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Setting and outline of talk
C(K )= crosscap number (a. k. a. non-orientable genus) of a knot K =
smallest genus over all non-orientable surfaces spanned by K .

Plan:
Review what is known- Compare with the (oriented) genus.

There is an algorithm to compute knot genus.

No algorithm is known to compute crosscap number. Indicate
progress/difficulties.

Discuss calculations for knots up to 12 crossings.

Restrict to alternating knots:
Classical genus results:
Genus is calculated from alternating diagrams (Seifert’s algorithm).

Genus is calculated from the Alexander polynomial.
Discuss non-orientable counterparts:
Crosscap number is calculated from alternating diagrams (state
surfaces).
Crosscap number is estimated/calculated from the Jones polynomial.
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Definitions etc

Knots span surfaces: both orientable and non-orientable.

Definition. S non-orientable surface spanned by a k -component link K .
crosscap number of S

C(S) = 2− χ(S)− k .

The crosscap number of a link K is the minimum crosscap number over
all non-orientable surfaces spanned by K .

Crosscap numbers first studied by B. E. Clark– made several
observations (1978).
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Facts, bounds and algorithms:

Convention: C(Unknot) = 0.

g(K )= genus of K . Then, C(K ) ≤ 2g(K ) + 1.

C(K ) = 1 iff K is a (2, p) torus knot or a (2, p) cable.
skip
If K alternating, then C(K ) = 1 iff K is a (2, p) torus knot.

(H. Murakami- Yasuhara) If c(K )=crossing number of K , then

C(K ) ≤
⌊

c(K )

2

⌋
.

and the bound is sharp.
Crosscap numbers are known for families: (e.g. 2-bridge knots, pretzel knots )–
Bessho, Hirasawa, Teragaito, Ichiharra, Mizushima.....

However

C(K ) not known for a lot of knots up to 12 crossings (g(K ) is known).

There is no known algorithm to calculate C(K ) (there is for g(K ))

Issue: A surface realizing C(K ) need not be ∂- incompressible (for g(K ) is).
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Facts, bounds and algorithms con’t:

Pathology: In fact, all surfaces realizing C(K ) may be obtained from
oriented ones by adding a “trivial crosscap”.
This creates a ∂-compression disk in MK = S3 r K . ( Red line below).

...

...

Pathology Example: The knot K = 74: We have g(K ) = 1.
Murasugi-Yasuhara calculated C(K ) = 3 = 2g(K ) + 1.

All surfaces for 74, realizing C(K ) = 3, are obtained from a genus 1
Seifert surface by adding a trivial crosscap.
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Facts, bounds and algorithms: Normal surface theory

Oriented genus g(K ):
Algorithm and computational complexity (Hass-Lagarias-Pippenger
-1999).
An important point noted by H-L-P is that “normalization” process gives:

Theorem
Let T be a triangulation of a knot complement MK . Then there is a
fundamental, normal, orientable spanning surface of genus g(K ).

Basic steps of Algorithm: Given K ,

1 Obtain a “ suitable” triangulation T of MK .

2 Enumerate all fundamental normal surfaces in T .

3 Identify the spanning oriented ones among surfaces in step 2.

4 Identify the smallest genus surface that appears in step 3.

E. Kalfagianni August 2015 6 / 21



Facts, bounds and algorithms: Normal surface theory

Oriented genus g(K ):
Algorithm and computational complexity (Hass-Lagarias-Pippenger
-1999).
An important point noted by H-L-P is that “normalization” process gives:

Theorem
Let T be a triangulation of a knot complement MK . Then there is a
fundamental, normal, orientable spanning surface of genus g(K ).

Basic steps of Algorithm: Given K ,

1 Obtain a “ suitable” triangulation T of MK .

2 Enumerate all fundamental normal surfaces in T .

3 Identify the spanning oriented ones among surfaces in step 2.

4 Identify the smallest genus surface that appears in step 3.

E. Kalfagianni August 2015 6 / 21



Algorithms: Normal surface theory

What about C(K )?

Above discussed pathology creates complications:
B. Burton and Burton-Ozlen (2012) made progress. First they note the
following:

Theorem (Burton-Ozlen )
Let T be a triangulation of a knot complement MK . Then, either

there is a fundamental, normal, non-orientable spanning surface with
C(S) = C(K ); or

C(K ) ∈ {2g(K ), 2g(K ) + 1}.

They obtain an Algorithm: Given K
1 Obtain a single value that is C(K ); or
2 Narrow the values for C(K ) to two possible ones.

Burton-Olsen used integer programing techniques to get upper bounds
for C(K ) calculated several previously unknown values.
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Low crossing data: up to 12 crossings

Info copied from KnotInfo ( Cha- Livingston).
C(74) = 3 (Murakami-Yasuhara)

2-bridge cases; C(K ) determined by Teragaito and Hirasawa

Typically KnotInfo gives upper bounds that were obtained by finding
non-orientable surfaces state surfaces.

Burton-Ozlen: Used normal surfaces and integer programming to find
non-orientable surfaces of small crosscap number. They got new
bounds for 778 of the knots in the table.

(2012) Adams and Kindred: Method that determines the crosscap
number of an alternating knot. They got previously unknown values for:

810,15,16,17,18 and 916,22,24,25,28,29,30,32,33,34,36,37,38,39,40,41.

(2014) K.- Lee: Bounds in terms of the Jones polynomial. Improved the
bounds for almost half of the table knots, and precisely determined the
number for 283 of the 12-crossing knots.
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State surfaces

For a Kauffman state σ of a link diagram, form a state surface Sσ:

Each state circle bounds a disk in Sσ (nested disks drawn on top).
At each edge (for each crossing) attach twisted band.

A–resolution

B–resolution
Special Cases: Seifert state, checkerboard states of alternating knots.
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Alternating knots

[Murasugi (1960)]. The Seifert state applied to a reduced alternating
diagram D(K ) gives a minimum genus surface.

[Adams-Kindred (2013)]. Gave an algorithm to calculate C(K ) of
alternating knots, from state surfaces.

The Algorithm: D = D(K ) alternating knot diagram. Think of D as a
4=valent graph.

If D has regions that 1-gons or 2-gons resolve the corresponding
crossings so that the region becomes a state circle.

Suppose D has no 1-gons or 2-gons; then it has triangles.

Pick a triangle region on D. Create two branches as shown below:
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Algorithm con’t:

Repeat until each branch reaches a projection without crossings.

Choose the resulting surfaces S that have maximal Euler characteristic.

Theorem (Adams-Kindred, 2013)
After applying the algorithm to an alternating diagram of k-component link K :

1 If there is S as above that is non-orientable then C(K ) = 2− χ(S)− k.

2 If all surfaces produced by the algorithm are orientable, S is a minimal
genus Seifert surface of K and C(K ) = 2g(K ) + 1.
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An example: Fig-8:

Bigons labeled 1 and 2 and diagram resulting from applying the first step
of the Algorithm. New bigon regions labeled 1, 2, and 3.

State surfaces from different choices of bigon regions.

Left one gives a non-orientable surface of maximal Euler characteristic
χ(S) = −1. Hence, C(K ) = C(S) = 2.
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Knot polynomial bounds:

Genus: (Crowell, Murasugi, 1960) For K alternating, g(K ) is half the
degree span of the Alexander polynomial of K.

Let
JK (t) = αK tn + βK tn−1 + . . .+ β′K ts+1 + α′K ts

denote the Jones polynomial of K .

Set TK := |βK |+ |β′K |.

Theorem (K.-Lee, 2014)
Let K be a non-split, prime, non-torus, alternating link with k-components and
with crosscap number C(K ). We have⌈

TK

3

⌉
+ 2− k ≤ C(K ) ≤ TK + 2− k ,

Furthermore, both bounds are sharp.
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Sharpness:

Knots: For K =alternating, non-torus knot we have⌈
TK

3

⌉
+ 1 ≤ C(K ) ≤ min

{
TK + 1,

⌊sK

2

⌋}
where TK as above and sK =degree span of JK (t). Bounds are sharp.

Some examples: Knotinfo C(K ) upper bound agrees with above lower
bound. TK value also from Knotinfo. We determine that C(K ) = 3.

K TK K TK K TK K TK
1085 6 1093 6 10100 6 11a74 5
11a97 5 11a223 5 11a250 5 11a259 5
11a263 4 11a279 6 11a293 6 11a313 6
11a323 6 11a330 6 11a338 4 11a346 6
12a0636 5 12a0641 4 12a0753 5 12a0827 5
12a0845 5 12a0970 6 12a0984 6 12a1017 6
12a1031 5 12a1095 6 12a1107 6 12a1114 6
12a1142 5 12a1171 6 12a1179 6 12a1205 6
12a1220 6 12a1240 6 12a1243 4 12a1247 6
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Calculating TK and sK :

Let D = D(K ) reduced alternating knot diagram.

(Murasugi, Kauffman ’80s) We have sk = c(D) = c(K )=number of
crossings

Let GA and GB the reduced checkerboard graphs (a.k.a. reduced Tait
graphs) of D.

(Dasbach-Lin) We have

TK = 2− χ(GA)− χ(GB).

If D is twist reduced, with twist number t = t(D), then Tk = t .

Definition. twist region = maximal string of bigons
Twist reduced: A or B must be a string of bigons.
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Twist number and crosscap number

Theorem (K.- Lee, 2014)
Let D(K ) a twist reduced, prime, alternating diagram with twist number t ≥ 2
and crossing number c. We have sharp bounds:

1 +

⌈
t
3

⌉
≤ C(K ) ≤ min

{
t + 1,

⌊c
2

⌋}
.

Sharp upper bound: K = 103( left )– C(K ) = 2g(K ) + 1 = 3 = t + 1.

Sharp lower bound: K = 10123– Both bounds give 5. We get C(K ) = 5.

Note: Upper bound of theorem follows easily. Discuss the lower bound.
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Getting the lower bound: Outline

D = D(K ) prime,reduced, twist-reduced alternating diagram, with t > 1.

Step 1. Show there is a surface S coming from the Adams-Kindred
algorithm, and an augmented link L, obtained from D, such that
“augmentation components” added to D don’t intersect S.

Step 2. Use geometry of L (angled polyhedral structures) and normal
surface theory to obtain a surface S′, such that

1 S′ is a normal surface,
2 C(K ) can be calculated from S′

Step 3. To obtain the lower bound of C(K ) in terms of t , combine
1 a combinatorial notion of area that satisfies Gauss-Bonnet ( Casson),
2 Estimates of slope lengths on cusps of augmented links (Futer-Purcell

based using work of Lackenby).
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Step1: Augmenting:

Starting with D = D(K ) a prime,reduced, twist-reduced alternating
diagram, we want to augment “around” the Adams-Kindred algorithm.

Augmenting around bigon regions of D and creating a state surface
disjoint from the augmentation component:

Augmenting around triangle regions and creating a state surface disjoint
from the augmentation components:
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“Nice” polyhedral decomposition:
Alternating link K , augmented and fully augmented links lJ and a L.

ML = S3 r L has a “nice” decomposition (Adams) into two convex ideal
polyhedra P1 and P2 in the hyperbolic 3-space. (truncated vertices).

Dihedral angles of Pi are π/2. Thus ML is hyperbolic.

Edges of Pi ∩ ∂ML called boundary edges.

Faces of Pi ∩ ∂ML called boundary faces. They subdivide ∂ML into
rectangles.

Interior faces of Pi admit checker-board coloring: opposite sides of
boundary face gets same color interior faces.E. Kalfagianni August 2015 19 / 21



Step 2:“Normalizing C(K ):”

Recall: For K =alternating, have augmented link L and surface S in ML
such that C(S) = C(K ).( S need not be ∂-incompressible).

Going through the normalization process: There is a normal surface, S′

in ML so that either C(K ) = 1− χ(S′) or C(K ) = 2− χ(S′).

combinatorial area Ac(S′)= Sum of areas of all normal disks of S′.

Normal disks look like:

Combinatorial area of a normal disk D that crosses m interior edges of Pi :

Ac(D) =
mπ
2

+ π|D ∩ ∂E(L)| − 2π.
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Estimate of −χ(S′):
We have

Ac(S′) = −2πχ(S′)
There is a notion of combinatorial length also due to Lackenby, such that

Ac(S′) > total length of ∂S′ on ∂ML.

Futer-Purcell: Found lower bounds of combinatorial curve lengths on ∂ML
in terms of the twist number of knot diagram to begin with.

Non-alternating knots: Futer-Purcell used similar methods to estimate
the oriented genus of “highly twisted” knots (a. k. a. knots with diagrams
that have at least 7 crossings per twist region).
Argument also goes through to estimate crosscap numbers of highly
twisted knots in terms of twist number.
Jones polynomial coarsely determines crosscap numbers of highly
twisted knots

Question: Does the Jones polynomial (coarsely) determine the crosscap
number of all knots?What about the Khovanov homology?
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