lower bounds of combinatorial curve lengths on ∂M_L in terms of the twist number of knot diagram to begin with.
- **Non-alternating knots:** Futer-Purcell used similar methods to estimate the oriented genus of "highly twisted" knots (a. k. a. knots with diagrams that have at least 7 crossings per twist region).
- Argument also goes through to estimate crosscap numbers of highly twisted knots in terms of twist number.
- Jones polynomial coarsely determines crosscap numbers of highly twisted knots
- Question: Does the Jones polynomial (coarsely) determine the crosscap number of all knots? What about the Khovanov homology?