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a b s t r a c t

This paper introduces a wavepacket-transform-based Gaussian beam method for solving
the Schrödinger equation. We focus on addressing two computational issues of the
Gaussian beam method: how to generate a Gaussian beam representation for general ini-
tial conditions and how to perform long time propagation for any finite period of time. To
address the first question, we introduce fast Gaussian wavepacket transforms and develop
on top of them an efficient initialization algorithm for general initial conditions. Based on
this new initialization algorithm, we address the second question by reinitializing the
beam representation when the beams become too wide. Numerical examples in one,
two, and three dimensions demonstrate the efficiency and accuracy of the proposed
algorithms. The methodology can be readily generalized to deal with other semi-classical
quantum mechanical problems.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

We consider the following linear evolution equation:

� ı�hUt þ Hðx;�ı�h@xÞU ¼ 0; x 2 Rd; t > 0;
Uðx;0Þ ¼ U0ðxÞ;

where �h is a small positive parameter, ı ¼
ffiffiffiffiffiffiffi
�1
p

, U0 is a compactly supported L2-function, and H(x,p) is a real principal symbol.
The example that we will focus on is the Schrödinger equation with Hðx; pÞ ¼ VðxÞ þ jpj

2

2 . As this equation propagates oscil-
lations of wavelength �h in space and time, resolving such oscillations by direct finite difference methods requires computa-
tional grid of size O(1/�h) in each direction, which is costly in practice.

Classical mechanics provides a deterministic description of the motion of a classical particle by the Newton laws with
well-defined position and momentum. On the other hand, quantum mechanics gives an indeterministic description of the
motion of a quantum particle by the Schrödinger equation with uncertainty in its position and momentum. However, when
a quantum particle is appropriately localized both in space and in momentum in a balanced wave, its mean location and
mean momentum follow the Newton laws, up to quantum correction. This results in the field of semi-classical quantum
mechanics, which provides a short-wavelength link between classical mechanics and quantum mechanics and maintains
contact with the structure imposed by classical mechanics without sacrificing quantum mechanical accuracy. On the com-
putational side, numerical methods based on the semi-classical approaches are also sought as efficient alternatives to
capture the highly oscillatory phenomenon arising from quantum mechanics.
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One of such semi-classical methods is the so-called Gaussian beam method. The idea underlying the Gaussian beam
method is to construct an asymptotic solution along the trajectory of a classical particle. Similar to the WKBJ expansion, a
Gaussian beam has an amplitude and phase decomposition. However, an important difference is that the quadratic term
of the phase function is constructed so as to have a positive imaginary part away from the ray trajectory, thus providing
the beam with a Gaussian profile at any time. The evolution of the Gaussian beam over time is described by a set of ordinary
differential equations that are independent of the small parameter �h.

In order to apply the Gaussian beam methods, one faces two major questions. A single Gaussian beam has a Gaussian pro-
file and it is certainly incapable of describing a general initial condition U0(x). The first question concerns the initialization of
the Gaussian beam representation, i.e., how to decompose a general U0(x) into a collection of Gaussian beams efficiently. Several
initialization algorithms have been proposed in the literature. A commonly used approach is the asymptotic decomposition
(AD) method [25,23,13], which assumes the initial condition U0(x) to have a WKBJ form, i.e., U0(x) = A(x)exp(ıs(x)/�h). How-
ever, this method is clearly not general. Another approach is the FBI transform (Fourier–Bros–Iagolinitzer) method [13],
which first computes the FBI transform of U0(x) and then discretizes this phase-space distribution to obtain the beam repre-
sentation. This method is quite general; however, sometimes the number of resulting beams can be quite large. Recently in
[24], Tanushev et al. proposed a method that places beams one by one via greedy optimization. This method sometimes can
result in very few beams; however, its computational cost is rather high. In this paper, we introduce fast Gaussian wavepac-
ket transforms and build on top of them a highly efficiently algorithm for constructing beam representation for arbitrary
initial condition. The cost of this fast wavepacket transform is comparable to that of a single fast Fourier transform.

The second question concerns long time propagation of Gaussian beams. A simple analysis shows that the size of a Gauss-
ian beam can grow exponentially with time. A overly-extended Gaussian beam not only leads to large approximation error
but also makes the final summation step extremely expensive. One needs to address this question in order to carry out long
time propagation of Gaussian beams efficiently and accurately. Our solution is to monitor the beam support and reinitialize
the beam representation whenever necessary. This simple reinitialization process is rather difficult to implement under
existing initialization algorithms, as they are either too special or too costly. However, when combined with our initialization
algorithm based on fast Gaussian wavepacket transforms, it works very well and significantly improves the accuracy and
efficiency of the Gaussian beam methods.

Furthermore, we show that the new wavepacket-transform-based Gaussian beam method yields an asymptotic solution
to the Schrödinger equation.

1.1. Related work

The idea underlying Gaussian beams is simply to build asymptotic solutions to partial differential equations concentrated
on a single curve through the domain; this single curve is nothing but a ray as shown in [22]. The existence of such solutions
has been known to the pure mathematics community since sometime in the 1960s [1], and these solutions have been used to
obtain results on propagation of singularities in hyperbolic PDEs [10,22]. An integral superposition of these solutions can be
used to define a more general solution that is not necessarily concentrated on a single curve. Gaussian beams can be used to
treat pseudo-differential equations in a natural way, including Helmholtz [14] and Schrödinger equations [13].

In geophysical applications, Gaussian beam superpositions have been used for seismic wave modeling [5] and seismic
wave migration [9]. The numerical implementations in these areas are based on ray-centered coordinates that prove to
be computationally inefficient [5,9]. More recently, based on Ralston and co-workers [22,25] a purely Eulerian computational
approach was proposed in [14] to overcome some of these difficulties; it can be easily applied to both high frequency waves
and semi-classical quantum mechanics. In [25], Lagrangian Gaussian beams are successfully constructed to simulate moun-
tain waves, a kind of stationary gravity wave forming over mountain peaks and interfering with aviation. See [23,24,15,20,3]
for recent works on Gaussian beams related to wave equations and other applications.

In quantum mechanics, some variants of Gaussian beams, such as frozen Gaussian beams and Gaussian wavepackets,
have been used to construct approximate solutions to Schrödinger equations in the semi-classical regime [12,7,8]. More re-
cently, Leung and Qian [13] presented an Eulerian formulation of the Gaussian beam methods for the Schrödinger equation
following their earlier work in [14]. A related work is outlined by Jin et al. in [11].

We would like to mention that our Gaussian wavepacket transforms are closely related to the FBI transform [17], which
has been used in [13] to initialize the beam representation. The FBI transform computes the phase space density of a function
and, through a reproducing formula, writes the function as a sum of Gaussian wavepackets. However, as the number of
dimensions is doubled by moving into the phase space, the number of Gaussian wavepackets required for a prescribed accu-
racy can be quite large, depending on the initial wave function. The Gaussian wavepacket transforms introduced here can be
viewed as a discrete version of the FBI transform in the sense that it effectively samples the FBI transform on a (product)
Cartesian grid with an O(�h1/2) spacing in space and O(�h�1/2) spacing in frequency. Through this careful decimation, the Gauss-
ian wavepacket transforms provide much more efficient representations without sacrificing the reproducing property.

1.2. Contents

The rest of the paper is organized as follows. Section 2 describes the Lagrangian formulation of the Gaussian beam meth-
od for the Schrödinger equation. In Section 3, we present the fast Gaussian wavepacket transforms for continuous and
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discrete data, and describe how to use them for initial decomposition. Section 4 discusses the reinitialization algorithm for
long time propagation. In Section 5, we show that the solution obtained through wavepacket transforms is a global asymp-
totic solution of the Schrödinger equation. Section 6 presents numerical examples in one-, two-, and three-dimensional
cases. Finally, conclusions and discussion on future work are given in Section 7.

2. Gaussian beam methods for the Schrödinger equation

2.1. General setup

We consider the following evolution equation:

� ı�hUt þ Hðx;�ı�h@xÞU ¼ 0; x 2 Rd; t > 0; ð1Þ
Uðx;0Þ ¼ U0ðxÞ; ð2Þ

where �h is a small positive parameter, U0 is a compactly supported L2-function, and H(x,p) is a real principal symbol that
satisfies certain smoothness conditions. In addition, we assume that H(x,�ı�h@x) is a self-adjoint (or symmetric) differential
operator.

To construct Gaussian beams for the above equation, we follow [22,25,18] and start with the WKBJ ansatz,

Aðx; tÞ exp
ısðx; tÞ

�h

� �
: ð3Þ

The functions A(x, t) and s(x, t) are all assumed to be smooth, and these requirements are feasible because the beam solution
is constructed to be concentrated on a single curve c; this is the essential difference between traditional WKBJ asymptotic
solutions and Gaussian beam solutions. As a result, the requirements on the phase function s(x, t) are slightly different from
those of traditional WKBJ asymptotics. We require that s(x, t) be real valued on c, but away from this curve c, s(x, t) can be
complex valued with the restriction that the imaginary part of the second-order derivative sxx(x, t) is positive definite. This
will make U(x, t) look like a Gaussian with variance O(�h) on planes perpendicular to c for any fixed time t.

Substituting the ansatz (3) into (1) and considering the leading-order singular terms corresponding to �h, we have the fol-
lowing eikonal and transport equations (see [19]):

stðx; tÞ þ Hðx; sxðx; tÞÞ ¼ 0; ð4Þ

Atðx; tÞ þ Hpðx; sxÞ � Axðx; tÞ þ
Aðx; tÞ

2
traceðHppðx; sxÞsxxðx; tÞ þ Hxpðx; sxÞÞ
� �

¼ 0: ð5Þ

Notice that if the differential operator H(x,�ı�h@x) is not symmetric, then the transport equation will take a slightly different
form; see [19]. In order to simplify the presentation, we assume that the operator H(x,�ı�h@x) is symmetric.

We are going to build Gaussian beams around central rays c = {(x(t), t): t P 0}, which are the x-projections of
bicharacteristics for the Hamilton–Jacobi equation (4), according to the Gaussian beam theory [22]. Setting p(t) = sx(x(t), t),
the bicharacteristic {(x(t),p(t)): t P 0} satisfies the following Hamiltonian system:

_x ¼ dx
dt
¼ HpðxðtÞ;pðtÞÞ; xjt¼0 ¼ x0;

_p ¼ dp
dt
¼ �HxðxðtÞ;pðtÞÞ; pjt¼0 ¼ p0;

ð6Þ

where t is a parameter parameterizing the bicharacteristic emanating from the initial point (x0,p0). Along the ray c = {(x(t), t):
t P 0} (the x-projection of the bicharacteristic {(x(t),p(t)): t P 0}), the phase function s(t) � s(x(t), t) satisfies

_s ¼ ds
dt
¼ pðtÞ � HpðxðtÞ; pðtÞÞ � HðxðtÞ;pðtÞÞ; sjt¼0 ¼ s0; ð7Þ

where s0 is an initial value of the phase function s for the bicharacteristic emanating from the initial point (x0,p0).
Since s(t) = s(x(t), t) and p(t) = sx(x(t), t) are constructed along the ray {(x(t), t): t P 0} by solving Eqs. (6) and (7), we have

available the zero- and first-order derivative information of the phase function along the ray. Next we determine the second-
order derivative (the Hessian), M(t) = sxx(x(t), t), along the ray. To achieve this, we differentiate the Hamilton–Jacobi equation
(4) twice with respect to x along the ray, yielding

st;xx þ sxxxHp þ HT
xpsxx þ sxxHpx þ sxxHppsxx þ Hxx ¼ 0: ð8Þ

By using the first component of the Hamiltonian system (6) along the ray to reorganize the first two terms in the above equa-
tion, we have

_M þ HT
xpM þMHpx þMHppM þ Hxx ¼ 0; ð9Þ

which is appended with a certain initial condition Mjt=0 = M0. This is a Riccati equation which as a nonlinear ODE does not
have a unique global smooth solution in general. However, since this Riccati equation for the symmetric matrix M is related
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to a Hamiltonian system, complexifying the equation by specifying an appropriate complex initial condition for M can lead to
a unique global smooth solution for the Riccati equation; in [22,18,25] this has been shown to be true by complexifying the
underlying symplectic structure for the Hamiltonian system. The essential idea of such a proof is introducing the following
variational system for d � d matrix-valued functions B(t) and C(t) along the bicharacteristic starting from (x0,p0):

_B ¼ �HT
xpB� HxxC; Bjt¼0 ¼ B0 þ ı�I;

_C ¼ HppBþ HpxC; Cjt¼0 ¼ I;
ð10Þ

where � is a positive constant, I is the d � d identity matrix, and matrix B0 is chosen to take into account the initial phase
function. Here B = B(t;x0,p0) and C = C(t;x0,p0) are taken to be the variations of p = p(t;x0,p0) and x = x(t;x0,p0) with respect
to the initial point x0 = a,

Bðt; x0;p0Þ ¼
@p
@a

; Cðt; x0;p0Þ ¼
@x
@a

:

By choosing the initial data for B to be of the form B0 + ı�I, we effectively complexify the variational system (10); conse-
quently, a solution to the above equations exists on any interval t 2 [0,T]. Moreover, we have the following lemma on the
bound of the solution; its proof can be found in [22,18,25].

Lemma 2.1. Under the above assumptions, C(t) is non-singular for any t, and Im(B(t)C�1(t)) is positive definite.

On the other hand, one may also manipulate the system (10) to conclude that B(t)C�1(t) satisfies the Riccati equation (9)
with the initial condition B(0)C�1(0) = B0 + ı�I. Therefore, if we choose the initial data for M such that M(0) = B0 + ı�
I = B(0)C�1(0), then by uniqueness we have M(t) = B(t)C�1(t), and Im(M(t)) = Im(B(t)C�1(t)) is positive definite along the ray
{(x(t), t): t P 0} by Lemma 2.1.

Now that we have available the zero-, first-, and second-order derivative information of the phase function along the ray,
we can use the following second-order Taylor expansion centered at the ray {(x(t), t): t P 0} to define a smooth global
approximate phase function:

sðx; tÞ � sðtÞ þ pðtÞ � ðx� xðtÞÞ þ 1
2
ðx� xðtÞÞT MðtÞðx� xðtÞÞ; ð11Þ

which is valid near the ray {(x(t), t): t P 0}.
Next we need to determine the amplitude function A. By reorganizing the first two terms in the transport equation (5)

according to the beam theory, the amplitude function A(t) � A(x(t), t) along the ray {(x(t), t): t P 0} satisfies the following
equation:

_A ¼ �A
2
ðtraceðHppM þ HxpÞÞ; Ajt¼0 ¼ A0: ð12Þ

To obtain a smooth global approximate amplitude function, we use the following extension:

Aðx; tÞ � AðxðtÞ; tÞ ¼ AðtÞ; ð13Þ

which is valid near the ray {(x(t), t): t P 0}.
Inserting (11) and (13) into the WKBJ ansatz yields an asymptotically valid solution:

Uðx; tÞ ¼ Aðx; tÞ exp ı
sðx; tÞ

�h

� �
: ð14Þ

This beam solution is concentrated on a single smooth curve c = {(x(t), t): t P 0} which is the x-projection of the bicharacter-
istic {(x(t),p(t)): t P 0} emanating from (x0,p0) at t = 0.

The functions x(t), p(t), s(t), M(t), A(t), s(x, t), A(x, t), and U(x, t) introduced above are uniquely determined once the initial
data x0, p0, s0, M0, and A0 are specified. We call x0, p0, s0, M0, and A0 the parameters of the Gaussian beam U(x, t) and denote
them collectively as a tuple a = (x0,p0,s0,M0,A0). In order to emphasize the dependency of the Gaussian beam on a, these
functions are denoted, respectively, by xa(t), pa(t), sa(t), Ma(t), Aa(t), sa(x, t), Aa(x, t), and Ua(x, t).

2.2. Gaussian beam method for the Schrödinger equation

In the case of the Schrödinger equation for a particle with unit mass, we have

� ı�hUt þ VðxÞU � �h2

2
DU ¼ 0; x 2 Rd; t > 0; ð15Þ

Uðx;0Þ ¼ U0ðxÞ; ð16Þ

where the potential V(x) is smooth, �h is reduced Planck’s constant. In this case, the Hamiltonian is Hðx; pÞ ¼ VðxÞ þ jpj
2

2 .
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Putting the definition of H(x,p) into (4) and (5) gives

st þ VðxÞ þ 1
2
s2

x ¼ 0;

At þ sx � Ax þ
1
2

DsA ¼ 0:

Simplifying the equations of x(t), p(t), s(t), M(t), and A(t) with Hðx; pÞ ¼ VðxÞ þ jpj
2

2 gives the following set of equations:

_x ¼ p; xjt¼0 ¼ x0;

_p ¼ �Vx; pjt¼0 ¼ p0;

_s ¼ jpj
2

2
� VðxÞ; sjt¼0 ¼ s0;

_M ¼ �M2 � Vxx; Mjt¼0 ¼ M0;

_A ¼ �A
2
ðtraceðMÞÞ; Ajt¼0 ¼ A0:

ð17Þ

Once the values of x(t), p(t), s(t), M(t), and A(t) are ready, the Gaussian beam at time t is given by (11) and (14).
For a given tuple of parameters a = (x0,p0,s0,M0,A0), the associated Gaussian beam Ua(x, t) takes a fixed Gaussian profile at

time t = 0. For a general U0(x), one needs to find a set I of tuples such that at time t = 0 the sum of the Gaussian beams asso-
ciated with the tuples in I reproduces the initial condition U0(x), i.e.,

U0ðxÞ �
X
a2I

Uaðx;0Þ:

Once this is done, the linearity of (15) and (16) gives the following Gaussian beam solution

Uðx; tÞ �
X
a2I

Uaðx; tÞ:

3. Gaussian wavepacket transforms and initialization

The discussion in Section 2 shows that at time t = 0 a Gaussian beam associated to the initial data a = (x0,p0,s0,M0,A0)
takes the form

A0 exp
ı
�h

s0 þ p0 � ðx� x0Þ þ
1
2
ðx� x0ÞT M0ðx� x0Þ

� �� �
;

where the Hessian M0 is O(1) and purely imaginary. It is clear from the formula that this is a modulated Gaussian with an
O(�h1/2) effective width in space and an O(�h�1/2) effective width in frequency. Therefore, the task of initial decomposition is
equivalent to representing the function U0(x) as a linear combination of such modulated Gaussian functions. The tool that we
will use for this task is essentially the windowed Fourier transform [16]; however, one needs to adapt it for the correct scal-
ing and profile.

3.1. Gaussian wavepacket transforms

Let W be a constant of order O(�h�1/2). The frequency (Fourier) domain Rd is partitioned into d-dimensional boxes of size W
in each dimension. See Fig. 1 for the one-dimensional case and Fig. 2 for the two-dimensional case. Denote these boxes by Bi

where i = (i1, i2, . . . , id) is a multiindex with integer components and the center of each Bi by ni ¼ ðni;1; ni;2; . . . ; ni;dÞ 2 Rd.
Each Bi is associated with a smooth window function gi(n) that is compactly supported in a box centered at ni with width

L = 2W (i.e.,
Qd

s¼1½ni;s �W; ni;s þW�). We further require gi(n) to approximate a Gaussian profile

giðnÞ � e�
jn�ni j

r

� �2

Fig. 1. Partitioning of the frequency domain in 1D.
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with r = W/2. This choice of r ensures that the tail of the Gaussian outside the support of gi(n) is sufficiently small. One can
easily choose gi(n) to satisfy the following three admissible conditions:

1. 0 6 gi(n) 6 1 for any n and any i.
2. There exists CN > 0 such that, for any n, j{i: gi(n) > 0}j 6 CN, where j�j stands for the cardinality of a set.
3. There exists CV > 0 such that, for any n, there exists i such that gi(n) P CV.

Based on gi(n), we next introduce a dual window function hi(x) for each Bi by

hiðnÞ ¼
giðnÞP

iðgiðnÞÞ
2 :

From the properties of gi(n), it is not difficult to see that hi(n) is also a smooth function with the same support as gi(n). More-
over, by construction the products of gi(n) and hi(n) form a partition of unity:

P
ihiðnÞgiðnÞ ¼ 1.

We then introduce two sets of functions {/i,k(x)} and {wi,k(x)}, which are defined in the Fourier domain by

/̂i;kðnÞ ¼
1

Ld=2 e�2pık�nL giðnÞ; 8k 2 Zd; ð18Þ

ŵi;kðnÞ ¼
1

Ld=2 e�2pık�nL hiðnÞ; 8k 2 Zd: ð19Þ

Taking the inverse Fourier transforms gives their definitions in the spatial domain:

/i;kðxÞ ¼
1

Ld=2

Z
Rd

e2pı x�k
Lð Þ�ngiðnÞdn; 8k 2 Zd; ð20Þ

wi;kðxÞ ¼
1

Ld=2

Z
Rd

e2pı x�k
Lð Þ�nhiðnÞdn; 8k 2 Zd: ð21Þ

The definitions of gi(n) and /i,k(x) imply that

/i;kðxÞ �
ffiffiffiffi
p
L

r
r

� �d

� e2pı x�k
Lð Þ�ni � e�r2p2 x�k

Lj j
2

:

/i,k(x) is approximately a Gaussian function that centers at k/L, oscillates at frequency ni, and has an O(r) = O(�h�1/2) effective
width in the Fourier domain and an O(1/r) = O(�h1/2) effective width in the spatial domain. The functions {/i,k(x)} fit exactly
into the requirement of a Gaussian beam and we will decompose the initial condition U0(x) into a linear combination of
them.

First, we prove that {/i,k(x)} and {wi,k(x)} form two frames of L2ðRdÞ.

Lemma 3.1. There exist positive constants C1 and C2 such that for any f 2 L2ðRdÞ

C1kfk2
2 6

X
i;k

jh/i;k; f ij
2
6 C2kfk2

2;

C1kfk2
2 6

X
i;k

jhwi;k; f ij
2
6 C2kfk2

2:

Fig. 2. Partitioning of the frequency domain in 2D. Each gray region stands for the support of a window function gi(n).
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Proof. We prove the lemma for {wi,k(x)}. The proof for {/i,k(x)} is similar and easier. We computeX
i;k

jhwi;k; f ij
2 ¼

X
i

X
k

1

Ld=2

Z
Rd

e2pık�nL hiðnÞf̂ ðnÞdn

���� ����2 ¼X
i

Z
Rd
jhiðnÞf̂ ðnÞj2dn ¼

Z
Rd

X
i

jhiðnÞj2
 !

jf̂ ðnÞj2dn: ð22Þ

It is then sufficient to show that
P

ijhiðnÞj2 is bounded from below and from above uniformly. From the conditions that gi(n)
satisfies, we have for each i,

hiðnÞ ¼
giðnÞP

iðgiðnÞÞ
2 >

giðnÞ
CN

:

Since one of gi(n) is at least CV, there exists i such that hiðnÞ > CV
CN

. This implies that
P

ijhiðnÞj2 is bounded from below by C2
V

C2
N
. On

the other hand,

hiðnÞ ¼
giðnÞP

iðgiðnÞÞ
2 <

giðnÞ
C2

V

<
1

C2
V

:

Since hi(n) – 0 only for at most CN indices,
P

ijhiðnÞj2 is bounded from above by CN

C4
V
. h

Next, we show that {/i,k(x)} and {wi,k(x)} are dual frames.

Lemma 3.2. For any f 2 L2ðRdÞ,

f ðxÞ ¼
X

i;k

hwi;k; f i/i;kðxÞ:

Proof. In the Fourier domain, we have

X
i;k

hwi;k; f i/̂i;kðnÞ ¼
X

i;k

1

Ld=2

Z
Rd

e2pık�gL hiðgÞf̂ ðgÞdg
� �

1

Ld=2 e�2pık�nL giðnÞ
� �

¼
X

i

X
k

1

Ld

Z
Rd

e2pık�gL hiðgÞf̂ ðgÞdg
� �

e�2pık�nL

 !
giðnÞ ¼

X
i

hiðnÞf̂ ðnÞgiðnÞ ¼ f̂ ðnÞ: ð23Þ

Here we use the fact that the function hiðgÞf̂ ðgÞ is supported in an interval of size L in each dimension and hence can be con-
sidered as a periodic function with period L. h

Lemma 3.2 offers a way of decomposing any function f ðxÞ 2 L2ðRdÞ into a sum of Gaussian-like functions. For a given func-
tion f 2 L2ðRdÞ, the forward Gaussian wavepacket transform computes the coefficients {ci,k},

ci;k ¼ hwi;k; f i ¼ hŵi;k; f̂ i ¼
1

Ld=2

Z
Rd

e2pık�nL hiðnÞf̂ ðnÞdn: ð24Þ

We remark that according to Lemma 3.1 each coefficient ci,k is at most of order O(1) and many coefficients are negligible.
Given a set of coefficients {ci,k}, the inverse Gaussian wavepacket transform synthesizes a function u(x) defined by

uðxÞ ¼
X

i;k

ci;k/i;kðxÞ: ð25Þ

3.2. Transforms of discrete signals

Let us now discuss the corresponding discrete transforms. For simplicity, assume that we work with the periodized
d-dimensional cube [0,1]d. The spatial grid and Fourier grid are defined respectively by

X ¼ fðn1=N;n2=N; . . . ; nd=NÞ : 0 6 n1;n2; . . . ; nd < N;n1;n2; . . . ;nd 2 Zg; ð26Þ

X ¼ ðk1; k2; . . . ; kdÞ : �N
2
6 k1; k2; . . . ; kd <

N
2
; k1; k2; . . . ; kd 2 Z

� 	
: ð27Þ

For our purpose, N is assumed to be on the order O(�h�1), which corresponds to have a finite number of samples per wave-
length for the field U(x, t). Furthermore, we assume that N is an integer multiple of W and L is an even integer. The latter can
be satisfied easily by replacing the definition of L = 2W by L = 2dWe.

For a given function f defined on the Cartesian grid X, the discrete Fourier transforms are defined by:

f̂ ðnÞ ¼ 1

Nd=2

X
x2X

e�2pıx�nf ðxÞ; 8n 2 X; ð28Þ
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f ðxÞ ¼ 1

Nd=2

X
n2X

e2pıx�n f̂ ðnÞ; 8x 2 X: ð29Þ

We would like to point out that there are different conventions about the constant in front of the discrete Fourier transforms.
The constant 1/Nd/2 in the above definitions ensures that the transforms are discrete isometries.

The functions gi(n) and hi(n) are defined in the same way as the continuous case, except that now the addition and sub-
traction in the n variable are understood modulus N. Mimicking the continuous version, we define the discrete versions of
{/i,k(x)} and {wi,k(x)} as follows in the Fourier domain: for n 2X,

/̂D
i;kðnÞ ¼

1

Ld=2 e�2pık�nL giðnÞ; k 2 f0;1; . . . ; L� 1gd
; ð30Þ

ŵD
i;kðnÞ ¼

1

Ld=2 e�2pık�nL hiðnÞ; k 2 f0;1; . . . ; L� 1gd
: ð31Þ

In terms of the spatial variable x 2 X,

/D
i;kðxÞ ¼

1

ðNLÞd=2

X
n2X

e2pı x�k
Lð Þ�ngiðnÞ; k 2 f0;1; . . . ; L� 1gd

; ð32Þ

wD
i;kðxÞ ¼

1

ðNLÞd=2

X
n2X

e2pı x�k
Lð Þ�nhiðnÞ; k 2 f0;1; . . . ; L� 1gd

: ð33Þ

Similar to the continuous case, /D
i;kðxÞ approximates a Gaussian function, but with slightly different scaling due to the def-

inition of the discrete Fourier transform,

/D
i;kðxÞ �

ffiffiffiffiffiffi
p

NL

r
r

� �d

� e2pı x�k
Lð Þ�ni � e�r2p2 x�k

Lj j
2

; 8x 2 X:

Here the subtraction in the spatial domain is understood modulus the periodic unit interval.
Based on the above setup, the discrete version of the forward Gaussian wavepacket transform for an input signal {f(x),

x 2 X} is given by

cD
i;k ¼ wD

i;k; f
D E

¼ ŵD
i;k; f̂

D E
¼
X
n2X

1

Ld=2 e2pık�nL hiðnÞf̂ ðnÞ: ð34Þ

As hiðnÞf̂ ðnÞ is supported in a subgrid of size L in each dimension, the summation (34) is in fact a d-dimensional inverse Fou-
rier transform of size L in each dimension by following the ‘‘wrapping” idea [4,6]. More precisely, we introduce a new func-
tion t(g) for g 2 {�L/2, . . . ,L/2 � 1}d by defining

tðgÞ ¼ hiðnÞf̂ ðnÞ

with n in the support of hiðnÞf̂ ðnÞ and n � gmodL. Computationally, the definition of t(g) is equivalent to ‘‘wrapping” the
function hiðnÞf̂ ðnÞ with period L towards the center of the Fourier domain. Using the definition of t(g), (34) becomes

cD
i;k ¼

X
g

1

Ld=2 e2pık�gL tðgÞ;

which is clearly a d-dimensional Fourier transform of size L in each dimension. Based on this observation, the algorithm for
computing the forward transform consists of the following steps:

Algorithm 3.3 (Discrete forward Gaussian wavepacket transform). Given a signal f defined at x 2 X, compute the coefficients
fcD

i;kg.

1. Compute f̂ ðnÞ for n 2X using a d-dimensional forward FFT of size N in each dimension.
2. For each box Bi, form hiðnÞf̂ ðnÞ at the support of hi(n), wrap the result modulus L to the domain [�L/2,L/2)d to get t(g), and

apply a d-dimensional inverse FFT of size L in each dimension to t(g) to obtain cD
i;k for all k.

The cost of Algorithm 3.3 is O(Nd logN).
Given a set of coefficients fcD

i;kg, the discrete version of the inverse Gaussian wavepacket transform is defined by:

f ðxÞ ¼
X

i;k

cD
i;k/

D
i;kðxÞ

or equivalently in the Fourier domain,

f̂ ðnÞ ¼
X

i;k

cD
i;k/̂

D
i;kðnÞ ¼

X
i

X
k

1

Ld=2 e�2pık�nL cD
i;k

 !
giðnÞ:
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The inner summation in k of the last formula is a forward Fourier transform of size L from k to n, followed by ‘‘unwrapping”
the result to the support of gi(n).

Algorithm 3.4 (Discrete inverse Gaussian wavepacket transform). Given coefficients fcD
i;kg, reconstruct the function f(x) for

x 2 X.

1. For each box Bi, apply a d-dimensional forward FFT of size L in each dimension to the coefficients cD
i;k, unwrap the result

modulus L to the support of gi(n), multiply the unwrapped data with gi(n), and add the product to f̂ ðnÞ.
2. Compute f(x) for x 2 X using a d-dimensional inverse FFT of size N in each dimension.

The cost of Algorithm 3.4 is O(Nd logN).

3.3. Initialization based on Gaussian wavepacket transforms

With the Gaussian wavepacket transforms at our disposal, we discuss how to initialize the Gaussian beam representation
for a general initial condition U0(x).

We first apply the forward Gaussian wavepacket transform to the initial condition U0(x) to compute the coefficients {ci,k}
defined by ci,k = hwi,k,U0i. Then from the set of {ci,k}, the inverse Gaussian wavepacket transform synthesizes the function
defined by

U0ðxÞ ¼
X

i;k

ci;k/i;kðxÞ: ð35Þ

Recall the approximation

/i;kðxÞ �
ffiffiffiffi
p
L

r
r

� �d

� e2pı x�k
Lð Þ�ni � e�r2p2 x�k

Lj j
2

: ð36Þ

For each (i,k), we introduce a Gaussian beam with an initial profile equal to the right hand side of (36):

_x ¼ p; xjt¼0 ¼
k
L
;

_p ¼ �Vx; pjt¼0 ¼ 2p�hni;

_s ¼ jpj
2

2
� VðxÞ; sjt¼0 ¼ 0;

_M ¼ �M2 � Vxx; Mjt¼0 ¼ ı � ð2�hp2r2ÞI;

_A ¼ �A
2

traceðMÞ; Ajt¼0 ¼
ffiffiffiffi
p
L

r
r

� �d

:

ð37Þ

Denote the solutions by xi,k(t), pi,k(t), si,k(t), Mi,k(t), and Ai,k(t). The Gaussian beam associated with (i,k) at time t is given by

Ui;kðx; tÞ ¼ Ai;kðx; tÞ exp
ısi;kðx; tÞ

�h

� �
;

where

si;kðx; tÞ ¼ si;kðtÞ þ pi;kðtÞ � ðx� xi;kðtÞÞ þ
1
2
ðx� xi;kðtÞÞT Mi;kðtÞðx� xi;kðtÞÞ; ð38Þ

Ai;kðx; tÞ ¼ Ai;kðtÞ: ð39Þ

We have by construction Ui,k(x,0) � /i,k(x). Combining this with Eq. (35) yields

U0ðxÞ �
X

i;k

ci;kUi;kðx; 0Þ;

which is a decomposition of U0(x) into a set of Gaussian beams. Therefore, the global asymptotic solution at time t is given by
the summation,

Uðx; tÞ �
X

i;k

ci;kUi;kðx; tÞ: ð40Þ

We notice that in the wavepacket-transform-based Gaussian beam framework (37), the initial values for bicharacteristics in
the phase space define a mesh with the x-resolution Dx � Oð

ffiffiffi
�h
p
Þ and the p-resolution Dp � Oð

ffiffiffi
�h
p
Þ so that DxDp � O(�h),

which satisfies the Heisenberg uncertainty principle. Since each beam is an asymptotic solution, the summation (40) is also
an asymptotic solution. Moreover, since the summation (40) satisfies the initial condition with a small error, the summation
(40) is a global asymptotic solution to the initial value problem (1) and (2).
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For a typical initial function U0(x), most of the coefficients {ci,k} have small norms. Therefore, in light of computational
efficiency, one only needs to keep the coefficients {ci,k} such that jci,kj is greater than a certain prescribed threshold g. For
the rest of the coefficients, we simply set the value to zero. More specifically, for arbitrary g > 0 define the index set

Gg ¼ fði; kÞ : jci;kj ¼ jhwi;k;U0ij > gg:

Then the solution U(x, t) can be approximated by

Ugðx; tÞ �
X
ði;kÞ2Gg

ci;kUi;kðx; tÞ:

Equipped with the fast transforms presented above, we now discuss how to implement the Gaussian beam propagation of
a general initial condition U0(x) in the discrete framework. To simplify the discussion, we assume that the domain is the unit
torus [0,1]d, U0(x) is periodic, and U0(x) is sampled with the uniform Cartesian grid X. The number of samples N in each direc-
tion is proportional to 1

�h as one uses a finite number of samples per unit wavelength.

Algorithm 3.5 (Gaussian beam propagation).

1. Apply the discrete forward transform (Algorithm 3.3) to U0(x) to compute the coefficients cD
i;k

n o
. Define the index set of

non-negligible coefficients Gg by

Gg ¼ ði; kÞ : cD
i;k

��� ��� > g
n o

:

2. From the above discussion, we know that

/D
i;kðxÞ �

ffiffiffiffiffiffi
p

LN

r
r

� �d

� e2pı x�k
Lð Þ�ni � e�r2p2 x�k

Lj j
2

; 8x 2 X:

Therefore, for each (i,k) 2 Gg, set up the following Gaussian beam equations

_x ¼ p; xjt¼0 ¼
k
L
;

_p ¼ �Vx; pjt¼0 ¼ 2p�hni;

_s ¼ jpj
2

2
� VðxÞ; sjt¼0 ¼ 0;

_M ¼ �M2 � Vxx; Mjt¼0 ¼ ı � ð2�hp2r2ÞI;

_A ¼ �A
2

traceðMÞ; Ajt¼0 ¼
ffiffiffiffiffiffi
p

LN

r
r

� �d

;

ð41Þ

and trace it until the final time T. Denote the solutions by xi,k(t), pi,k(t), si,k(t), Mi,k(t), and Ai,k(t). The Gaussian beam associated
with cD

i;k at time T is given by

Ui;kðx; TÞ ¼ Ai;kðTÞ exp
ısi;kðx; TÞ

�h

� �
with si;kðx; TÞ ¼ si;kðTÞ þ pi;kðTÞ � ðx� xi;kðTÞÞ þ 1

2 ðx� xi;kðTÞÞT Mi;kðTÞðx� xi;kðTÞÞ. Notice that, since the domain is assumed to be
the unit torus, the computation of xi,k(t) is performed modulus one.
3. Perform the final summation. For each x 2 X, set

Ugðx; TÞ ¼
X
ði;kÞ2Gg

cD
i;kUi;kðx; TÞ:

Besides the periodic case mentioned above, another important setting is the free space problem with compactly sup-
ported initial data. Without loss of generality, assume that the domain of interest is [0,1]d (i.e., if a Gaussian beam exits from
this domain, it does not come back) and that the initial condition U0(x) is compactly supported in [O(�h1/2),1 � O(�h1/2)]d. The
above algorithm can be easily adapted to address this case with two modifications. First, we periodize U0(x) to be a periodic
function with fundamental domain [0,1]d and apply the (discrete) forward Gaussian wavepacket transform to it. Since U0(x)
is supported [O(�h1/2),1 � O(�h1/2)]d and each Gaussian wavepacket has an O(�h1/2) essential support, the artifacts from period-
ization is negligible. Second, in the solution of the Gaussian beam equations (41), whenever the location xi,k(t) of the (i,k)th
beam is about O(�h1/2) distance away from the fundamental domain [0,1]d, we simply discard this beam and ignore it in the
final summation.

Let us estimate the computational cost of this algorithm. The first step of Algorithm 3.5 clearly takes O(Nd logN) =
O(�h�d log(�h�1)) steps. In the second step, since the Gaussian beam equations themselves do not contain the small parameter
�h, integrating each beam over a finite time period takes O(1) steps. Therefore, the cost of step 2 is proportional to the
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cardinality of Gg. In the third step, the support of each Gaussian beam is of size O(�h1/2) on average in each dimension. As a result,
each beam at time T covers O(N � �h1/2) = O(�h�1/2) points in each direction. Therefore, the overall cost of step 3 is O(jGgj � �h�d/2).
Summing these estimates together shows that the overall cost of Algorithm 3.5 is O(�h�d log(�h�1) + jGgj � �h�d/2). Compared with
the O(�h�(d+1)) of the standard finite difference algorithm, it is clear that Algorithm 3.5 is more efficient when the number of
beams jGgj is small.

We remark that in a recent work [3] on Gaussian beams for the wave equation, Bougacha et al. have assumed that the FBI
transforms of the initial data are infinitely small on the complement of some ring so that asymptotically Gaussian beams
emanating from the complement of this ring are negligible. Moreover, the FBI transform of an L2-function is uniformly
locally infinitely small outside its frequency set as �h going to 0 (see [17, p. 98]); consequently, asymptotically Gaussian
beams which emanate from the complement of the frequency set of the initial data are negligible as well. Therefore, to apply
the methodology developed here, we may assume that the frequency set of the initial data for the Schrödinger equation is
compact so that we may further justify when the number of the Gaussian beams jGgj is small. We will report on this in a
future paper.

4. Long time propagation

4.1. Gaussian beam width and the Hessian of a potential

We consider the Schrödinger equation to illustrate how the beam width is related to the Hessian of a potential function.
As constructed above, a single Gaussian beam centered at a ray trajectory {(x(t), t): t P 0} propagates according to a quadratic
approximation to the potential function defined by a second-order Taylor expansion centered at x = x(t) for t P 0:

VðxÞ ¼ VðxðtÞÞ þ VxðxðtÞÞðx� xðtÞÞ þ 1
2
ðx� xðtÞÞT VxxðxðtÞÞðx� xðtÞÞ:

The properties of Vxx(x(t)) control how the beam width grows.
To simplify the presentation, we assume that the potential function is given as a quadratic function:

VðxÞ ¼ Vðx0Þ þ Vxðx0Þðx� x0Þ þ
1
2
ðx� x0ÞtVxxðx0Þðx� x0Þ;

where x0 is a given point. Then for a beam that starts at x0 with momentum p0, the Riccati equation for the Hessian of the
phase function can be written as:

_M ¼ �M2 � Vxxðx0Þ; Mjt¼0 ¼ ı�I; ð42Þ

where � is a given positive number, and I is the d � d identity matrix.
We consider the one-dimensional case first and discuss the following three cases to illustrate the situation.

Case 1. Vxx(x0) � 0. Solving the resulting Riccati equation for M yields

MðtÞ ¼ t�2 þ ı�
1þ t2�2

:

Thus the beam decays like

exp � 1
2�h

ImðMðtÞÞðx� xðtÞÞ2
� �

¼ exp � 1
2�h

�
1þ t2�2

ðx� xðtÞÞ2
� �

;

and the beam width is roughly proportional to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hð1þt2�2Þ

�

q
, which grows almost linearly as time t increases.

Case 2. Vxx(x0) > 0. To solve the resulting Riccati equation, we use the variational system for B and C,

_B ¼ �Vxxðx0ÞC; Bjt¼0 ¼ ı�;
_C ¼ B; Cjt¼0 ¼ 1:

This yields that

CðtÞ ¼ c1eıxt þ c2e�ıxt;

BðtÞ ¼ ıxðc1eıxt � c2e�ıxtÞ;

where x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vxxðx0Þ

p
; c1 ¼ 1

2 1þ �
x

� �
, and c2 ¼ 1

2 1� �
x

� �
.

As a result,

MðtÞ ¼ BðtÞC�1ðtÞ ¼ xð�2 �x2Þ sinxt cos xt þ ı�x2

x2 cos2 xt þ �2 sin2 xt
:
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Thus the beam decays like

exp � 1
2�h

ImðMðtÞÞðx� xðtÞÞ2
� �

¼ exp � �x2

2�hðx2 cos2 xt þ �2 sin2 xtÞ
ðx� xðtÞÞ2

 !
;

and the beam width is roughly proportional toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hðx2 cos2 xt þ �2 sin2 xtÞ

�x2

s
;

which is bounded from above by
ffiffi
�h
�

q
if � 6x or by

ffiffiffiffiffi
�h�
x2

q
if �P x. In particular, when � = x, the beam width does not change.

Case 3. Vxx(x0) < 0. Solving the resulting variational system for B and C yields that

CðtÞ ¼ c1ext þ c2e�xt ;

BðtÞ ¼ xðc1ext � c2e�xtÞ;

where x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Vxxðx0Þ

p
, c1 ¼ 1

2 1þ ı�
x

� �
, and c2 ¼ 1

2 1� ı�
x

� �
.

Consequently,

MðtÞ ¼ BðtÞC�1ðtÞ ¼
x 1þ �2

x2


 �
ð1� e�4xtÞ þ ı4�e�2xt

ð1þ e�2xtÞ2 þ �2

x2 ð1� e�2xtÞ2
:

Thus the beam decays very slowly like

exp � 1
2�h

ImðMðtÞÞðx� xðtÞÞ2
� �

¼ exp � 4�e�2xt

2�h ð1þ e�2xtÞ2 þ �2

x2 ð1� e�2xtÞ2
h i ðx� xðtÞÞ2

0@ 1A;
and the beam width is roughly proportional to

ext

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h½x2ð1þ e�2xtÞ2 þ �2ð1� e�2xtÞ2�

4�x2

s
;

which grows exponentially as t increases. This implies that the beam loses its localized significance, leading to deteriorating
accuracy in the Taylor expansion for the phase function and high cost in beam summation as shown in numerical examples.
In practice, along a ray trajectory the Hessian of a potential function may change from positive definite to negative definite,
so that the beam width may grow exponentially unexpectedly.

Next we consider the multi-dimensional case. Since the d � d Hessian Vxx(x0) is a symmetric matrix, it has d real eigen-
values ki (i = 1, . . . ,d) and d corresponding linearly independent real eigenvectors ri (i = 1, . . . ,d). Denoting matrix R = (r1j� � �jrd),
we can solve the Riccati equation to conclude that the second-order derivative M(t) is similar to a diagonal matrix:

MðtÞ ¼ RDðt; k1; . . . ; kdÞR�1;

where D(t,k1, . . . ,kd) = diag(d1(t,k1), . . . ,dd(t,kd)), each diagonal entry di = di(t,ki) (i = 1, . . . ,d) being a function of only one of the
eigenvalues. Letting x ¼

ffiffiffiffi
ki
p

(i = 1, . . . ,d), each di = di(t,ki) takes one of the forms of the one-dimensional M(t) appearing in
Case 1, 2, or 3. The details are omitted.

Therefore, in the multi-dimensional case, the growth of the beam width depends on the Hessian of the potential in more
complicated ways. However, some general features will be the same as in the one-dimensional case. For example, when the
Hessian of the potential is negative definite, then the beam width will grow exponentially.

To the best of our knowledge, this is the first time that the relationship between beam widths and accuracy of the Gauss-
ian beams has been revealed this way.

In a recent work [20], Motamed and Runborg showed that for the Helmholtz equation with constant speed of wave prop-
agation the local beam width is not a good indicator of accuracy, and there is no direct relation between the error and the
beam width in this case; moreover, they also stated without substantiation that this may not be the true for the Helmholtz
equation with varying speed of wave propagation, where the beam width can be an important factor in the Taylor expansion
error. According to our analysis above for the Schrödinger equation with varying potentials, the beam width is an important
factor in the Taylor expansion error and is directly related to the accuracy of Gaussian beams.

As illustrated above, beam width is related to both the Planck constant �h and the imaginary part of the Hessian of the
phase function. To further discuss the relationship between beam width and accuracy of Gaussian beams, we consider
two cases: (a) �h being arbitrarily small and (b) �h being fixed.
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Case (a): �h being arbitrarily small. If �h can be chosen to be arbitrarily small, then as shown above the beam width can be
made to be arbitrarily small as well, so that the beam will decay rapidly across the ray direction and the resulting
local Taylor expansion will be within the beam support; because the beam support is small, the local Taylor
expansion will have good accuracy. This explains why the beam accuracy can be improved to some extent if
the �h is made smaller.

Case (b): �h being fixed. If a beam is too wide, the local Taylor expansion is not accurate, and the beam accuracy will be poor.
If a cut-off function is introduced to make the beam vanish outside a small enough neighborhood around the cen-
tral ray such as advocated in [25,23], then the neighborhood may be extremely small. Moreover, we know that
rays may diverge even if their initial conditions are very close to each other, which implies that summing up a
finite number of beams with cut-offs may leave some regions with no beams passing through; consequently,
the resulting numerical global asymptotic solution is inaccurate.

4.2. Long time propagation by reinitialization

A natural solution to the issue of growing width is to monitor the widths of the beams and reinitialize the Gaussian beam
representation before any one of the beams becomes too wide. Although this reinitialization idea is rather straightforward, it
is difficult to combine it with previous methods of beam initialization. For the asymptotic decomposition method [25,23,13],
one always assumes that the wave field has an amplitude and phase representation explicitly. Even though the initial solu-
tion U(x,0) = U0(x) has such a decomposition, the solution at later time U(x, t) most likely fails to possess such a decomposi-
tion due to the development of caustics. For the method based on optimization [24], reinitialization is also impractical as the
initialization algorithm is quite costly.

On the other hand, the reinitialization idea fits perfectly with the initialization algorithms proposed in this paper. The
main reason is that our algorithm is highly efficient and is applicable to general initial conditions. The detailed steps are
given as follows.

Algorithm 4.1 (Gaussian beam propagation with reinitialization).

1. Set the current time ~t ¼ 0 and the current solution eUðxÞ ¼ U0ðxÞ.
2. From eUðxÞ, compute the coefficients cD

i;k using Algorithm 3.3. Let Gg be the set of indices of significant coefficients, i.e.,

Gg ¼ ði; kÞ : cD
i;k

��� ��� > g
n o

.

3. For each (i,k) 2 Gg, solve the following equations

_x ¼ p; xjt¼~t ¼
k
L
;

_p ¼ �Vx; pjt¼~t ¼ 2p�hni;

_s ¼ jpj
2

2
� VðxÞ; sjt¼~t ¼ 0;

_M ¼ �M2 � Vxx; Mjt¼~t ¼ ı � ð2�hp2r2ÞI;

_A ¼ �A
2

traceðMÞ; Ajt¼~t ¼
ffiffiffiffiffiffi
p

LN

r
r

� �d

ð43Þ

and monitor the values of Mi,k(t) until either t reaches the final time T or the smallest eigenvalue of any Im(Mi,k(t)) drops
below a prescribed threshold. Let t* be the first time (after ~t) such that either one of these two conditions is satisfied.
4. Set the current time ~t ¼ t� and the current solution

eUðxÞ ¼ X
ði;kÞ2G

cD
i;kAi;kð~tÞ exp

ısi;kðx;~tÞ
�h

� �
with si;kðx;~tÞ ¼ si;kð~tÞ þ pi;kð~tÞ � ðx� xi;kð~tÞÞ þ 1

2 ðx� xi;kð~tÞÞT Mi;kð~tÞðx� xi;kð~tÞÞ.
5. Repeat the steps 2–4 until we reach the final time T. Once the final time is reached, set Uðx; TÞ ¼ eUðxÞ.

Let us briefly comment on the cost of Algorithm 4.1. Since the ODEs in step 3 do not depend explicitly on the small param-
eter �h, the number of reinitialization is a constant even though it depends on the potential V(x). From the discussion after
Algorithm 3.5, it is clear that the cost spent between two consecutive reinitializations is proportional to O(�h�d log(�h�1) +
jGgj � �h�d/2). Since the number of reinitializations is of order O(1), the overall cost is proportional to O(�h�d log(�h�1) +
jGgj � �h�d/2) as well.

As an example, we take the case Vxx < 0 in Section 4.1 to demonstrate the benefit of reinitialization. Suppose that
Vxx(x0) = �4p2, x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Vxxðx0Þ

p
¼ 2p, and the final time T = 2.0. If we use Algorithm 3.5 to propagate beams, the beam width

at the final time T is roughly

exTffiffiffi
2
p

p

ffiffiffi
�h
p
¼ e4pffiffiffi

2
p

p

ffiffiffi
�h
p
� 64;164

ffiffiffi
�h
p

:
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If we choose ~t such that ex~t �
ffiffiffi
2
p

p, and we divide [0,T] into dT~te sub-intervals, then the beam width in each subinterval is

roughly
ffiffiffi
�h
p

. In this particular example, ~t � 0:25, and T
~t

l m
¼ 8. This simple case analysis demonstrates that it is critical to carry

out reinitialization.
We remark in passing that beam reinitialization may help to offset the effect of the errors in beam construction, which

will make Gaussian beam valid for longer time. However, due to the inherent limitation of asymptotics, beam reinitialization
will not offset the effect of errors in not exactly solving the PDE which builds up as time goes on.

5. Wavepacket-transform-based global asymptotic solutions

Following the idea in [22,25], we prove that the wavepacket-transform-based Gaussian beam solution (40) is an asymp-
totic solution to the evolution equation (1) in the following sense.

Theorem 5.1. Assume that the conditions for Lemmas 5.2, 5.3 and 5.4 are fulfilled. For arbitrary g > 0, let the index set

Gg ¼ fði; kÞ : jci;kj ¼ jhwi;k;U0ij > gg

be finite. The solution (40) is a global asymptotic solution to the evolution equation (1) in the following sense: in a finite time inter-
val [0,T], for �h small enough,

kð�ı�h@t þHðx;�ı�h@xÞÞUgkL2
x;t
6 C

ffiffiffiffiffiffiffiffi
jGgj

q
�h

3
2; ð44Þ

lim
g!0

Ugðx;0Þ � U0ðxÞ; ð45Þ

where jGgj denotes the number of elements in the set Gg (the number of beams), the constant C is independent of ⁄, and the initial
condition is satisfied up to a small error.

To prove this theorem, we need some lemmas.

Lemma 5.2. The solution for the transport equation

dAi;k

dt
¼ �Ai;k

2
ðtraceðHppMi;k þ HxpÞÞ; Ai;kjt¼0 ¼

ffiffiffiffi
p
L

r
r

� �d

is

Ai;kðtÞ ¼
ffiffiffip
L

p
r

� �dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðCi;kðtÞÞ

p ; ð46Þ

where Ci;kðtÞ ¼
@xi;k
@x0
ðtÞ (being the variation of the current position xi,k(t) with respect to the initial value) satisfies

dCi;k

dt
¼ HppMi;kCi;k þ HpxCi;k; Ci;kjt¼0 ¼ I: ð47Þ

Proof. The transport equation can be written as

d log A2
i;k

dt
¼ �ðtraceðHppsxx þ HxpÞÞ: ð48Þ

By Lemma 2.1, Ci,k(t) is non-singular. Let Ci,k(t) = S(t)K(t)S�1(t) be the Schur decomposition. Setting qðtÞ ¼ det Ci;kðtÞ ¼ Pd
j¼1kj,

where K = diag(k1, . . . ,kd), and noticing that dCi;k
dt ¼ StKS�1 þ SKtS

�1 þ SKðS�1Þt , we have

dq
dt
¼ q traceðK�1KtÞ ¼ q traceðSK�1S�1SKtS

�1 þ ðSK�1ÞS�1StðSK�1Þ�1 þ ðS�1ÞtSÞ ¼ q trace C�1
i;k

dCi;k

dt

� �
¼ q trace C�1

i;k ðHppMi;k þ HpxÞCi;k


 �
¼ q traceðHppMi;k þ HpxÞ: ð49Þ

Thus, by combining Eqs. (48) and (49), we have

Ai;kðtÞ ¼
Ai;kð0Þ

ffiffiffiffiffiffiffiffiffiffi
qð0Þ

pffiffiffiffiffiffiffiffiffi
qðtÞ

p ¼
ffiffiffip
L

p
r

� �dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðCi;kðtÞÞ

p ;

which implies that Ai;kðtÞ ¼ Oðh�
d
4Þ by the definition of r and L. h

In Eqs. (38) and (39), we define the global approximations to the phase and amplitude functions by using Taylor expan-
sions centered on the x-projection of the bicharacteristic {(xi,k(t),pi,k(t)): t P 0}. We have the following estimates.
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Lemma 5.3. Assume that the Hamiltonian is C2 differentiable. Then the functions (38) and (39) satisfy the eikonal and transport
equations in the following approximate sense, respectively:

@si;k

@t
ðx; tÞ þ H x;

@si;k

@x
ðx; tÞ

� �
¼ Oðjx� xi;kðtÞj3Þ; ð50Þ

Ai;k;tðx; tÞ þ Hp � Ai;k;x þ
Ai;k

2
traceðHppsi;k;xx þ HxpÞ
� �

¼ O h�
d
4jx� xi;kðtÞj


 �
: ð51Þ

Proof. We first prove (50). For the sake of clarity we suppress the index (i,k) in the following. By the construction of
si,k(x, t) = s(x, t), we have

@s
@t
ðx; tÞ ¼ ds

dt
ðtÞ þ dp

dt
� ðx� xðtÞÞ þ pðtÞ � �dx

dt

� �
þ 1

2
ðx� xðtÞÞT dM

dt
ðx� xðtÞÞ � ðx� xðtÞÞT MðtÞ dx

dt
;

@s
@x
ðx; tÞ ¼ pðtÞ þMðtÞðx� xðtÞÞ:

Thus, using the Taylor expansion for H around xi,k(t) = x(t) up to the third order term we have

stðx; tÞ þ Hðx; sxðx; tÞÞ ¼ stðx; tÞ þ H x� xðtÞ þ xðtÞ;pðtÞð Þ þMðtÞðx� xðtÞÞ ¼ Oðjx� xðtÞj3Þ: ð52Þ

Next we prove (51). By the analytical formula (46) and using the notation as in Lemma 5.2 we have

Atðx; tÞ ¼ Að0Þ qðtÞ�
1
2


 �
t
¼ �1

2
Að0ÞqðtÞ�

3
2

dq
dt
¼ �1

2
Að0ÞqðtÞ�

1
2traceðHppM þ HpxÞ ¼ �

A
2

traceðHppM þ HpxÞ; ð53Þ

Axðx; tÞ ¼ O h�
d
4jx� xðtÞj


 �
: ð54Þ

Thus, near the ray trajectory xi,k(t), the estimate (51) holds. h

We also need the following lemma which is proved in [22,25].

Lemma 5.4. Assume that c(x, t) vanishes to order S � 1 on c = {(x(t), t): 0 6 t 6 T} which is the x-projection of a bicharacteristic
{(x(t),p(t)): 0 6 t 6 T}, suppðcÞ \ fðx; tÞ : x 2 Rd; 0 6 t 6 Tg is compact, and Im(/(x, t)) P ajx � x(t)j2 on suppðcÞ \ fðx; tÞ : x 2
Rd; 0 6 t 6 Tg, where a is a positive constant. ThenZ T

0

Z
Rd

cðx; tÞeı/ðx;tÞ
�h

��� ���2dxdt 6 C�hSþd
2; ð55Þ

where C is a constant independent of ⁄.
Now we are ready to prove Theorem 5.1.

Proof. It is easy to show that at t = 0 we recover the initial data up to a small error. Next we evaluate the following,

ð�ı�h@t þ Hðx;�ı�h@xÞÞUgðx; tÞ ¼
X
ði;kÞ2Gg

ð�ı�h@t þ Hðx;�ı�h@xÞÞci;kUi;kðx; tÞ

¼
X
ði;kÞ2Gg

si;k;t þ Hðx; si;k;xÞ
� �

ci;kAi;kðx; tÞ exp ı
si;kðx; tÞ

�h

� �

þ
X
ði;kÞ2Gg

�h
i

ci;k Ai;k;t þ Hp � Ai;k;x þ
Ai;k

2
trace HppMi;kðtÞ þ Hxp

� �� �
exp ı

si;kðx; tÞ
�h

� �
� f1ðx; tÞ þ f2ðx; tÞ:

We estimate f1 first. By using the Cauchy–Schwartz inequality we have

jf1ðx; tÞj2 6
X
ði;kÞ2Gg

jci;kj2
0@ 1A X

ði;kÞ2Gg

ðsi;k;t þ Hðx; si;k;xÞÞAi;kðx; tÞ exp ı
si;kðx; tÞ

�h

� ����� ����2
0@ 1A:

We observe that
P
ði;kÞ2Gg

jci;kj2 6 C2kU0k2 by Lemma 3.1 and Ai,k is of the order O h�
d
4


 �
. By using the results in Lemmas 5.3 and

5.4 with S = 3, we have

kf1kL2
x;t
6 C

ffiffiffiffiffiffiffiffi
jGgj

q
�h

3
2;

where C is a constant independent of �h.
By using the Cauchy–Schwartz inequality, Lemmas 3.1, 5.3 and 5.4 with S = 1, we can estimate f2 similarly to obtain

kf2kL2
x;t
6 C

ffiffiffiffiffiffiffiffi
jGgj

q
�h

3
2;

where C is a constant independent of �h. Finally, applying the triangle inequality yields the desired estimate. h
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6. Numerical results

In this section, we show one-, two-, and three-dimensional numerical examples to demonstrate the performance of our
algorithm. Because an exact wave function for the Schrödinger equation is not available in general, we solve the Schrödinger
equation first using an accurate direct numerical method and use the result as the ‘‘exact” solution to calibrate the beam
solution. Here we adopt a Strang splitting pseudo-spectral method [21,2] to compute the ‘‘exact” solutions. We also assume
that the solution is periodic so that the Strang splitting pseudo-spectral method gives rise to an accurate ‘‘exact” solution.

In the following examples, we take the cut-off parameter g = 10�2. In practice, because of redundancy in beam represen-
tation one may take even larger cut-off parameters and still obtain reasonable results.

6.1. One-dimensional cases

6.1.1. Example 1: a potential well
The background potential is given by V(x) = cos(2px) for x 2 [0,1], and the initial wave function is given by

Uðx; t ¼ 0Þ ¼ expð�25ðx� 0:5Þ2Þ exp
ıs0ðxÞ

�h

� �
for x 2 ½0;1�;

s0ðxÞ ¼ �
1
5

lnðexpð5ðx� 0:5ÞÞ þ expð�5ðx� 0:5ÞÞÞ:
ð56Þ

The periodic boundary condition is assumed in the interval [0,1].
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Fig. 3. Example 1: A potential well. (a) The exact solution. (b) The beam solution. (c) and (d) Comparison of the exact and beam solutions. ‘‘	”: the exact
solution; ‘‘-”: the beam solution.
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In this case, Vxx(x) = �4p2cos(2px), which is non-negative for 1
4 6 x 6 3

4, resulting in a potential well in the interval
[0.25,0.75]. The initial data can be viewed as a wavepacket compactly supported in [0.25,0.75] and centered at x = 0.5. There-
fore, according to the analysis provided in Section 4, Gaussian beam widths tend to be uniformly bounded in a given time
interval, and this is observed in the numerical results.

Fig. 3 shows a case with �h ¼ 1
256p and the final time T = 2.0. We use N = 1024 uniformly distributed points to discretize the

domain [0,1]. The fast Gaussian wavepacket transforms are used to generate the initial beam decomposition and this decom-
position is used to drive Gaussian beam propagation. Fig. 3(a) and (b) shows the exact solution and the beam solution at the
final time T = 2.0, respectively, and Fig. 3(c) and (d) compares the two by plotting the solutions in different zoom-in win-
dows. As we can see, the beam solution and the exact solution match extremely well.

6.1.2. Example 2: a potential hill
The background potential is given by V(x) = cos(2p(x + 0.5)), and the initial wave function is the same as that in (56).
In this case, Vxx(x) = �4p2cos(2p(x + 0.5)), which is non-positive for 1

4 6 x 6 3
4, resulting in a potential hill in the interval

[0.25,0.75]. The initial data is again a wavepacket compactly supported in [0.25,0.75] and centered at x = 0.5. According
to the analysis provided in Section 4, Gaussian beam widths tend to grow exponentially in time, resulting in difficulties
in beam summation.

Fig. 4 shows a case with �h ¼ 1
256p and the final time T = 2.0 without reinitialization of beam propagation. We again sample

the initial condition with N = 1024 uniformly distributed points to discretize [0,1]. Fig. 4(a) and (b) shows the exact solution
and the beam solution at T = 2.0, respectively, and the two solutions differ tremendously. To see the difference more clearly,
Fig. 4(c) and (d) compares the two by plotting the solutions in different zoom-in windows. As we can see, the beam solution
and the exact solution do not match well.
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Fig. 4. Example 2: A potential hill, �h ¼ 1
256p, without reinitialization. (a) The exact solution. (b) The beam solution. (c) and (d) Comparison of the exact and

beam solutions. ‘‘	”: the exact solution; ‘‘-”: the beam solution.
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On the other hand, if reinitialization is used, the beam summation results improve dramatically. Fig. 5 shows the same
problem with reinitialization of beam propagation. We divide the interval [0,T] into eight uniform sub-intervals and reini-
tialize at the beginning of each sub-interval. Fig. 5(a) and (b) shows the exact solution and the beam solution at the final time
T = 2.0, respectively, and the two solutions look very close. To compare the two solutions more closely, Fig. 5(c) and (d) com-
pares the two by plotting the solutions in different zoom-in windows. As we can see, the beam solution and the exact solu-
tion match with each other extremely well.

To further illustrate the power of reinitialization, we test an example with �h ¼ 1
214p

and T = 1.0. To well sample the initial
data, we choose N = 217. We divide the interval [0,T] = [0,1] into eight uniform sub-intervals and reinitialize at the beginning
of each sub-interval. Fig. 6 shows the computational results. Fig. 6(a) and (b) plots the exact solution and the beam solution
at the final time T = 1.0, respectively, and the two solutions look extremely similar. To compare the two solutions more
closely, Fig. 6(c) shows that the two solutions match with each other extremely well in a selected window, and Fig. 6(d)
shows that the modulus-squared (the position density) of the two solutions match with each other as well. In this case,
the relative L2-errors in the beam solution are 0.47% at T = 0 and 3.7% at T = 2.0, respectively. We also remark that without
reinitialization the computed beam solution is simply unacceptable.

6.1.3. Example 3: a potential with hill and well
The background potential is given by V(x) = 10 + sin(2px), and the initial wave function is the same as that in (56).
In this case, by the potential, Vxx(x) = �4p2sin(2px), which is non-positive for 0 6 x 6 0.5 and non-negative for 0.5 6 x 6 1.0,

resulting in a potential hill in the interval [0,0.5] and a potential well in the interval [0.5,1.0]. Since the initial data can be
viewed as a wavepacket compactly supported in [0.25,0.75] and centered at x = 0.5, and the resulting Gaussian beams will
change their widths according to the locations of corresponding ray trajectories; in particular, some beam widths may grow
exponentially as analyzed in Section 4, which leads to difficulties in beam summation as shown in numerical examples.
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Fig. 5. Example 2. A potential hill, �h ¼ 1
256p, with reinitialization. (a) The exact solution. (b) The beam solution. (c) and (d) Comparison of the exact and beam

solutions. ‘‘	”: the exact solution; ‘‘-”: the beam solution.
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We set up numerical experiments by choosing �h ¼ 1
256p, N = 1024, and the final time T = 2.0. We carry out the beam prop-

agation both with and without reinitialization. Fig. 7 shows the case without reinitialization. Fig. 7(a) and (b) shows the exact
solution and the beam solution at the final time T = 2.0, respectively, and the two solutions differ tremendously. To see the
difference more clearly, Fig. 7(c) and (d) compares the two by plotting the solutions in different zoom-in windows. As we can
see, the beam solution and the exact solution do not match well.

When the reinitialization is used, the accuracy of the Gaussian beam method improves dramatically. Fig. 8 shows a case
with �h ¼ 1

256p and the final time T = 2.0 with reinitialization of beam propagation. We divide the interval [0,T] into eight uni-
form sub-intervals, and reinitialize the representation at the beginning of each sub-interval. Fig. 8(a) and (b) shows the exact
solution and the beam solution at the final time T = 2.0, respectively, and the two solutions look extremely similar. To com-
pare the two solutions more closely, Fig. 8(c) and (d) compares the two by plotting the solutions in different zoom-in win-
dows. As we can see, the beam solution and the exact solution match with each other extremely well.

6.2. Two-dimensional cases

6.2.1. Example 4: a two-dimensional additive potential
The background potential is given by V(x,y) = 10 + cos(2px) + 2cos(2py) on a unit square, and the initial wave function is

given by

Uðx; y; t ¼ 0Þ ¼ expð�25ðx� 0:5Þ2Þ exp
ıs0ðxÞ

�h

� �
; ðx; yÞ 2 ½0;1� � ½0;1�;

s0ðxÞ ¼ �
1
5

lnðexpð5ðx� 0:5ÞÞ þ expð�5ðx� 0:5ÞÞÞ:
ð57Þ
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Fig. 6. Example 2. A potential hill, �h ¼ 1
214p

and N = 217, with reinitialization. (a) The exact solution. (b) The beam solution. (c) and (d) Comparison of the
exact and beam solutions. ‘‘	”: the exact solution; ‘‘-”: the beam solution.
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The periodic boundary condition is imposed. In this case, the Hessian of the potential is a diagonal indefinite matrix. Thus,
depending on the initial values of beams, the beam widths may grow exponentially as time evolves.

Fig. 9 shows an example with �h ¼ 1
256p and the final time T = 0.5. To well resolve the initial data, we use an

N � N = 1024 � 1024 uniform grid to discretize the domain [0,1] � [0,1]. Accordingly, we apply the 2-D fast Gaussian wave-
packet transform to generate the beam representation from the initial data. To improve the beam propagation, we subdivide
[0,T] = [0,0.5] into ten uniform sub-intervals and reinitialize the beam representation at the beginning of each sub-interval.
Fig. 9(a) shows the scaled image of the initial data. Fig. 9(b) and (c) displays the image of the exact solution and the beam
solution at the final time T = 0.5, and they are consistent with each other. To compare the two solutions more clearly, we plot
the sliced solutions together along x = 0.5 (see Fig. 9(d) and (e)) and y = 0.5 (see Fig. 9(f) and (g)). As we can see, the two solu-
tions match with each other very well.

6.2.2. Example 5: a two-dimensional multiplicative potential
The background potential is given by V(x,y) = 10 + 0.5sin(2px)cos(2py) on a unit square, and the initial wave function is

given as in (57). The periodic boundary condition is imposed. In this case, the Hessian of the potential is an indefinite matrix
function. Thus, depending on the initial values of beams, beam widths may grow exponentially as time evolves.

Fig. 10 shows an example with �h ¼ 1
512p and the final time T = 0.56. To well resolve the initial data, we again use an

N � N = 1024 � 1024 uniform grid to discretize [0,1] � [0,1]. Fig. 10(a) and (b) shows the images of the exact solution
and the beam solution at the final time T = 0.56. To compare the two solutions more clearly, we plot the sliced solutions
along y = 0.5 in Fig. 10(c) and (d), respectively; although the two solutions look similar, they have large difference in some
regions. In Fig. 10(e) and (f), we plot the two y-sliced solutions together for two x-windows, and we can see that the two
solutions indeed are not comparable in terms of resolving some small details. In Fig. 10(g), we plot the x-sliced (x = 0.5)
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Fig. 7. Example 3. A potential with both hill and well, �h ¼ 1
256p, without reinitialization. (a) The exact solution. (b) The beam solution. (c) and (d) Comparison

of the exact and beam solutions. ‘‘	”: the exact solution; ‘‘-”: the beam solution.
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solutions together for a y-window; in Fig. 10(h), we plot the x-sliced (x = 0.5205) solutions together for a y-window; these
two figures illustrate that the two solutions do not match with each other well.

If we reinitialize beam propagation during time evolution, then the accuracy of beam solution improves significantly.
Fig. 11 shows an example with �h ¼ 1

512p and the final time T = 0.56. We subdivide [0,T] = [0,0.56] into eight uniform sub-
intervals and reinitialize the beam representation at the beginning of each sub-interval. Fig. 11(a) and (b) shows the images
of the exact solution and the beam solution at the final time T = 0.56, and they are consistent with each other. To compare the
two solutions more clearly, we plot the sliced solutions along y = 0.5 in Fig. 11(c) and (d), respectively; the two solutions look
similar. In Fig. 11(e) and (f), we plot the y-sliced solutions together for two x-windows, and we can see that the two solutions
match very well. In Fig. 11(g), we plot the x-sliced (x = 0.5) solutions together for a y-window; in Fig. 11(h), we plot the
x-sliced (x = 0.5205) solutions together for a y-window. Overall, we can see that the two solutions match with each other
very well.

6.3. Three-dimensional cases

6.3.1. Example 6: a three-dimensional multiplicative potential
The background potential is given by V(x,y,z) = 10 + sin(2px)cos(2py)sin(2pz) on a unit cube, and the initial wave function

is given by

Uðx; y; z; t ¼ 0Þ ¼ expð�25ðx� 0:5Þ2Þ exp
ıs0ðxÞ

�h

� �
;

s0ðxÞ ¼ �
1
5

lnðexpð5ðx� 0:5ÞÞ þ expð�5ðx� 0:5ÞÞÞ:
ð58Þ
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Fig. 8. Example 3. A potential with both hill and well, �h ¼ 1
256p, with reinitialization. (a) The exact solution. (b) The beam solution. (c) and (d) Comparison of

the exact and beam solutions. ‘‘	”: the exact solution; ‘‘-”: the beam solution.
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The periodic boundary condition is imposed. Once again, the Hessian of the potential function is an indefinite matrix. Thus,
depending on the initial values of beams, the beam widths may grow exponentially as time evolves.

x

y

0 0.2 0.4 0.6 0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 −0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x

y

0 0.2 0.4 0.6 0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x

y

0 0.2 0.4 0.6 0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 −2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

y

u

0.75 0.8 0.85 0.9 0.95 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

y

u

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

u

0.75 0.8 0.85 0.9 0.95 1
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

x

u

a

b c

d e

f g

Fig. 9. Example 4. A two-dimensional additive potential, �h ¼ 1
256p and T = 0.5. (a) The initial data. (b) The exact solution. (c) The beam solution. (d) The slice

along x = 0.5. (e) A y-window for the slice along x = 0.5: exact (‘‘	”) and beam (‘‘-”). (f) The slice along y = 0.5. (g) An x-window for the slice along y = 0.5:
exact (‘‘	”) and beam (‘‘-”).
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Fig. 10. Example 5. A two-dimensional multiplicative potential, �h ¼ 1
512p without reinitialization. The exact solution (‘‘	”) and the beam solution (‘‘-”). (a)

The exact solution. (b) The beam solution. (c) The exact solution: the slice along y = 0.5. (d) The beam solution: the slice along y = 0.5. (e) An x-window for
the slice along y = 0.5. (f) Another x-window for the slice along y = 0.5. (g) A y-window for the slice along x = 0.5. (h) A y-window for the slice along
x = 0.5205.
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Fig. 11. Example 5. A two-dimensional multiplicative potential, �h ¼ 1
512p with reinitialization. The exact solution (‘‘	”) and the beam solution (‘‘-”). (a) The

exact solution. (b) The beam solution. (c) The exact solution: the slice along y = 0.5. (d) The beam solution: the slice along y = 0.5. (e) An x-window for the
slice along y = 0.5. (f) Another x-window for the slice along y = 0.5. (g) A y-window for the slice along x = 0.5. (h) A y-window for the slice along x = 0.5205.
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Fig. 12 shows an example with �h ¼ 1
64p and the final time T = 0.56. To well resolve the initial data, we use an

N � N � N = 128 � 128 � 128 uniform grid to discretize [0,1] � [0,1] � [0,1]. The 3-D fast Gaussian wavepacket transform
is used to generate the beam decomposition of the initial data. We subdivide [0,T] = [0,0.56] into eight uniform sub-intervals
and reinitialize at the beginning of each sub-interval. Fig. 12(a) shows a two-dimensional x-slice for x = 0.5234; Fig. 12(b)
plots the exact and beam solutions together for a z-window at x = 0.5234 and y = 0.5859; Fig. 12(c) plots the exact and beam
solutions together for a y-window at x = 0.5234 and z = 0.5859. Fig. 12(d) shows a two-dimensional y-slice for y = 0.3359;
Fig. 12(e) plots the exact and beam solutions together for a z-window at x = 0.5859 and y = 0.3359; Fig. 12(f) plots the exact
and beam solutions together for a x-window at y = 0.3359 and z = 0.5859. Fig. 12(g) shows a two-dimensional z-slice for
z = 0.6172; Fig. 12(h) plots the exact and beam solutions together for a y-window at x = 0.3906 and z = 0.6172; Fig. 12(i) plots
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Fig. 12. Example 6. A three-dimensional multiplicative potential, �h ¼ 1
64p. The exact solution (‘‘	”) and the beam solution (‘‘-”). (a) The x-slice for x = 0.5234.

(b) A z-window at x = 0.5234 and y = 0.5859. (c) A y-window at x = 0.5234 and z = 0.5859. (d) The y-slice for y = 0.3359. (e) A z-window at x = 0.5859 and
y = 0.3359. (f) An x-window at y = 0.3359 and z = 0.5859. (g) The z-slice for z = 0.6172. (h) A y-window at x = 0.3906 and z = 0.6172. (i) An x-window at
y = 0.3906 and z = 0.6172.
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the exact and beam solutions together for a x-window at y = 0.3906 and z = 0.6172. In this case, the relative L2-error in the
beam solution at the final time is 1.8%.

7. Conclusions and future works

In this paper, we addressed two critical computational problems of the Gaussian beam methods for the Schrödinger equa-
tion. We proposed fast Gaussian wavepacket transforms, which allow us to generate the beam representation for a general
initial condition efficiently and accurately. Based on these efficient transforms, we addressed the long time propagation
problem by introducing a reinitialization algorithm. Numerical results are presented for one-, two-, and three-dimensional
examples to illustrate the properties of the proposed algorithms.

A possible direction of future work is to design more efficient initial decomposition algorithms for special initial data. For
example, it is quite common to have initial data localized either in space or in frequency. In such a case, one can tailor the
Gaussian wavepacket transforms to focus on certain parts of the phase space. The resulting transforms would be truly data-
adaptive and potentially be more efficient. We are also working on some other related applications.
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