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Abstract. Recently, a Neumann series based numerical method is developed

for photoacoustic tomography in a paper by Qian, Stefanov, Uhlmann, and

Zhao [An efficient neumann series-based algorithm for thermoacoustic and
photoacoustic tomography with variable sound speed. SIAM J. Imag. Sci.,

4:850–883, 2011]. It is an efficient and convergent numerical scheme that re-
covers the initial condition of an acoustic wave equation with non-constant

sound speeds by boundary measurements. In practical applications, the do-

mains of interest typically have irregular geometries and contain media with
discontinuous sound speeds, and these issues pose challenges for the develop-

ment of efficient solvers. In this paper, we propose a new algorithm which is

based on the use of the staggered discontinuous Galerkin method for solving
the underlying wave propagation problem. It gives a convenient way to han-

dle domains with complex geometries and discontinuous sound speeds. Our

numerical results show that the method is able to recover the initial condition
accurately.

1. Introduction

Mathematical imaging is an important research field in applied mathematics.
There have been many significant progresses in both mathematical theories and
medical applications; see [7, 9, 8, 10, 3, 1, 12, 13, 14, 15, 16, 17, 19, 20, 22,
23, 25, 26, 29, 31, 32, 18] and references therein. Theoretically, one is interested
in uniqueness and stability of the solution for the inverse problem; numerically, one
is interested in designing efficient numerical algorithms to recover the solution of
the inverse problem. Naturally, the above two aspects have been well studied in the
case of the sound speed being constant. In fact, if the sound speed is constant and
the observation surface ∂Ω is of some special geometry, such as planar, spherical or
cylindrical surface, there are explicit closed-form inversion formulas; see [12, 28,
14, 15, 11] and references therein. In practice the constant sound speed model is
inaccurate in many situations [29, 18, 30, 21]. For instance in breast imaging, the
different components of the breast, such as the glandular tissues, stromal tissues,
cancerous tissues and other fatty issues, have different acoustic properties. The
variations between their acoustic speeds can be as great as 10% [18].
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In this paper, we will focus on photoacoustic tomography which is a very im-
portant field in mathematical imaging. Photoacoustic tomography has recently
attracted much attention due to its applications in medical imaging. It is based on
the non-destructive testing methodology to construct high resolution medical im-
ages needed for important diagnostic processes. The physical mechanism involved
is the so-called photoacoustic effect, which can be briefly described as follows. Ini-
tially, a short pulse of electromagnetic wave is injected into the patient’s body.
Then the body is heated up which generates some acoustic waves. Different parts
of the body have different absorption rates, and this information is contained in the
acoustic waves generated by this process. The body structure is then determined
by measuring the acoustic waves outside of the patient’s body. For more details
about this, see for example [29, 27].

Now, we will present the mathematical formulation of photoacoustic tomog-
raphy. Let Ω ⊂ Rn be an open set having smooth and strictly convex boundary
∂Ω. This domain Ω is understood as the body of interest. As mentioned previ-
ously, a pulse of electromagnetic signals will generate some heat and then acoustic
waves, the heating process is modeled by the initial condition of the wave propa-
gation problem. More precisely, given a source function f(x) with support in Ω
initially, it will generate acoustic signals. The photoacoustic tomography problem
is to determine the unknown source function f(x) by boundary measurements of
these acoustic signals. The forward problem can be described as follows. Given the
initial condition f(x), the acoustic pressure u(t, x) satisfies

(1)
∂2u

∂t2
− c2∆u = 0, in (0, T )× Rn

subject to the following initial conditions

(2) u(0, x) = f(x), ut(0, x) = 0, on Rn.

In the above wave equation (1), the function c(x) is the acoustic sound speed. We
assume that c(x) is a given, possibly discontinuous, function inside Ω and takes
the value one outside Ω. Our measurement can be represented by an operator Λ
defined by

(3) Λf := u
∣∣
[0,T ]×∂Ω

which is the value of the acoustic pressure u(t, x) along the boundary of the domain
∂Ω for all times.

In this paper, we propose a new numerical algorithm that works for irregular
domains by following [24]. In [24], the method is applied to rectangular domains; in
the current work, we extend the idea to unstructured domains so that the method-
ology is applicable to more practical situations. To achieve our goals, we will apply
the staggered discontinuous Galerkin method [5, 6] for the numerical approximation
of the wave propagation problem. It gives a systematic way to handle domains with
complicated geometries and discontinuous sound speeds. Moreover, there are dis-
tinctive advantages of using the staggered discontinuous Galerkin method; namely,
the method is an explicit scheme which allows very efficient time stepping. Besides,
the method is able to preserve the wave energy and gives smaller dispersion errors
compared with non-staggered schemes [4, 2]. In addition, we also need a Poisson
solver on irregular domains for our reconstruction algorithm, which will be based
on an integral equation approach so that we can handle a wide class of boundary
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curves. Combining the above methodologies, the resulting method is very efficient
and allows us to solve problems arising from realistic imaging applications.

The paper is organized as follows. In Section 2, we will present some back-
ground materials, and in Section 3, the reconstruction method together with the
implementation details will be presented. Moreover, a brief account of the stag-
gered discontinuous Galerkin method is included. Numerical results are shown in
Section 4 to demonstrate the performance of our method.

2. Background

Assume for now that c > 0 is smooth. The speed c defines a Riemannian metric
c−2dx2. For any piecewise smooth curve γ : t ∈ [a, b] 7→ γ(t) ∈ Rn, the length of γ
in that metric is given by

length(γ) =
∫ b

a

|γ̇(t)|
c(γ(t))

dt.

The so-defined length is independent of the parameterization of γ. The distance
function dist(x, y) is then defined as the infimum of the lengths of all such curves
connecting x and y.

For any (x, θ) ∈ Rn×Sn−1 we denote by γx,θ(t) the unit speed (i.e., |γ̇| = c(γ))
geodesics issued at x in the direction θ.

Similar to the settings in [25, 26], the energy of u(t, x) in a domain U ⊂ Rn is
given by

E(u(t)) =
∫
U

(|∇xu|2 + c−2|ut|2
)

dx,

where u(t) = u(t, ·). The energy of any Cauchy data (f, g) for equation (1) is given
by

E(f, g) =
∫
U

(|∇xf |2 + c−2|g|2)dx.

The energy norm is defined as the square root of the energy. In particular, the
energy of (f, 0) in U is given by the square of the Dirichlet norm

‖f‖2HD(U) :=
∫
U

|∇xf |2 dx,

where the Hilbert space HD(U) is the completion of C∞0 (U) under the above Dirich-
let norm. We always assume below that the initial condition f ∈ HD(Ω). We will
denote by ‖ · ‖ the norm in HD(Ω), and in the same way we denote the operator
norm in that space.

There are two main geometric quantities that are crucial for the results below.
First we set

(4) T0 := max{dist(x, ∂Ω) : x ∈ Ω̄},
where dist(x, ∂Ω) is the distance in the given Riemannian metric c−2dx2. Let
T1 ≤ ∞ be the supremum of the lengths of all maximal geodesics lying in Ω̄.
Clearly, T0 < T1; however, while the first number is always finite, the second one
can be infinite. It can be shown actually that

(5) T0 ≤ T1/2.
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3. The reconstruction method

In this section, we will present the numerical reconstruction method for the
photoacoustic tomography. In [25], it is proved that the solution can be repre-
sented by a convergent Neumann series. Our method is based on a truncation of
this Neumann series, and the addition of each term provides a refinement of the
recovered solution. Thus, depending on the error tolerance, typically a few terms
are needed to obtain a reasonable solution.

Assume that f(x) is the unknown initial condition and that the boundary
data Λf defined on ∂Ω has been given. Note that Λf is the measurement we
obtained. One major step of our reconstruction method is to solve a backward in
time wave propagation problem by using the boundary condition Λf . Let v(t, x)
be the solution of this problem. To find the solution v, we will need to specify the
values of v and vt at the final time T . For vt, we will take ut = 0 at the final time
T . For v, since we only know the boundary values at the final time T , we will use
a function that minimizes the energy ‖ · ‖HD(Ω). Thus, we will use the harmonic
extension of Λf . To better present our ideas, for a given φ defined on ∂Ω, we define
Pφ to be the harmonic extension of φ.

We then solve the following modified back projection problem. Given a function
h defined on ∂Ω, we find v(0, ·) such that

(6)
∂2v

∂t2
− c2∆v = 0, in (0, T )× Ω

subject to the boundary condition

(7) v(t, x) = h, on [0, T ]× ∂Ω

and the final time conditions

(8) v(T, x) = Ph, , vt(T, x) = 0, on Ω.

We can then define an operator Ah = v(0, ·). Note that, the operator A is not an
actual inverse of the operator Λ, but it gives some kind of approximation.

As in [24], we have

(9) AΛ = I −K
where K is an error operator. Under suitable conditions, it is proved in [25] that

(10) ‖Kf‖HD(Ω) ≤ ‖f‖HD(Ω)

and that

(11) ‖K‖HD(Ω)→HD(Ω) < 1.

Therefore, one can write the following Neumann series [25]

(12) f =
∞∑
m=0

KmAΛf.

This is the key of our reconstruction algorithm. We remark that it is important to
choose the final time T in a suitable way. We will use the idea described in [24].

Now we summarize the following properties proved in [25], which provides some
guidances in choosing the final time T .

(i) T < T0.
Λf does not recover f uniquely. Then ‖K‖ = 1, and for any f sup-

ported in the inaccessible region, Kf = f .



A NEUMANN SERIES BASED METHOD FOR PHOTOACOUSTIC TOMOGRAPHY ON IRREGULAR DOMAINS5

(ii) T0 < T < T1/2.
This can happen only if there is a strict inequality in (5). Then we

have uniqueness but not stability. In this case, ‖K‖ = 1, ‖Kf‖ < ‖f‖,
and we do not know if the Neumann series (12) converges. If it does, it
converges to f .

(iii) T1/2 < T < T1.
This assumes that Ω is non-trapping for c. The Neumann series (12)

converges exponentially but may be not as fast as in the next case. There
is stability, and ‖K‖ < 1.

(iv) T1 < T .
This also assumes that Ω is non-trapping for c. The Neumann se-

ries (12) converges exponentially. There is stability, ‖K‖ < 1, and K is
compact.

Now, we will present some implementation details. In (12), we can evaluate
the operator A by solving the modified back-projection problem defined in (6), (7)
and (8). Then, for a given function ψ defined on Ω, we can evaluate K by

(13) Kψ = ψ −A(Λψ).

This means that, we have to solve the forward in time wave propagation problem
with initial condition ψ and then obtain the operator Λψ, which is the boundary
values for all times. Then using this boundary function, we solve the modified
back-projection problem defined in (6), (7) and (8) to obtain A(Λψ).

To solve the forward in time wave equation (1) and (2), we write it as a first
order form

ρ
∂u

∂t
−∇ · p = 0

∂p

∂t
−∇u = 0

(14)

where ρ = c−2 and p = ∇u. To solve (14) on unstructured grid, we use the
staggered discontinuous Galerkin method [5, 6, 4], which gives an explicit and
energy conserving forward solver. We remark that explicit solver gives a very fast
time-marching process. Besides, the method produces smaller dispersion errors
compared with non-staggered methods [4, 2]. Moreover, the staggered discontinu-
ous Galerkin method can be seen as an extension to unstructured grid of the finite
difference method used in [24]. For completeness, we will give a brief account of
the method in the next subsection. Notice that the problem (14) is posed on the
whole Rn. Thus, some artificial boundary condition is needed. In this paper, the
perfectly matched layer is used as the artificial boundary condition and we use Ω̂
to represent the computational domain. Finally, the values of the pressure u(t, x)
from (14) can then be obtained on the domain boundary ∂Ω.

Another step of our reconstruction method is to generate a final time condition
for the problem (6), (7) and (8). To do this, we need to find the harmonic extension
for a function φ defined on ∂Ω. To perform this step in an efficient way, we will
apply the standard integral equation approach, which will be briefly accounted in
the next section. Once the final time conditions are known, we can then solve the
modified back-projection problem (6), (7) and (8) by the staggered discontinuous
Galerkin method [5, 6, 4] together with the given boundary data h.



6 ERIC CHUNG, CHI YEUNG LAM, AND JIANLIANG QIAN

3.1. The staggered discontinuous Galerkin method. In this section, we
briefly summarize the method developed in [6]. We start with the triangulation of
the domain.

Assume that the domain Ω is triangulated by a family of triangles T so that
Ω = ∪{τ | τ ∈ T }. Let τ ∈ T . We define hτ as the diameter of τ and ρτ as the
supremum of the diameters of the circles inscribed in τ . The mesh size h is defined
as h = maxτ∈T hτ . We will assume that the set of triangles T forms a regular
family of triangulation of Ω so that there exist a uniform constant K independent
of the mesh size such that

hτ ≤ Kρτ ∀τ ∈ T .
Let E be the set of all edges and let E0 ⊂ E be the set of all interior edges of

the triangles in T . The length of σ ∈ E will be denoted by hσ. We also denote
by N the set of all interior nodes of the triangles in T . Here, by interior edge and
interior node, we mean any edge and node that does not lie on the boundary ∂Ω.
Let ν ∈ N . We define

(15) S(ν) = ∪{τ ∈ T | ν ∈ τ}.
That is, S(ν) is the union of all triangles having vertex ν. We will assume that the
triangulation of Ω satisfies the following condition.
Assumption on triangulation: There exists a subset N1 ⊂ N such that

(A1) Ω = ∪{S(ν) | ν ∈ N1}.
(A2) S(νi) ∩ S(νj) ∈ E0 for all distinct νi, νj ∈ N1.
Let ν ∈ N1. We define

(16) Eu(ν) = {σ ∈ E | ν ∈ σ}.
That is, Eu(ν) is the set of all edges that have ν as one of their endpoints. We
further define

(17) Eu = ∪{Eu(ν) | ν ∈ N1} and Ev = E\Eu.
Notice that Eu contains only interior edges since one of the endpoints of edges in
Eu has a vertex from N1. On the other hand, Ev has both interior and boundary
edges. So, we also define E0

v = Ev ∩ E0 which contains elements from Ev that are
interior edges. Notice that we have Ev\E0

v = E ∩ ∂Ω. Furthermore, for σ ∈ E0
v ,

we will let R(σ) be the union of the two triangles sharing the same edge σ. For
σ ∈ Ev\E0

v , we will let R(σ) be the only triangle having the edge σ.
In practice, triangulations that satisfy assumptions (A1)–(A2) are not difficult

to construct. In Figure 1, we illustrate how this kind of triangulation is generated.
First, the domain Ω is triangulated by a family of triangles, called T̃ . Each triangle
in this family is then subdivided into three sub-triangles by connecting a point
inside the triangle with its three vertices. Then we define the union of all these
sub-triangles to be our triangulation T . Each triangle in T̃ corresponds to an S(ν)
for some ν inside the triangle. In Figure 1, we show two of the triangles, enclosed
by solid lines, in this family T̃ . This corresponds to 6 triangles in the triangulation
T . The dotted lines represent edges in the set Eu while solid lines represent edges
in the set Ev.

Now, we will discuss the FE spaces. Let k ≥ 0 be a nonnegative integer. Let
τ ∈ T and κ ∈ F . We define P k(τ) and P k(κ) as the spaces of polynomials of
degree less than or equal to k on τ and κ, respectively. The method is based on
the following local conforming spaces.
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•

•
S(ν1)

S(ν2)

ν1

ν2

Fig. 2.1. Triangulation.

Proof. First of all, τ has at least one interior vertex. We will show that there is
exactly one vertex of τ that belongs to N1. If none of the three vertices of τ belong
to N1, then τ0 ∩ S(ν) is an empty set for all ν ∈ N1, where τ0 is the interior of τ .
Then, ∪{S(ν) | ν ∈ N1} ∩ τ0 is an empty set. So, ∪{S(ν) | ν ∈ N1} $= Ω, which
violates assumption (A1). If τ has two vertices, νi and νj , that belong to N1, then
S(νi) ∩ S(νj) contains τ . So, it violates assumption (A2). The case that τ has all
vertices belonging to N1 can be discussed in the same way. In conclusion, τ has
exactly one vertex which belongs to N1. So, by the definition of Eu, the two edges
having the vertex in N1 belong to Eu.

Given τ ∈ T , we will denote by ν(τ)1, ν(τ)2, and ν(τ)3 the three vertices of
τ . Moreover, ν(τ)1 is the vertex that is one of the endpoints of the two edges of τ
that belong to Eu. Then ν(τ)2 and ν(τ)3 are named in a counterclockwise direction.
In addition, λτ,1(x), λτ,2(x), and λτ,3(x) are the barycentric coordinates on τ with
respect to the three vertices ν(τ)1, ν(τ)2, and ν(τ)3.

Now, we will discuss the FE spaces. Let k ≥ 0 be a nonnegative integer. Let
τ ∈ T . We define P k(τ) as the space of polynomials of degree less than or equal to k
on τ . We also define

Rk(τ) = P k(τ)⊕ P̃ k+1(τ),(2.4)

where P̃ k+1(τ) is the space of homogeneous polynomials of degree k+1 on τ in the two
variables λτ,2 and λτ,3 such that the sum of the coefficients of λk+1

τ,2 and λk+1
τ,3 is equal to

zero. That is, any function in P̃ k+1(τ) can be written as
∑

i+j=k+1,i≥0,j≥0 ai,jλ
i
τ,2λ

j
τ,3

such that ak+1,0 + a0,k+1 = 0. Now, we define

Uh = {φ | φ|τ ∈ Rk(τ);φ is continuous at the k + 1 Gaussian points of σ ∀σ ∈ Eu}.
For any edge σ, we use P k(σ) to represent the space of one dimensional polynomials
of degree less than or equal to k on σ. We define the following degrees of freedom:
(UD1) For each edge σ ∈ Eu, we have ∫

σ

φpk dσ

for all pk ∈ P k(σ).
(UD2) For each triangle τ ∈ T , we have∫

τ

φpk−1 dx

for all pk−1 ∈ P k−1(τ) (for k ≥ 1).

Figure 1. Triangulation.

Local H1(Ω)-conforming FE space:

(18) Uh = {v | v|τ ∈ P k(τ); v is continuous on κ ∈ F0
u; v|∂Ω = 0}.

Notice that if v ∈ Uh, then v|R(κ) ∈ H1(R(κ)) for each face κ ∈ Fu. Fur-
thermore, the condition v|∂Ω = 0 is equivalent to v|κ = 0, ∀κ ∈ Fu\F0

u, since Fu
contains all boundary faces. Next, we define the following space.

Local H(div; Ω)-conforming FE space:

(19) Wh = {q | q|τ ∈ P k(τ)3 and q · n is continuous on κ ∈ Fp}.
Notice that if q ∈Wh, then q|S(ν) ∈ H(div;S(ν)) for each ν ∈ N1.
With all the above notations, the staggered discontinuous Galerkin method [6]

is then stated as: find uh ∈ Uh and ph ∈Wh such that∫
Ω

ρ
∂uh
∂t

v dx+Bh(ph, v) = 0,(20) ∫
Ω

∂ph
∂t
· q dx−B∗h(uh,q) = 0,(21)

for all v ∈ Uh and q ∈Wh, where

Bh(ph, v) =
∫

Ω

ph · ∇v dx−
∑
κ∈Fp

∫
κ

ph · n [v] dσ,(22)

B∗h(uh,q) = −
∫

Ω

uh ∇ · q dx+
∑
κ∈F0

u

∫
κ

uh [q · n] dσ,(23)

where [v] represents the jump of the function v. We remark that the important
energy conservation property comes from the fact that Bh(ph, uh) = B∗h(uh,ph).

3.2. The boundary integral method. In this section, we will give a brief
overview of the boundary integral method for finding the harmonic extension of φ
defined on ∂Ω. Recall that Ω ⊂ Rn for n ≥ 2. Let

(24) K(x) =

{
1

2π log r n = 2
1

(2−n)ωn
r2−n n ≥ 3
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where ωn is the area of the boundary of the unit sphere in Rn and r = |x|. Then
it is well known that

(25) Pφ =
∫
∂Ω

φ(x)
∂K(x− ξ)

∂νx
dσx

where dσx is the surface measure on ∂Ω and νx is the unit outward normal vector
defined on ∂Ω.

4. Numerical examples

In this section, we will present some numerical examples. We will test our
numerical algorithm on some domains with irregular shapes. In all cases below,
the computational domain Ω̂ is [−1.5, 1.5]2. Moreover, the perfectly matched layer
is imposed in the region [−1.5, 1.5]2\[−1.05, 1.05]2. The mesh size for the spatial
domain is taken as 0.02 and the time step size is taken according to the CFL
condition which allows stability of the wave propagation solver. The final time T
is taken as 4 which is large enough to guarantee the convergence of the Neumann
series (12).

4.1. Example 1. In our first example, we consider the imaging of the Shepp-
Logan phantom contained in the domain Ω which is a circle centered at (0, 0) with
radius 1. In the first test case, we take c1(x, y) = 1 + 0.2 sin(2πx) + 0.1 cos(2πy)
as the sound speed inside Ω. In Figure 2, the exact solution is shown, where we
see that the Shepp-Logan phantom is located inside a circular domain. Moreover,
a coarse triangulation of this circular domain is also shown in Figure 2. Here, we
use a coarse triangulation for display purpose, and the actual triangulation for our
computation is finer than this.

The numerical reconstruction results are shown in Figure 3. From these figures,
we see that the use of the first two terms in the Neumann series (12) is sufficient to
give very promising results. In particular, with the use of one term in the Neumann
series, we obtain a reconstruction with relative error of 4.46% while the use of two
terms in the Neumann series gives a reconstruction with relative error of 2.14%.

Figure 2. Left: exact solution. Right: an example of the mesh
used for the domain.

In the second case, we take a piecewise constant sound speed c2(x, y) with the
value 1.2 in the circle centered at (0, 0) and radius 0.6 and the value 1.1 elsewhere
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Figure 3. Numerical solutions. Left: one term approximation,
relative error is 4.46%. Right: two term approximation, relative
error is 2.14%.

in the domain Ω. The numerical reconstruction results are shown in Figure 4 while
the exact solution is shown in Figure 2. From these figures, we see that the use of
the first two terms in the Neumann series (12) is sufficient to give very promising
results. In particular, with the use of one term in the Neumann series, we obtain
a reconstruction with relative error of 2.86% while the use of two terms in the
Neumann series gives a reconstruction with relative error of 2.18%.

Figure 4. Numerical solutions. Left: one term approximation,
relative error is 2.86%. Right: two term approximation, relative
error is 2.18%.

For our last test case with this domain, we take the sound speed c2(x, y) defined
above and add 2% noise in the data. The numerical reconstruction results are shown
in Figure 5 while the exact solution is shown in Figure 2. From these figures, we
see that the use of the first two terms in the Neumann series (12) is sufficient to
give very promising results. In particular, with the use of one term in the Neumann
series, we obtain a reconstruction with relative error of 3.18% while the use of two
terms in the Neumann series gives a reconstruction with relative error of 3.10%.
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Figure 5. Numerical solutions. Left: one term approximation,
relative error is 3.18%. Right: two term approximation, relative
error is 3.10%.

4.2. Example 2. In our second example, we consider a domain with irregular
shape, shown in Figure 6. Moreover, a sample triangulation of this domain is also
shown in Figure 6. We use c1(x, y) as the sound speed in this test case.

We will first consider the imaging of a point source in this domain. The exact
point source is shown in Figure 6. The numerical reconstruction results are shown
in Figure 7. From these figures, we see that the use of the first two terms in
the Neumann series (12) is sufficient to give very promising results. In particular,
with the use of one term in the Neumann series, we obtain a reconstruction with
relative error of 4.10% while the use of two terms in the Neumann series gives a
reconstruction with relative error of 0.82%.

Figure 6. Left: exact solution. Right: an example of the mesh
used for the domain.

Next, We will consider the imaging of the Shepp-Logan phantom in this domain.
The exact solution is shown in Figure 8. The numerical reconstruction results are
shown in Figure 9. From these figures, we see that the use of the first two terms in
the Neumann series (12) is sufficient to give very promising results. In particular,
with the use of one term in the Neumann series, we obtain a reconstruction with
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Figure 7. Numerical solutions. Left: one term approximation,
relative error is 4.10%. Right: two term approximation, relative
error is 0.82%.

relative error of 9.23% while the use of two terms in the Neumann series gives a
reconstruction with relative error of 6.92%.

Figure 8. The exact solution.

4.3. Example 3. In our third example, we consider a domain with irregular
shape, shown in Figure 10. Moreover, a sample triangulation of this domain is also
shown in Figure 10. We use c1(x, y) as the sound speed in this test case.

We will first consider the imaging of a single Shepp-Logan phantom in this
domain. The exact solution is shown in Figure 10. The numerical reconstruction
results are shown in Figure 11. From these figures, we see that the use of the
first two terms in the Neumann series (12) is sufficient to give very promising
results. In particular, with the use of one term in the Neumann series, we obtain
a reconstruction with relative error of 4.76% while the use of two terms in the
Neumann series gives a reconstruction with relative error of 3.41%.

We next consider the imaging of a single Shepp-Logan phantom together with
two circular objects in the domain shown in Figure 10. The exact solution is shown
in Figure 12. The numerical reconstruction results are shown in Figure 13. From
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Figure 9. Numerical solutions. Left: one term approximation,
relative error is 9.23%. Right: two term approximation, relative
error is 6.92%.

Figure 10. Left: exact solution. Right: an example of the mesh
used for the domain.

these figures, we see that the use of the first two terms in the Neumann series (12)
is sufficient to give very promising results. In particular, with the use of one term in
the Neumann series, we obtain a reconstruction with relative error of 4.62% while
the use of two terms in the Neumann series gives a reconstruction with relative
error of 2.61%.

Next we consider the same example with 2% noise added in the data. The
exact solution is shown in Figure 12. The numerical reconstruction results are
shown in Figure 13. From these figures, we see that the use of the first two terms in
the Neumann series (12) is sufficient to give very promising results. In particular,
with the use of one term in the Neumann series, we obtain a reconstruction with
relative error of 4.81% while the use of two terms in the Neumann series gives a
reconstruction with relative error of 3.39%.

5. Conclusion

In this paper, we propose an efficient and accurate method for photoacoustic
tomography. The method is based on a convergent Neumann series and is applicable
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Figure 11. Numerical solutions. Left: one term approximation,
relative error is 4.76%. Right: two term approximation, relative
error is 3.41%.

Figure 12. The exact solution.

to domains with complicated geometries and discontinuous sound speeds. The use
of the staggered discontinuous Galerkin method allows a very efficient time-stepping
and conservation of wave energy. Our numerical results show that the method has
superior performance, and provides a solver for realistic imaging applications.
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