Colored Jones polynomials

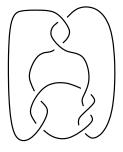
Effie Kalfagianni, Michigan State University

Survey talk for graduate students

AMS meeting, Hartford, CT, April 2019

Talk outline

Knots: Smooth embedding $K : S^1 \to S^3$. Knots K_1, K_2 are equivalent if $f(K_1) = K_2$, *f* orientation preserving diffeomorphism of S^3 .



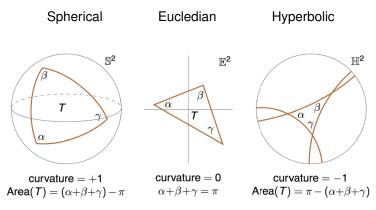
Talk: A survey of colored Jones polynomials with emphasis on relations to geometry and topology of knot complements.

Outline

- 3-manifold geometric structures
 - Geometrization of $S^3 \smallsetminus K$
 - Invariants arising from geometry: Hyperbolic volume
 - Incompressible surfaces
- Quantum topology
 - Colored Jones Polynomials
 - Knot diagrammatic approaches
 - CJP and volume (Volume type conjectures)
 - CJP and incompressible surfaces (Slopes conjectures)

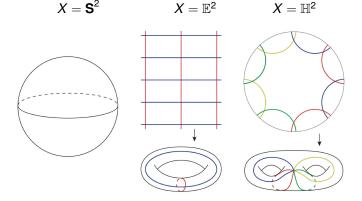
イロト イヨト イヨト イヨト

For this talk, an *n*-dimensional *model geometry* is a simply connected *n*-manifold with a "homogeneous" Riemannian metric. In dimension 2, there are exactly three model geometries, up to scaling:



Geometrization (a.k.a. Uniformization) in 2-d:

Every (closed, orientable) surface can be written as S = X/G, where X is a model geometry and G is a discrete group of isometries.



 Geometry relates to topology: k · Area(S) = 2πχ(S), k = 1, 0, -1 (curvature).

Effie Kalfagianni (MSU)

Geometrization in 3-d:

In dimension 3, there are eight model geometries:

 $X = \mathbf{S}^3 \mathbb{E}^3 \mathbb{H}^3, \ \mathbf{S}^2 \times \mathbb{R}, \ \mathbb{H}^2 \times \mathbb{R}, \ Sol, \ Nil, \ \widetilde{SL_2(\mathbb{R})}$

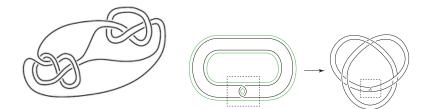
Theorem (Thurston 1980 + Perelman 2003)

For every (closed, oriented) 3-manifold M, there is a canonical way to cut M along spheres and tori into pieces M_1, \ldots, M_n , such that each piece is $M_i = X_i/G_i$, where G_i is a discrete group of isometries of the model geometry X_i .

- The Poincare conjecture is a special case (**S**³ is the only compact model).
- Hyperbolic 3-manifolds are a prevalent, rich and very interesting class.
- Because of cutting along tori, manifolds with toroidal boundary will naturally arise. Knot complements fit in this class:
- Knots complements: Given *K* remove an open tube around *K* to obtain the *Knot complement:* Notation. $M_K = \overline{S^3 \setminus n(K)}$.

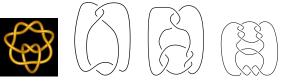
Geometrization of knot complements: 80's

- By Jaco-Shalen-Johannson (1970's)+ W. Thurston (1980's) thre are three distinct classes of knots.
- Torus knots: Can be embedded on a standard torus in S³. Up to symmetries they are classified by co-prime pairs of integers (studied by Burde-Zieschang (1960?)). The geometry of the interior is ℍ² × ℝ.
- *Satellites:* Knot complement that are glueings of geometric pieces along tori. (Studied earlier by Schubert (1950's)).



Hyperbolic knots and rigidity, con't

• *Hyperbolic:* Interior of *M_K* admits complete hyperbolic metric of finite volume



• Hyperbolic knots are abundant: E.g. *prime* knots with at most 16 crossings: 20 are satellites, 13 are torus knots, 1,701,903 are hyperbolic.

Theorem (Mostow, Prasad 1973)

Suppose M is compact, oriented, and ∂M is a possibly empty union of tori. If M is hyperbolic (that is: $M \setminus \partial M = \mathbb{H}^3/G$), then G is unique up to conjugation by hyperbolic isometries. In other words, a hyperbolic metric on M is essentially unique.

• By rigidity, every geometric measurement of *M* (e.g. volume) is a *topological invariant*.

Jones Polynomials–Quantum invariants

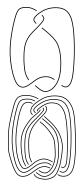
1980's: Ideas originated in physics and in representation theory led to vast families invariants of knots and 3-manifolds. (*Quantum invariants*) For this talk we discuss:

- The Colored Jones Polynomials: Infinite sequence of Laurent polynomials {*J_{K,n}(t)*}_n encoding the Jones polynomial of *K* and these of the links *K^s* that are the parallels of *K*.
- Formulae for J_{K,n}(t) come from representation theory of SU(2) (decomposition of tensor products of representations).
 They look like

 $J_{\mathcal{K},1}(t) = 1, \quad J_{\mathcal{K},2}(t) = J_{\mathcal{K}}(t)$ - Original JP,

 $J_{K,3}(t) = J_{K^2}(t) - 1, \quad J_{K,4}(t) = J_{K^3}(t) - 2J_K(t), \ldots$

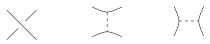
J_{K,n}(t) can be calculated from any knot diagram via processes such as *Skein Theory*, *State sums*, *R-matrices*, *Fusion rules*....



イロト イヨト イヨト イヨト

The skein theory approach

• A or B resolutions, D_A , D_B , of a crossing of D = D(K).



• Kauffman bracket: polynomial $\langle D \rangle \in \mathbb{Z}[t^{\pm 1/4}]$, regular isotopy invariant:

•
$$\langle L \coprod \bigcirc \rangle = -(t^{1/2} + t^{-1/2}) \langle L \rangle := \delta \langle L \rangle$$

• $\langle L \rangle = t^{-1/4} \langle D_A \rangle + t^{1/4} \langle D_B \rangle$

• $\langle \bigcirc \rangle = -t^{1/2} - t^{-1/2}$ • Chebyshev polynomials:

$$S_{n+2}(x) = xS_{n+1}(x) - S_n(x), \quad S_1(x) = x, \quad S_0(x) = 1.$$

- *D^m* diagram obtained from *D* by taking *m* parallels copies.
- For n > 0, we define (where w = w(D) = writhe):

$$J_{\mathcal{K},n}(t) := ((-1)^{n-1} t^{(n^2-1)/4})^w (-1)^{n-1} \langle S_{n-1}(D) \rangle$$

• $\langle S_{n-1}(D) \rangle$ is linear extension on combinations of diagrams.

The CJP predicts Volume?

- **Question:** How do the *CJP* relate to geometry/topology of knot complements?
- Renormalized CJP.

$$J'_{K,n}(t) := \frac{J_{K,n}(t)}{J_{\bigcirc,n}(t)}.$$

Volume conjecture. [Kashaev+ H. Murakami - J. Murakami] Suppose K is a knot in S^3 . Then

$$2\pi \cdot \lim_{n \to \infty} \frac{\log |J'_{K,n}(e^{2\pi i/n})|}{n} = \operatorname{Vol}\left(S^3 \smallsetminus K\right)$$

- The conjecture is wide open:
- 41 (by Ekholm), knots up to 7 crossings (by Ohtsuki)
- simplicial volume version torus knots (by Kashaev and Tirkkonen), Whitehead doubles of torus knots of type (2, b) (by Zheng).
- Versions Volume Conjectures for all 3-manifolds (talk by T. Yang, here).
- Next: Stable coefficients of CJP coarsely predict volume.

Colored Jones polynomial prelims

For a knot *K*, and n = 1, 2, ..., we write its *n*-colored Jones polynomial:

$$J_{\mathcal{K},n}(t) := \alpha_n t^{m_n} + \beta_n t^{m_n-1} + \dots + \beta'_n t^{k_n+1} + \alpha'_n t^{k_n} \in \mathbb{Z}[t, t^{-1}]$$

- (Garoufalidis-Le, 04): The sequence $\{J_{K,n}(t)\}_n$ has a *recursive relation*.
- **Example:** For *K*=the trefoil knot

$$J_{K,n} = t^{-6(n^2-1)} \sum_{j=-\frac{n-1}{2}}^{\frac{n-1}{2}} t^{24j^2+12j} \frac{t^{8j+2}-t^{-(8j+2)}}{t^2-t^{-2}}.$$

The relation is

$$(t^{8n+12}-1)J_{K,n+2} + (t^{-4n-6} - t^{-12n-10} - t^{8n+10} + t^{-2})J_{K,n+1} - (t^{-4n+4} - t^{-12n-8})J_{K,n} = 0.$$

Each of α'_n, β'_n... satisfies a *linear recursive relation* in *n*, with integer coefficients.

(e.g.
$$\alpha'_{n+1} + (-1)^n \alpha'_n = 0$$
).

Knots "generic" to the eyes of CJP

Given a knot K with

$$J_{\mathcal{K},n}(t) = \alpha_n t^{m_n} + \beta_n t^{m_n-1} + \cdots + \beta'_n t^{k_n+1} + \alpha'_n t^{k_n},$$

and any diagram D(K), there exist explicitly given functions M(n, D)

$$m_n \leq M(n, D).$$

- **Definition.** Knots with $m_n = M(n, D)$, are called *semi-adequate*. They have *stable coefficients* of $J_{K,n}(t)$.
- (Dasbach-Lin, Armond) If $m_n = M(n, D)$, then

$$\alpha_{\mathcal{K}} = |\alpha_n| = 1$$
 and $\beta_{\mathcal{K}} := |\beta_n| = |\beta_2|$,

for every n > 1. Similar statements for α'_n, β'_n .

- Remark: Each coefficient of J_{K,n}(t) stabilizes eventually. Stable coefficients form *q*-series (Armond, Dasbach, Garoufalidis Le). Generalized stability phenomena in CJP (Hajij, Lee, Walsh, Lee-van der Veen, Garoufalidis-Le, Vuong...)
- Stable coefficients control the volume of the link complement.

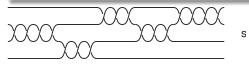
Sample families: alternating and positive braids

Theorem (Menasco, Lackenby, Dasbach-Lin)

If K is a prime, non-torus, non-torus alternating link, then K is hyperbolic, and

$$\frac{v_8}{2}\left(\beta_K+\beta_K'-1\right) \ \le \ \textit{Vol}(S^3\smallsetminus K) \ < \ 10v_3\left(\beta_K+\beta_K'-1\right)$$

Here, $v_3 \approx 1.0149$ and $v_8 = 3.6638$.



Theorem (Futer-K.-Purcell)

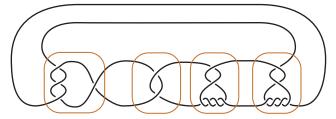
If K is the closure of a positive braid $s = \sigma_{i_1}^{r_1} \sigma_{i_2}^{r_2} \cdots \sigma_{i_t}^{r_t}$, where $r_j \ge 3$ for all j, then K is hyperbolic, and

$$v_8(\beta'_K-1) \leq Vol(S^3 \smallsetminus K) < 15v_3\beta'_K-25v_3$$
.

The gap between the upper and lower bounds is a factor of 4.155...

Sample family: Montesinos links

A Montesinos knot or link is constructed by connecting *n* rational tangles in a cyclic fashion.



Theorem (FKP + Finlinson)

If K be a hyperbolic Montesinos knot. Then

$$v_8(\beta'_K-2) \leq Vol(S^3 \setminus K).$$

If K has length at least four we get two-sided volume estimates:

$$v_8\left(\max\{\beta_K,\beta_K'\}-2\right) \leq Vol(S^3\smallsetminus K) < 4v_8\left(\beta_K'+\beta_K-2\right)+2v_8.$$

Results and experimental evidence prompt (A coarse Volume conjecture?):

Question. Does there exist function B(K) of the coefficients of the colored Jones polynomials of a knot K, *t*hat is easy to calculate from a "nice" knot diagram such that for hyperbolic knots, B(K) is coarsely related to hyperbolic volume Vol $(S^3 \setminus K)$? Are there constants $C_1 \ge 1$ and $C_2 \ge 0$ such that

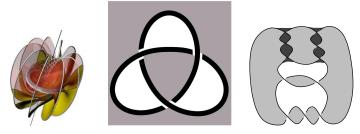
$$C_1^{-1}B(\mathcal{K}) - C_2 \leq \operatorname{Vol}(S^3 \smallsetminus \mathcal{K}) \leq C_1B(\mathcal{K}) + C_2,$$

for all hyperbolic K?

- Results and stabilization properties of CJP prompt more guided speculations as to where one might look for B(K).
- For more classes of knots Giambrone and more recently Lee...

Surfaces in knot complements

 There are several properly embedded surfaces in knot complements some non-orientable.



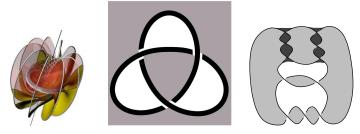
• **Definition.** A surface *S*, properly embedded in **S**³ \setminus *K* is called is *essential* if inclusion induces injection

$$\pi_1(\mathcal{S},\partial\mathcal{S})\longrightarrow \pi_1(\mathbf{S}^3\smallsetminus K,\partial(\mathbf{S}^3\smallsetminus K)).$$

Definition. A (primitive) class in H₁(∂(S³ \ K)) ≅ ℤ × ℤ, determined by an element in s ∈ Q ∪ {∞}, is called a *boundary slope of K* if there is an essential suface S such that each component of ∂S represents s.

Surfaces in knot complements

 There are several properly embedded surfaces in knot complements some non-orientable.



• **Definition.** A surface *S*, properly embedded in **S**³ \setminus *K* is called is *essential* if inclusion induces injection

$$\pi_1(\mathcal{S},\partial\mathcal{S})\longrightarrow \pi_1(\mathbf{S}^3\smallsetminus K,\partial(\mathbf{S}^3\smallsetminus K)).$$

Definition. A (primitive) class in H₁(∂(S³ \ K)) ≅ ℤ × ℤ, determined by an element in s ∈ Q ∪ {∞}, is called a *boundary slope of K* if there is an essential suface S such that each component of ∂S represents s.

The topology of the degree of CJP

- *d*₊[*J*_{K,n}] =maximum degree of CJP
- The *q*-holonomicity property of CJP implies:
- Given K there is $N_K > 0$, such that, for $n \ge N_K$,

$$d_{+}[J_{K,n}] = a_{K}(n) n^{2} + b_{K}(n)n + c_{K}(n),$$

• where $a_{\mathcal{K}}(n), b_{\mathcal{K}}(n), c_{\mathcal{K}}(n) : \mathbf{N} \to \mathbb{Q}$ are periodic functions.

• Similarly, $d_{-}[J_{K,n}]$ =maximum degree of CJP:

$$d_{-}[J_{K,n}] = a_{K}^{*}(n) n^{2} + b_{K}^{*}(n)n + c_{K}^{*}(n),$$

- where $a_{\mathcal{K}}^*(n), b_{\mathcal{K}}^*(n), c_{\mathcal{K}}^*(n) : \mathbf{N} \to \mathbb{Q}$ are periodic functions.
- We have finitely many cluster points

$$js_{K} = \{4a_{K}(n)\}'$$
 and $js_{K}^{*} = \{4a_{K}^{*}(n)\}'$,

• (called Jones Slopes) and finitely many cluster points

$$js_{K} = \{2b_{K}(n)\}', \ js_{K}^{*} = \{4b_{K}^{*}(n)\}'.$$

Slopes Conjectures

- **Definition.** A Jones surface of *K* is an essential surface $S \subset M_K = S^3 \setminus K$
- ∂S represents a Jones slope $4a(n) = a/b \in js_{\mathcal{K}}$, with b > 0, gcd(a, b) = 1, and

$$\frac{\chi(S)}{|\partial S|b} = 2b_{\mathcal{K}}(n).$$

• Similarly, for a a Jones slope $4a^{(n)} = a^*/b^* \in js_K$, with $b^* > 0$, $gcd(a^*, b^*) = 1$, and

$$\frac{\chi(S)}{|\partial S|b^*} = -2b_K^*(n).$$

- Strong Slope Conjecture.
- (Garoufalidis) All Jones slopes are boundary slopes.
- (*K*+Tran) All Jones slopes are realized by Jones surfaces.
- Remark. No knots with more than one Jones slope are known.

Simple Examples

- Example 1. For the torus knot T_{p,q}, the Jones slopes are {0, pq} and the corresponding Jones surfaces are a minimum genus Seifert surface and the cabling annulus, respectively.
- **Example 2.** For the K = (-2, 3, 7)-pretzel knot we have

$$\begin{aligned} 4d_+[J_{K,n}] &= 37/2n^2 + 34n + e(n), \\ 4d_-[J_{K,n}] &= 0n^2 + 5n, \end{aligned}$$

where e(n) is a periodic sequence of period 4.

• The (-2, 3, 7)-pretzel knot is a Montesinos knot with boundary slopes

 $\{0, 16, \frac{37}{2}, 20\}.$

- For Montesinos knots boundary slopes essential surfaces can be found using the Hatcher-Oertel algorithm.
- For computational purposes there is implementation of the algorithm (Dunfield)

・ロン ・四 と ・ 回 と ・ 回 と

Status

- Strong slope conjecture known for:
- Alternating knots (Garoufalidis)
- Adequate knots (Futer-K-Purcell)
- Knots up to nine crossings (Garoufalidis, Tran-K., Howie)
- Montesinos knots (Lee-van der Veen, Garoufalidis-Lee-van der Veen, Leng-Yang-Liu)
- Iterated torus knots
- Graph knots (Motegi-Takata, Baker-Motegi-Takata)
- families of non-Montesinos knots, non-adequate knots (Howie-Do, Lee)
- SSC is closed under:
- Connect sums (Motegi-Takata)
- Cabling operations (Tran-K.)
- Whiterhead doubling (Baker-Motegi-Takata)

Implications of SSC

• The degree $d_+[J_{K,n}]$ detects the unknot: For,

- Suppose that $d_+[J_{K,n}] = d_+[J_{\bigcirc,n}] = 0.5n$. Then $jx_K = \{1\}$, and the Strong Slopes Conjecture holds for K, then we have a Jones surface S for K with boundary slope 0 and with $\chi(S) > 0$. Then S must be a collection of discs which means that a Seifert surface for K is a disc and thus K is the unknot.
- The degrees $d_+[J_{K,n}], d_-[J_{K,n}]$ detect all torus knots!
- Proof of following theorem begins with the fact that an essential surface with χ(S) = 0, implies that there is a cabling annulus!

Theorem (K.–)

Suppose K satisfies the strong slope conjecture and $T_{p,q}$ is the (p,q)-torus knot. If

$$d_+[J_{K,n}] = d_+[J_{T_{p,q},n}]$$
 and $d_-[J_{K,n}] = d_-[J_{T_{p,q},n}],$

for all n, then, up to orientation change of the knot, K is isotopic to $T_{p,q}$.

・ロン ・四 と ・ 回 と ・ 回 と

Figure-8/alternating

- Howie and Greene gave a characterization of alternating knots in terms of their (spanning) surfaces. Their result, implies
- If *K* satisfies the SSC and $d_{\pm}[J_{K,n}] = d_{\pm}[J_{4_1,n}]$, then *K* is isotopic to 4₁.
- Definition. A Jones surface S of a knot K is called *characteristic* if the number of sheets b|∂S| divides the *Jones period* of K.
- For all the knots the SSC is known, the Jones surfaces can be taken to be characteristic!
- The stronger version of SCC, together with Howie's theorem, imply the following (CJP characterization of alternating knot).

Theorem

A knot K that satisfies the SSC, with characteristic surfaces, is alternating if and only if there are $a, b \in \mathbb{Z}$ (depending only on K) such that, for all n > 0,

$$a+b=1$$
 and $d_+[J_{K,n}]-d_-[J_{K,n}]=an^2+bn-(b+c),$

イロト イヨト イヨト イヨト