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ARTICLE INFO ABSTRACT

Keywords: In this paper, we develop an explicit representation of the complex scaled resolvent of the
Helmbholtz equation Helmholtz equation in an inhomogeneous medium. We surround the computational domain with
Complex scaling a complex scaling layer of a constant thickness and a homogeneous (constant) property (also
Perfectly matched layer known as a perfectly matched layer, or PML), and employ suitable cutoff functions to smoothly
Green’s function glue the complex-scaled resolvent in the homogeneous medium with the unscaled resolvent in
Hadamard-Babich ansatz the inhomogeneous medium, where the latter is given by the Green’s function expressed via the

Hadamard-Babich ansatz. The resulting resolvent possesses the following unique features: on the
one hand, it acts on the source term through integration and is thus free from numerical dispersion
error, allowing the number of grid points per dimension to scale linearly with frequency; on the
other hand, it provides an explicit representation of the Green’s function for the complex-scaled
Helmholtz equation in an inhomogeneous medium in the form of a geometric series, which
holds significant potential for applications in scattering problems. Two-dimensional numerical
examples demonstrate the convergence and performance of the proposed resolvent.

1. Introduction

The complex scaling method, also known as the perfectly matched layer (PML) method, plays an important role in
the theory of scattering resonances [26, 8] as well as in the numerical simulation of a wide range of unbounded wave
fields[4]. By surrounding the original computational domain with a region where a complex coordinate transformation
is applied, outgoing waves are absorbed without reflection and decay exponentially. Thus, on the outer boundary of
this layer, a homogeneous Dirichlet or Neumann condition can be naturally imposed. As a result, the complex scaling
method for the Helmholtz equation can be solved using finite-difference frequency-domain (FDFD) or finite element
methods. However, when applied to high-frequency wave fields, these direct methods may suffer from dispersion or
pollution errors [3, 2], which require extremely fine computational grids (or large numbers of degrees of freedom) to
resolve the oscillations, making them prohibitively expensive in practice.

Therefore, alternative methods have been sought to resolve these highly oscillatory wave phenomena. The solution
to the Helmholtz equation can be obtained by applying the resolvent operator to the source term, which is typically
realized through a volume integral involving the Green’s function. The Green’s function for the Helmholtz equation
in homogeneous media is well known. For the complex scaling method, the corresponding Green’s function has been
defined by analytic extension in [12] and successfully employed in boundary integral equations [18] for scattering
problems. In inhomogeneous media, the Green’s function generally lacks an analytical representation. To overcome
this difficulty, asymptotic representations inspired by geometrical optics—such as the WKBJ ansatz and the Hadamard-
Babich ansatz[1]—have been proposed and used in a range of high-frequency problems[19, 17, 15]. However, the
amplitude and phase functions in these asymptotic solutions must be obtained sequentially by solving the eikonal
and transport equations, and unlike in the homogeneous case, they cannot directly yield a solution to the complex
scaling method via analytic continuation. This motivates us to seek alternative representations of the resolvent in
inhomogeneous media, which have broad applications in scattering problems.

Inspired by [7], we construct the complex scaled resolvent R, (w) in inhomogeneous media by gluing together
the complex scaled resolvent R, ;(w) in homogeneous media and the resolvent R(w) without complex scaling in
inhomogeneous media. Here, @ denotes the angular frequency and ¢ is an auxiliary function required for complex
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Complex Scaled Resolvent Formula

scaling. The resolvent R, ((w) has been studied in [12] and applied to scattering problems [18], and its explicit
representation can be obtained by performing analytic continuation on the distance function and the free-space Green’s
function. Regarding the resolvent R (w), or equivalently the Green’s function in an inhomogeneous medium, we adopt
the the Hadamard-Babich (HB) ansatz as the building block, since, unlike the usual geometric optics methods, it
provides an asymptotic representation that remains uniformly accurate near the point source. After precomputing some
HB ingredients and developing multivariate Chebyshev representations of these ingredients, the numerical HB ansatz
can provide the asymptotic Green’s function at each source-target pair at an O(1) computational cost per evaluation,
which forms the basis for the design of fast algorithms.

The resulting resolvent R, (w) can be represented as a geometric series whose expansion factor decays faster than
any polynomial in i leading to rapid convergence when w is large. The application of R, (w) is implemented through a
successive application of several integral kernels associated with different Green’s functions. Although in this paper, we
simply construct these oscillatory kernels explicitly via Chebyshev interpolation and apply them using matrix—vector
multiplications to demonstrate the accuracy of the proposed method, we remark that we have already developed a
series of works that use the butterfly algorithm to accelerate constructing and applying such Green’s function kernels
[19, 22, 23, 17, 27, 28, 15]. The application of the resolvent equipped with these techniques to scattering problems
constitutes a part of our ongoing work.

2. Complex scaling

Letv, p: R™ — (0, o) be analytic functions which are bounded above and below by positive constants, and which
are equal to 1 outside of a compact rectangle K C R™. Let

P=-p"'V.-(wW), P:D-H,
where H = L*(R™; pdx)and D = {u € H : Pu € H}. Then we define the Helmholtz equation as
(P—oPu=—-p'V-(Wu) —?u=f, x e R", 2.1

where @ denotes the angular frequency, f € L*(R™) is the source term with compact support in K, and u obeys the
Sommerfeld radiation condition at infinity. Specifically, choosing f = 6(x) in (2.1), we obtain the Green’s function
G (o, xy; x) excited at x;.

The resolvent (P — @?)~!: H — D is defined for Imw > 0, because P is a non-negative self-adjoint operator.
Then for w > 0 the limit

R)f = lir51+(P —(w+ie))7'f

exists and obeys the Sommerfeld radiation condition at infinity [8, Section 4.4]. We remark that the action of the
resolvent operator R(w) can be implemented as a volume integral involving the Green’s function G (a), Xo; x), namely

[R(a)) f](xo) - / G (e, x: x) f(x)dx. 2.2)
Rm
For example, if v and p are identically 1 and m = 3, then
1 eiw|x0—x|
[r@)f|e =1 [ S rwa,
4z Jr3 |xg — x|

To truncate equation (2.1) onto a bounded domain €2 that contains K, we now define the complex scaling operator
[26], also known as a perfectly matched layer operator [4], as follows. Let oy, ..., 0, : R = [0, 00) be smooth functions,
such that the product o;(x;) -+ 6,,(x,,) equals 0 inside €, and such that each o; is a positive constant outside of a
compact set p that contains . We introduce a complex stretching of the coordinates with:

0
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and define

1
X;,0; Va = (axl,al’ teo axm,am)’

19~ THio,(xp) 9
and the complex scaled resolvents in inhomogeneous and homogeneous media are, respectively,
R, (@)= (=p"'V, - (W) =)', Ryp@) =(=V, -V, o).

By standard results in complex scaling/PML [8, Section 4.5], these resolvents are defined for @ > 0, acting on
f € L%(R™), without any need to take a limit, or to impose a support or decay condition on f.

The complex scaled resolvent R, o(w) in a homogeneous medium admits an explicit representation, which can be
obtained via analytic continuation of the Green’s function in the homogeneous medium, dubbed the PML-transformed
free-space Green’s function[12]:

~ o LH D (@F (%) %), m=2,
G(w,X0; %) = G (0,%0;X) = 4 explioor(Fy.3))

4rF(Xo,x)

m=3. 2.4)

where 7 is the complex distance function given by
m 1/2
e~ ~ ~\2
F(X0. X) = (Z (X0 — %)) ) . (2.5)
j=1

and the half-power operator z!/? is chosen to be the branch of /z with nonnegative real part for z € C\(—c0, 0] such
T
that arg \/E e <—5, 5].

3. Main result

Suppose the resolvent operator R(w) under consideration is polynomially bounded in the sense that there is N such
that for any y € C°(R™) we have

||)(R(a)))(“L2(RM)_>H1(Rm) = O(CUN), 3.1

as w — oo. For example, if the problem is nontrapping, then (3.1) holds with N = 0 by [8, (6.2.22)]. Asin [8, (6.2.21)],
we similarly have

”RG,O(C‘))”LZ(RM)_,HI(Rm) =0(1).
The following is an application of the main theorem of [7].

Theorem 1. For w > 1, there is a formula for the resolvent R;(w) in terms of the resolvent R z(w) and the cutoff
resolvent y R(w) y, for suitable y € CX*(R™). It is given in formula (3.3) below.

Proof 1. Let yx, o> Zx» and o, be smooth cutoff functions, with the following properties:
a) Xk + X =1
b) yx = 1 near the support of yx, and j., = 1 near the support of y,,
¢) Yo =O0near K, and jJx = 0 near the set where any a(xj) (j=1,2,---,m) is nonzero,

d) xk factors as a product of functions of one variable yx(x) = xx1(x1) -+ Xk m(Xp), and so does each of the
other three cutoffs.
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K
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supp V ik

complex scaling / PML region

Figure 1: The cutoffs used to construct the resolvent. In the white region, where all derivatives of all cutoffs are supported,
we have v(x) = p(x) = 1 and 0,(x;) =0 for all j. The complex scaling / PML region contains 0Q and 0Qp.

Thus yx and jg are cutting off near K, while y. and 7. are cutting off near the set where we put complex

scaling/PML. See Figure 1.
Then define

F = /?KR(CO)IK + )?ooRo,O(w))(oo'
We compute
(P, —0)F =1+ A+ Ay, where Ag =7, AIR®)yk,

Here we have used the commutator relation defined by [y, A] = jx A
(3.3)], for any N we have

||AooAK||L2(Rm)—>HN(R’”) = O(w_N)
This, together with the identity
(P, —)F(I —Ag — Ay + AgAy) =1 — A Ag + A A A

implies that

(6]
Ry(@) = F(I — Ag — Ay + AgA) D (AgAx — A Ag ALY,
Jj=0

with the geometric series converging for w > 1 thanks to (3.2).

Ago = [Joo> AlR; 0(®) Yoo -

— A jg. Note that A3 = A2 = 0. By [7,

(3.2)

(3.3)

We note that for @ > 1, estimate (3.2) ensures that the norm of A Ax — A Ax A, is sufficiently small, so that

retaining only the leading term in the series is typically sufficient.
In fact, for the source term f compactly supported in K, we have

Xoof =0, xxf=1. (3.4)
Thus
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Applying the leading-term truncation of (3.3) to f, we obtain
Ry @) f ® F(I—Ax — A, +AgAL)S
= F( - Ag)f
= ¥k R@)yxf — Ik R@)yxAx f — )?ocRg,o(w))(ooAKf (3.6)
= )?KR(CO)/YKf - /?OORO',O(w)XOOAKf
= Ik R@)f = Fo R 0(@) Yo Ak S -

Here we have used the fact that the support of
Agf = Ik AlR(@) xg f (3.7

is contained in the support of the gradient of 7, which is disjoint from the support of y.

4. Hadamard-Babich ansatz and resolvent R

The resolvent R(w) takes the following form:

| R@)f | x0) = /R G (@.xg:x) f(x)dx. @.1)

where G represents the Green’s function in an inhomogeneous medium. To construct an asymptotic approximation
of the Green’s function, we assume that any two points within the computational domain that we are interested in are
connected by a unique geodesic; consequently, we can use the Hadamard-Babich method [1, 17] to obtain the following
Hankel-based ansatz so as to expand the solution u(x) = G(w, x; x),

Gp (a), xo;x) = z U (xo;x) S s—m=2)2(®, 7), (4.2)
s=0
where
folw,7) = ige"q” (%’)q H (7). 4.3)

Here Hfll) is the g-th Hankel function of the first kind, the phase 7 satisfies
4uot* (VIVE* = p) =0, (X3 %)| =y, = 0. (4.4)
This is equivalent to the eikonal equation,

|Vt| =n, 'L'(xo;x)|x=x0 =0, 4.5)

when we define the slowness n = \/% .
For s > 0, the coefficients v, satisfy the recurrent system

4vtVr - Vo +0[2Qs +2=m)p +2V - (viV)] = V - (vVoy) (4.6)

with v_; =0 and

nm
- 0 -
x=xo  2g(m=1/2’ ny = n(xo). @.7)

vo (x5 X)

We call the above ansatz the Hadamard-Babich ansatz. The coefficients v, called HB coefficients, differ from the
amplitude functions in classical geometrical optics such as the WKBJ method. The Hadamard—-Babich ansatz absorbs
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the point source singularity into the Hankel basis functions, resulting in HB coefficients that remain non-singular at
the source. Consequently, this ansatz provides a uniformly accurate asymptotic solution near the point source [25].

Similar to usual geometric optics series, the Hadamard—Babich ansatz fails to capture caustics, which frequently
arise in wave propagation through inhomogeneous media. This failure is primarily due to the requirement that 72
remains smooth, a condition that breaks down at caustics. Since this work focuses on the construction of the complex
scaled resolvent, we make the simplifying assumption that the functions 7> and vg,s = 0,1,2,... are analytic
throughout the computational domain and for any point source position, which is a reasonable assumption in the
caustics-free neighborhood of the point source when p and v are analytic[17]. This assumption guarantees that the
Hadamard-Babich ansatz remains valid in all cases considered. We refer the reader to [17, 27, 28] for a detailed account
of how the Hadamard-Babich ansatz can be combined with the fast Huygens sweeping method to naturally handle
caustics.

According to the essence of asymptotics[13], the difference between the true Green’s function G and the HB ansatz
G g can be written as

G (0, x0;x) — Gp (@, xp;x) = O(1 /™), (4.8)

where the “error” term on the right-hand side means that the difference can be made arbitrarily smooth for all x, as
long as 72 and v, s = 0, 1,2, -+ are analytic. According to [15], when the source term f is compactly supported, we
have

m=3
e = gl i@ < O (1/)™1757). 4.9)

where u,,,, represents the solution obtained by (2.2) with G being the true Green’s function and ug p Tepresents the
solution obtained by using the N-term truncation of Gy as the Green’s function. We remark that (4.9) provides the
asymptotic error estimate for resolvent R(w) when employing the truncated HB ansatz as the approximate Green’s
function in an inhomogeneous medium.

S. Numerical implementation

Here we present the numerical implementation of the proposed resolvent R (w). We begin by providing detailed
definitions of the complex scaling and cutoff functions required for the gluing. Next, we briefly discuss high-order
numerical schemes for the eikonal and transport equations, which yield the squared phase function 2 and the HB
coefficients v,. To avoid solving the eikonal and transport equations at every source point, we introduce multivariate
Chebyshev interpolation to precompute and compress the required ingredients. Based on the HB ansatz, we discretize
the resolvents R, ((w) and R(w) and carefully address the diagonal singularity of the Green’s function (namely, the
kernel function of the resolvent operator).

5.1. Complex scaling and cutoff functions
We define the computational domain as Q = [—a;, a;] X - X [—a,,, a,,], with a; > 0,i = 1,2, ---, m,. To construct
the complex scaling, we introduce the complex stretching of the coordinates defined as

Xi
Z@szﬂ/mqmm (5.1
0
fori =1,2, -, m. Here we take o;
o;(t) =0,(—t), o;(t)=0for|t| <a;, o;(t)>0for|t] > a, (5.2)
witha; > 0,i = 1,2, ---, m. Regions with non-zero ¢; (i = 1,2, -+, m) are called the complex scaling/PML region. For

definiteness, throughout this paper, we use the positive function o; (i = 1,2, ---,m) [6, 16, 18]

28gf

—_— < x:.<a. .

gf+(1-g)P’ 4 <X S 6+ T,

o; (x;) =15 Xi > a+ T, (5.3)
0, _ai < xi < ai,

o; (—xi) s x < —a;,
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where T; > 0 denotes the thickness of the complex scaling region, P is a positive integer, and

1IN %1 . xi—(a+T)
a=(3-5)% 4%y V=T oy

]

It can be seen that o; maps [ai, a; + Ti] onto [0, S and its derivatives vanish at x; = +a; up to order P—1. We introduce
a smooth function ¢, ;,(x) € C*(R), defined as follows:

0, x<a s
— e_
bram(¥) =14 7 (bT”) a<x<b, where ()= — . (5.5)
1, x>b

Building on this, we define the cutoff functions yg, y.. k. and 7. To be specific, we use m = 2, Q = [-1, 117,
T, =T,=02,and K = [-04, 04]% asa representative example. Thus, these functions are

XK = D1-0.78,-0.621 () X (I = 10,62,0.781(X)) X 1078 ~0.621(%) X (1 = P10.62,0.781 (1)) (5.6)
Tk = D1-0.98,-0.821(%) X (I = 10.82,0.98)(X)) X 0,98 -0.821(¥) X (1 = P10.82,0.981(1)) (5.7
XYoo = 1 = &1-078,-0.621(X) X (I = ¢10,62,0.78)(X)) X P[_0.78 —0.621(¥) X (I = Pj0.62,0.78) (V) (5.8)
oo = 1 = &1-0.58-0.42)(X) X (I = ¢10.42,0.58)(X)) X P58 -0.421(¥) X (I = Pj0.42,0.58)(¥))- (5.9

In Figure 2, we illustrate the four cutoff functions that will be used in this article.

5.2. Precomputation of phase and HB coefficients

The Hadamard-Babich ansatz is characterized by the phase function 7 satisfying the eikonal equation (4.5) and the
HB coefficients vy, s = 0, 1, --- satisfying the transport equations (4.6). The weakly coupled eikonal equation (4.5) and
transport equations (4.6) with point-source conditions have been solved to high-order accuracy by using Lax-Friedrichs
weighted essentially non-oscillatory (LxF-WENO) sweeping schemes as demonstrated in [25]. The high-order schemes
in [25] have adopted essential ideas from many sources, including [21, 14, 10, 24, 11, 31, 30, 29, 9, 20, 17] and have
been used in many applications. Consequently, we will adopt these schemes to our setting as well, and we omit details
here.

However, for a given point source x;, constructing the HB ansatz by sequentially solving the eikonal and transport
equations and then evaluating a volume integral to obtain the solution R(w) f at x, is clearly computationally expensive.
As a basis for efficient numerical implementation, the N -term truncation of the HB ansatz, Gg (@, x; x), for N small,
should be evaluated with a computational cost of O(1) for any xy, x € Q.

Since we have assumed that 72 and v, s = 0,1, are analytic in Q, we introduce the multivariate Chebyshev
interpolation to reduce the computational cost. We take the 2-D case as an example. Letting g(x, y, x,, y) be a function
that admits a low-rank representation where x = [x,y],xy = [xg, o] € €, we consider the following analytical
low-rank representation using Chebyshev interpolation,

njoongom

a4, 3. %0 ¥0) & X\ DI 0. . k. DT, )T (0T (e) T () (5.10)

i=1 j=1 k=1 I=1

where n;, nj, ny, and n; are the orders of Chebyshev interpolation, Q is a 4-D tensor of size n; X n;g X nXn that
contains the spectral coefficients to be determined, and Ti, Tj, Tk, and T, represent the Chebyshev interpolants defined
via translating the standard Chebyshev polynomials 7}, defined on [—1, 1] to the corresponding domain,

Tp(s) = cos(p arccos(s)), se|[-1,1]. (5.11)
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Figure 2: The cutoff functions used in the gluing procedure.

We can obtain Q by applying fast cosine transforms with respect to x, y, x(, and y, to the tensor q(xf, yj, x(‘; © yg 1),
where xf, y;, x(c) o and y(c) ,Are ng, nj, vy, and n;-order Chebyshev nodes in Q X Q, respectively, which are also obtained
by translating the n-order Chebyshev nodes {s,} in [-1, 1],

2p—1
sp=cos< p2 >’ p=12,-,n
n

Taking g = 72 and vg,s = 0,1, -+, we now only need to evaluate them at the Chebyshev nodes, rather than on a fine
grid satisfying the wave resolution requirement.

To calculate g(x7, y?, x(‘i o y(c), ,)» we adopt a computational strategy as used in [15]: first choose a region €2, which is
slightly larger than Q, then compute numerically the ingredients in €, with sources located at [xg o y(“) ||, respectively,
and finally use cubic spline interpolation of the just computed ingredients on uniform grids to obtain q()él.‘, yj, xa o yg’ -
Here Q. is introduced to ensure the accuracy of the interpolations near the boundary of €. And the weakly coupled
eikonal and transport equations with point-source conditions can be solved to high-order accuracy by using Lax-
Friedrichs weighted essentially non-oscillatory (LxF-WENO) sweeping schemes as demonstrated in [25].

Once the Chebyshev interpolation is constructed, we evaluate equation (5.10) to obtain the required ingredients
and construct the resolvent by (5.14). We remark that the summation (5.10) can be accelerated by the Orszag partial
summation method [5].

(5.12)

5.3. Discretization of the resolvents
In this subsection, we consider the numerical discretization of the resolvents R(w) and R, o(w). We first discretize
the domain Q into N, regular cells with cell size A = O(1 /w), with the cell centers denoted by {x; }f\i”l
Here we use the N -term truncation G g as the asymptotic approximation. Then the resolvent R(w) can be expressed
as

[R(w) f1(xq) = /QGg (w, xq; x) f(x)dx (5.13)
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To numerically compute (5.13), we then have

NU
[R@)f1(x) ~ ) hLij’,-f(x[), j=1,2-,N, (5.14)

i=

where K; ; = Gg (w, x;; x;) for i # j and the self-term K; ; can be computed analytically by integrating the free space
Green’s function over the source cell, assuming constant wave speed within each cell; see the appendix of [15] for
details. Then the field values at cell centers, u(x;), can be computed by matrix-vector multiplication

1
U= h_mKIf’ (5.15)
where I ! denotes a vector of length N, that collects f(x;),i = 1,2,---, N, and U denotes a vector that collects
u(x),j = 1,2,, N,
The resolvent R, differs slightly in that the wave field is defined over 2p, instead of €2, correspondingly, the
associated kernel matrix is not square. We discretize Qp into M, regular cells with the same cell size h as used for €2,

and denote their centers by {y; }jA:”l Then we have
N, |
[R,o(@)f1(y)) = /Q Glo.y; 0 f)dx~ Y -2k f(x). j=1.2.M, (5.16)
i=1
where K i = G(w,y j>%;) for y; # x; and the self-term can likewise be computed analytically by integrating the

free-space Green’s function over the source cell. This is simpler because the medium is homogeneous in this case, and
all self-term entries take the same value.

The explicit constructions of these kernel matrices and the matrix—vector multiplications incur computational cost
of order O(w*™), which is generally prohibitive. However, for high-frequency Helmholtz equations, we have developed
efficient algorithms [19, 17, 15] based on hierarchical matrix representations and butterfly algorithms that reduce this
cost to quasi-linear complexity for m = 2 and sub-quadratic for m = 3. Since our main goal here is to illustrate the
feasibility of the new resolvent, at this stage we will not apply these advanced algorithms to compute the resolvent in
this article. Instead, we will use two-dimensional numerical examples to demonstrate the convergence and performance
of the proposed resolvent.

For the Laplace operator appearing in the commutator, we employ finite difference methods. We avoid FFT-based
spectral methods here because the involved functions are truncated to the supports of gradients of cutoff functions,
where spectral methods suffer from the Gibbs phenomena and the loss of accuracy.

6. Numerical examples

In this section, we first consider a homogeneous wave speed model, where the resolvents are known and can be
used to generate exact reference solutions. In the subsequent examples, the reference solutions will be generated using
the FDFD method. All numerical experiments were performed on a computer equipped with 512 GB of RAM and 56
CPU cores.

We will use the following source terms.

e f| = 6(x,y), where the solution corresponding to the source term f; is the Green’s function.

o fr= t(v/x2 +32,0.1,0.3), where #(x, wy, W,) is the cosine tapering function:

1, x < wi,
1(x, wy, wp) =405 (1 4 cos (x(x — w))/(wy —wy))), w; <x<w,, (6.1)
O, x > Wwj.

o 13 =exp(—(x? + %) /(26%)) sin(0.90(x + ¥)t(/x2 + »2,0.1,0.3), where ¢ = 0.15, and ¢ is given by (6.1).
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o f,=p'V. (vVu™(x)) + 0*u™(x), where u'"® = ¢i®*d is an incident plane wave, and d denotes the unit
direction vector.

Here we mention in passing that the source term f arises in the plane wave scattering problem in an inhomogeneous
medium. The total wavefield ™ = u'" + 4°8 , where u®® is the scattered wavefield, is governed by

-~V - (Wi (x)) — 0 u®(x) = 0. (6.2)
Clearly, u°® satisfies
—p7 'V - (WWus(x)) — 0*u®E(x) = p~'V - (vViul"(x)) + 0*u™(x). (6.3)

Here, f, can serve as a compactly supported source term that generates the outgoing wavefield u°® as p and v are equal
to 1 outside K.

In the numerical examples, we will use the cutoff functions defined in formulas (5.6)-(5.9). We will use the leading
term of the HB ansatz as the asymptotic Green’s function, and employ the leading-term truncation of formula (3.3) to
compute the resolvent R, :

u=R;(o)f

6.4
~F(I-Ag— Ay +AxAy) f. 4

6.1. Constant model
We start with the constant model with

pO, ) =v(x,y)=nx,y)=1, (x,y)€Q=[-1.2, 1.2]2.

In this case, the exact (complex-scaled) resolvent is known to be R, (. The phase function has an analytical formula

7(x0; x) = |x — x|. The HB coefficients have analytical formulas vy(x; x) = ﬁ and v (x; x) = 0. Therefore, the
HB ansatz becomes the exact Green’s function Gg(w, xg; X) = j—‘H(; (w|xy — x|). We use high-order Lax-Friedrichs
WENO methods with mesh size Ay = 0.01 to solve the eikonal and transport equations with point sources, construct
their low-rank representation with an order of 3 X 3 X 3 x 3 for Chebyshev interpolation, and compare the results with
these exact formulas.

For the constant model, we consider @ = 10z. The fields computed by the proposed method and related results are
shown in Figure 3. Since the exact resolvent R is known in the homogeneous medium, we compare the resolvent
computed by the proposed method with the exact one over the domain Q p, which includes the complex scaling region.
Both the proposed resolvent and the exact one use a grid spacing of 0.02, which corresponds to 10 points per wavelength
(PPW). In the left column of Figure 3, we consider the source f = f), which leads to the resolvent R, itself. As
shown in the second row, the resulting error is small in magnitude and is concentrated within the support of V y,
which is precisely the region where the two resolvents are glued together. This is expected, since in the second term
of (3.6), we apply R, to the equivalent source term Ag f, which is compactly supported within the support of V 7.
In fact, finite-difference operations are restricted to this gluing region. In the third and fourth rows, we present the
fields along y = 0 and y = 0.6, respectively. The two fields agree well, including within the complex scaling region,
as expected given that the difference between them is already known to be small.

In the middle and right columns, we present the results corresponding to the source terms f = f, and f = f3,
respectively. In both cases, the errors relative to the exact solutions are very small. In a homogeneous medium, the HB
ansatz does not introduce any asymptotic error, and the proposed method successfully achieves high accuracy for R,
as expected.

To illustrate the convergence of geometric series in (3.3), we denote

Si(f) = (ApAg — A Ax ALY [, j=0,1, - (6.5)

and present S;(f3),j = 0,1,---,5 in Figure 4. The first term Sy(f3) = f3 is the source term, while the subsequent
terms decay rapidly to zero due to the norm estimate of A, Ag given in (3.2). Therefore, a truncation after the first
term is sufficient to approximate the resolvent via (3.6).
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Figure 3: Constant model. w = 10z. Left column: source f = f,. Middle column: source f = f,. Right column: source
f = f5. Row 1: the field Re(u) computed by the proposed method. Row 2: difference Re(u — u,), where the reference
solution u, is obtained by the known resolvent R, ,. Row 3: the fields Re(u)(o) and Re(u,) (-) drawn along y = 0. Row
4: the fields Re(u) and Re(u,s) drawn along y = 0.6.

6.2. Gaussian model
Here we consider the Gaussian model with
1

p(x,y) = vy =1, (ny) eQ=[-12121
(1+0.1exp(-30(x2 + y2)))

We use high-order Lax-Friedrichs WENO methods with mesh size h, = 0.01 to solve the eikonal and transport
equations with point sources, construct their low-rank representation with order 25 X 25 X 25 x 25 Chebyshev
interpolation, and compare the results with the reference solution obtained by the FDFD method.

We consider @ = 10z. The fields computed by the proposed method and related comparison results with the
FDFD method are shown in Figure 5. In these comparisons, the proposed method still uses a grid spacing of 0.02
(corresponding to 10 points per wavelength, PPW = 10), while the FDFD method employs a finer grid spacing of 0.005
(PPW =40) to reduce dispersion errors. The FDFD method provides reference solutions only within the computational
domain Q, excluding the complex scaling region.
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Figure 4: Constant model. @ = 10z. The first six terms of the geometric series {.S;(f)} for f = f;.

1st term 3rd term

4th term

In the left column of Figure 5, the source f = f; corresponds to the resolvent R itself. We omit the reference
solution at the point source location, where the solution is known to be singular. The proposed method yields the
solution in an integral-averaged (weak) sense at this point. By comparing the wave field in the first row with the
difference shown in the second row, we observe that the difference is small and uniform. The comparison in the third
row is performed along the line y = 0, which passes through the point source at [0, 0]. Although the singular point
itself is omitted, we observe that the two solutions agree very well in its vicinity, since the HB ansatz provides an
asymptotic Green’s function with uniform accuracy near the source.

In the middle and right columns, we present the results corresponding to the source terms f = f, and f = f3,
respectively. Unlike the case of a homogeneous medium, constructing R(w) using the HB ansatz introduces asymptotic
errors. To analyze the difference shown in the second row in Figure 5, we present in Figure 6 the difference between
the fields computed by the proposed method and by the resolvent R(w). Here, the reference solution in this case is
also based on the HB ansatz, thereby eliminating the influence of the asymptotic error introduced by the HB ansatz.
Consequently, the difference in Figure 6, arising from gluing together the two resolvents and the corresponding finite-
difference operations, exhibits a behavior similar to that in the homogeneous medium case: it has a small magnitude
and is concentrated within the support of V 7. Compared with the asymptotic error of the HB ansatz, which dominates
the error shown in Figure 5, the error introduced by the gluing method proposed in this paper is negligible.

Due to the limitations of the reference solution, the comparison between the two fields is restricted to €. The results
obtained by the proposed method match the reference solution well within Q, and decay to zero in the complex scaling
region Qp \ Q. To investigate this rapid decay, Figure 7 plots the wave fields (in logarithmic scale) corresponding
to the three source terms along the lines y = 1.0, 1.1, 1.15, and 1.2, respectively. A rapid decay to zero is observed
as y approaches 1.2, consistent with the expected behavior of the complex scaling solution: it satisfies the original
Helmholtz equation in Q and decays rapidly in the complex scaling region Qp \ Q.

To illustrate the convergence of geometric series in (3.3) within the inhomogeneous medium, we present S;(f3),
j=0,1,....,5, in Figure 8. We observe a similar rapid decay, since the norm estimate of A Ay is derived based on
the supports of the cutoff functions[8, (3.3)], which is independent of the homogeneity of the medium. Therefore, in
an inhomogeneous medium, it is also sufficient to truncate after the first term and evaluate the resolvent using (3.6).
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source f = f,. Middle column: source f = f,. Right column: source

proposed method. Row 2: difference Re(u — u,.¢), where the reference

solution u, is obtained by the FDFD method. Row 3: the fields Re(u) and Re(u,.;) drawn along y = 0. Row 4: the fields

Re(u) and Re(u,) drawn along y = 0.6.

6.3. Sinusoidal model

We consider the following medium

p(x,y) =

L vy =1, (x,y)eQ=[-12,12]%

(1 + 0.3 exp(—30(x2 + y2)) sin(0.57x) cos(0.5wy + 0.1))2

We use high-order Lax-Friedrichs WENO methods with mesh size h, = 0.01 to solve the eikonal and transport
equations with point sources, construct their low-rank representation with order 31 X 31 X 31 x 31 Chebyshev
interpolation, and compare the results with the reference solution obtained by the FDFD method.

We consider o = 10z and @ = 20z to investigate the accuracy and computational time of the proposed method
at different frequencies, while keeping PPW = 10 fixed. For @ = 10z, explicitly constructing the kernel matrices of
the resolvents R, ; and R(w) takes 24.0 seconds, and the matrix-vector multiplication for each source term takes 0.8
seconds. For w = 20, the kernel-matrix construction takes 141.6 seconds, and the matrix-vector multiplication takes
approximately 13 seconds per source term. The computational time for matrix-vector multiplications scales as expected
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Figure 6: Gaussian model. @ = 10x. Difference between the proposed complex-scaling resolvent R, and the original
resolvent represented by the HB ansatz. Left: source f = f,. Middle: source f = f,. Right: source f = f;.
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Figure 7: Gaussian model. @ = 10z. Re(u) along y = 1.0, 1.1, 1.15, and 1.2 in log scale. Left: source f = f,. Middle:
source f = f,. Right: source f = f;.

1st term 2nd term x10°° 3rd term <1070
25 35
Rl 06 - -
3
04 2
05 05 05 s
02
15
2
0 // 0 0 0
02 1 15
05 05 05 P
-04
05
. 05
1 06 1 1
o 0
Bl 05 0 05 1 Rl 05 0 05 1 Rl 05 0 05 1
4th term x101% 5th term x107® 6th term x10%2

5
3 - El
4
25
05 05
2 3
0 0
15
2
1 05 05
1
0.5
1
0
- 05 0 05 1 Rl 05 0 05 1 -

Figure 8: Gaussian model. @ = 10z. The first six terms of the geometric series {.S;(f)} for f = f;.

with *, while the time to construct kernel matrices increases more mildly due to the use of partial summation, which
saves computational cost relative to direct summation as matrix size grows. In contrast, the FDFD method, maintaining
PPW = 40, requires approximately 21.8 and 79.5 seconds to compute the wave field for each source term at @ = 10z
and w = 207, respectively.

Although the FDFD method appears to have shorter computational times, we emphasize two points: First, as the
frequency increases, the FDFD method requires a corresponding increase in degrees of freedom in terms of points
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Figure 9: Sinusoidal model. w = 10x. Left column: source f = f,. Middle column: source f = f,. Right column: source
f = f;. Row 1: the field Re(u) computed by the proposed method. Row 2: difference Re(u — u,;), where the reference
solution u, is obtained by the FDFD method. Row 3: the fields Re(u) and Re(u,) drawn along y = 0. Row 4: the fields
Re(u) and Re(u,s) drawn along y = 0.6.

per wavelength (PPW), resulting in nonlinear grid refinement, and there is no rigorous lower bound established
for the scaling factor. This leads to a prohibitively high computational costs for high-frequency problems. Second,
the resolvent we propose is implemented via oscillatory integral kernels, which do not introduce dispersion errors
and thus require only linear grid refinement. Moreover, we have developed a series of hierarchical decomposition
techniques based on the butterfly algorithm that significantly reduce the computational cost of such oscillatory integrals
[19, 22, 23, 17, 27, 28, 15]. The integration of butterfly algorithms with the proposed resolvent computational
framework constitutes a part of our ongoing research.

For @ = 10z and w = 20z, the fields computed by the proposed method along with the comparison results with
the FDFD method are presented in Figures 9 and 10.

Finally, we consider a plane wave scattering problem with the source term f,, where d = [—\/E /2, —\/E /2]. Even
though 4" is not outgoing, the scattered wave u°8 is and can therefore be effectively absorbed by the complex scaling
layer. We show the scattered fields u°¢ at frequencies 10z and 20z computed by the proposed method in Figure 11,
where the PPW is set to 10 in both cases. The results are compared with the reference solutions generated by the

Datchev, Leung, Qian, and Wei: Preprint submitted to Elsevier Page 15 of 18



Complex Scaled Resolvent Formula

0.25 0
R -1
0.2
-0. 015 05
-1
0.1
005 © ‘
0 -2
. 05
-0.05
-0.1 1 3
-1 0.5 0 0.5 1 -1 05 0 0.5 1 x10*
-1 0.5 0 0.5 1

0.3

%10

8
6
4
2
0
2
4
6

6
— Helerence
4 o Complex scaling
2
0¢ p

-1 05 0 05 1
<104

— Reference
© Complex scaling

0.2

— Reference
© Complex scaling

-1 -0.5 0 0.5 1

Figure 10: Sinusoidal model. @ = 20z. Left column: source f = f,. Middle column: source f = f,. Right column: source
f = f3. Row 1: the field Re(u) computed by the proposed method. Row 2: difference Re(u — u,¢), where the reference
solution u, is obtained by the FDFD method. Row 3: the fields Re(u) and Re(u,s) drawn along y = 0. Row 4: the fields
Re(u) and Re(u,s) drawn along y = 0.6.

FDFD method with PPW = 40. The complex scaling solutions agree well with the reference solutions within the
computational domain and decay rapidly inside the complex scaling region. This indicates that the proposed resolvent
can be effectively applied to scattering problems.

The numerical results confirm that the complex scaling solutions obtained by the proposed method exhibit the
following properties:

e They satisfy the original Helmholtz equation within the computational domain;

o They exhibit rapid decay in the complex scaling region.

7. Conclusion

In this paper, we propose an explicit representation of the complex scaled resolvent operator associated with the
Helmbholtz equation in an inhomogeneous medium, which may have potential applications in scattering problems. By
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Figure 11: Sinusoidal medium. f = f, with d = [—\/5/2, \/5/2]. Left column: @ = 10z. Right column: @ = 20x. Row
1: the scattered wavefield Re(u°8) computed by the proposed method. Row 2: difference Re(ue — u:’ff). Row 3: the fields
Re(u’%) and Re(u) drawn along y = —0.9. Row 4: the fields Re(u®) and Re(u’%) drawn along y = 0.

gluing together the non-complex-scaled resolvent in an inhomogeneous medium and the complex-scaled resolventin
a homogeneous medium, we obtain the desired resolvent expressed as a geometric series. The former admits an
asymptotic representation via the Hadamard—Babich ansatz, while the latter admits an explicit expression via analytic
continuation. Numerical experiments are presented to demonstrate that the proposed resolvent can yield highly accurate
solutions for the complex scaling method on relatively coarse grids, which satisfy the Helmholtz equation in the
computational domain and decay rapidly within the complex scaling region. The integration of butterfly algorithms
with the proposed complex-scaling resolvent computational framework forms a part of our ongoing work.
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