Change-of-Base Formula.

For any logarithmic bases a and b, and any positive number M,

$$\log_b M = \frac{\log_a M}{\log_a b}$$

Problem #1.

Use your calculator to find the following logarithms. Show your work with Change-of-Base Formula.

a) $\log_2 10$

b) $\log_{\frac{3}{2}} 9$

c) $\log_7 11$

Using the Change-of-Base Formula, we can graph Logarithmic Functions with an arbitrary base.

Example:

$$\log_2 x = \frac{\ln x}{\ln 2}$$

$$\log_2 x = \frac{\log x}{\log 2}$$

- Properties of Logarithms.

If b, M, and N are positive real numbers, $b \neq 1$, p, x are real numbers, then

1. $\log_b MN = \log_b M + \log_b N$ product rule

2. $\log_b \frac{M}{N} = \log_b M - \log_b N$ quotient rule

3. $\log_b M^p = p \log_b M$ power rule

4. \[
\begin{align*}
\log_b b^x &= x \\
\log_b x &= x, \quad x > 0
\end{align*}
\] inverse property of logarithms

5. $\log_b M = \log_b N$ if and only if $M = N$.
 This property is the base for solving Logarithmic Equations in form $\log_b g(x) = \log_b h(x)$.

Properties 1-3 may be used for Expanding and Condensing Logarithmic expressions.

- Expanding and Condensing Logarithmic expressions.
Problem #2.

Express each of the following expressions as a single logarithm whose coefficient is equal to 1.

a) \(\frac{1}{5} \left[3 \log(x + 1) + 2 \log(x - 3) - \log 7 \right] \)

b) \(\frac{1}{2} \left[\ln(x + 1) + 2 \ln(x - 1) \right] + \frac{1}{3} \ln x \)

c) \(\frac{1}{2} \ln(x + 3) - \frac{1}{5} \left[\ln x + 3 \ln(x + 1) \right] \)

d) \(\frac{1}{2} \left[\log(x - 2) + 2 \log(x + 2) - \log 5 \right] \)

Problem #3.

Expand as much as possible each of the following.

a) \(\log \frac{x^2 y}{z^5} \)

b) \(\ln \sqrt[4]{\frac{x^3 y}{z^3}} \)

- Solving Logarithmic Equations.
1. Solving the Simplest Logarithmic Equation (SLE).
Given: \(\log_b x = a, \ b > 0, \ b \neq 1, \ a \) is any real number.
According the definition of the logarithm this equation is equivalent to \(x = b^a \).

2. According to properties of logarithms, if \(\log_b M = \log_b N \), then \(M = N \).

Remember, check is part of solution for Logarithmic Equations.

Problem #4. Solve the following Logarithmic Equations.

a) \(\log_2 x = 5 \)

b) \(\log_3 (x - 2) = 5 \)

c) \(\log (x^2 - x) = \log 6 \)

d) \(\log_{\frac{1}{2}} (x + 4) = -3 \)
e) \(\log(x - 15) = -2 \)

f) \(\ln(x + 3) = 1 \)

g) \(\log(2x - 1) = \log(x - 2) \)