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Let us first recall the chain rule for functions of a single variable.

Given y = f(x) and z = g(y), the derivative of the composition
z=gof(x)=g(f(x))is

dz _ dzdy
dx  dy dx
or
[g o F()]" = g'(F(x))f'(x)
Diagram:



The Chain Rule (Case 1)

Suppose z = f(x,y), x = g(t) and y = h(t), and assume that all
functions are differentiable. Then z is a differentiable function of t
given by the composition z = f(g(t), h(t)) with derivative

dz _0zdx , 0zdy

dt  Oxdt Oy dt

Tree Diagram:



Example

d
If z = x%y + 3xy*, where x = sin(2t) and y = cost, find £ when
t=0.

Solution.
dz _ ozde  0zdy
dt  Oxdt Oydt

= (2xy + 3y*) cos(2t) - 2 + (x* + 3x - 4y3)(—sin t)
= 2(2xy + 3y*) cos(2t) — (x2 + 12xy?)sin t



Example

d
If z = x%y + 3xy*, where x = sin(2t) and y = cost, find £ when
t=0.

Solution.
dz _ ozde  0zdy
dt  Oxdt Oydt

= (2xy 4+ 3y*) cos(2t) - 2 + (x* + 3x - 4y®)(—sin t)
= 2(2xy + 3y*) cos(2t) — (x2 + 12xy?)sin t

When t =0, x =sin(2-0) =0 and y = cos0 =1, so

%h:o:2(2-0-1—|—3~14)cos(2-0)—(02+12-0-13)sin0:6.



The Chain Rule (Case 2)

Suppose z = f(x,y), x = g(s, t) and y = h(s, t), and assume that
all functions are differentiable. Then z is a differentiable function
of (x,t) given by the composition z = f(g(s, t), h(s, t)) with
partial derivatives

0: _0z0x  0z0y | 0z _0z0x 020y
Js Ox0s Oy 0s ot  0Ox 0t Oy ot

Tree Diagram:



Example

)
If z= e~siny, where x = st2 and y = s2t, find —Z.

Os
Solution.
0: _ 0z0x , 020y
Js Ox ds Oy Os
= (e"siny)t® + (e cos y)(2st)

= 2 sin(s2t) + 2stet” cos(s2t)



The Chain Rule (General Version)

Suppose u = u(x1,x2,...,%p) and x; = x;j(t1, t2, ..., tm),
i=1,...,n, and assume that all functions are differentiable. Then
Ou  OuO0xy = Ou Ox Ou 0xy

G a0y ooy T ox ot

forj=1,...,m.



Example

2 2

If u=x*y + y?z3, where x = rset, y = rs’e”t and z = r’ssint,

find % when (r,s, t) = (2,1,0).

Solution.
ou _ oudx oudy dud
0s Ox0s Oy ds 0z0s
= ax3yret + (x* +2yz%)(2rse™t) + 3y2 2% sin t

When (r,s,t) = (2,1,0), we have (x,y,z) = (2,2,0), then
ou

0s

(rst)=(2,1,0) = 64-2+16-4+0-0 = 192.



Example
Find the derivative of f(x,y,z) = x?> 4+ y3 + sin z along the helix
r(t) = (cost,sint,t).
Solution.
of of dx Ofdy Of dz
ot Oxdt ' dydt  dzdt
= 2x(—sint) +3y*cost+cosz-1

= —2costsint+ 3costsin’t+ cost



Implicit Differentiation

Assume that the equation F(x,y,z) = 0 defines z implicitly as a

, 0z 0z
function of (x,y), we can use chain rule to compute x and W
y

Indeed, take E on both sides of F(x,y,z) =0, then

Ox
ox oy 0z
Fr— + F =
“ox Thox g =0
Since % =1 and @ =0, get
ox X
0z 0z Fx
Fx+Fz$f0 or &——FZ
- .0
Similarly, by taking 3y’ we have
0z 0z F,
Fy—l—an—O or - F



Example

Find gz ifx3+y3+ 23 4+ 6xyz = 1.
X

Solution. Let F(x,y,z) = x3 +y3 + 23 + 6xyz — 1, then

F = 3x2 + 6yz, F, = 322 + 6xy

Thus,
0z Fx 3x% + 6yz B x? 4+ 2yz

X
ox  F,  3z2246xy  z2+42xy
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