
§16.2 Line Integrals

1. Line Integral with respect to the arc length: Consider a planar curve C given by

r(t) = 〈x(t), y(t)〉, a ≤ t ≤ b.

Divide the parameter interval [a, b] into n subintervals [ti−1, ti], i = 0, . . . , n, and thus
divide the curve C correspondingly n sub-curves of length ∆si. Choose randomly a
point P∗i = (x∗i , y∗i ) on the i-th sub-curve.

Given a function f (x, y), consider the sum

n

∑
i=1

f (x∗i , y∗i )∆si.

Definition 1: the line integral of f along C (with respect to arc length) is∫
C

f (x, y)ds = lim
n→∞

n

∑
i=1

f (x∗i , y∗i )∆si

provided the limit exists.

Since

ds =
√

dx2 + dy2 =

√(
dx
dt

)2

+

(
dy
dt

)2

dt =
√

x′(t)2 + y′(t)2 dt,

Theorem 1: ∫
C

f (x, y)ds =
∫ b

a
f (x(t), y(t))

√
x′(t)2 + y′(t)2dt.

1



§16.2 Line Integrals

Geometric Meaning of Line Integral:

If f (x, y) ≥ 0, then the line integral ∫
C

f (x, y)ds

represents the area of one side of the “fence” or “curtain” in the above figure, whose
base is C and whose height above the point (x, y) is f (x, y).
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§16.2 Line Integrals

Example 1: Evaluate ∫
C
(2 + x2y) ds,

where C is the upper half of the unit circle x2 + y2 = 1.

Solution: the half circle can be parametrized by{
x = cos t,
y = sin t,

0 ≤ t ≤ π.

Then ∫
C
(2 + x2y) ds =

∫ π

0
(2 + cos2 t sin t)

√
[(cos t)′]2 + [(sin t)′]2dt

=
∫ π

0
(2 + cos2 t sin t)

√
[− sin t]2 + [cos t]2dt

=
∫ π

0
(2 + cos2 t sin t)dt

=

[
2t− 1

3
cos3 t

]π

0

= (2π +
1
3
)− (−1

3
) = 2π +

2
3

.
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§16.2 Line Integrals

In general, the curve C might be piecewise smooth, that is, C is a union of a finite
number of smooth curves C1, . . . , Cn, then∫

C
f (x, y)ds =

∫
C1

f (x, y)ds + · · ·+
∫

Cn
f (x, y)ds.

Example 2: Evaluate
∫

C 2xds, where C consists of the are C1 of the parabola y = x2

from (0, 0) to (1, 1) followed by the vertical line segment C2 from (1, 1) to (1, 2).

Solution:
∫

C 2xds =
∫

C1
2xds +

∫
C2

2xds, where

(1) the first curve C1 is given by

x = x, y = x2, 0 ≤ x ≤ 1,

∫
C1

2xds =
∫ 1

0
2x

√(
dx
dx

)2

+

(
dy
dx

)2

dx

=
∫ 1

0
2x
√

1 + 4x2dx

=
1
6
(1 + 4x2)3/2

∣∣∣∣1
0
=

5
√

5− 1
6

(2) the second curve C2 is given by

x = 1, y = y, 1 ≤ y ≤ 2,

∫
C2

2xds =
∫ 2

1
2 · 1

√(
dx
dy

)2

+

(
dy
dy

)2

dy

=
∫ 2

1
2
√

0 + 12dy =
∫ 2

1
2dy = 2.

Therefore, ∫
C

2xds =
∫

C1

2xds +
∫

C2

2xds =
5
√

5− 1
6

+ 2.
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§16.2 Line Integrals

2. Line integral with respect to x and y: In the sum

n

∑
i=1

f (x∗i , y∗i )∆si,

we can replace ∆si by either ∆xi or ∆yi, then

Definition 2: the line integral of f along C with respect to x and y is∫
C

f (x, y)dx = lim
n→∞

n

∑
i=1

f (x∗i , y∗i )∆xi

∫
C

f (x, y)dy = lim
n→∞

n

∑
i=1

f (x∗i , y∗i )∆yi

provided the limits exists.

Since dx = x′(t)dt and dy = y′(t)dt, then

Theorem 2: ∫
C

f (x, y)dx =
∫ b

a
f (x(t), y(t))x′(t)dt.

∫
C

f (x, y)dy =
∫ b

a
f (x(t), y(t))y′(t)dt.

It frequently happens that line integrals with respect to x and y occur together along
the same curve C. When this happens, it’s customary to abbreviate writing∫

C
P(x, y)dx +

∫
C

Q(x, y)dy =
∫

C
P(x, y)dx + Q(x, y)dy.

Remark: There are two orientations for a given curve. If we denote a curve by
C with certain orientation, we shall denote by −C the same curve but of reverse
orientation.

(1) The orientation does not affect line integral w.r.t. the arc length, that is,∫
−C

f (x, y)ds =
∫

C
f (x, y)ds;

(2) Reverse orientation gives opposite values for line integral w.r.t. x and y, that is,∫
−C

f (x, y)dx = −
∫

C
f (x, y)dx,

∫
−C

f (x, y)dy = −
∫

C
f (x, y)dy.
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§16.2 Line Integrals

Example 3: Evaluate ∫
C
(1 + y)dx + xdy,

where C is the arc of the upper half unit circle from (1, 0) to (−1, 0).

Solution: the half circle from (1, 0) to (−1, 0) can be parametrized by{
x = cos t,
y = sin t,

0 ≤ t ≤ π.

Then ∫
C
(1 + y)dx + xdy =

∫ π

0
(1 + sin t)(cos t)′dt + cos t(sin t)′dt

=
∫ π

0
(1 + sin t)(− sin t)dt + cos t(cos t)dt

=
∫ π

0
[− sin t + (cos2 t− sin2 t)]dt

=
∫ π

0
[− sin t + cos(2t)]dt

= cos t +
1
2

sin(2t)
∣∣∣∣π
0

= [cos π +
1
2

sin(2π)]− [cos 0 +
1
2

sin 0] = −2.

Remark: The reverse curve −C is the arc of the upper half unit circle from (−1, 0)
to (1, 0), that is, {

x = cos t,
y = sin t,

t varies from π to 0,

so
∫
−C(1+ y)dx+ xdy is the integral from π to 0, which equals to 2 (after calculation).
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3. Line integral in Space: Consider a space curve C given by

r(t) = 〈x(t), y(t), z(t)〉, a ≤ t ≤ b.

(1) Line integral of f (x, y, z) along C with respect to arc length is∫
C

f (x, y, z)ds =
∫ b

a
f (x(t), y(t), z(t))

√
x′(t)2 + y′(t)2 + z′(t)2 dt

=
∫ b

a
f (r(t))|r′(t)|dt.

In particular, the length of the curve C is given by L =
∫

C 1ds =
∫ b

a |r
′(t)|dt.

(2) Line integral of f (x, y, z) along C with respect to x, y and z is∫
C

f (x, y, z)dx =
∫ b

a
f (x(t), y(t), z(t))x′(t)dt,∫

C
f (x, y, z)dy =

∫ b

a
f (x(t), y(t), z(t))y′(t)dt,∫

C
f (x, y, z)dz =

∫ b

a
f (x(t), y(t), z(t))z′(t)dt,

Or combinatorially,∫
C

P(x, y, z)dx + Q(x, y, z)dy + R(x, y, z)dz

=
∫ b

a
[P(x(t), y(t), z(t))x′(t) + Q(x(t), y(t), z(t))y′(t) + R(x(t), y(t), z(t))z′(t)]dt
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Example 4: Let C be the circular helix given by the equation

x = cos t, y = sin t, z = t, 0 ≤ t ≤ π

4
.

(1) Evaluate
∫

C y sin zds.

(2) Evaluate
∫

C y sin zdx + x sin zdy + xy cos zdz.

Solution:

(1) ∫
C

y sin zds =
∫ π

4

0
sin t sin t

√
[(cos t)′]2 + [(sin t)′]2 + [(t)′]2 dt

=
∫ π

4

0
sin2 t

√
sin2 t + cos2 t + 1dt

=
∫ π

4

0
sin2 t

√
2dt

=
√

2
∫ π

4

0

1− cos(2t)
2

dt

=

√
2

2

[
t− 1

2
sin(2t)

] π
4

0

=

√
2

2

[(
π

4
− 1

2
sin

π

2

)
− 0
]
=

√
2(π − 2)

8

(2) ∫
C

y sin zdx + x sin zdy + xy cos zdz

=
∫ π

4

0

[
sin t sin t(cos t)′ + cos t sin t(sin t)′ + cos t sin t cos t(t)′

]
dt

=
∫ π

4

0
(− sin3 t + 2 sin t cos2 t)dt

=
∫ π

4

0
sin t[3 cos2 t− 1]dt

=
[
cos t− cos3 t

] π
4

0
=
[
cos

π

4
− cos3

(π

4

)]
− [cos 0− cos3 0] =

√
2

4
.
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4. Line integral of vector fields: One can regard∫
C

P(x, y)dx + Q(x, y)dy (1)

as follows. The planar curve C is given by r(t) = 〈x(t), y(t)〉, or simply r = 〈x, y〉,
and thus dr = 〈dx, dy〉. Denote the vector field F(x, y) = 〈P(x, y), Q(x, y)〉, or simply
F = 〈P, Q〉. Therefore, we interpret (1) into

Line integral of the vector field F along C:∫
C

F · dr =
∫

C
F(r(t)) · r′(t)dt =

∫
C

P(x, y)dx + Q(x, y)dy

Similarly, one regard∫
C

P(x, y, z)dx + Q(x, y, z)dy + R(x, y, z)dz (2)

as Line integral of the vector field F along a space curve C:∫
C

F · dr =
∫

C
F(r(t)) · r′(t)dt =

∫
C

P(x, y, z)dx + Q(x, y, z)dy + R(x, y, z)dz,

where the curve C is given by r(t) = 〈x(t), y(t), z(t)〉 with dr = 〈dx, dy, dz〉, and the
vector field F = 〈P, Q, R〉.

As an application, the total work done by the force F = 〈P, Q, R〉 in moving the
particle along C given by r(t) = 〈x(t), y(t), z(t)〉 can be computed by

W =
∫

C
F · dr =

∫
C

Pdx + Qdy + Rdz.
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Example 5: Find the work done by the force field

F(x, y, z) = yzi + zxj + xyk

in moving a particle along the twisted cubic curve C given by

x = t, y = t2, z = t3, 0 ≤ t ≤ 1.

Solution. Along the curve C,

F = t2t3i + t3ztj + tt2k = t5i + t4j + t3k = 〈t5, t4, t3〉,

and
dr = 〈dx, dy, dz〉 = 〈x′(t), y′(t), z′(t)〉dt = 〈1, 2t, 3t2〉dt,

then

W =
∫

C
F · dr =

∫ 1

0
〈t5, t4, t3〉 · 〈1, 2t, 3t2〉dt

=
∫ 1

0
6t5dt = t6|10 = 1.
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