§14.5 The Chain Rule

The Chain Rule

The Chain Rule (Case 1)
The Chain Rule (Case 2)
The Chain Rule (General Version)

Implicit Differentiation

Let us first recall the chain rule for functions of a single variable.

Given y = f(x) and z = g(y), the derivative of the composition $z = g \circ f(x) = g(f(x))$ is

$$\frac{dz}{dx} = \frac{dz}{dy}\frac{dy}{dx}$$

or

$$[g\circ f(x)]'=g'(f(x))f'(x)$$

Diagram:

$$z\stackrel{d}{\rightarrow} y\stackrel{d}{\rightarrow} x$$

The Chain Rule (Case 1)

Suppose z = f(x, y), x = g(t) and y = h(t), and assume that all functions are differentiable. Then z is a differentiable function of t given by the composition z = f(g(t), h(t)) with derivative

$$\frac{dz}{dt} = \frac{\partial z}{\partial x}\frac{dx}{dt} + \frac{\partial z}{\partial y}\frac{dy}{dt}$$

Tree Diagram:

If $z = x^2y + 3xy^4$, where $x = \sin(2t)$ and $y = \cos t$, find $\frac{dz}{dt}$ when t = 0.

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt}$$

$$= (2xy + 3y^4) \cos(2t) \cdot 2 + (x^2 + 3x \cdot 4y^3)(-\sin t)$$

$$= 2(2xy + 3y^4) \cos(2t) - (x^2 + 12xy^3) \sin t$$

If $z = x^2y + 3xy^4$, where $x = \sin(2t)$ and $y = \cos t$, find $\frac{dz}{dt}$ when t = 0.

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt}$$

$$= (2xy + 3y^4) \cos(2t) \cdot 2 + (x^2 + 3x \cdot 4y^3)(-\sin t)$$

$$= 2(2xy + 3y^4) \cos(2t) - (x^2 + 12xy^3) \sin t$$

When
$$t = 0$$
, $x = \sin(2 \cdot 0) = 0$ and $y = \cos 0 = 1$, so

$$\frac{dz}{dt}|_{t=0} = 2(2\cdot 0\cdot 1 + 3\cdot 1^4)\cos(2\cdot 0) - (0^2 + 12\cdot 0\cdot 1^3)\sin 0 = 6.$$

The Chain Rule (Case 2)

Suppose z = f(x, y), x = g(s, t) and y = h(s, t), and assume that all functions are differentiable. Then z is a differentiable function of (x, t) given by the composition z = f(g(s, t), h(s, t)) with partial derivatives

$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s} \quad \text{and} \quad \frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial t}$$

Tree Diagram:

If
$$z = e^x \sin y$$
, where $x = st^2$ and $y = s^2t$, find $\frac{\partial z}{\partial s}$.

$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s}$$

$$= (e^{x} \sin y)t^{2} + (e^{x} \cos y)(2st)$$

$$= t^{2} e^{st^{2}} \sin(s^{2}t) + 2ste^{st^{2}} \cos(s^{2}t)$$

The Chain Rule (General Version)

Suppose $u=u(x_1,x_2,\ldots,x_n)$ and $x_i=x_i(t_1,t_2,\ldots,t_m)$, $i=1,\ldots,n$, and assume that all functions are differentiable. Then

$$\frac{\partial u}{\partial t_j} = \frac{\partial u}{\partial x_1} \frac{\partial x_1}{\partial t_j} + \frac{\partial u}{\partial x_2} \frac{\partial x_2}{\partial t_j} + \dots + \frac{\partial u}{\partial x_n} \frac{\partial x_n}{\partial t_j}.$$

for $j = 1, \ldots, m$.

If
$$u = x^4y + y^2z^3$$
, where $x = rse^t$, $y = rs^2e^{-t}$ and $z = r^2s\sin t$, find $\frac{\partial u}{\partial s}$ when $(r, s, t) = (2, 1, 0)$.

$$\frac{\partial u}{\partial s} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial s} + \frac{\partial u}{\partial z} \frac{\partial z}{\partial s}$$
$$= 4x^3 yre^t + (x^4 + 2yz^3)(2rse^{-t}) + 3y^2 z^2 r^2 \sin t$$

When
$$(r,s,t)=(2,1,0)$$
, we have $(x,y,z)=(2,2,0)$, then
$$\frac{\partial u}{\partial s}|_{(r,s,t)=(2,1,0)}=64\cdot 2+16\cdot 4+0\cdot 0=192.$$

Find the derivative of $f(x, y, z) = x^2 + y^3 + \sin z$ along the helix $\mathbf{r}(t) = \langle \cos t, \sin t, t \rangle$.

$$\frac{\partial f}{\partial t} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt} + \frac{\partial f}{\partial z} \frac{dz}{dt}$$

$$= 2x(-\sin t) + 3y^2 \cos t + \cos z \cdot 1$$

$$= -2\cos t \sin t + 3\cos t \sin^2 t + \cos t$$

Implicit Differentiation

Assume that the equation F(x,y,z)=0 defines z implicitly as a function of (x,y), we can use chain rule to compute $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.

Indeed, take $\frac{\partial}{\partial x}$ on both sides of F(x, y, z) = 0, then

$$F_{x}\frac{\partial x}{\partial x} + F_{y}\frac{\partial y}{\partial x} + F_{z}\frac{\partial z}{\partial x} = 0,$$

Since $\frac{\partial x}{\partial x} = 1$ and $\frac{\partial y}{\partial x} = 0$, get

$$F_x + F_z \frac{\partial z}{\partial x} = 0$$
 or $\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}$.

Similarly, by taking $\frac{\partial}{\partial v}$, we have

$$F_y + F_z \frac{\partial z}{\partial y} = 0$$
 or $\frac{\partial z}{\partial y} = -\frac{F_y}{F_z}$.

Example Find
$$\frac{\partial z}{\partial x}$$
 if $x^3 + y^3 + z^3 + 6xyz = 1$.

Solution. Let
$$F(x, y, z) = x^3 + y^3 + z^3 + 6xyz - 1$$
, then

$$F_x = 3x^2 + 6yz$$
, $F_z = 3z^2 + 6xy$

Thus,

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{3x^2 + 6yz}{3z^2 + 6xy} = -\frac{x^2 + 2yz}{z^2 + 2xy}.$$