1. Line Integral with respect to the arc length: Consider a planar curve C given by

$$
\mathbf{r}(t)=\langle x(t), y(t)\rangle, \quad a \leq t \leq b
$$

Divide the parameter interval $[a, b]$ into n subintervals $\left[t_{i-1}, t_{i}\right], i=0, \ldots, n$, and thus divide the curve C correspondingly n sub-curves of length Δs_{i}. Choose randomly a point $P_{i}^{*}=\left(x_{i}^{*}, y_{i}^{*}\right)$ on the i-th sub-curve.

Given a function $f(x, y)$, consider the sum

$$
\sum_{i=1}^{n} f\left(x_{i}^{*}, y_{i}^{*}\right) \Delta s_{i}
$$

Definition 1: the line integral of f along C (with respect to arc length) is

$$
\int_{C} f(x, y) d s=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}, y_{i}^{*}\right) \Delta s_{i}
$$

provided the limit exists.

Since

$$
d s=\sqrt{d x^{2}+d y^{2}}=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t=\sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} d t
$$

Theorem 1:

$$
\int_{C} f(x, y) d s=\int_{a}^{b} f(x(t), y(t)) \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} d t
$$

Geometric Meaning of Line Integral:

If $f(x, y) \geq 0$, then the line integral

$$
\int_{C} f(x, y) d s
$$

represents the area of one side of the "fence" or "curtain" in the above figure, whose base is C and whose height above the point (x, y) is $f(x, y)$.

Example 1: Evaluate

$$
\int_{C}\left(2+x^{2} y\right) d s
$$

where C is the upper half of the unit circle $x^{2}+y^{2}=1$.

Solution: the half circle can be parametrized by

$$
\left\{\begin{array}{l}
x=\cos t \\
y=\sin t
\end{array} \quad 0 \leq t \leq \pi\right.
$$

Then

$$
\begin{aligned}
\int_{C}\left(2+x^{2} y\right) d s & =\int_{0}^{\pi}\left(2+\cos ^{2} t \sin t\right) \sqrt{\left[(\cos t)^{\prime}\right]^{2}+\left[(\sin t)^{\prime}\right]^{2}} d t \\
& =\int_{0}^{\pi}\left(2+\cos ^{2} t \sin t\right) \sqrt{[-\sin t]^{2}+[\cos t]^{2}} d t \\
& =\int_{0}^{\pi}\left(2+\cos ^{2} t \sin t\right) d t \\
& =\left[2 t-\frac{1}{3} \cos ^{3} t\right]_{0}^{\pi} \\
& =\left(2 \pi+\frac{1}{3}\right)-\left(-\frac{1}{3}\right)=2 \pi+\frac{2}{3} .
\end{aligned}
$$

In general, the curve C might be piecewise smooth, that is, C is a union of a finite number of smooth curves C_{1}, \ldots, C_{n}, then

$$
\int_{C} f(x, y) d s=\int_{C_{1}} f(x, y) d s+\cdots+\int_{C_{n}} f(x, y) d s
$$

Example 2: Evaluate $\int_{C} 2 x d s$, where C consists of the are C_{1} of the parabola $y=x^{2}$ from $(0,0)$ to $(1,1)$ followed by the vertical line segment C_{2} from $(1,1)$ to $(1,2)$.

Solution: $\int_{C} 2 x d s=\int_{C_{1}} 2 x d s+\int_{C_{2}} 2 x d s$, where
(1) the first curve C_{1} is given by

$$
\begin{aligned}
x & =x, \quad y=x^{2}, \quad 0 \leq x \leq 1 \\
\int_{C_{1}} 2 x d s & =\int_{0}^{1} 2 x \sqrt{\left(\frac{d x}{d x}\right)^{2}+\left(\frac{d y}{d x}\right)^{2}} d x \\
& =\int_{0}^{1} 2 x \sqrt{1+4 x^{2}} d x \\
& =\left.\frac{1}{6}\left(1+4 x^{2}\right)^{3 / 2}\right|_{0} ^{1}=\frac{5 \sqrt{5}-1}{6}
\end{aligned}
$$

(2) the second curve C_{2} is given by

$$
\begin{aligned}
x & =1, \quad y=y, \quad 1 \leq y \leq 2 \\
\int_{C_{2}} 2 x d s & =\int_{1}^{2} 2 \cdot 1 \sqrt{\left(\frac{d x}{d y}\right)^{2}+\left(\frac{d y}{d y}\right)^{2}} d y \\
& =\int_{1}^{2} 2 \sqrt{0+1^{2}} d y=\int_{1}^{2} 2 d y=2
\end{aligned}
$$

Therefore,

$$
\int_{C} 2 x d s=\int_{C_{1}} 2 x d s+\int_{C_{2}} 2 x d s=\frac{5 \sqrt{5}-1}{6}+2
$$

2. Line integral with respect to x and y : In the sum

$$
\sum_{i=1}^{n} f\left(x_{i}^{*}, y_{i}^{*}\right) \Delta s_{i}
$$

we can replace Δs_{i} by either Δx_{i} or Δy_{i}, then
Definition 2: the line integral of f along C with respect to x and y is

$$
\begin{aligned}
& \int_{C} f(x, y) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}, y_{i}^{*}\right) \Delta x_{i} \\
& \int_{C} f(x, y) d y=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}, y_{i}^{*}\right) \Delta y_{i}
\end{aligned}
$$

provided the limits exists.

Since $d x=x^{\prime}(t) d t$ and $d y=y^{\prime}(t) d t$, then

Theorem 2:

$$
\begin{aligned}
& \int_{C} f(x, y) d x=\int_{a}^{b} f(x(t), y(t)) x^{\prime}(t) d t \\
& \int_{C} f(x, y) d y=\int_{a}^{b} f(x(t), y(t)) y^{\prime}(t) d t
\end{aligned}
$$

It frequently happens that line integrals with respect to x and y occur together along the same curve C. When this happens, it's customary to abbreviate writing

$$
\int_{C} P(x, y) d x+\int_{C} Q(x, y) d y=\int_{C} P(x, y) d x+Q(x, y) d y
$$

Remark: There are two orientations for a given curve. If we denote a curve by C with certain orientation, we shall denote by $-C$ the same curve but of reverse orientation.
(1) The orientation does not affect line integral w.r.t. the arc length, that is,

$$
\int_{-C} f(x, y) d s=\int_{C} f(x, y) d s
$$

(2) Reverse orientation gives opposite values for line integral w.r.t. x and y, that is,

$$
\int_{-C} f(x, y) d x=-\int_{C} f(x, y) d x, \quad \int_{-C} f(x, y) d y=-\int_{C} f(x, y) d y
$$

Example 3: Evaluate

$$
\int_{C}(1+y) d x+x d y
$$

where C is the arc of the upper half unit circle from $(1,0)$ to $(-1,0)$.

Solution: the half circle from $(1,0)$ to $(-1,0)$ can be parametrized by

$$
\left\{\begin{array}{l}
x=\cos t \\
y=\sin t
\end{array} \quad 0 \leq t \leq \pi\right.
$$

Then

$$
\begin{aligned}
\int_{C}(1+y) d x+x d y & =\int_{0}^{\pi}(1+\sin t)(\cos t)^{\prime} d t+\cos t(\sin t)^{\prime} d t \\
& =\int_{0}^{\pi}(1+\sin t)(-\sin t) d t+\cos t(\cos t) d t \\
& =\int_{0}^{\pi}\left[-\sin t+\left(\cos ^{2} t-\sin ^{2} t\right)\right] d t \\
& =\int_{0}^{\pi}[-\sin t+\cos (2 t)] d t \\
& =\cos t+\left.\frac{1}{2} \sin (2 t)\right|_{0} ^{\pi} \\
& =\left[\cos \pi+\frac{1}{2} \sin (2 \pi)\right]-\left[\cos 0+\frac{1}{2} \sin 0\right]=-2
\end{aligned}
$$

Remark: The reverse curve $-C$ is the arc of the upper half unit circle from $(-1,0)$ to $(1,0)$, that is,

$$
\left\{\begin{array}{l}
x=\cos t \\
y=\sin t
\end{array} \quad t \text { varies from } \pi \text { to } 0\right.
$$

so $\int_{-C}(1+y) d x+x d y$ is the integral from π to 0 , which equals to 2 (after calculation).
3. Line integral in Space: Consider a space curve C given by

$$
\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle, \quad a \leq t \leq b
$$

(1) Line integral of $f(x, y, z)$ along C with respect to arc length is

$$
\begin{aligned}
\int_{C} f(x, y, z) d s & =\int_{a}^{b} f(x(t), y(t), z(t)) \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}+z^{\prime}(t)^{2}} d t \\
& =\int_{a}^{b} f(\mathbf{r}(t))\left|\mathbf{r}^{\prime}(t)\right| d t
\end{aligned}
$$

In particular, the length of the curve C is given by $L=\int_{C} 1 d s=\int_{a}^{b}\left|\mathbf{r}^{\prime}(t)\right| d t$.
(2) Line integral of $f(x, y, z)$ along C with respect to x, y and z is

$$
\begin{aligned}
\int_{C} f(x, y, z) d x & =\int_{a}^{b} f(x(t), y(t), z(t)) x^{\prime}(t) d t \\
\int_{C} f(x, y, z) d y & =\int_{a}^{b} f(x(t), y(t), z(t)) y^{\prime}(t) d t \\
\int_{C} f(x, y, z) d z & =\int_{a}^{b} f(x(t), y(t), z(t)) z^{\prime}(t) d t
\end{aligned}
$$

Or combinatorially,

$$
\begin{aligned}
& \int_{C} P(x, y, z) d x+Q(x, y, z) d y+R(x, y, z) d z \\
= & \int_{a}^{b}\left[P(x(t), y(t), z(t)) x^{\prime}(t)+Q(x(t), y(t), z(t)) y^{\prime}(t)+R(x(t), y(t), z(t)) z^{\prime}(t)\right] d t
\end{aligned}
$$

Example 4: Let C be the circular helix given by the equation

$$
x=\cos t, y=\sin t, z=t, \quad 0 \leq t \leq \frac{\pi}{4}
$$

(1) Evaluate $\int_{C} y \sin z d s$.
(2) Evaluate $\int_{C} y \sin z d x+x \sin z d y+x y \cos z d z$.

Solution:
(1)

$$
\begin{aligned}
\int_{C} y \sin z d s & =\int_{0}^{\frac{\pi}{4}} \sin t \sin t \sqrt{\left[(\cos t)^{\prime}\right]^{2}+\left[(\sin t)^{\prime}\right]^{2}+\left[(t)^{\prime}\right]^{2}} d t \\
& =\int_{0}^{\frac{\pi}{4}} \sin ^{2} t \sqrt{\sin ^{2} t+\cos ^{2} t+1} d t \\
& =\int_{0}^{\frac{\pi}{4}} \sin ^{2} t \sqrt{2} d t \\
& =\sqrt{2} \int_{0}^{\frac{\pi}{4}} \frac{1-\cos (2 t)}{2} d t \\
& =\frac{\sqrt{2}}{2}\left[t-\frac{1}{2} \sin (2 t)\right]_{0}^{\frac{\pi}{4}} \\
& =\frac{\sqrt{2}}{2}\left[\left(\frac{\pi}{4}-\frac{1}{2} \sin \frac{\pi}{2}\right)-0\right]=\frac{\sqrt{2}(\pi-2)}{8}
\end{aligned}
$$

(2)

$$
\begin{aligned}
& \int_{C} y \sin z d x+x \sin z d y+x y \cos z d z \\
= & \int_{0}^{\frac{\pi}{4}}\left[\sin t \sin t(\cos t)^{\prime}+\cos t \sin t(\sin t)^{\prime}+\cos t \sin t \cos t(t)^{\prime}\right] d t \\
= & \int_{0}^{\frac{\pi}{4}}\left(-\sin ^{3} t+2 \sin t \cos ^{2} t\right) d t \\
= & \int_{0}^{\frac{\pi}{4}} \sin t\left[3 \cos ^{2} t-1\right] d t \\
= & {\left[\cos t-\cos ^{3} t\right]_{0}^{\frac{\pi}{4}}=\left[\cos \frac{\pi}{4}-\cos ^{3}\left(\frac{\pi}{4}\right)\right]-\left[\cos 0-\cos ^{3} 0\right]=\frac{\sqrt{2}}{4} . }
\end{aligned}
$$

4. Line integral of vector fields: One can regard

$$
\begin{equation*}
\int_{C} P(x, y) d x+Q(x, y) d y \tag{1}
\end{equation*}
$$

as follows. The planar curve C is given by $\mathbf{r}(t)=\langle x(t), y(t)\rangle$, or simply $\mathbf{r}=\langle x, y\rangle$, and thus $d \mathbf{r}=\langle d x, d y\rangle$. Denote the vector field $\mathbf{F}(x, y)=\langle P(x, y), Q(x, y)\rangle$, or simply $\mathbf{F}=\langle P, Q\rangle$. Therefore, we interpret (1) into
Line integral of the vector field F along C :

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{C} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t=\int_{C} P(x, y) d x+Q(x, y) d y
$$

Similarly, one regard

$$
\begin{equation*}
\int_{C} P(x, y, z) d x+Q(x, y, z) d y+R(x, y, z) d z \tag{2}
\end{equation*}
$$

as Line integral of the vector field F along a space curve C :

$$
\int_{C} \mathbf{F} \cdot d r=\int_{C} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t=\int_{C} P(x, y, z) d x+Q(x, y, z) d y+R(x, y, z) d z
$$

where the curve C is given by $\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle$ with $d \mathbf{r}=\langle d x, d y, d z\rangle$, and the vector field $\mathbf{F}=\langle P, Q, R\rangle$.

As an application, the total work done by the force $\mathbf{F}=\langle P, Q, R\rangle$ in moving the particle along C given by $\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle$ can be computed by

$$
W=\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{C} P d x+Q d y+R d z
$$

Example 5: Find the work done by the force field

$$
\mathbf{F}(x, y, z)=y z \mathbf{i}+z x \mathbf{j}+x y \mathbf{k}
$$

in moving a particle along the twisted cubic curve C given by

$$
x=t, y=t^{2}, z=t^{3}, \quad 0 \leq t \leq 1
$$

Solution. Along the curve C,

$$
\mathbf{F}=t^{2} t^{3} \mathbf{i}+t^{3} z t \mathbf{j}+t t^{2} \mathbf{k}=t^{5} \mathbf{i}+t^{4} \mathbf{j}+t^{3} \mathbf{k}=\left\langle t^{5}, t^{4}, t^{3}\right\rangle
$$

and

$$
d \mathbf{r}=\langle d x, d y, d z\rangle=\left\langle x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right\rangle d t=\left\langle 1,2 t, 3 t^{2}\right\rangle d t
$$

then

$$
\begin{aligned}
W=\int_{C} \mathbf{F} \cdot d r & =\int_{0}^{1}\left\langle t^{5}, t^{4}, t^{3}\right\rangle \cdot\left\langle 1,2 t, 3 t^{2}\right\rangle d t \\
& =\int_{0}^{1} 6 t^{5} d t=t^{6} \mid{ }_{0}^{1}=1
\end{aligned}
$$

