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ABSTRACT

Accurate simulation of seismic waves is of critical importance
in a variety of geophysical applications. Based on recent works
on staggered discontinuous Galerkin methods, we have devel-
oped a new method for the simulations of seismic waves, which
has energy conservation and extremely low grid dispersion, so
that it naturally provided accurate numerical simulations of
wave propagation useful for geophysical applications and was
a generalization of classical staggered-grid finite-difference
methods. Moreover, it could handle with ease irregular surface
topography and discontinuities in the subsurface models. Our
new method discretized the velocity and the stress tensor on this
staggered grid, with continuity imposed on different parts of the
mesh. The symmetry of the stress tensor was enforced by the
Lagrange multiplier technique. The resulting method was an

explicit scheme, requiring the solutions of a block diagonal sys-
tem and a local saddle point system in each time step, and it
was, therefore, very efficient. To tailor our scheme to Rayleigh
waves, we developed a mortar formulation of our method. Spe-
cifically, a fine mesh was used near the free surface and a coarse
mesh was used in the rest of the domain. The two meshes were
in general not matching, and the continuity of the velocity at the
interface was enforced by a Lagrange multiplier. The resulting
method was also efficient in time marching. We also developed
a stability analysis of the scheme and an explicit bound for the
time step size. In addition, we evaluated some numerical results
and found that our method was able to preserve the wave energy
and accurately computed the Rayleigh waves. Moreover, the
mortar formulation gave a significant speed up compared with
the use of a uniform fine mesh, and provided an efficient tool for
the simulation of Rayleigh waves.

INTRODUCTION

Accurate simulation of seismic and Rayleigh waves is of critical
importance in a variety of geophysical applications, such as explora-
tion geophysics, geotechnical characterization, and earthquake-re-
lated damage assessment (Aki and Richards, 2002). Consequently,
it is a long-studied topic in geophysics in that many challenging prob-
lems arise in designing for Rayleigh wave simulation, an accurate
method which ideally should enjoy low grid dispersion, provide
accurate long-time/long-range wave propagation, and allow irregular
surface topography and discontinuities in the subsurface model.
Based on recent works by Chung and Engquist (2006, 2009), we
designed a staggered discontinuous Galerkin (DG) method to tackle
exactly these challenges: The new method has extremely low grid
dispersion as shown by Chung et al. (2013a) and Chan et al. (2013);

it has the energy-conservation property (Chung and Engquist, 2006,
2009), so that it naturally provides accurate numerical simulations
of wave propagation useful for geophysical applications and is a gen-
eralization of classical staggered-grid finite-difference methods
(FDMs). Moreover, it can handle with ease irregular surface topog-
raphy and discontinuities in the subsurface models because our
method is based on a novel triangular staggered mesh.
In the literature, simulations of Rayleigh waves have been mainly

tackled with FDMs and finite-element methods (FEMs). In terms
of FDMs for Rayleigh waves, most of these methods are based
on staggered-grid FDMs proposed by Madariaga (1976), Virieux
(1986), and Levander (1988). When the surface topography is flat,
the free-surface boundary condition associated with Rayleigh
waves is relatively easy to handle in a staggered-grid FDM. In
Bohlen and Saenger (2006), the staggered-grid and the rotated
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staggered-grid FDMs are applied to simulate Rayleigh waves with
flat surface topography, and accuracy for both methods is carefully
studied. It is well known that one needs more points per wavelength
for surface waves than body waves because the surface wave in the
case of flat topography mainly travels horizontally and decays ex-
ponentially in the vertical direction. Therefore, one needs to use
more points in the vertical direction to capture the sharp decay. To
overcome this increase in the number of unknowns near the surface,
Kosloff and Carcione (2010) propose a variable-grid-spacing meth-
od, in which the spatial grid is finer near the surface and coarser far
away from the surface, and the staggered sine and cosine transforms
are applied to compute spatial derivatives; the resulting method is
highly accurate and is able to handle propagation of Rayleigh waves
at large offsets.
When the surface topography is nonflat, two remedies are pro-

posed to treat free-surface boundary conditions in the setting of a
staggered-grid FDM: One option is to use a staircase approximation
to the nonflat free-surface topography; another option is to match
the free-surface topography by deforming computational grids.
When applying the staircase approximation to the nonflat free sur-
face topography, Levander (1988) originally proposes the stress-
image technique to update the velocities for grid nodes on (flat) free
surfaces, and Robertsson (1996) proposes an extension of this
method, in which the grid nodes are classified into seven categories
with different update rules. The vacuum formulation (Zahradnik
et al., 1993) is developed along the same line by setting parameters
to zero above the free surface, so that surface topography can be
implemented in the same manner as an internal material interface.
However, numerical tests have shown that the simple vacuum for-
mulation becomes unstable when using fourth-order or higher order
spatial difference operators (Graves, 1996). Consequently, Zeng
et al. (2012) propose an improved vacuum formulation to incorpo-
rate surface topography, in which the parameters at the surface grid
nodes are averaged using the same scheme as for the interior grid
nodes; this method is shown to be stable using fourth-order spatial
difference operators without notable numerical dispersion. On the
other hand, various methods are proposed to deform computational
grids to match the free surface topography by curvilinear coordi-
nates: Hestholm and Ruud (2002), Zhang and Chen (2006), and
Lombard et al. (2008) in the setting of a staggered-grid FDM
and Appelö and Petersson (2009) in the setting of a nonstag-
gered-grid FDM. Because these methods involve computation of
spatial derivatives in the curved grid and application of the chain
rule to calculate the required Cartesian spatial derivatives, Koma-
titsch et al. (1996) propose a method to solve the equation directly
on curved grids.
Despite the efficiency of FDMs on structured grids, implement-

ing free-surface conditions in FDMs can be difficult on an irregular
domain. Therefore, Moczo et al. (1997) present a hybrid method, in
which low-order FEMs were used near boundaries, whereas sec-
ond-order FDMs were used for the rest of the model, and Ma et al.
(2004) present another hybrid method, which combines low-order
FEMs with a fourth-order velocity-stress staggered-grid FDM.
There are certainly plenty of advantages in using FEMs for surface
topography because they allow the use of triangular meshes suitable
for irregular surfaces. In terms of new developments in FEM for
seismic wave modeling, several different methods are popular in the
geophysical community as briefly summarized in Basabe and Sen
(2009): the mixed FEM, the spectral-element method (SEM), and

the DG method. Raviart and Thomas (1977) introduce the mixed
FEM, which is suitable for the spatial approximation of the wave
equation in the velocity-stress form, and Geveci (1988) analyzes its
convergence. The advantage of using mixed formulations is that the
energy is conserved locally and globally, which is an important
property described by wave equations. However, when an explicit
time discretization is applied, this method usually produces an im-
plicit time-marching scheme because nondiagonal mass matrices
may arise in the process, which makes the explicit time-stepping
inefficient. The mass-lumping technique, which is a way to approxi-
mate the mass matrix by a diagonal matrix, is developed to improve
the efficiency (Becache et al., 2000; Cohen et al., 2001). However, a
mass-lumping technique for tetrahedral meshes is not available
for an arbitrary order of approximations. The SEM is a class of
high-order Galerkin FEMs and was originally developed for fluid
dynamics (Patera, 1984), and it has been successfully applied to
acoustic- and elastic-wave propagations (Seriani and Priolo, 1994;
Komatitsch and Vilotte, 1998; Komatitsch et al., 2008). Being a
method designed for hexahedral meshes, the SEMmakes the design
of an optimal mesh cumbersome in contrast to the flexibility offered
by tetrahedral meshes. The DG FEMs provide another class of
methods that can overcome the above disadvantages. In particular,
DG FEMs are constructed based on tetrahedral meshes, and they
have block diagonal mass matrices due to the discontinuous nature
of basis functions, allowing efficient time marching. The DG meth-
od was first introduced for the neutron transport equation by Reed
and Hill (1973) and Lesaint and Raviart (1974). Since then, the
method has become very popular for the numerical solutions of par-
tial differential equations. For a general introduction to the subject,
see Arnold (1982), Riviere (2008), and Cockburn et al. (2000). Re-
garding computational wave propagation, some DG methods are
proposed by Bernacki et al. (2006), Bourdel et al. (1991), Giraldo
et al. (2002), Grote et al. (2006), and Hu et al. (1999) for the acous-
tic-wave equations and by Falk and Richter (1999) and Johnson and
Pitkäranta (1986) for the hyperbolic system. For seismic wave sim-
ulations, some DG methods are proposed by Rivière and Wheeler
(2003), Dumbser and Kaser (2006), and De Basabe et al. (2008).
Furthermore, the dispersive and dissipative properties of the DG
methods are analyzed by Ainsworth et al. (2006) and Chan et al.
(2013). Recently, a new class of staggered DG (SDG) methods
based on staggered meshes was proposed and analyzed. In par-
ticular, the SDG method has been successfully developed for
many wave propagation problems (Chung and Engquist, 2006,
2009; Chung and Lee, 2012; Chan et al., 2013; Chung and Ciarlet,
2013; Chung et al., 2013a) and other applications (Chung et al.,
2013b, 2014a, 2014b; Kim et al., 2013, 2014; Chung and Kim,
2014). The SDG method is typically applied to the first-order for-
mulation of wave equations, and it starts with two sets of irregular,
staggered grids for each of the two unknown functions involved;
furthermore, it designs two finite-element spaces on those two sets
of staggered grids and carries out integration-by-parts to derive cor-
responding weak formulations; and finally, it applies the standard
leap-frog scheme for explicit time stepping. The SDG method has
several distinctive features that are particularly attractive: First, it
conserves the wave energy automatically; second, it is optimally
convergent in the L2-norm and energy norm; third, it yields block-
diagonal mass matrices, so that very efficient explicit time stepping
is allowed; fourth, it is flexible in handling complex geometries, so
that free surface conditions on nonflat surfaces can be imposed

T120 Chung et al.
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easily; and fifth, as shown in Chung et al. (2013a) and Chan et al.
(2013), it yields solutions with extremely low dispersion errors in
that the order of dispersion error in terms of grid size for the SDG
method is two orders higher than that of classical FDMs based on
nonstaggered grids. Because the SDG method offers many advan-
tages in computational wave propagation, it provides a competitive
alternative for simulations of Rayleigh waves and seismic waves in
general for models with irregular surface topography. It is, there-
fore, the purpose of this paper to develop an SDG method for the
elastic-wave equation. We emphasize that the SDG method for the
acoustic-wave equation, for example, Chung and Engquist (2006,
2009), cannot be directly applied to the elastic-wave equation due
to the symmetry of the stress tensor. In this paper, we construct a
new SDG method using the Lagrange multiplier technique for the
enforcement of the symmetry of the stress tensor. The resulting
scheme retains all the advantages of the SDG method for acous-
tic-wave equations discussed above. Moreover, due to the staggered
continuity property of basis functions for the SDG method, the use
of the Lagrange multiplier only gives a local saddle point system,
instead of a global system common to other Lagrange multiplier
techniques for FEMs. Hence, the time marching can be done very
efficiently. In addition, a mortar formulation is developed to tailor
our scheme to the simulation of Rayleigh waves. We split the com-
putational domain in two parts, one of which is a thin layer near the
free surface. A very fine mesh is used in the thin layer near the sur-
face to capture the Rayleigh wave, and a coarse mesh is used in the
rest of the domain to speed up the simulations. The basis functions
for the velocity in the two parts of the computational domain
are totally decoupled, and they are connected by the use of the
Lagrange multiplier. The resulting scheme is able to produce an
equally accurate solution compared with the solution obtained by
a uniform fine mesh. The paper is organized as follows: We start
with the basic formulation of the SDG method, followed by a sta-
bility analysis for the time step size. A set of numerical results is
then given to show the performance of the scheme. In addition, a
numerical study of the dispersion error is presented. Finally, a mor-
tar formulation is developed to tailor the scheme to Rayleigh waves.
We end with a conclusion.

PROBLEM SETTING

The simulation of Rayleigh waves is mathematically modeled by
a half-space problem. To simplify the presentation, we will consider
the 2D problems only. First, the domain of interest is the infinite
half-space defined by

Ω̂ ≔ fðx; zÞj −∞ < x < ∞;ΓðxÞ < z < ∞g; (1)

where ΓðxÞ is a function that models the surface topography. In the
domain Ω̂, we solve the following elastic-wave equation:

ρ
∂u
∂t

− divΣ ¼ f; (2)

A
∂Σ
∂t

− εðuÞ ¼ 0; (3)

where ρ is the density, u ¼ ðu1; u2ÞT is the velocity field, and Σ ¼
ðσijÞ is the 2 × 2 symmetric stress tensor. In addition, f ¼ ðf1; f2ÞT

is a given source term. Wewrite σ1 ¼ ðσ11; σ12Þ and σ2 ¼ ðσ21; σ22Þ
as the first and the second rows of Σ, respectively. The above
divergence is defined as divΣ ¼ ðdivσ1; divσ2ÞT . Moreover, we
have εðuÞij ¼ 1

2
ð∂iuj þ ∂juiÞ. Matrix A is defined by

A ¼

0
BB@

λþ 2μ λ 0 0

λ λþ 2μ 0 0

0 0 2μ 0

0 0 0 2μ

1
CCA

−1

; (4)

where we assume that Σ ¼ ðσ11; σ22; σ12; σ21ÞT in equation 3; λ and
μ are the first and second Lamé parameters of the material. Intro-
ducing a skew-symmetric 2 × 2 matrix Γ, we have

ρ
∂u
∂t

− divΣ ¼ f; (5)

A
∂σ
∂t

− ∇uþ Γ ¼ 0; (6)

where

Γ ¼ ðγijÞ ¼
1

2
ð∂jui − ∂iujÞ: (7)

Note that in the 2D setting, the skew-symmetric matrix Γ is equiv-
alent to a scalar function γ because the diagonal terms are zero and
the off-diagonal terms have the same magnitude with opposite
signs. We remark that the role of Γ in the SDGmethod is a Lagrange
multiplier to enforce the symmetry of the approximate stress tensor.
The details will be explained in the next section. To solve the above
elastic-wave equations 5 and 6, we impose suitable initial condi-
tions and the following free-surface boundary condition

Σn ¼ 0 on z ¼ ΓðxÞ; (8)

where n is the outward normal to the free surface and Σn is the
standard matrix-vector product.
We introduce some notations that will be used throughout the

paper. For two tensors Σ and α, we define

Σ · α ¼
X2
i¼1

X2
j¼1

σijαij: (9)

For a tensor Σ and a vector u, we define

Σ · ∇u ¼
X2
i¼1

σi · ∇ui; (10)

and

u · ðdivΣÞ ¼
X2
i¼1

uiðdiv σiÞ: (11)

For a unit vector n, we define

SDG method for seismic waves T121
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u · ðΣnÞ ¼
X2
i¼1

uiðσi · nÞ: (12)

THE STAGGERED DISCONTINUOUS
GALERKIN METHOD

A staggered triangular grid

We will now present the triangulation of the domain by an un-
structured staggered grid. Let Ω be the computational domain,
which is a truncation of the infinite half-space Ω̂ and is defined by

Ω ¼ fðx; zÞj − R < x < R;ΓðxÞ < z < Lg: (13)

We assume that Ω is triangulated by an initial triangular mesh,
called T h

0. This mesh can be formed by any mesh generator. For
each triangle in this mesh, we choose an interior point ν, and then
we subdivide each triangle into three subtriangles by connecting
this point ν to the three vertices of the triangle. A new mesh, called
T h, is then formed by this subdivision process. That is, T h is
the refined triangulation of T h

0 defined by the above construction.
The set of all these nodes ν is denoted by N . An example of such
construction is illustrated in Figure 1. The triangles of the initial
triangulation T h

0 are denoted by solid lines. The newly formed
edges are denoted by dotted lines.
Next, we define two types of macroelement. The first type of

macroelements is defined with respect to the initial mesh. In par-
ticular, the triangles of the initial mesh T h

0 are called the first-type
macroelements. We use SðνÞ to denote such a macroelement, and
we remark that these elements are parametrized by ν. An example of
such an element is illustrated by the shaded region with horizontal
lines in Figure 1. The second type of macroelement is defined with
respect to the edges of the initial triangulation T h

0, and we useRðκÞ
to denote such a macroelement. The macroelement RðκÞ is defined
as the union of the two triangles in T h sharing the edge κ. An ex-
ample of such an element is illustrated by the shaded region with
vertical lines in Figure 1. If an edge κ of the initial triangulation lies
on the boundary of the computational domain, then we defineRðκÞ

to be the only triangle in T h having the edge κ. Moreover, we use
the notation F u to represent the set of edges of the initial triangu-
lation and F 0

u the subset of interior edges because u will be defined
to be continuous across those edges. We use the notation F σ to de-
note the set of new edges formed by the above subdivision process
because the normal components of σ will be defined to be continu-
ous across those new edges.
Let m ≥ 1 be a nonnegative integer representing the order of pol-

ynomials used in our approximation space. For any triangle τ in the
triangulation T h, we let PmðτÞ be the space of polynomials of de-
gree at mostm defined on τ. We define Pm as the space of piecewise
PmðτÞ functions; that is, v ∈ Pm if the restriction of v on each tri-
angle τ ∈ T h is in PmðτÞ. We remark that we do not impose any
continuity of functions in Pm on the edges of the triangulation T h.
Next, we present definitions of the approximation spaces. First,

we introduce the function space ðUhÞ2 for the approximation of the
velocity vector u. Each component of u belongs to the space Uh,
which is defined by

Uh ¼ fv ∈ Pmjv is continuous onF 0
ug: (14)

Thus, the functions in the space Uh are polynomials of at most de-
greem on each triangle τ ∈ T h, such that they are continuous across
the internal edges of the initial triangulation T h

0, namely, the set
F 0

u. Because the functions in Uh are in general discontinuous on
F σ , these functions are supported onRðκÞ, the second-type of mac-
roelement. Second, we introduce the function space ðWhÞ2 for the
approximation of Σ. The vectors σ1 and σ2 belong to the spaceWh,
which is defined by

Wh ¼ fα ∈ ðPmÞ2jα · n is continuous onF σg: (15)

The vector fields in the spaceWh are polynomials of degree at most
m on each triangle τ ∈ T h, such that the normal components on the
set of edges F σ are continuous. Because the vector fields inWh are
in general discontinuous on F 0

u, these vectors are supported on
SðνÞ, the first-type of macroelement. Finally, we introduce the func-
tion space Xh for the approximation of the function Γ. We will take
Xh ¼ Pm−1, which contains functions that are discontinuous on all

edges in the triangulation T h.

Derivation

We will now derive the SDG method for the
approximation of equations 5 and 6. We consider
the first component of equation 5; namely

ρ
∂u1
∂t

− div σ1 ¼ f1: (16)

Let v1 be a smooth test function. Multiplying
equation 16 by the test function v1 and integrat-
ing on RðκÞ yields
Z
RðκÞ

ρ
∂u1
∂t

v1dx −
Z
RðκÞ

ðdiv σ1Þv1dx

¼
Z
RðκÞ

f1v1dx: (17)

Using integration by parts, we have

Figure 1. An example of the initial triangulation T h
0 (denoted by solid lines) and the

subdivision of triangles of T h
0 by interior points (denoted by solid dots). The newly

formed edge in the subdivision process is denoted by dotted lines. The shaded region
with horizontal lines is an example of a macroelement SðνÞ, whereas the shaded region
with vertical lines is a macroelement RðκÞ.
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Z
RðκÞ

ρ
∂u1
∂t

v1dxþ
Z
RðκÞ

σ1 · ∇v1dx −
Z
∂RðκÞ

ðσ1 · nÞv1ds

¼
Z
RðκÞ

f1v1dx:

(18)

Similarly, for the second component of equation 5, we have

Z
RðκÞ

ρ
∂u2
∂t

v2dxþ
Z
RðκÞ

σ2 · ∇v2dx −
Z
∂RðκÞ

ðσ2 · nÞv2ds

¼
Z
RðκÞ

f2v2dx: (19)

Combining the above equations 18 and 19, we have

Z
RðκÞ

ρ
∂u
∂t

· vdxþ
Z
RðκÞ

Σ · ∇vdx −
Z
∂RðκÞ

ðΣnÞ · vds

¼
Z
RðκÞ

f · vdx; (20)

for all smooth test functions v ¼ ðv1; v2ÞT . We remark that equa-
tion 20 holds for all macroelements RðκÞ and all test functions
v, such that v ¼ 0 on the Dirichlet boundary of the computational
domain Ω. We also remark that the above boundary condition for
the test function is only applied to the Dirichlet boundary and the
boundary where the perfectly matched layer (PML) is used. This
boundary condition is not applied to the free surface and periodic
boundary.
Next, we consider equation 6. Let α ¼ ðα1;α2ÞT be a smooth 2 ×

2 test tensor, where α1 and α2 are two row vectors. Notice that α is
not necessarily symmetric. Multiplying equation 6 by α and inte-
grating on the macroelement SðνÞ, we have

Z
SðνÞ

A
∂Σ
∂t

· αdx −
Z
SðνÞ

∇u · αdxþ
Z
SðνÞ

Γ · αdx ¼ 0:

(21)

For the gradient term involving α1, we apply integration by parts to
get

Z
SðνÞ

∇u1 · α1dx¼−
Z
SðνÞ

u1 divα1dxþ
Z
∂SðνÞ

u1ðα1 · nÞds:

(22)

Similarly, for the gradient term involving α2, we have

Z
SðνÞ

∇u2 · α2dx

¼ −
Z
SðνÞ

u2divα2dxþ
Z
∂SðνÞ

u2ðα2 · nÞds: (23)

Hence, using equations 22 and 23, we have

Z
SðνÞ

A
∂Σ
∂t

· αdxþ
Z
SðνÞ

u divα dx −
Z
∂SðνÞ

u · ðαnÞds

þ
Z
SðνÞ

Γ · αdx ¼ 0: (24)

Now, we will present the definition of the SDG method. The ap-
proximations of u, Σ, and Γ are denoted by uh, Σh, and Γh and are
obtained in the spaces ðUhÞ2; ðWhÞ2 and Xh, respectively. For any
macroelement RðκÞ, equation 20 suggests the following approxi-
mation:

Z
RðκÞ

ρ
∂uh
∂t

· vdxþ
Z
RðκÞ

Σh · ∇vdx −
Z
∂RðκÞ

ðΣhnÞ · vds

¼
Z
RðκÞ

f · vdx; (25)

for any test function v in the space ðUhÞ2. Summing over all RðκÞ,
we have

Z
Ω
ρ
∂uh
∂t

· vdxþ
X
κ∈Fu

�Z
RðκÞ

Σh ·∇vdx−
Z
∂RðκÞ

ðΣhnÞ · vds
�

¼
Z
Ω
f · vdx; ∀ v∈ ðUhÞ2: (26)

For any macroelement SðνÞ, equation 24 suggests the following
approximation:

Z
SðνÞ

A
∂Σh

∂t
· αdxþ

Z
SðνÞ

uh div αdx

−
Z
∂SðνÞ

uh · ðαnÞdsþ
Z
SðνÞ

Γh · αdx ¼ 0; (27)

for any test function α in the space ðWhÞ2. Summing over all SðνÞ,
we have

Z
Ω
A
∂Σh

∂t
· αdxþ

X
ν∈N

�Z
SðνÞ

uh divαdx−
Z
∂SðνÞ

uh · ðαnÞdsÞ

þ
Z
Ω
Γh · αdx¼ 0; ∀ α∈ ðWhÞ2: (28)

In addition, we will impose the following weak symmetry condition
for Σh Z

Ω
Σh · ηdx ¼ 0; ∀η ∈ Xh: (29)

Equations 26, 28, and 29 give the definition of our SDG method.
Throughout the paper, we write uh ¼ ðuh;1; uh;2ÞT and Σh ¼
ðσh;1;σh;2ÞT , where Σh;i is the ith row of Σh.
Next, we will derive the linear system arising from equations 26,

28, and 29. Assume that the dimensions of Uh,Wh, and Xh are mU ,
mW , and mX, respectively. Let fvðiÞgmU

i¼1 be the basis functions of
Uh, fαðiÞgmW

i¼1 be the basis functions of Wh, and fηðiÞgmX
i¼1 be the

basis functions of Xh. Each component of uh can be represented by
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uh;k ¼
XmU

i¼1

uðiÞh;kv
ðiÞ; k ¼ 1; 2: (30)

Moreover, each row of Σh can be represented by

σh;k ¼
XmW

i¼1

σðiÞh;kαðiÞ; k ¼ 1; 2. (31)

Similarly, Γh can be represented by

Γh ¼
XmX

i¼1

γðiÞh ηðiÞ: (32)

We define the mU ×mU mass matrix Mu by

ðMuÞij ¼
Z
Ω
ρvðiÞvðjÞdx: (33)

Notice that the basis functions of ðWhÞ2 have the form βðiÞ ¼
ðαðiÞ; 0ÞT or βðiÞ ¼ ð0;αðiÞÞT. Thus, we define the 2mW × 2mW mass
matrix Mσ by

ðMσÞij ¼
Z
Ω
ðAβðiÞÞ · βðiÞdx: (34)

We also define the 2mW ×mX matrix Cγ by

ðCγÞij ¼
Z
Ω
βðiÞ · ηðjÞdx: (35)

Moreover, with vðiÞ ∈ Uh and αðjÞ ∈ Wh, we define the following
mU ×mW matrix B by

Bij ¼
X
κ∈Fu

�Z
RðκÞ

αðjÞ · ∇vðiÞdx −
Z
∂RðκÞ

ðαðjÞ · nÞvðiÞds
�
;

(36)

and the following mW ×mU matrix B� by

B�
ji ¼ −

X
ν∈N

�Z
SðνÞ

vðiÞdivαðjÞdx −
Z
∂SðνÞ

vðiÞðαðjÞ · nÞds
�
:

(37)

Finally, we define the following two mU × 1 vectors ⃗fk ¼ ðfðiÞk Þ by

fðiÞk ¼
Z
Ω
fkvðiÞdx; k ¼ 1; 2: (38)

Let u⃗1 ¼ ðuðiÞh;1Þ and u⃗2 ¼ ðuðiÞh;2Þ be vectors of coefficients giving
the approximate solutions uh;1 and uh;2 in equation 30. Moreover,
we let σ⃗1 ¼ ðσðiÞh;1Þ and σ⃗2 ¼ ðσðiÞh;2Þ be vectors of coefficients giving
the approximate solutions σh;1 and σh;2 in equation 31. We write
σ⃗ ¼ ðσ⃗1; σ⃗2ÞT . Finally, we let γ⃗ ¼ ðγðiÞh Þ be the vector of coefficients
giving the approximate solutions Γh in equation 32. Using these def-
initions, equation 26 can be written as

d
dt

Muu⃗1 þ Bσ⃗1 ¼ ⃗f1;
d
dt

Muu⃗2 þ Bσ⃗2 ¼ ⃗f2: (39)

Moreover, equation 26 can be written as

d
dt

ðMσσ⃗Þ −
�
B� 0

0 B�

��
u⃗1
u⃗2

�
þ Cγγ⃗ ¼ 0: (40)

Finally, equation 29 can be written as

CT
γ σ⃗ ¼ 0: (41)

Equations 39, 40, and 41 define the linear system for the SDG
method. We remark that matrix B� is the transpose of the matrix B,
which is proved in Chung and Engquist (2009). We also remark that
the convergence of our method can be proved using techniques in
Chung and Engquist (2009) and Stenberg (1988).

Time discretization

For time discretization, we will apply the standard “leap-frog”
scheme. The velocity field u⃗ is computed at the times tn ¼ nΔt,
whereas the stress tensors Σ⃗ and γ⃗ are computed at tnþ1

2
¼

ðnþ 1
2
ÞΔt, where Δt is the time step size and n is a nonnegative

integer. We will use u⃗n to denote the approximate value of u⃗ at time
tn. Moreover, we will use Σ⃗nþ1

2 and γ⃗nþ1
2 to denote the approximate

values of Σ⃗ and γ⃗ at time tnþ1
2
, respectively.

For equation 39, we use the central difference approximation in
time at tnþ1

2
to obtain the following approximation:

Mu
u⃗nþ1
1 − u⃗n1
Δt

þ Bσ⃗nþ1
2

1 ¼ ⃗f
nþ1

2

1 ;

Mu
u⃗nþ1
2 − u⃗n2
Δt

þ Bσ⃗nþ1
2

2 ¼ ⃗f
nþ1

2

2 : (42)

On the other hand, we evaluate equations 40 and 41 at the time tn
and use the central difference approximation for the time derivative
to obtain the following:

Mσ
σ⃗nþ3

2 − σ⃗nþ1
2

Δt
− ~B�u⃗nþ1 þ Cγ

γ⃗nþ3
2 þ γ⃗nþ1

2

2
¼ 0;

CT
γ σ⃗nþ3

2 ¼ 0; (43)

where

~B� ¼
�
B� 0

0 B�

�
: (44)

Equation 43 can be written as the following saddle point system:

2

Δt
MσΣ⃗

nþ3
2þCγ γ⃗nþ

3
2¼ 2

Δt
Mσσ⃗nþ1

2−Cγ γ⃗nþ
1
2þ2 ~B�u⃗nþ1≔ r⃗nþ

1
2;

CT
γ σ⃗nþ3

2¼0: (45)

Equations 42 and 45 define the time-marching formula. In particu-
lar, for any given u⃗n, σ⃗nþ1

2, and γ⃗nþ1
2, where n ¼ 0; 1; 2 : : : , we can

use equation 42 to obtain u⃗nþ1. Then, using the newly obtained
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u⃗nþ1, and current values of σ⃗nþ1
2 and γ⃗nþ1

2, we can use equation 45 to
obtain approximations σ⃗nþ3

2 and γ⃗nþ3
2.

Although equation 45 is a coupled system with respect to the
unknowns σ⃗nþ3

2 and γ⃗nþ3
2, it can be solved in the following element-

wise manner: Because the mass matrix Mσ and the matrix Cγ are
block diagonal, namely

Mσ ¼

0
BBBBB@

MSðν1Þ
σ

MSðν2Þ
σ

. .
.

MSðνNÞ
σ

1
CCCCCA

and Cγ ¼

0
BBBBB@

CSðν1Þ
γ

CSðν2Þ
γ

. .
.

CSðνNÞ
γ

1
CCCCCA
; (46)

where N is the number of triangles in the initial triangulation T h
0,

MSðνiÞ
σ is the local mass matrix corresponding to the macroelement

SðνiÞ, and CSðνiÞ
γ is the restriction of Cγ to the components corre-

sponding to the macroelement SðνiÞ, equation 45 can be solved as

2

Δt
MSðνiÞ

σ σ⃗nþ3
2 þ CSðνiÞ

γ γ⃗nþ3
2 ¼ ⃗rnþ1

2;

ðCSðνiÞ
γ ÞT σ⃗nþ3

2 ¼ 0; (47)

where σ⃗nþ3
2, γ⃗nþ3

2, and ⃗rnþ
1
2 are understood as the restriction to the

components corresponding to the macroelement SðνiÞ. Similarly,
the mass matrix Mu is also block diagonal, namely,

Mu ¼

0
BBB@

MRðκ1Þ
u

MRðκ2Þ
u

. .
.

MRðκFÞ
u

1
CCCA; (48)

where F is the number of second-type macroelements, which is the
same as the number of edges in the initial triangulation T h

0. There-
fore, equation 42 can be solved element-by-element as well.
The system defined in equation 47 is invertible. From the clas-

sical theory of saddle point problem, we need to show that, for every
η ∈ Xh, there exists α ∈ ðWhÞ2, such that

Z
Ω
ðα12 − α21Þηdx ≔

Z
Ω
α · ηdx ¼

Z
Ω
η2dx; (49)

and

Z
Ω
Aα · αdx ≤ K0

Z
Ω
η2dx; (50)

where α12 is the second component of α1 ∈ Wh, α21 is the first com-
ponent of α2 ∈ Wh, and K0 > 0 is a constant independent of the
mesh size. Consider a triangle τ ∈ T h. From the theory of Chung
and Engquist (2009), we can find a unique α1 satisfying

α1 · n ¼ 0; on κ ∈ ∂τ ∩ F σ;Z
τ
α11ηdx ¼ 0;

Z
τ
α11ηdx ¼ 1

2

Z
τ
η2dx: (51)

Similarly, we can find a unique α2 satisfying

α2 · n ¼ 0; on κ ∈ ∂τ ∩ F σ;Z
τ
α21ηdx ¼ −

1

2

Z
τ
η2dx;

Z
τ
α22ηdx ¼ 0: (52)

Note that the above constructions can be done on each τ ∈ T h with-
out destroying the continuity conditions in the space Wh. Finally,
from the above construction, we can see easily that equations 46 and
47 hold.

Numerical stability

Wewill now derive a sufficient condition on the size of Δt for the
stability of the SDGmethod in equations 42 and 43. Wewill assume
that the source term f ¼ 0 to simplify the calculations, and we re-
mark that the same steps can be used to show stability of the method
when f ≠ 0. First, multiplying equation 43 by u⃗nþ1 þ u⃗n, we obtain
for k ¼ 1 and 2

�
Mu

u⃗nþ1
k − u⃗nk
Δt

; u⃗nþ1
k þ u⃗nk

�
þ
�
Bσ⃗nþ1

2

k ; u⃗nþ1
k þ u⃗nk

�

¼
�
f
nþ1

2

k ; u⃗nþ1
k þ u⃗nk

�
: (53)

Moreover, multiplying equation 43 by σ⃗nþ3
2 þ σ⃗nþ1

2, we obtain

�
Mσ

σ⃗nþ3
2 − σ⃗nþ1

2

Δt
; σ⃗nþ3

2 þ σ⃗nþ1
2

�

−
�
~B�u⃗nþ1; σ⃗nþ3

2 þ σ⃗nþ1
2

�
¼ 0. (54)

By the fact that B� ¼ BT , which is proved by Chung and Engquist
(2009) and the definition of ~B�, we have

�
Bσ⃗nþ1

2

1 ; u⃗n1

�
þ
�
Bσ⃗nþ1

2

2 ; u⃗n2

�
−
�
~B�u⃗n; σ⃗nþ1

2

�

¼
�
σ⃗nþ1

2

1 ;BT u⃗n1

�
þ
�
σ⃗nþ1

2

2 ;BT u⃗n2

�
−
�
~B�u⃗n; σ⃗nþ1

2

�
;

¼
�
σ⃗nþ1

2

1 ;B�u⃗n1

�
þ
�
σ⃗nþ1

2

2 ;B�u⃗n2

�
−
�
~B�u⃗n; σ⃗nþ1

2

�
;

¼0: (55)

Let N > 1 be a fixed integer. Summing equations 53 and 54 from
n ¼ 0 to n ¼ N − 1 and using equation 55, we have
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EN ¼ E0 þ Δt
2

�
~Bσ⃗Nþ1

2; u⃗N
�
−
Δt
2

�
σ⃗1

2; ~B�u⃗0
�
; (56)

where

En ≔
1

2
ðku⃗n1k2Mu

þ ku⃗n2k2Mu
þ kσ⃗nþ1

2k2Mσ
Þ; (57)

and the norms above are defined as

ku⃗nkk2Mu
¼ðMuu⃗nk;u⃗

n
kÞ; k¼1;2; kσ⃗nþ1

2k2Mσ
¼ðMσσ⃗nþ1

2;σ⃗nþ1
2Þ:

(58)

Let K ≔ ~M
−1
2

u ~BM
−1
2

σ , where

~Mu ¼
�
Mu 0

0 Mu

�
: (59)

By the Cauchy-Schwarz inequality, we have

�
~Bσ⃗Nþ1

2; u⃗N
�

≤ kKk2ku⃗Nk ~Mu
kσ⃗Nþ1

2kMσ
; (60)

where

ku⃗Nk2~Mu
¼ ku⃗N1 k2Mu

þ ku⃗N2 k2Mu
: (61)

We will now show that the SDG method is stable if Λ ≔ ΔtkKk2 <
2. Using this assumption, equation 56 can be written as

EN ≤ E0 þ Λ
2
ku⃗Nk ~Mu

kσ⃗Nþ1
2kMσ

þ Λ
2
ku⃗0k ~Mu

kσ⃗1
2kMσ

; (62)

which becomes

EN ≤E0þΛ
4
ðku⃗Nk2~Mu

þkσ⃗Nþ1
2k2Mσ

ÞþΛ
4
ðku⃗0k2~Mu

þkσ⃗1
2k2Mσ

Þ:
(63)

Hence, we have

EN ≤
1þ Λ

2

1 − Λ
2

E0; (64)

provided 1 − Λ∕2 > 0. The above inequality gives the stability of
the SDG method because Λ < 2. To find the explicit form of kKk2,
it is known that kKk2 is proportional to h−1, where h is the mesh
size because the operator K is a discrete first-order derivative oper-
ator. Thus, we can write

kKk2 ¼ Ch−1; (65)

for some constant C. The value of C can be found by computing
kKk2 for different values of h and by using a least-squares fitting.

Construction of basis functions

Wewill present the construction of basis functions in this section.
First, we describe the basis functions for Uh. By definition, a func-
tion v ∈ Uh is a polynomial of degree m ≥ 1 on each triangle τ ∈
T h and is continuous on the edges κ ∈ F 0

u. Thus, v is decoupled
along the boundaries of the second-type macroelement RðκÞ for all
κ ∈ F u. Therefore, the basis functions for the space Uh are con-
structed locally on RðκÞ. We will consider an interior edge κ ∈
F 0

u and discuss the corresponding construction of basis functions
on RðκÞ. The case that κ belongs to the boundary of the computa-
tional domain can be constructed in the same way. With reference to
Figure 1, we will need piecewise polynomials of degree m that are
continuous on κ. Thus, the basis functions can be taken as the stan-
dard conforming finite-element basis functions applied to the domain
RðκÞ with a triangulation composed of two triangles. Second, for
the space Xh, the basis functions can be taken as Lagrange basis
functions on each triangle in T h because there is no continuity re-
quirement.
Finally, we describe the construction of the basis functions for the

spaceWh. By definition, a vector α ∈ Wh is a vector polynomial on
each triangle τ ∈ T h with continuous normal components on the
edges κ ∈ F σ . Thus, α is decoupled along the boundaries of the
first-type macroelements SðνÞ for all ν ∈ N . Therefore, the basis
functions for the spaceWh are constructed locally on SðνÞ. We will
now present a convenient way to construct these functions. Con-
sider a first-type macroelement SðνÞ. Let P1; P2; andP3 be the three
vertices of SðνÞ and P4 ¼ ν, which is the point chosen for the sub-
division process required by the SDG method (see Figure 2). The
corresponding three subtriangles are denoted by τ1 ¼ P2P3P4,
τ2 ¼ P1P3P4, and τ3 ¼ P1P2P4. Moreover, for each of the three
edges PkP4 (k ¼ 1; 2, and 3), in the interior of SðνÞ, we define
a region ωk by the union of the two subtriangles having the edge
PkP4. That is, ω1 ¼ τ2 ∪ τ3, ω2 ¼ τ1 ∪ τ3, and ω3 ¼ τ1 ∪ τ2. In
addition, we use nk, k ¼ 1; 2, and 3, to denote a fixed unit normal
vector for the edges PkP4. The basis functions are divided into three
types, and each of these three types of basis functions is supported in
ω1;ω2, andω3, respectively. Wewill present the construction of basis
function for the first type, namely, those basis functions having sup-
port in ω1. The other two types can be constructed similarly. For the
first type of basis functions α, we impose the following conditions:

α · n2 ¼ 0; on P2P4; α · n3 ¼ 0; on P3P4; (66)Figure 2. Notations for the construction of basis for Wh.
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that is, α has a zero normal component on the edges P2P4 and P3P4.
To obtain the above condition, we require α · n2 to be identically zero
on ω2 and α · n3 to be identically zero on ω3. Notice that, using this
construction, we have α · n2 and α · n3 are identically zero on τ1
because τ1 is the intersection of ω2 and ω3. Next, we recall that
the space Wh requires that α · n1 be continuous on P1P4. We
now consider ω1 and define α · n1 to be a polynomial of degree
m in each subtriangle of ω1, such that α · n1 is continuous
on P1P4. Similar to the construction of basis functions for the space
Uh, we now choose basis functions of α · n1 on ω1 to be the classical
conforming finite-element basis functions defined in the domain ω1

corresponding to the triangulation ω1 ¼ τ2 ∪ τ3. The construction of
basis function is now completed. Because α · n1 and α · n3 are speci-
fied in τ2, the vector α in τ2 can be reconstructed. Similarly, α · n1
and α · n2 are specified in τ3, so that the vector α can be recon-
structed. Specifically, we can then write

αðxÞ · n1 ¼
�
g2ðxÞ in τ2
g3ðxÞ in τ3

; (67)

where g2 and g3 are polynomials of degree m chosen in the way ex-
plained above. On τ2, we have α · n1 ¼ g2 and α · n3 ¼ 0. Hence,
we have on τ2

α ¼ g2
1 − ðn1 · n3Þ2

n1 −
ðn1 · n3Þg2

1 − ðn1 · n3Þ2
n3: (68)

Similarly, we have on τ3

α ¼ g3
1 − ðn1 · n2Þ2

n1 −
ðn1 · n2Þg3

1 − ðn1 · n2Þ2
n2: (69)

In Figure 3, plots of the first type of basis functions for the case
m ¼ 1 are shown. Notice that, these basis functions have support in
ω1. Moreover because m ¼ 1, there are only four distinct basis
functions. In particular, ω1 is the union of two subtriangles τ2 and
τ3. By the above construction, we need basis functions for α · n1
that are linear in each of τ2 and τ3, and are continuous on P1P4.
Thus, we see that there are only four choices, by taking α · n1 equal
to one at one of the four vertices of ω1 and zero at the other three
vertices.

NUMERICAL RESULTS

In this section, we present some numerical results to show the per-
formance of the SDG method for the simulation of seismic waves. In
our test examples, the velocities and stresses are zero initially, and a
point source is vertically excited near the free surface. The source
function is taken as the first derivative of a Gaussian function
defined as

wðtÞ ¼ 2πf0ðt − t0Þe−π2f20ðt−t0Þ2 ; (70)

where f0 is the frequency (in hertz), and t0 is a shift in time (in sec-
onds). More precisely, in equation 6, we set f1 ¼ 0 and f2 to be a
point source with the time component being the first derivative of
wðtÞ. In all examples shown below, the frequency f0 is 50 Hz and
t0 is 24 ms.
We will perform computations in rectangular and irregular do-

mains. For rectangular domains, we first subdivide the domain into

equal-size squares, and then we divide each square into two trian-
gles, which forms the initial mesh T h

0. Then, we choose the cent-
roid as ν in each triangle and subdivide each triangle into three in
the way presented in the previous section. The resulting triangula-
tion is T h. For computational domains with surface topography, we
will use an unstructured mesh as the initial mesh T h

0 near the free
surface and use a structured mesh, similar to the one used for rec-
tangular computational domains, as the initial mesh T h

0 for the rest
of the computational domain (see Figure 4 for an illustration). The
purpose of doing this is to make the simulations more efficient. We
remark that the diameter of the triangles in the unstructured mesh is

Figure 3. Plots of the first-type basis functions forWh on SðνÞ with
m ¼ 1.

Figure 4. A schematic for an initial triangulation for computational
domains with surface topography, where unstructured mesh is used
near the free surface and regular mesh is used for the rest of the
domain.
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about the same size as the diameters of the triangles in the regular
mesh. In all simulations, we will use Δt ≈ 2hC−1, which is sufficient
for stability, where the constant C is determined by equation 65.
For our numerical tests presented below, we will consider the use

of four different materials. Their P-wave velocity VP, S-wave veloc-
ity VS, density ρ, and Poisson’s ratio ν are summarized in Table 1.
We can then find a time step Δt to ensure the stability with the

method described in the previous section. For example, we obtain
C ≈ 8900 and C ≈ 9130 for materials 1 and 2, respectively. Thus,
the stability conditions for these two cases are Δt < 2.25 × 10−4h
and Δt < 2.20 × 10−4h, respectively. We remark that this implies
that the Courant-Friedrichs-Lewy (CFL) number, defined as
vpΔt∕h is approximately 0.117. We recall that the CFL number
for the second-order FDM is approximately 0.707. Hence, the sta-
bility condition for our SDG method with piecewise linear elements
is approximately six times more restrictive than that of the second-
order FDM. Notice that this fact is partly due to the regularity of the
triangles.
In our first example, called example 1, we will perform the sim-

ulations of seismic waves for a point source located near a flat
surface without the use of PMLs. The domain of interest is
½40; 240 m� × ½0; 100 m�, and the physical parameters appearing in
the seismic wave equations 5 and 6 are taken as the values for
material 1 defined in Table 1. We will consider a relatively small
simulation time, so that no reflection is created from the boundary
of the domain, and therefore a zero boundary condition for the
velocity is assumed. We choose a point source that is vertically ex-
cited at [140 and 0 m]. For the numerical computations using our
SDG method, we take the mesh size as h ¼ 0.167 m and the time
step size as Δt ¼ 0.033 ms, so that the method is stable and accu-
rate enough. In Figure 5, we present a snapshot of vertical velocity
u2 at time t ¼ 0.25 s. From this figure, we can see the P- and

S-waves as well as the Rayleigh wave. In addition, the faster P-
wave, which is traveling at a speed of 520 ms−1, has propagated
for a distance of approximately 130 m. Also, the slower S-wave,
which is traveling at a speed of 300 ms−1, has been propagated for
a distance of approximately 75 m. On the other hand, we see that the
Rayleigh wave is traveling along the free surface, and its speed is
slightly smaller than that of the S-wave. To show the accuracy of the
SDG method, we compare the solution obtained by the SDG meth-
od and a reference solution obtained by a fourth-order staggered-
grid FDM on a very fine mesh. In Figure 6, we present this com-
parison at four different observation points (160 and 5 m), (180 and
5 m), (200 and 5 m), and (220 and 5 m), where the blue curve rep-
resents the SDG solution and the red dashed line represents the
reference solution. From these comparisons, we see clearly that the
SDG method gives a very accurate solution. In Figure 7, we present
the ability of the SDG method in preserving the wave energy by
computing the relative rate of change of energy over time, which
is defined as

δðtÞ ¼ 1

E∞

dE
dt

; (71)

where the energy EðtÞ is given by

EðtÞ ¼ 1

2

Z
Ω
ðρu21 þ ρu22 þ σTAσÞdx; (72)

and E∞ is the total amount of energy created by the point source. As
we can see in Figure 7, the source enters into the computational
domain between the initial time and 0.05 ms. After this time, we
see clearly that the relative rate of change of energy δðtÞ remains
zero, confirming the energy conservation property of our scheme. In
Figure 8, we present a comparison of seismograms for our SDG
solution and the reference solution at the depth z ¼ 5 m for times
up to 0.25 s. We again see that our method performs well.
In example 2, we simulate the S-wave and the Rayleigh wave

for a material with higher Poisson’s ratio. The domain of interest
is ½5; 45 m� × ½0; 15 m�. The physical parameters appearing in the
seismic-wave equations 5 and 6 are taken as the values for material
2 defined in Table 1. We also apply the multiaxial PMLs (MPMLs)
(see, e.g., Meza-Fajardo and Papageorgiou, 2008) with a 5 m width
on the boundary of the domain except the free surface. A point
source is vertically excited at [10 and 0 m]. For the numerical com-
putations by our SDG method, the mesh size h ¼ 0.05 m and the
time step size Δt ¼ 0.01 ms. Snapshots for u2 at times 0.2, 0.4, and
0.6 s are shown in Figure 9, where the black lines represent the
interface between the computational domain and the MPMLs. First
of all, we see that the fast P-wave, with a velocity of 520 m/s, has
already left the computational domain. With the MPML, the
P-wave leaves the domain without much artificial reflection. More-
over, we can see clearly the slower S-wave and the Rayleigh wave
near the surface. The S-wave reaches the lower boundary of the
domain and is absorbed by the MPML. In addition, we show the
comparison of our solution to the reference solution obtained by
a fourth-order finite-difference scheme on a very fine mesh at some
observation points in Figure 10. It is evident that our SDGmethod is
able to produce accurate numerical solutions, and it preserves the
wave energy well. We remark that the SDG solution travels a little
bit slower than the reference solution, which is due to numerical

Table 1. The P- and S-wave velocities, densities, and
Poisson’s ratios used in our examples.

Material VP (m/s) VS (m/s) ρ ðkgm−3Þ ν

1 520 300 1500 0.251

2 520 52 1500 0.495

3 160 50 1800 0.446

4 200 80 2000 0.405

Figure 5. The snapshot for the vertical velocity u2 at t ¼ 0.25 s in
example 1.
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dispersion. We will discuss more about numerical dispersion at the
end of this section.
In our third example, called example 3, we will stimulate Ray-

leigh waves in a heterogeneous material with vertical variations in
velocity structure on scales smaller than a wavelength. The domain
of interest is ½20; 260 m� × ½0; 120 m�. Moreover, the density is
1500 kgm−3, and the P- and S-wave velocities are described in

Figure 11. For the numerical computations, we will apply zero
boundary conditions at x ¼ 0 and 280 m. The mesh size is taken
as 0.2 m, and the time step size is taken according to the stability
condition presented in the previous section. A point source is ver-
tically excited at [140 and 0 m], and the snapshot of the solution u2
at the simulation time T ¼ 0.4 s is shown in Figure 12. From this
figure, we see clearly the dispersive behavior of the Rayleigh wave
for a vertically varying velocity model is accurately captured. In ad-
dition, a comparison of seismograms of the SDG solution and a refer-
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Figure 7. The source function and the relative rate of change of the
energy over time in example 1.
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Figure 6. Comparison of our solution (SDG) to a reference solution
at various observation points in example 1.
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Figure 8. Comparison of seismograms with the SDG and the refer-
ence solutions for example 1.
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ence solution is shown in Figure 13. Despite some small differences,
we can see that the two solutions have a very good match.
In examples 4 and 5, we demonstrate the ability of our scheme to

simulate Rayleigh waves in a domain with surface topography. We
assume again that the physical parameters appearing in the seismic-
wave equations 5 and 6 are taken as the values for material 2 defined
in Table 1. In example 4, the surface topography is mathematically
modeled by the function Γ4ðxÞ ¼ −4 expð− ðx−8Þ2

20
Þ and is a convex

shaped surface. The computational domain and the MPML are de-
picted in Figure 13. The point source is vertically excited at [8 and
−4 m], which is at the top part of the convex region of the free sur-
face. For the numerical computations by our SDGmethod, the mesh
size h ¼ 0.05 m and the time step size is Δt ¼ 3.33 μs to ensure
stability and accuracy. We also apply the MPML with a 5 m
width to absorb outgoing waves. The snapshots of u2 at times
t ¼ 0.1 , 0.3, and t ¼ 0.5 s are shown in Figure 14. First, we see
clearly that the fast P-wave has already left the domain and that
the MPML successfully absorbs the outgoing P-wave. On the
other hand, the slower S-wave and the Rayleigh wave near the free
surface are accurately simulated. We also see that the S-wave is suc-
cessfully absorbed by the MPML in the left and the lower layers.
In example 5, the surface topography is modeled by the function

Γ5ðxÞ ¼ 3 expð− ðx−20Þ2
20

Þ and is a concave-shaped surface. The
computational domain and the MPML are depicted in Figure 15.
The point source is vertically excited at [6 and 0 m], which is
on the part of the flat surface located on the left of the concave free
surface. For the numerical computations by our SDG method, the
mesh size h ¼ 0.05 m, the time step size is Δt ¼ 0.006 ms, and
MPML is also used to absorb outgoing waves. The snapshots of

u2 at times t ¼ 0.1 , 0.3, and 0.5 s are shown in Figure 15. We ob-
serve a similar behavior as in example 4.
In example 6, we consider the surface topography and internal

discontinuities. The surface topology is given by Γ6ðxÞ ¼
−4 expð− ðx−8Þ2

20
Þ, which is the same as Γ4 in example 4. The internal

interface between the two layers of different materials is given by
Γ6ðxÞ þ 8. This definition can be seen in Figure 16, where the dot-

Figure 9. Snapshots for the vertical velocity u2 in example 2. The
black lines indicate the interface between the domain of interest and
the MPMLs.
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Figure 10. Comparison of our solution (SDG) to a reference sol-
ution at various observation points in example 2.
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ted lines represent the interface between the two materials. The
upper layer consists of material 3 and the lower layer consists of
material 4 in Table 1, respectively. For the computations by the
SDG method, the mesh size is h ¼ 0.10 m and the time step size
is 0.0125 ms, so that the method is stable and accurate. The snap-
shots of the solution u2 at times t ¼ 0.05, 0.2, 0.3, and 0.4 s are
shown in Figure 16. First, we see that the S-wave and the Rayleigh
wave are well captured. Moreover, the reflection and transmission
of the waves at the internal discontinuities are accurately computed.

Numerical study of dispersion error

In this section, we present a study of the numerical dispersion of
our SDGmethod. The study is based on the eigenvalue method used
by Cohen (2002) and Chung et al. (2013a) for the acoustic- and
electromagnetic-wave equations. Let f ¼ 0 in equation 5. We con-
sider a plane-wave solution e−iðk·x−ωtÞ of equations 5 and 6, where
k ¼ ðkx; kzÞ is the wavenumber and ω is the angular frequency. No-
tice that we have the following well-known dispersion relation:

ω1 ¼
1

ρ
ðλþ 2μÞðk2x þ k2zÞ and ω2 ¼

1

ρ
μðk2x þ k2zÞ:

(73)

We now consider a rectangular mesh and the SDG system defined in
equations 39, 40, and 42 using the piecewise linear approximation.
Recall that each rectangle is divided into two triangles, which are
denoted generically by SðνÞ. For a given rectangle, we observe that
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Figure 11. The velocity profiles along the depth for example 3.

Figure 12. The snapshot for vertical velocity u2 at T ¼ 0.4 s in ex-
ample 3.

50 100 150 200 250

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Distance (m)

T
im

e 
(s

)

z = 0.2 m

SDG

FD

Figure 13. A comparison of seismograms of the SDG solution and
a reference solution for example 3.

Figure 14. Snapshots for the vertical velocity u2 in example 4. The
black lines indicate the interface between the domain of interest and
the MPMLs.
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there are in total 24 unknowns in the variable u⃗ restricted to this
rectangle, and we use U to represent the vector containing these
24 unknowns. We take the time derivative in equation 39 and use
equations 40 and 41 to eliminate the unknown σ⃗, we obtain the fol-
lowing:

A1Utt ¼ A2
~U; (74)

where A1 is a block diagonal mass matrix and ~U is a vector contain-
ing all relevant nodal values of u⃗. To find the numerical dispersion
relation, we substitute the following plane-wave solutions in equa-
tion 74:

u1 ¼ αre−iðk·x−ωhtÞ and u2 ¼ βre−iðk·x−ωhtÞ; (75)

where αr and βr only depend on the relative position of the nodal
points, and ωh is the numerical wavenumber. Then, we obtain the
following generalized eigenvalue problem:

ω2
h
~A1η ¼ ~A2η: (76)

LetΛ be the set of all generalized eigenvalues for this problem. Then,
the dispersion error for ω1 and ω2 can be computed by

min
ω∈Λ

����ω
2
1

ω2
− 1

���� and min
ω∈Λ

����ω
2
2

ω2
− 1

����: (77)

In Figure 17, we present the results of the SDG numerical dispersion
errors using the physical parameters for material 2 defined in Table 1
and compare them with those obtained from the second and the
fourth FDM. In equation 75, we take k ¼

� ffiffi
1
3

q
;

ffiffi
2
3

q �
.

Figure 15. Snapshots for the vertical velocity u2 in example 5. The
black lines indicate the interface between the domain of interest and
the MPMLs.

Figure 16. Snapshots for the vertical velocity u2 in example 6. The
black lines indicate the interface between the domain of interest and
the MPMLs. The dotted lines indicate the interface between the two
materials.
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From Figure 17, we see that the dispersion error for our piecewise
linear SDG method is smaller than that of the second order FDM.
Being a second-order method, our SDG method performs better in
terms of dispersion than second-order FDM. In addition, we see that
the convergence rate of dispersion error for ω2 is two for our SDG
method and the second-order FDM. Furthermore, for ω1, we see
that the dispersion error has a convergence order of four, which is
the same convergence order for the fourth-order finite-difference
scheme. We also see that the dispersion error for ω1 for our SDG
method is comparable with that of the fourth-order finite-difference
scheme.

Mortar formulation

In this section, we present a strategy specifically designed for the
simulation of Rayleigh waves. It is well known that the Rayleigh
wave travels along the free surface and decays exponentially in the
vertical direction. To make our scheme tailored to this situation, we
present a mortar formulation for our SDG method. We assume that
the computational domain is divided into two parts, one of them is a
thin layer near the free surface. We also assume that a very fine
mesh is used for this thin layer, and a coarse mesh is used in the
rest of the domain. We do not assume that the meshes are matching

near the interface I of these two parts of the computational domain.
A schematic in Figure 18 shows this nonmatching triangulation.
Let UU

h and UL
h be the space for the velocity on the upper mesh

and lower mesh, respectively. We assume that these two spaces are
totally decoupled. We also introduce the space of Lagrange multi-
pliers

Ûh ¼ UU
h jI . (78)

We will need to modify our SDG method defined in equations 26,
28, and 29 in the following way: We note that equations 28 and 29
can be solved locally in each of the two parts of the computational
domain. For equation 26, we need to decouple the velocity un-
knowns in the two parts of the computational domain and then
enforce continuity using the above space of Lagrange multipliers.
The resulting scheme reads: find uh ∈ ðUhÞ2, Σh ∈ ðWhÞ2, and
Γh ∈ Xh, such that

Z
Ω
ρ
∂uh
∂t

· vdxþ
Z
I
ûh · vdsþ

X
κ∈F u

�Z
RðκÞ

Σh ·∇vdx

−
Z
∂RðκÞ

ðΣhnÞ · vds
�

¼
Z
Ω
f · vdx; ∀ v∈ ðUhÞ2; v̂∈ ðÛhÞ2;Z

I
½uh� · v̂ds¼ 0 ∀ v̂∈ ðÛhÞ2;

Z
Ω
A
∂Σh

∂t
·αdxþ

X
ν∈N

�Z
SðνÞ

uhdivαdx−
Z
∂SðνÞ

uh · ðαnÞds
�

þ
Z
Ω
Γh ·αdx¼ 0; ∀ α∈ ðWhÞ2;Z

Ω
Σh ·ηdx¼ 0; ∀η∈Xh; (79)

where ½ûh� is the jump of uh across the mesh interface I . We apply
this method to the same material in example 1 with same domain of
interest and source position. The interface of the two meshes is lo-
cated at z ¼ 6 m. The mesh size for the upper mesh is 0.167 m, and
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Figure 17. The comparison of dispersion error for our SDG method
and finite-difference schemes.

Figure 18. A nonmatching mesh used for the mortar formulation of
our SDG method.
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the mesh size for the lower mesh is 0.5 m. The time step size
Δt ¼ 0.033 ms. In Figure 19, we present the snapshot of solution
u2 at time t ¼ 0.25 s, and in Figure 20, we present a comparison of
the numerical solution and the reference solution at various obser-
vation points from the initial time up to time equals 0.25 s. To com-
pare this example with example 1, we compute the relative error

defined by ku2−u2;refk2
ku2;refk2 at z ¼ 5 m and 0 ≤ t ≤ 0.25 s, where u2;ref is

the reference solution for u2. The relative error for example 1 and
the mortar example is 0.18% and 0.22%, respectively. The results
show that the mortar formulation produces equally accurate results.
Moreover, in the current setting in which the coarse mesh size is
three times larger than the fine mesh size, the speed up is approx-
imately 5.2 times.

CONCLUSIONS

We have developed an SDG method for the velocity-stress formu-
lation of elastic waves. Moreover, by a mortar formulation, our meth-
od can be used for the simulations of Rayleigh waves. The method
enjoys several distinctive features that are particularly attractive: First,
it conserves the wave energy automatically; second, it is optimally
convergent in the L2-norm and the energy norm; third, only solutions
of a block diagonal linear system and a local saddle point system are
needed in each time step, giving a very efficient time marching
scheme; fourth, it is flexible in handling complex geometries, so that
free surface conditions on nonflat surfaces can be imposed easily; and
fifth, it yields solutions with extremely low dispersion errors. Numer-
ical examples have shown that the SDG method provides a competi-
tive alternative for simulations of seismic and Rayleigh waves with
irregular surface topography.
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