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Setting and outline of talk

C(K)= crosscap number (a. k. a. non-orientable genus) of a knot K=
smallest genus over all non-orientable surfaces spanned by K.

Plan:
@ Review what is known- Compare with the (oriented) genus.
@ There is an algorithm to compute knot genus.

@ No algorithm is known to compute crosscap number. Indicate
progress/difficulties.

@ Discuss calculations for knots up to 12 crossings.

Restrict to alternating knots:
@ Classical genus results:
@ Genus is calculated from alternating diagrams (Seifert’s algorithm).

@ Genus is calculated from the Alexander polynomial.
@ Discuss non-orientable counterparts:

@ Crosscap number is calculated from alternating diagrams (state
surfaces).

@ Crosscap number is estimated/calculated from the Jones polynomial.
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Definitions etc

@ Knots span surfaces: both orientable and non-orientable.
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Definitions etc

@ Knots span surfaces: both orientable and non-orientable.

(D) [

@ Definition. S non-orientable surface spanned by a k-component link K.
crosscap number of S

C(S) =2 - x(S) — k.

@ The crosscap number of a link K is the minimum crosscap number over
all non-orientable surfaces spanned by K.

@ Crosscap numbers first studied by B. E. Clark— made several
observations (1978).

E. Kalfagianni August 2015 3/21



Facts, bounds and algorithms:

@ Convention: C(Unknot) = 0.

@ g(K)= genusof K. Then, C(K) < 2g(K) + 1.

° C(K) =1iff Kis a (2, p) torus knot or a (2, p) cable.
o ffk;?alternating, then C(K) = 1iff Kiis a (2, p) torus knot.

@ (H. Murakami- Yasuhara) If ¢(K)=crossing number of K, then

o< |40

and the bound is sharp.
@ Crosscap numbers are known for families: (e.g. 2-bridge knots, pretzel knots )—
Bessho, Hirasawa, Teragaito, Ichiharra, Mizushima.....

However
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° C(K) =1iff Kis a (2, p) torus knot or a (2, p) cable.
o ffk;?alternating, then C(K) = 1iff Kiis a (2, p) torus knot.

@ (H. Murakami- Yasuhara) If ¢(K)=crossing number of K, then

o< |40

and the bound is sharp.
@ Crosscap numbers are known for families: (e.g. 2-bridge knots, pretzel knots )—
Bessho, Hirasawa, Teragaito, Ichiharra, Mizushima.....

However

@ C(K) not known for a lot of knots up to 12 crossings (g(K) is known).

@ There is no known algorithm to calculate C(K) (there is for g(K))

@ Issue: A surface realizing C(K) need not be 9- incompressible (for g(K) is).
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Facts, bounds and algorithms con't:

@ Pathology: In fact, all surfaces realizing C(K) may be obtained from
oriented ones by adding a “frivial crosscap’”.

@ This creates a 9-compression disk in Mx = S® \ K. ( Red line below).

W

@ Pathology Example: The knot K = 74: We have g(K) = 1.
Murasugi-Yasuhara calculated C(K) = 3 = 2g(K) + 1.

@ All surfaces for 74, realizing C(K) = 3, are obtained from a genus 1
Seifert surface by adding a trivial crosscap.
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Facts, bounds and algorithms: Normal surface theory

@ Oriented genus g(K):

@ Algorithm and computational complexity (Hass-Lagarias-Pippenger
-1999).

@ An important point noted by H-L-P is that “normalization” process gives:

LetT be a triangulation of a knot complement Mk. Then there is a
fundamental, normal, orientable spanning surface of genus g(K).
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Facts, bounds and algorithms: Normal surface theory

@ Oriented genus g(K):

@ Algorithm and computational complexity (Hass-Lagarias-Pippenger
-1999).

@ An important point noted by H-L-P is that “normalization” process gives:

LetT be a triangulation of a knot complement Mk. Then there is a
fundamental, normal, orientable spanning surface of genus g(K).

@ Basic steps of Algorithm: Given K,

@ Obtain a “ suitable” triangulation 7 of M.
@ Enumerate all fundamental normal surfaces in 7.

@ Identify the spanning oriented ones among surfaces in step 2.

@ Identify the smallest genus surface that appears in step 3.
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Algorithms: Normal surface theory

@ What about C(K)?
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Algorithms: Normal surface theory

@ What about C(K)?

@ Above discussed pathology creates complications:

@ B. Burton and Burton-Ozlen (2012) made progress. First they note the
following:

Theorem (Burton-Ozlen )

Let T be a triangulation of a knot complement My. Then, either

@ there is a fundamental, normal, non-orientable spanning surface with
C(S) = C(K); or

@ C(K) e {29(K), 2g9(K) + 1}.

@ They obtain an Algorithm: Given K

@ Obtain a single value that is C(K); or
@ Narrow the values for C(K) to two possible ones.
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Algorithms: Normal surface theory

@ What about C(K)?

@ Above discussed pathology creates complications:

@ B. Burton and Burton-Ozlen (2012) made progress. First they note the
following:

Theorem (Burton-Ozlen )

Let T be a triangulation of a knot complement My. Then, either

@ there is a fundamental, normal, non-orientable spanning surface with
C(S) = C(K); or

@ C(K) e {29(K), 2g9(K) + 1}.

@ They obtain an Algorithm: Given K

@ Obtain a single value that is C(K); or
@ Narrow the values for C(K) to two possible ones.

@ Burton-Olsen used integer programing techniques to get upper bounds
for C(K) calculated several previously unknown values.
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Low crossing data: up to 12 crossings

Info copied from Knotinfo ( Cha- Livingston).
@ C(74) = 3 (Murakami-Yasuhara)

@ 2-bridge cases; C(K) determined by Teragaito and Hirasawa

@ Typically Knotlnfo gives upper bounds that were obtained by finding
non-orientable surfaces state surfaces.

@ Burton-Ozlen: Used normal surfaces and integer programming to find
non-orientable surfaces of small crosscap number. They got new
bounds for 778 of the knots in the table.

@ (2012) Adams and Kindred: Method that determines the crosscap
number of an alternating knot. They got previously unknown values for:

810,15,16,17,18 @nd 916 22 24 25 28 29 30,32,33,34,36,37,38,39,40,41 -

@ (2014) K.- Lee: Bounds in terms of the Jones polynomial. Improved the
bounds for almost half of the table knots, and precisely determined the
number for 283 of the 12-crossing knots.
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State surfaces

For a Kauffman state o of a link diagram, form a state surface S,:

@ Each state circle bounds a disk in S, (nested disks drawn on top).
@ At each edge (for each crossmg ) attach tW|sted band.

A—resolutlon

—_— 1

/? l
B-resolution
@ Special Cases: Seifert state, checkerboard states of alternating knots.
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Alternating knots

@ [Murasugi (1960)]. The Seifert state applied to a reduced alternating
diagram D(K) gives a minimum genus surface.

@ [Adams-Kindred (2013)]. Gave an algorithm to calculate C(K) of
alternating knots, from state surfaces.

@ The Algorithm: D = D(K) alternating knot diagram. Think of D as a
4=valent graph.

@ If D has regions that 1-gons or 2-gons resolve the corresponding
crossings so that the region becomes a state circle.

@ Suppose D has no 1-gons or 2-gons; then it has triangles.

@ Pick a triangle region on D. Create two branches as shown below:
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Algorithm con’t:

N/ N X—

\/

\ A\
@ Repeat until each branch reaches a projection without crossings.

@ Choose the resulting surfaces S that have maximal Euler characteristic.

Theorem (Adams-Kindred, 2013)

After applying the algorithm to an alternating diagram of k-component link K :
@ Ifthere is S as above that is non-orientable then C(K) = 2 — x(S) — k.

@ If all surfaces produced by the algorithm are orientable, S is a minimal
genus Seifert surface of K and C(K) = 2g(K) + 1.
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An example: Fig-8:

@ Bigons labeled 1 and 2 and diagram resulting from applying the first step
of the Algorithm. New bigon regions labeled 1, 2, and 3.

A
&V

@ State surfaces from different choices of bigon regions.

O

@ Left one gives a non-orientable surface of maximal Euler characteristic
x(S) = —1. Hence, C(K) = C(S) = 2.
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Knot polynomial bounds:

@ Genus: (Crowell, Murasugi, 1960) For K alternating, g(K) is half the
degree span of the Alexander polynomial of K.
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@ Genus: (Crowell, Murasugi, 1960) For K alternating, g(K) is half the
degree span of the Alexander polynomial of K.

o Let
Jk(t) = akt” + Brt" .4 Bt + ajt®

denote the Jones polynomial of K.
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Knot polynomial bounds:

@ Genus: (Crowell, Murasugi, 1960) For K alternating, g(K) is half the
degree span of the Alexander polynomial of K.

o Let
Jk(t) = akt” + Brt" .4 Bt + ajt®
denote the Jones polynomial of K.

© Set Tk := |Bk| + 5kl

Theorem (K.-Lee, 2014)

Let K be a non-split, prime, non-torus, alternating link with k-components and
with crosscap number C(K). We have

{%w +2-k < CK) < Tk+2—k,

Furthermore, both bounds are sharp.

v
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@ Knots: For K =alternating, non-torus knot we have

“—ﬂ+1 < C(K) < min{Te+1, {S?KJ}

where Ty as above and sx =degree span of Jx(t). Bounds are sharp.

@ Some examples: Knotinfo C(K) upper bound agrees with above lower
bound. Tk value also from Knotinfo. We determine that C(K) = 3.

K Tk K Tk K Tk K Tk

10g5 6 1093 6 10100 6 11az4 5

11 ag7z 5 11 aos23 5 11 ass0 5 11 assg9 5
11 a263 4 11 ao79 6 11 ao93 6 11 as13 6
11 as23 6 11 a330 6 11 a338 4 11 as346 6
1 230636 5 1 2&0541 4 1 2210753 5 1 2210827 5
1 2a0845 5 1 230970 6 1 2a0984 6 1 2a1 017 6
1231031 5 1231095 6 128.1107 6 1231114 6
1 2a1 142 5 1 2211 171 6 1 2a1179 6 1 231205 6
1 2a1 220 6 1 2&1 240 6 1 2a1 243 4 1 2a1 247 6

E. Kalfagianni August 2015 14/21



Calculating Tk and sk:

@ Let D = D(K) reduced alternating knot diagram.

@ (Murasugi, Kauffman '80s) We have sx = ¢(D) = ¢(K)=number of
crossings

@ Let G4 and Gg the reduced checkerboard graphs (a.k.a. reduced Tait
graphs) of D.

@ (Dasbach-Lin) We have
Tk =2 = x(Ga) — x(Gs).
o If Dis twist reduced, with twist number t = t(D), then Ty = t.

@ Definition. twist region = maximal string of bigons
Twist reduced: A or B must be a string of bigons.

A

~ - -
~

S
IL_



Twist number and crosscap number

Theorem (K.- Lee, 2014)

Let D(K) a twist reduced, prime, alternating diagram with twist number t > 2
and crossing number c. We have sharp bounds:

1+ Ew < C(K) < min{t+1’ {gJ}

@ Sharp upper bound: K = 103( left )- C(K) =2g(K)+1=3=1t+1.
@ Sharp lower bound: K = 10423— Both bounds give 5. We get C(K) = 5.

<7¥\ (7
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Twist number and crosscap number

Theorem (K.- Lee, 2014)

Let D(K) a twist reduced, prime, alternating diagram with twist number t > 2
and crossing number c. We have sharp bounds:

1+ Ew < C(K) < min{t+1’ {gJ}

@ Sharp upper bound: K = 103( left )- C(K) =2g(K)+1=3=1t+1.
@ Sharp lower bound: K = 10423— Both bounds give 5. We get C(K) = 5.

T
/ 4
kfj @

@ Note: Upper bound of theorem follows easily. Discuss the lower bound.
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Getting the lower bound: Outline

D = D(K) prime,reduced, twist-reduced alternating diagram, with t > 1.

@ Step 1. Show there is a surface S coming from the Adams-Kindred
algorithm, and an augmented link L, obtained from D, such that
“augmentation components” added to D don't intersect S.

@ Step 2. Use geometry of L (angled polyhedral structures) and normal
surface theory to obtain a surface S’, such that
@ S’ is anormal surface,
@ C(K) can be calculated from S’

@ Step 3. To obtain the lower bound of C(K) in terms of {, combine
@ a combinatorial notion of area that satisfies Gauss-Bonnet ( Casson),

@ Estimates of slope lengths on cusps of augmented links (Futer-Purcell
based using work of Lackenby).
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Step1: Augmenting:

@ Starting with D = D(K) a prime,reduced, twist-reduced alternating
diagram, we want to augment “around” the Adams-Kindred algorithm.

@ Augmenting around bigon regions of D and creating a state surface
disjoint from the augmentation component:

" f
L X

@ Augmenting around triangle regions and creating a state surface disjoint

from the augmentation components:
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“Nice” polyhedral decomposition:

Alternating link K, augmented and fully augmented links IJ and a L.

@ M, = S® < L has a “nice” decomposition (Adams) into two convex ideal
polyhedra P; and P in the hyperbolic 3-space. (truncated vertices).

@ Dihedral angles of P; are /2. Thus M, is hyperbolic.
@ Edges of P;n oM, called boundary edges.

@ Faces of P; N oM, called boundary faces. They subdivide OM; into
rectangles.

@ Interior faces of P; admit checker-board coloring:-opposite-sides of
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Step 2:*“Normalizing C(K):”

@ Recall: For K=alternating, have augmented link L and surface Sin M,
such that C(S) = C(K).( S need not be d-incompressible).

@ Going through the normalization process: There is a normal surface, S’
in M so that either C(K) =1 — x(S') or C(K) =2 — x(5').

@ combinatorial area A:(S')= Sum of areas of all normal disks of S'.

@ Normal disks look like:

@ Combinatorial area of a normal disk D that crosses m interior edges of P;:

As(D) = % + 7D OE(L)| — 2.
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Estimate of —x(S'):

@ We have

A(S') = —2mx(5)
@ There is a notion of combinatorial length also due to Lackenby, such that

Ac(S') > total length of 9S" on OM..

@ Futer-Purcell: Found lower bounds of combinatorial curve lengths on oM,
in terms of the twist number of knot diagram to begin with.
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Ac(S') > total length of 9S" on OM..

@ Futer-Purcell: Found lower bounds of combinatorial curve lengths on oM,
in terms of the twist number of knot diagram to begin with.

@ Non-alternating knots: Futer-Purcell used similar methods to estimate
the oriented genus of “highly twisted” knots (a. k. a. knots with diagrams
that have at least 7 crossings per twist region).

@ Argument also goes through to estimate crosscap numbers of highly
twisted knots in terms of twist number.

@ Jones polynomial coarsely determines crosscap numbers of highly
twisted knots
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Estimate of —x(S'):

@ We have

A(S') = —2mx(S')
@ There is a notion of combinatorial length also due to Lackenby, such that

Ac(S') > total length of 9S" on OM..

@ Futer-Purcell: Found lower bounds of combinatorial curve lengths on oM,
in terms of the twist number of knot diagram to begin with.

@ Non-alternating knots: Futer-Purcell used similar methods to estimate
the oriented genus of “highly twisted” knots (a. k. a. knots with diagrams
that have at least 7 crossings per twist region).

@ Argument also goes through to estimate crosscap numbers of highly
twisted knots in terms of twist number.

@ Jones polynomial coarsely determines crosscap numbers of highly
twisted knots

@ Question: Does the Jones polynomial (coarsely) determine the crosscap
number of all knots?What about the Khovanov homology?
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