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Abstract. The solution for the eikonal equation with a point-source condition has an upwind
singularity at the source point as the eikonal solution behaves like a distance function at and near the
source. As such, the eikonal function is not differentiable at the source so that all formally high-order
numerical schemes for the eikonal equation yield first-order convergence and relatively large errors.
Therefore, it is a long standing challenge in computational geometrical optics how to compute a
uniformly high-order accurate solution for the point-source eikonal equation in a global domain. In
this paper, we propose high-order factorization based high-order hybrid fast sweeping methods for
point-source eikonal equations to compute just such solutions. Observing that the squared eikonal
is differentiable at the source, we propose to factorize the eikonal into two multiplicative or additive
factors one of which is specified to approximate the eikonal up to arbitrary order of accuracy near
the source, and the other of which serves as a higher-order correction term. This decomposition is
achieved by using the eikonal equation and applying power series expansions to both the squared
eikonal and the squared slowness function. We develop recursive formulas to compute the approxi-
mate eikonal up to arbitrary order of accuracy near the source. Furthermore, these approximations
enable us to decompose the eikonal into two factors either multiplicatively or additively so that we can
design two new types of hybrid, high-order fast sweeping schemes for the point-source eikonal equa-
tion. We also show that the hybrid first-order fast sweeping methods are monotone and consistent
so that they are convergent in computing viscosity solutions. Two- and three-dimensional numerical
examples demonstrate that a hybrid p-th order fast sweeping method yields desired, uniform, clean
p-th order convergence in a global domain by using a p-th order factorization.
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1. Introduction. We consider the eikonal equation with a point-source condi-
tion,

H(VT(x)) = |VT(x)| = s(x), x€Q\{x0};

(1.1)

7(x0) =0,

where Q C R™, x¢ is the source point, 7(x) is the so-called eikonal (sometimes called
traveltime as well), and s(x) > n > 0 is the slowness field with 7 a positive constant.
The eikonal equation (1.1) has a wide variety of applications ranging from classical
mechanics, geosciences, geometrical optics, computer vision to optimal control. One
specific example of the point-source eikonal equation arises from computing asymp-
totic Green functions for Helmholtz equations in the high frequency regime, which are
essential for seismic imaging and geophysical inverse problems. The particularity of
the point-source eikonal equation is that the eikonal is not differentiable at the source
because it behaves like distance from the source in the travel-time metric. Without
special treatments at the source point, all formally high-order numerical schemes yield
only first-order convergence as the high-order Taylor expansion based local truncation
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error analysis fails to hold at the source point. Therefore, to solve the point-source
eikonal equation uniformly up to high-order accuracy near the source poses a chal-
lenging computational problem in Eulerian geometrical optics [4]. To tackle this diffi-
culty, we propose high-order factorization-based high order hybrid sweeping schemes
for point-source eikonal equations, and these new schemes enable us to compute the
point-source eikonal with uniform high-order accuracy globally.

To design efficient high-order schemes for point-source eikonals, we have to over-
come several obstacles. The first obstacle is how to explicitly extract the high-order
information of non-differentiable eikonals at the source point. Observing that the
squared eikonal is differentiable at the source, we propose to carry out power-series
expansions for both the squared eikonal and squared slowness functions and utilize
the squared eikonal equation. The power-series expansion yields a recursive formula
for computing arbitrary order expansions of the squared eikonal, which in turn pro-
vides us with arbitrary order truncations of the eikonal itself at the source point.
This indirect expansion enables us to successfully extract high-order information of
the point-source eikonal at the source.

The second obstacle is how to effectively utilize high-order truncations of the
point-source eikonal to design efficient numerical schemes. We propose to factorize
the eikonal into two multiplicative or additive factors', one of which is specified to
approximate the eikonal up to arbitrary order of accuracy near the source by using
high-order truncations of the point-source eikonal, and the other of which serves as
a high-order correction term. These two factorizations allow us to design efficient
schemes to compute the correction term with uniform order of accuracy near the
source.

The third obstacle is how to design high-order numerical schemes to compute
the point-source eikonal with globally uniform high-order accuracy. Since the trun-
cated high-order expansion of the point-source eikonal is only valid near the source
point, upon which the high-order factorizations are based, we propose to partition
the computational domain into two parts, one of which, called the source domain,
is a small neighborhood of the source including the source point, and the other of
which, called the non-source domain, is the complement of the source domain. In
the source domain, we solve the factorized eikonal equation; in the non-source do-
main, we solve the original eikonal equation; the factorization formula serves as the
bridge to link the two solutions obtained from the two versions of the eikonal equa-
tions. This strategy allows us to design hybrid, new, efficient high-order weighted
essentially non-oscillatory (WENO) scheme based Lax-Friedrichs sweeping methods
for solving point-source eikonal equations.

1.1. Related work. Because of the tremendous number of its applications, the
eikonal equation has been tackled from many different perspectives, resulting in the
vast literature on the topic; see [20, 34, 19, 33, 29, 6, 9, 22, 23, 24, 25, 39, 32, 10, 12, 38,
8, 27, 26, 11, 14, 5, 28, 2, 1, 37] and references therein. When applied to the point-
source eikonal equation, all of these algorithms yield polluted first-order accuracy
without special treatments of the source point. To observe correct convergence order
of a numerical algorithm for point-source eikonal equations, one has to initialize the
eikonal analytically near the source by imposing a grid-independent region of constant
velocity near the source [35, 34, 29, 22, 24, 10, 39, 38, 8, 11, 14, 28, 37, 1] and measure

IFor brevity we shall use the words ‘factor’, ‘factorize’, etc., even when the eikonal is split
additively.
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the convergence order only for the solution outside that small region. Consequently,
this special treatment of the point source has two essential drawbacks: (1) the slowness
function may not be constant near the source, and (2) the convergence order is not
globally uniform. In principle, highly accurate ray-tracing methods may be used to
alleviate the first difficulty, but the second remains: non-uniformly convergent eikonal
may hinder further application of the numerical eikonal to computing other quantities,
such as amplitudes and take-off angles [23, 16, 18]. Other approaches to computing
the point-source eikonal to high-order accuracy includes the adaptive grid refinement
method [23], which compensates for the loss of accuracy near the source point, but
the convergence order is still not globally uniform.

The factorization idea of dealing with the point-source eikonal equation has first
appeared as the celerity transform in [21] and has been further developed in [36, 7, 16,
18, 17]; however, why the celerity transform yields highly accurate numerical solutions
for the eikonal equation has not been fully understood until now. Our analysis-inspired
high-order factorizations build a framework for dealing with the point-source eikonal
up to arbitrary order of accuracy near the source, and include the celerity transform
as a special case.

The hybrid, high-order WENO based Lax-Friedrichs sweeping methods are built
upon the fast sweeping method [6, 39, 10], the first-order Lax-Friedrichs sweeping
method [10], and the high-order WENO based Lax-Friedrichs sweeping method [38,
28]. Since the Lax-Friedrichs sweeping scheme [10] can handle convex and non-convex
Hamiltonians with ease, we choose the Lax-Friedrichs numerical Hamiltonian as one
of the building blocks in designing hybrid high-order sweeping methods.

We mention that high-order accurate eikonals are also important in solving lin-
earized eikonal equations with respect to the velocity which arise in traveltime tomog-
raphy [13, 31]. In these linearized eikonal equations, the traveltime gradient appears
as the coefficient which usually is obtained by numerically differentiating computed
traveltimes, thus high-order accurate traveltimes will be crucial for solving linearized
eikonal equations with high accuracy. Therefore, the high-order schemes for eikonals
proposed here will be useful in many applications, such as computational geometrical
optics [23, 4, 18], traffic congestion equilibria[15], and traveltime tomography [13, 31].

A natural question is: what are the advantages of the proposed high-order schemes
for eikonals? The advantages are at least two-fold. First, to achieve a certain specified
accuracy, a high-order scheme needs a much coarser mesh than a first-order scheme
does, thus high-order schemes are much more efficient than first-order schemes in
terms of computational cost. Secondly, high-order accurate eikonals can be numeri-
cally differentiated to yield reliable eikonal gradients while first-order accurate eikonals
cannot, as demonstrated in [23]; consequently, our proposed high-order schemes for
point-source eikonal equations will be significant for solving linearized eikonal equa-
tions in traveltime tomography [13, 31] and other applications.

1.2. Layout. The rest of the paper is organized as follows. In Section 2, we
first present arbitrary order expansions of the squared eikonals, which are followed by
high-order truncations of the eikonals and related applications to multiplicative and
additive factorizations. In Section 3, we present hybrid, new, high-order numerical
schemes for computing the point-source eikonal and show that the hybrid, first-order
scheme is monotone, consistent, and thus convergent. In Section 4, we use several 2-D
and 3-D examples to demonstrate the performance and desired convergence order of
the new schemes. Concluding remarks are given in Section 5.

2. High-Order Factored Eikonal Equations.
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2.1. Arbitrary Order Expansion of Squared Eikonals. Without loss of
generality, we assume that the source point is at the origin: xg = 0. We first derive
the eikonal equation for 72 and then proceed to solve it by power series about the
origin. We assume that 7' = 72 is analytic and zero at the source, and S = s? is
analytic at the source. As shown in [30], the eikonal is locally smooth near the source
except the source point itself; therefore, the analyticity assumption of the squared
eikonal is reasonable. Let us expand T and S as power series,

T = SZoT) o)
(x) = 220 Su(X);
where Ty, (x) and S, (x) are homogeneous polynomials of degree v in x. Since
VI = Vr? = 27Vr, (2.2)
we find that the eikonal equation in terms of T is
|VT'|? = 47%|Vr|? = 45T (2.3)
We write this in the form
ST = i|vr|2. (2.4)
Hence
o0 o0 1/ 2
;Sxx) Z_%MX) =3 (ZO sz(x)) : (2.5)

Since 7(0) = 0, we find that Ty = 0. So we may write

(Z S,,(x)) (Z Tu(")) = (Z Wu(")) . (2.6)

Comparing the constant terms we find that

] =

1
0= Z|VT1|2 (2.7)
so that, since T} (x) is linear in x,
Ti(x) = 0. (2.8)

Hence we rewrite (2.6) as

(Z sy(x)> (Z Tu(x)> = % (Z vry(x)> (2.9)
v=0 pn=2 v=2
Let us consider the quadratic term

SoTr(x) = 1|v172(x)|2. (2.10)

4
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But since T5(x) is a quadratic form we may write it as
Ty(x) =xTAx, with V7Ty(x)=2Ax, (2.11)
where A is a symmetric matrix. So
SoA = A? (2.12)
We reject the zero solution and assume that A is invertible. Then
A = SpI, (2.13)
where I is the identity matrix, and hence
Ta(x) = Sp x°. (2.14)

Here and in the following, without confusions we use the nonstandard notation y? to
denote y2 = yTy, where y is any column vector in R™.
Let us now equate the terms of P-th degree on the left and right of equation (2.9),

_ 1 '«
e Sy (X) Troy(x) = ZZml(x)-vrp_uH(x)
v=1
= Sox-VIp(x Zvr,,+1 ) - VIp_pi1(x)  (2.15)
= PSyTp(x ZVTVH -VIp_p,41(x),

using Euler’s theorem on homogeneous functions in the last step. Separating the term
v = 0 on the left and rearranging we find that

(P—1)SoTp(x Z S, (x) Tp—( Z VI, 1(x)-VIp_py1(x).  (2.16)

Since the right side of this contains only T, for v < P, we may solve this system
recursively starting with P = 3 (for which the second term on the right does not

arise).
For example, we can set P =3 in (2.16) to get
28015 = S1 T, (2.17)
so that
1
T3=——5T = . 2.1
3 = 250 Sl 2 = 2 Sl X ( 8)
For P = 4, (2.16) becomes
1
3501, = 5115+ 55T — 1(W3)2 (219)

By computing VI3 from (2.18), we obtain the following,

x2

T4 = 4850 [16 S() SQ — X (V51)2] . (2-20)
We may proceed to obtain further terms in a similar way. For example,
(x?)? 2 L o
= -2 . - . 2.21
5 9653 [ So V51 VSy + 51 (VSl) ] +4X S3 ( )
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2.2. High-order Truncation of Eikonals. With the above recursive formulas
at our disposal, we can now truncate the analytical expansion of the squared eikonal,

72 (x) ZT (2.22)

where N > 2 is a user-specified positive integer. It is this truncation that allows us
to extract high-order information of the eikonal 7 in a neighborhood of the source.
For future reference we note that as r = |x| — 0 we see from (2.14) that

T=0(? and 7=+T=O0(r), (2.23)
and we also have
Ty =O0(r?) and 7y = VTy = O(r). (2.24)
For example, with N = 2, we have
73 (x) = Ta(x) = Ta(x) = Sox?, (2.25)

where 75 is the distance function satisfying

V7| =35, 72(0) =0, (2.26)
with § = /Sy = /S
And with N = 3 we have

. ~ 1

72(x) = T3(x) = To(x) + T3(x) = (So + 551)x2. (2.27)
Then,

U ~ 9 1 1

273V = VI3 =x V(So + 551) + 2(50 + iSl)x (2.28)

and

472V )2 = 4(x x)2V S; -V S) + 2x - x5 (So + sl)+4(so+ 51) x-x. (2.20)

Thus, we have

1 1 1
VAP = —————— [ (x x)V 81 - V.S +851(Sp + =S1) + 16(So + 551)? | -
V8 = S T (0TS V848810 + 550 416650+ 351
(2.30)
In general, for N > 2 we have the following to hold,
Vin[? = f(x;9), (2.31)

where the function f(x;S) depends on both x and the function S. However, we do
not need to actually solve the above eikonal equation, as we know the solution 7x
already by above power series expansions.

Moreover, we have the following Lemma.

LEMMA 2.1. The truncation Tn approzimates T in the following way:

T =7n + O(x|Y) (2.32)
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near the source, where N > 2 is a given arbitrary integer. On dividing (2.32) by 7n
and invoking (2.24) we have
LEMMA 2.2.

L 14 0(xN Y. (2.33)
N

To prove Lemma 2.1, we write

T—Ty T—Ty

TN T(1+Iv)

_ D rens1 Te(w)r*!
1+ )/, Tr(w)r 2

Since Ty (w) # 0, we have 7 — 75 = O(r™). O
To facilitate further discussion, we introduce the following definition.
DEFINITION 2.3. Let 1, be a numerical approrimation to the eikonal T which is
obtained by a certain numerical method on a computational mesh of size h. We say
that the numerical method is of order k if the following estimate holds,

(2.34)

I =7l < CR¥, (2.35)

where ||| is either £1 or o norm, k is a positive integer, and C is a positive constant
independent of h and k.
According to Definition 2.3, Lemma 2.1 implies that

I7— 7| < ChY (2.36)

holds in a small neighborhood €, = {|x| < ah} of the source, where C' is a positive
constant independent of h and N, and « is a small positive integer. Therefore, 7n
approximates 7 with N-th order accuracy near the source.

2.3. Applications of Truncated Eikonals. With the above high-order expan-
sions of the eikonal near the source, we present the factored eikonal equations.

2.3.1. Multiplicative Factorization of Eikonal Equations. Since 7y is an
N-th order approximation to the eikonal 7 in a neighborhood of the source, by Lemma
22u =5 =1+ O(rN—1) can be approximated by the constant function 1 with
(N —1)-th order accuracy in that neighborhood. This leads us to consider the following
multiplicative factorization in a neighborhood of the source,

T:u7~'N, (237)

where 7x is specified according to equation (2.22), and the unknown correction u
should satisfy the following factored eikonal equation

V7| = \/%J%,\VUP +27yuV7in - Vu+u?|Viy|?2 = s. (2.38)

The point-source boundary condition for u is

i = lim T(x) _
:113}) u(x) = i—»o o) 1. (2.39)
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Now that the function u is smooth with up to N-th order derivatives at the source
due to the singularity cancellation and in fact can be approximated by the constant
function 1 with (IV —1)-th order accuracy in a small neighborhood of the point source,
an N-th order scheme is effective for solving the factored eikonal equation with N-th
order convergence in a neighborhood of the source so that 7 can be recovered from
7 = u Ty with N-th order accuracy.

In particular, if N = 2, we have 72 = s(0)|x| which is the distance function
corresponding to a homogeneous medium. This particular case has been discovered as
the so-called celerity transform in [21] for obtaining highly accurate finite-difference
solutions for the eikonal equation, which has been further developed in [36, 7, 16,
18, 17]. According to our derivation and analysis above, we now understand why
the celerity transform is effective for the point-source eikonal equations: it yields a
second-order approximation to the eikonal in a neighborhood of the source point.

2.3.2. Eikonal Equations for Additive Splitting. We can also decompose 7
into two additive factors,

T=7TN+u

where 7y is specified according to equation (2.22), and the unknown correction u is
to be determined. Substituting the factorization into the eikonal equation (1.1), we
have the following factored eikonal equation,

V7| = V/|Vul2 + 2V7y - Vu + [Viy |2 = s. (2.40)

Since 7y captures the source singularities, u is differentiable up to N-th order near
the source. In addition, we know
lim u(x) = lim (7(x) — Tn(x)) = 0. (2.41)
x—0 x—0
Thus we can solve (2.40) for « with an N-th order accurate scheme so as to recover
7 with N-th order accuracy.
In particular, when N = 2, the corresponding factorization has been first proposed
in [17].
Next we design hybrid numerical schemes to make use of the above two factor-
izations.

3. Hybrid High-Order Fast Sweeping Methods. For the factored eikonal
equations, when N = 2, the choice of 72 coincides with the one used in [21, 36, 7,
16, 18, 17]; in this case, T, and 7, are guaranteed to be non-negative in the whole
domain.

For N > 2, Ty is not guaranteed to be non-negative in the whole domain 2
except near the source, which implies that 7y may not be defined away from the
source; therefore the factored eikonal equation (2.38) or (2.40) cannot be applied in
the whole domain. In order to resolve this issue, we propose a hybrid strategy: solving
the factored eikonal equations locally in a neighborhood of the source where the non-
negativity of T is guaranteed while switching to the original eikonal equation away
from this neighborhood. The setup is illustrated in Figure 3.1(a): Q = Q, U, where
€, is closed and €, is open. The intersection of the two regions is I' = ,, N Q,; in
region €2,,, we solve the factored eikonal equations; in region €2, we solve the original
eikonal equation.

We present both first-order and high-order hybrid sweeping methods.
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0=0,00,

d)
F1G. 3.1. Domain and Mesh (2-D). (a) Domain Q and different regions Q. and Qr; (b) Local
mesh of point C; (c) and (d): A triangle/simplex across two regions Qy and Q.

3.1. First-Order Fast Sweeping Schemes. To set up the stage for further
development, we summarize the fast sweeping scheme for the original eikonal equation
(1.1) and factored eikonal equations (2.38) and (2.40) with N = 2, on a rectangular
mesh Q" with grid size h covering the domain € (also see [39, 26, 27, 7, 17] and refer-
ences therein). Without loss of generality, let us consider Hamilton-Jacobi equations
in the following generic form in 2-D,

F(x, z,u,uz,u,) = f(z, 2), (3.1)

where F' is convex in the gradient variable.
Taking a local mesh of point C' = (z¢, z¢) as shown in Figure 3.1(b), we consider
discretizations on the triangle with neighbors A = (x4,24) and B = (x g, 2B),

u(C) —u(4) u(C) - U(B)> 7

To —TA ’ ZC — ZB

Vu(C) ~ ( (3.2)

which defines the numerical Hamiltonian ' as

u(C) —u(A) u(C)—u(B)

o —TA ’ ZC — ZB

F(C,u(C),u(A),u(B)) = F (C,u<0), ) — f(C) =0.

(3.3)

Given u(A) and u(B), we wish to solve (3.3) for u(C). There are only three
scenarios due to the convexity of F':

1. Scenario 1: There is no solution for «(C) from (3.3);
2. Scenario 2: There is one solution for u(C) from (3.3);
3. Scenario 3: There are two solutions for «(C) from (3.3).

In Scenario 1, we enforce the characteristic equation for the Hamilton-Jacobi
equation along the edges rac and rpc to get possible values of u(C), where ra¢ is
the vector from A to C, and rp¢ is the vector from B to C; see [26, 27, 7, 17]. In
Scenario 2 or 3, we need to further check whether a candidate value for w(C) that
is consistent with equation (3.1) satisfies the following causality condition: the
characteristic passing through C is in between the two vectors r4c and rpc. This
is a crucial condition for the monotonicity of the scheme. We call a value u(C) a
possible candidate if it satisfies both the consistency and causality conditions. We
can use the same procedure to find possible candidates for u(C) from other triangles
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with C' as one of their vertices. If there is more than one candidate, we choose the
minimum among all possible candidates.
We summarize the method into the following algorithm.
AvLcorITHM 1 (First-order fast sweeping method (FSM) [39, 26, 27, 7, 17]).
1. Initial guess (enforce the boundary condition):
For vertices on or near the boundary, their values are set according to the
given boundary condition. All other vertices are assigned a large value, for
instance, infinity, initially.
2. Gauss-Seidel iterations with alternating orderings (sweepings):
e Update during each iteration: at a vertex C, the updated value u™*" (C)
at C' is

u" (C) = min{u(C), u"?(C)}, (3.4)

where u®'4(C) is the current value at C and u®™P(C) is the value at C
computed from the current given neighboring values according to (3.3)
and the procedure detailed as above.

e Orderings: four alternating orderings are needed,

Hi=1:I;j=1:J; 2)i=1:1;j=1:J;
B)i=I:1;5=J:1; 4)i=1:I;5=J:1

3.2. First-Order Hybrid Fast Sweeping Schemes. With the first-order fast
sweeping scheme at our disposal, we present hybrid first-order fast sweeping methods
for the 2-D case only, as an extension to the 3-D case is not difficult. A hybrid
first-order scheme is in general structured as follows, referring to Figure 3.1:

e in region §2,, we first solve the factored-eikonal equations for u, and we then
recover 7T corresponding to different factorizations;
e in region {),, we solve the original equation for 7.

Similarly, for the local mesh of point C' as shown in Figure 3.1(b), without loss
of generality, let us also focus on the triangle with neighbors A and B. We consider
discretizations corresponding to different regions and equations:

e For the original eikonal equation (1.1) in 2, V7 is approximated as

vr(0)~ (1CL=7) 7)),

o —TA ’ ZC — 2B
When C is near or on I', A and/or B may be in region ,, (see Figure 3.1(c)).
In this case, for example, if A is in region €, then 7(A) should be given by
To(A) and u(A) corresponding to the specific factorization used since 7o and
u are known at A, .
e For the factored eikonal equation (2.38) in €, V7 is given as

Vr(C) = Vi (C)u(C) + 72(C)Vu(C), (3.7)

(3.5)

(3.6)

with Vu approximated as

To —TA ZC — 2B
thus,
r(0) — ZAL 7 7(C) — 287 T
Vr(C) ~ (©) = 2@ 719 ~ 77 ™(C) + 1O V#(C). (3.9)

To—TA ’ 2c — 2B 72(C)
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When C is near or on I', A and/or B may be in region €2, (see Figure 3.1(d)).
In this case, for example, if A is in region €, then u(A) should be given as
7(4)
T2(A)

e For the factored eikonal equation (2.40) in €, V7 is given as
V7 (C) = Via(C) + Vu(C), (3.10)
with Vu(C) as in (3.8); therefore,
7(C) = 7(4) 7(C) - T(B)>

since 7o and 7 are known at A.

V7 (C) =~ (

To—Ta | 2o — 2B
_ (ﬁ(c)—@(z‘l) %2(0)—?2(B)> (3.11)
TCc —TA ’ ZCc — ZB
+VRH(O).

When C is near or on I', A and/or B may be in region €2, (see Figure 3.1(d)).
In this case, for example, if A is in region €, then u(A) should be given as
7(A) — T2(A) since 7 and 7 are known at A.

With the above discretizations, let us define the numerical Hamiltonian H as

H(C,7(C),7(A),7(B)) = H(VT(C)) — s(C) = 0, (3.12)

with V7(C) approximated according to the above different cases.
As indicated in Section 3.1, the causality condition enforced in the first-order fast
sweeping scheme for the eikonal and factored eikonal equations is

V7(C) rac >0, and V7(C) - rpc > 0, (3.13)

since in this particular case the characteristic direction is in the same direction as
vr(C).

Using the above causality condition, we show that the scheme (3.12) is monotone
and consistent.

LEMMA 3.1. The scheme (3.12) under the causality condition (3.13) is consistent
and monotone; that is,

0H(C,7(C),7(A),7(B)) _ .
ar(C) 20;

OH(C,7(C),7(A),7(B))
o) -y - B

Proof. The consistency is obvious. We prove monotonicity. Denote p = (p1,p2) =
V7(C). The causality condition (3.13) given on a rectangular mesh is

pi(xc —z4) >0, and pa(zc — z) > 0. (3.15)

For the discretization of the original eikonal equation with V7 as given in (3.6),

we have
OH 1
= ( P, P2 >>0;

or(C)  s(C)\zc—xza zc—28)
8f[ 1 P1

or(4)  s(C) (zc —za) ~ (310
oOH o 1 P2 <0
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For the discretization of the factored eikonal equation with multiplicative factors
and V7(C) as given in (3.9), the causality condition (3.15) gives

7(C) — f((’i)) #(C) + ;((?)g,z(m(xc —24) >0,
i : (3.17)
r€)- 2250y + L (O - 2 20
which imply that
14 220> BOT
14 72,.(C) (20 — 25) > 72(C) 7(B) -0 (3.18)
72(C) ~ 7(C) 2(B) T

Then the following results hold,

affé) = s(lc) {xcp—1 oA (1 * %%;(CC)) (#o - m) }

(
i 8(10) {ch—QzB <1 * ?j((é’;’ (70 = ZB)>} >0,

- _ ~ (3.19)
OF _ 1 B0 m B0
ot (A) s(C)" T(A)(xe —x4A) s(CY(xe —xa) T2(A) = 7
on___ 1 pr=—2lO) =- P2 20
ot (B) s(C) " 7(B)(zc — zB) s(C)(z¢ — zB) T2(B) —

For the discretization of the factored eikonal equation with additive factors and
V7(C) as given in (3.11), we have

OH 1 1 P2
= > (-
ar(C)  s(C) (xc—xA +zc—zB> = 0;

OH 1 P1
ot(A) s(CYxzc —xa — 0 (8.20)
OH _ 1 P2 < 0.

ot (B) 5(C) zc — 2B

Therefore, we prove the monotonicity. O]

By the convergence theorem of Barles-Souganidis [3], Lemma 3.1 guarantees that
the numerical solution of a hybrid, first-order fast sweeping scheme will converge to
the viscosity solution of the eikonal equation as the mesh size goes to zero.

We summarize the new, hybrid first-order fast sweeping methods into the following
algorithm.

ALGORITHM 2 (Hybrid first-order fast sweeping method (FSM)).

1. Initial guess (enforce the boundary condition):
For grid points on or near the point source, their values are set to be 1 for
multiplicative factors and 0 for additive factors. All other points are assigned
a large value, for example infinity, initially.
2. Gauss-Seidel iterations with alternating orderings (sweepings):
e Update during each iteration: at a vertex C,
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— in region €, the updated value u™*(C) at C is
u"? (C) = min{u?'(C), umP(C)}, (3.21)

where u?'4(C) is the current value at C and u™(C) is the value
at C computed from the current given meighboring values accord-
ing to (3.12) and the procedure detailed as in Section 3.1. Hence
T (C) = R (C)u™™(C) or 7% (C) = 72(C) + u™(C);

— in region Q,, the updated value 7" (C') at C is

7% (C) = min{r°(C), 7P (C)}, (3.22)

where 7°4(C) is the current value at C' and 7°°™P(C) is the value
at C computed from the current given meighboring values accord-
ing to (3.12) and the procedure detailed as in Section 3.1. Hence
TTLG'LU(C) _
new C — new C — new C _ C .
u™e* (C) 5O or u™? (C) = ¥ (C) — 72 (C)
e Orderings: four alternating orderings are needed,

i=1:I;j=1:J; (2)i=1I:1;5=1:J; (3.23)

B)i=1:1;j=J:1, Li=1:I;j=J:1. ‘

e Stopping criterion: given & > 0, check if |77 — 19| < § in region 2,
and check if [u™? — u®'| < § in region Q.

3.3. Hybrid High-Order Lax-Friedrichs Sweeping Schemes. Based on the
high-order Lax-Friedrichs scheme, we present hybrid, third-order WENO based high-
order Lax-Friedrichs sweeping methods by using the high-order factorizations derived
above. Analogous to a first-order hybrid fast sweeping scheme, a hybrid high-order
scheme is in general structured as follows:

e in the region €2, we first solve the factored eikonal equations for u, and we
then recover 7 corresponding to the applied factorization;
e in the region €2,, we solve the original eikonal equation for 7.

We summarize the hybrid high-order fast sweeping methods into the following
algorithm.

ALGORITHM 3 (Hybrid high-order Lax-Friedrichs sweeping methods).

1. Initial guess (enforce the boundary condition):
For grid points in a 2h x 2h small domain covering the point source, their
values are set to be 1 for multiplicative factors and 0 for additive factors. All
other points are assigned a large value, for example infinity, initially.
2. Gauss-Seidel iterations with alternating orderings (sweepings):
o Update during each iteration: at a vertex C,
— In region §y, the updated value u"(C) at C is

u"®(C) = min{u'(C), um? (O)}, (3.24)

where u°'4(C) is the current value at C and u®®™?(C) is the value at
C computed from the current given neighboring values according to
(3.12) and the procedure detailed as in [16, 18, 10, 38, 19]. Hence
Tnew(c) — %N(C)unew(c) or Tnew(c) — %N(C) 4 unew(c).

— In region Q,, the updated value 7% (C) at C is

7% (C) = min{794(C), 7°"P(C)}, (3.25)
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where 7°'4(C) is the current value at C' and T°°™P(C') is the value at

C' computed from the current given neighboring values according to

(3.12) and the procedure detailed as in [16, 18, 10, 88, 19]. Hence

new C

u"ev(C) = K\ (©) or u"(C) = e (C) — 75 (C).

TN (C)

e Orderings: four alternating orderings are needed,
i=1:I;j=1:J; (2)i=1I:1;5=1:J;

(3)i=I:1j=J:1; (4 i=1:T;j=J:1. (3.26)

e Stopping criterion: given § > 0, check if |[T"¢V — 1°l4| < § in region Q.
and check if [u™ — u®'| < § in region Q.

REMARK 1. Since the base scheme for the hybrid, high-order Lax-Friedrichs
scheme amounts to applying first-order, monotone Laz-Friedrichs schemes [10] in
both regions of Q,, and ., the base scheme is also monotone; that is, at a given point
(,7), the numerical Hamiltonian is non-deceasing at 7; ; and non-increasing at the
neighbors Ty j1 -

REMARK 2. If we choose Ty with N = 2, then the initialization near the source is
of second-order accuracy; hence we can expect the scheme to be second-order accurate
globally when the third-order WENQO Laz-Friedrichs sweeping scheme is used. If we
choose Ty with N = 3, then the initialization near the source is of third-order accu-
racy; consequently, we can expect the scheme to be third-order accurate globally when
the third-order WENQO Lax-Friedrichs sweeping scheme is used. Numerical examples
in Section 4 verify these claims.

REMARK 3. Intuitively, if we assume that (1) the solution for the eikonal equation
with a point source is smooth except at the source point; (2) a p-th order WENO
based Laz-Friedrichs sweeping scheme yields p-th order accuracy when the eikonal is
smooth; and (3) an N-th order additive factorization is used in hybrid WENO based
Laz-Friedrichs sweeping, then the following estimate holds:

|7 — 7| < C A™REN) (3.27)

where Ty, 1s the eikonal computed by the hybrid WENO based sweeping method on a
given mesh of size h, and C is a positive constant independent of h, p, and N.

This estimate can be roughly derived for the additive factorization as the following.
Since Ty, is defined according to the following formula,

™~ in Qo ={|x| < ah};
Th = ™~ + up, mn Qy \ Qa; (328)
7~—h m QT,

where up, and Ty, are numerical approrimations to u and T on 0, and ., respectively,
we have

[T =7l < 17— T llo. + llu — unllonq. + 17 = Tallo,
<0 hN + Oy hmin(p,N) +C4 hmin(p,N)
< ¢ pmin®N), (3.29)

where Cy, Cso, C3, and C' are positive constants independent of h, p, and N.

We may treat the multiplicative factorization similarly. We emphasize that the
above argument is not rigorous since it is difficult to prove the convergence order of
nonlinear WENO schemes. Nevertheless, our numerical examples validate the above
estimate.
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4. Numerical Examples: Multiplicative and Additive Factors. We use a
few 2-D and 3-D examples to demonstrate the performance of new, hybrid schemes.
We test two factorization cases:

e Case 1. the second-order factorization: T ~ Ty = Ts;

e Case 2. the third-order factorization: T ~ Ts = Ty + Tj.
These two factorizations yield two classes of factorized eikonal equations: multiplica-
tive factorizations based and additive factorization based eikonal equations.

For all the examples, we choose 2, to be the disk B(xg, R) with appropriate
radius R > 0. We apply both first-order fast sweeping schemes and third-order WENO
based Lax-Friedrichs schemes. Both the > and £! errors as well as corresponding
convergence orders are computed. We choose the convergence parameter § to be
10712, All the computation was carried out on a single AMD node at the Michigan
State University High Performance Computing Center.

4.1. Example 1: A 2-D velocity of constant gradient.. The setup is the
1 1

following: the slowness s satisfies — = — +g- (x — Xo), where the domain is [0, 0.5]2,
S So

the source is xg = (0.25,0.25), the constant gradient is g = (0, —1), so = 2, the exact
solution is known analytically [7], and R = 0.05.

Table 4.1 shows the results of solving the original eikonal equation by applying
the usual fast sweeping method without any special treatment of the point source.
Clearly, the convergence order is polluted first-order.

Tables 4.2 and 4.3 show the results of solving the eikonal equation by applying the
hybrid first-order Godunov sweeping method and the hybrid third-order WENO Lax-
Friedrichs sweeping method, where hybridity comes from solving the multiplicatively
factorized eikonal equation in a small neighborhood of the source point.

Table 4.2 shows the results using the second-order multiplicative factorization for
the eikonal equation in the source neighborhood of a disk of radius R = 0.05, where
both the first-order Godunov sweeping and the third-order WENO Lax-Friedrichs
sweeping methods are applied. As we can see, the first-order hybrid sweeping method
yields clean first-order convergence in both £>° and ¢! norms, while the third-order
hybrid sweeping method yields second-order convergence in both £ and ¢! norms. At
least three interesting phenomena are worth pointing out. First, since a second-order
multiplicative factorization is used in a neighborhood of the source, the correspond-
ing higher order correction term can be computed to the second-order accuracy if a
second or higher-order scheme is used to solve the corresponding eikonal equations,
which is exactly epitomized in Table 4.2. Secondly, since a high order (higher than the
first order) is no longer monotone, the number of iterations is increased significantly.
Thirdly, in terms of accuracy measured by the ¢°° norm on the same mesh, the nu-
merical solution by the third-order hybrid scheme is at least two-digits more accurate
than that by the first-order hybrid scheme; therefore, given an accuracy requirement,
the gain in accuracy by using higher order schemes will compensate for the increase
in the number of iterations.

Table 4.3 shows the results using the third-order multiplicative factorization for
the eikonal equation in the source neighborhood of a disk of radius R = 0.05, where
both the first-order Godunov sweeping and the third-order WENO Lax-Friedrichs
sweeping methods are applied. As we can see, the first-order hybrid sweeping method
yields clean first-order convergence in both ¢ and ¢! norms, while the third-order
hybrid sweeping method yields third-order convergence in both ¢>° and ¢' norms.
Some remarks analogous to those for Table 4.2 can be made here as well.
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Original eikonal equation with FSM
Mesh 101 x 101 | 201 x 201 | 401 x 401 | 801 x 801
loo Error 1.75E-2 9.87E-3 5.52E-3 3.06E-3
Order of convergence — 0.826 0.838 0.851
l; Error 2.00E-3 1.16E-3 6.16E-4 3.78E-4
Order of convergence — 0.786 0.913 0.705
# Tter 8 8 8 8
CPU time (second) 0.01 0.03 0.18 0.72

TABLE 4.1

Ezxzample 1: original etkonal equation with first-order FSM.

Tables 4.4 and 4.5 show the results of solving the eikonal equation by applying
the hybrid first-order Godunov sweeping method and the hybrid third-order WENO
Lax-Friedrichs sweeping method, where hybridity comes from solving the additively
factorized eikonal equation in a small neighborhood of the source point. As we can see,
additive factorization based numerical schemes perform similarly to the multiplicative
factorization based numerical schemes, and similar remarks as for Table 4.2 can be
made for Tables 4.4 and 4.5 as well.

We also remark that given an accuracy requirement, a high-order scheme (higher
than first order) is more efficient than a first-order scheme; this point can be appreci-
ated from Tables 4.1, 4.2, 4.3, 4.4, and 4.5. For example, assuming that the pointwise
accuracy requirement is taken to be € = 3.5 x 10™% in the /> norm, Tables 4.1 and
4.2 indicate that when the original eikonal equation is used, the first-order scheme
requires a mesh of 3201 x 3201 and the CPU running time of 11.52 seconds (both
mesh and time obtained by extrapolation) while the third-order (actually the second-
order) hybrid Lax-Friedrichs scheme only needs a mesh of 101 x 101 with the CPU
running time of 0.64 seconds; furthermore, by taking into account the numbers of
iterations and flop operations on different meshes, we can conclude that to achieve a
given accuracy requirement, the overall computational cost of the third-order scheme
is much less than that of the first-order scheme.

4.2. Example 2: A 3-D velocity of constant gradient.. The setup is the

1
following: the slowness function s satisfies — = — + g+ (x — Xg), where the domain is
S S0

[0, 0.5]%, the source is xo = (0.25,0.25,0.25), the constant gradient is g = (0, —1,0),
so = 2, the exact solution is known analytically [7], and R = 0.1.

Table 4.6 shows the results of solving the eikonal equation by applying the hy-
brid first-order Godunov sweeping method and the hybrid third-order WENO Lax-
Friedrichs sweeping method, where hybridity comes from solving the multiplicatively
factorized eikonal equation ixn the small neighborhood of the source of a disk of radius
R = 0.1. The convergence order and accuracy behaviors of the hyprid schemes for the
three-dimensional example are similar to those in the corresponding two-dimensional
cases. The additive factorization based 3-D hybrid schemes behave similarly, and we
will not show results here.

5. Conclusion. The solution for the eikonal equation with a point-source con-
dition has an upwind singularity at the source point. We proposed to factorize the
eikonal into two multiplicative or additive factors, one of which is specified to approx-
imate the eikonal up to arbitrary order of accuracy near the source, and the other
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] Multiplicatively factored eikonal equation with R = 0.05

Ty = Ty: first-order hybrid FSM
Mesh 101 x 101 | 201 x 201 | 401 x 401 | 801 x 801
loo Error 1.12E-2 5.59E-3 2.79E-3 1.40E-3
Order of convergence — 1.003 1.003 0.995
Iy Error 9.04E-4 4.45E-4 2.21E-4 1.10E-4
Order of convergence — 1.023 1.010 1.007
# Tter 14 14 14 14
CPU time (second) 0.03 0.17 0.90 3.03
Ty = T5: third-order hybrid Lax-Friedrichs scheme
Mesh 101 x 101 | 201 x 201 | 401 x 401 | 801 x 801
lso Error 2.86E-4 7.11E-5 1.77E-5 4.62E-6
Order of convergence — 2.008 2.006 1.938
l1 Error 4.49E-5 1.15E-5 3.04E-6 8.32E-7
Order of convergence — 1.965 1.919 1.869
# Tter 150 246 428 786
CPU time (second) 0.64 5.05 40.04 285.38
TABLE 4.2

Ezample 1: hybrid schemes for multiplicatively factored eikonal equation with To = Ty. Local
disk R = 0.05.

Multiplicatively factored eikonal equation with R = 0.05

T3 = T + T3: hybrid first-order FSM

Mesh 101 x 101 | 201 x 201 | 401 x 401 | 801 x 801
loo Error 1.12E-2 5.59E-3 2.80E-3 1.40E-3
Order of convergence — 1.003 0.997 1.000
l; Error 9.05E-4 4.45E-4 2.21E-4 1.10E-4
Order of convergence — 1.024 1.010 1.007
# Iter 14 14 14 14
CPU time (second) 0.02 0.15 0.78 2.73

T3 = T5 + T5: hybrid third-order Lax-Friedrichs scheme

Mesh 101 x 101 | 201 x 201 | 401 x 401 | 801 x 801
loo Error 1.33E-5 2.90E-6 3.7T6E-7 4.68E-8
Order of convergence  — 2.197 2.947 3.006
l; Error 1.69E-6 3.53E-7 4.53E-8 5.65E-9
Order of convergence — 2.259 2.962 3.003
# Iter 145 231 405 758
CPU time (second) 0.62 4.53 34.78 275.47
TABLE 4.3

Example 1: hybrid schemes for multiplicatively factored eikonal equation with Ty = Ty + T3.
Local disk R = 0.05.

of which serves as a higher-order correction term. We have developed recursive for-
mulas to compute the approximate eikonal up to arbitrary order of accuracy near
the source. Furthermore, we have designed two types of hybrid, new, high-order fast
sweeping schemes for the point-source eikonal equation. We also showed that the
hybrid first-order fast sweeping schemes are monotone and consistent so that they are
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] Additively factored eikonal equation with R = 0.05 \

Ty = Ty: hybrid first-order FSM
Mesh 101 x 101 | 201 x 201 | 401 x 401 | 801 x 801
loo Error 1.06E-2 5.36E-3 2.69E-3 1.35E-3
Order of convergence — 0.984 0.995 0.995
Iy Error 7.93E-4 3.94E-4 1.97E-4 9.82E-5
Order of convergence — 1.009 1.000 1.004
# Tter 12 12 10 10
CPU time (second) 0.03 0.15 0.80 3.34
Ty = T5: hybrid third-order Lax-Friedrichs scheme
Mesh 101 x 101 | 201 x 201 | 401 x 401 | 801 x 801
lso Error 2.96E-4 7.40E-5 1.83E-5 4.57TE-6
Order of convergence — 2.000 2.016 2.002
l1 Error 5.28E-5 1.31E-5 3.26E-6 8.14E-7
Order of convergence — 2.011 2.007 2.002
# Tter 163 253 430 788
CPU time (second) 0.69 5.03 38.71 272.26
TABLE 4.4

Ezample 1: hybrid schemes for additively factored eikonal equation with To = Ty. Local disk
R =0.05.

Additively factored eikonal equation with R = 0.05
T3 = T5 + T3: hybrid first-order FSM

Mesh 101 x 101 | 201 x 201 | 401 x 401 | 801 x 801
loo Error 1.04E-2 5.23E-3 2.63E-3 1.32E-3
Order of convergence — 0.992 0.992 0.995
1 Error 7.94E-4 3.95E-4 1.97E-4 9.85E-5
Order of convergence —_— 1.007 1.004 1.000
# Iter 12 12 10 10
CPU time (second) 0.03 0.18 0.78 2.94

T3 = T5 + T3: hybrid third-order Lax-Friedrichs scheme

Mesh 101 x 101 | 201 x 201 | 401 x 401 | 801 x 801
loo Error 1.17E-5 1.89E-6 2.43E-7 3.07E-8
Order of convergence — 2.630 2.959 2.985
l1 Error 1.56E-6 2.59E-7 3.36E-8 4.23E-9
Order of convergence — 2.591 2.946 2.990
# Iter 147 233 404 756
CPU time (second) 0.65 4.92 35.19 267.13
TABLE 4.5

Ezample 1: hybrid schemes for additively factored eikonal equation with T3 = Ty + Ts. Local
disk R = 0.05.

convergent in computing viscosity solutions. Two- and three-dimensional numerical
examples demonstrated that a p-th order numerical scheme yields desired, clean p-th
order convergence by using a p-th order factorization.
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