
Chapter 1

Introduction

Claude Shannon’s 1948 paper “A Mathematical Theory of Communication”
gave birth to the twin disciplines of information theory and coding theory. The
basic goal is efficient and reliable communication in an uncooperative (and pos-
sibly hostile) environment. To be efficient, the transfer of information must not
require a prohibitive amount of time and effort. To be reliable, the received
data stream must resemble the transmitted stream to within narrow tolerances.
These two desires will always be at odds, and our fundamental problem is to
reconcile them as best we can.

At an early stage the mathematical study of such questions broke into the
two broad areas. Information theory is the study of achievable bounds for com-
munication and is largely probabilistic and analytic in nature. Coding theory
then attempts to realize the promise of these bounds by models which are con-
structed through mainly algebraic means. Shannon was primarily interested in
the information theory. Shannon’s colleague Richard Hamming had been labor-
ing on error-correction for early computers even before Shannon’s 1948 paper,
and he made some of the first breakthroughs of coding theory.

Although we shall discuss these areas as mathematical subjects, it must
always be remembered that the primary motivation for such work comes from
its practical engineering applications. Mathematical beauty can not be our sole
gauge of worth. Here we shall concentrate on the algebra of coding theory,
but we keep in mind the fundamental bounds of information theory and the
practical desires of engineering.

1.1 Basics of communication

Information passes from a source to a sink via a conduit or channel. In our
view of communication we are allowed to choose exactly the way information is
structured at the source and the way it is handled at the sink, but the behaviour
of the channel is not in general under our control. The unreliable channel may
take many forms. We may communicate through space, such as talking across

1

2 CHAPTER 1. INTRODUCTION

a noisy room, or through time, such as writing a book to be read many years
later. The uncertainties of the channel, whatever it is, allow the possibility that
the information will be damaged or distorted in passage. My conversation may
be drowned out or my manuscript might weather.

Of course in many situations you can ask me to repeat any information that
you have not understood. This is possible if we are having a conversation (al-
though not if you are reading my manuscript), but in any case this is not a
particularly efficient use of time. (“What did you say?” “What?”) Instead to
guarantee that the original information can be recovered from a version that is
not too badly corrupted, we add redundancy to our message at the source. Lan-
guages are sufficiently repetitive that we can recover from imperfect reception.
When I lecture there may be noise in the hallway, or you might be unfamiliar
with a word I use, or my accent could confuse you. Nevertheless you have a
good chance of figuring out what I mean from the context. Indeed the language
has so much natural redundancy that a large portion of a message can be lost
without rendering the result unintelligible. When sitting in the subway, you are
likely to see overhead and comprehend that “IF U CN RD THS U CN GT A
JB.”

Communication across space has taken various sophisticated forms in which
coding has been used successfully. Indeed Shannon, Hamming, and many of the
other originators of mathematical communication theory worked for Bell Tele-
phone Laboratories. They were specifically interested in dealing with errors that
occur as messages pass across long telephone lines and are corrupted by such
things as lightening and crosstalk. The transmission and reception capabilities
of many modems are increased by error handling capability embedded in their
hardware. Deep space communication is subject to many outside problems like
atmospheric conditions and sunspot activity. For years data from space missions
has been coded for transmission, since the retransmission of data received fault-
ily would be very inefficient use of valuable time. A recent interesting case of
deep space coding occurred with the Galileo mission. The main antenna failed
to work, so the possible data transmission rate dropped to only a fraction of
what was planned. The scientists at JPL reprogrammed the onboard computer
to do more code processing of the data before transmission, and so were able to
recover some of the overall efficiency lost because of the hardware malfunction.

It is also important to protect communication across time from inaccura-
cies. Data stored in computer banks or on tapes is subject to the intrusion
of gamma rays and magnetic interference. Personal computers are exposed to
much battering, so often their hard disks are equipped with “cyclic redundancy
checking” CRC to combat error. Computer companies like IBM have devoted
much energy and money to the study and implementation of error correcting
techniques for data storage on various mediums. Electronics firms too need
correction techniques. When Phillips introduced compact disc technology, they
wanted the information stored on the disc face to be immune to many types of
damage. If you scratch a disc, it should still play without any audible change.
(But you probably should not try this with your favorite disc; a really bad
scratch can cause problems.) Recently the sound tracks of movies, prone to film

1.1. BASICS OF COMMUNICATION 3

breakage and scratching, have been digitized and protected with error correction
techniques.

There are many situations in which we encounter other related types of com-
munication. Cryptography is certainly concerned with communication, however
the emphasis is not on efficiency but instead upon security. Nevertheless modern
cryptography shares certain attitudes and techniques with coding theory.

With source coding we are concerned with efficient communication but the
environment is not assumed to be hostile; so reliability is not as much an issue.
Source coding takes advantage of the statistical properties of the original data
stream. This often takes the form of a dual process to that of coding for cor-
rection. In data compaction and compression1 redundancy is removed in the
interest of efficient use of the available message space. Data compaction is a
form of source coding in which we reduce the size of the data set through use of
a coding scheme that still allows the perfect reconstruction of the original data.
Morse code is a well established example. The fact that the letter “e” is the
most frequently used in the English language is reflected in its assignment to
the shortest Morse code message, a single dot. Intelligent assignment of symbols
to patterns of dots and dashes means that a message can be transmitted in a
reasonably short time. (Imagine how much longer a typical message would be
if “e” was represented instead by two dots.) Nevertheless, the original message
can be recreated exactly from its Morse encoding.

A different philosophy is followed for the storage of large graphic images
where, for instance, huge black areas of the picture should not be stored pixel
by pixel. Since the eye can not see things perfectly, we do not demand here
perfect reconstruction of the original graphic, just a good likeness. Thus here
we use data compression, “lossy” data reduction as opposed to the “lossless”
reduction of data compaction. The subway message above is also an example
of data compression. Much of the redundancy of the original message has been
removed, but it has been done in a way that still admits reconstruction with a
high degree of certainty. (But not perfect certainty; the intended message might
after all have been nautical in thrust: “IF YOU CANT RIDE THESE YOU
CAN GET A JIB.”)

Although cryptography and source coding are concerned with valid and im-
portant communication problems, they will only be considered tangentially here.

One of the oldest forms of coding for error control is the adding of a parity
check bit to an information string. Suppose we are transmitting strings com-
posed of 26 bits, each a 0 or 1. To these 26 bits we add one further bit that
is determined by the previous 26. If the initial string contains an even number
of 1’s, we append a 0. If the string has an odd number of 1’s, we append a
1. The resulting string of 27 bits always contains an even number of 1’s, that
is, it has even parity. In adding this small amount of redundancy we have not
compromised the information content of the message greatly. Of our 27 bits,
26 of them carry information. But we now have some error handling ability.

1We follow Blahut by using the two terms compaction and compression in order to distin-
guish lossless and lossy compression.

4 CHAPTER 1. INTRODUCTION

If an error occurs in the channel, then the received string of 27 bits will have
odd parity. Since we know that all transmitted strings have even parity, we
can be sure that something has gone wrong and react accordingly, perhaps by
asking for retransmission. Of course our error handling ability is limited to this
possibility of detection. Without further information we are not able to guess
the transmitted string with any degree of certainty, since a received odd parity
string can result from a single error being introduced to any one of 27 different
strings of even parity, each of which might have been the transmitted string.
Furthermore there may have actually been more errors than one. What is worse,
if two bit errors occur in the channel (or any even number of bit errors), then
the received string will still have even parity. We may not even notice that a
mistake has happened.

Can we add redundancy in a different way that allows us not only to detect
the presence of bit errors but also to decide which bits are likely to be those in
error? The answer is yes. If we have only two possible pieces of information,
say 0 for “by sea” and 1 for “by land,” that we wish to transmit, then we could
repeat each of them three times — 000 or 111 . We might receive something
like 101 . Since this is not one of the possible transmitted patterns, we can as
before be sure that something has gone wrong; but now we can also make a
good guess at what happened. The presence of two 1’s but only one 0 points
strongly to a transmitted string 111 plus one bit error (as opposed to 000 with
two bit errors). Therefore we guess that the transmitted string was 111. This
“majority vote” approach to decoding will result in a correct answer provided
at most one bit error occurs.

Now consider our channel that accepts 27 bit strings. To transmit each of
our two messages, 0 and 1, we can now repeat the message 27 times. If we
do this and then decode using “majority vote” we will decode correctly even if
there are as many as 13 bit errors! This is certainly powerful error handling,
but we pay a price in information content. Of our 27 bits, now only one of them
carries real information. The rest are all redundancy.

We thus have two different codes of length 27 — the parity check code
which is information rich but has little capability to recover from error and the
repetition code which is information poor but can deal well even with serious
errors. The wish for good information content will always be in conflict with
the desire for good error performance. We need to balance the two. We hope
for a coding scheme that communicates a decent amount of information but can
also recover from errors effectively. We arrive at a first version of

The Fundamental Problem — Find codes with both reasonable
information content and reasonable error handling ability.

Is this even possible? The rather surprising answer is, “Yes!” The existence of
such codes is a consequence of the Channel Coding Theorem from Shannon’s
1948 paper (see Theorem 2.3.2 below). Finding these codes is another question.
Once we know that good codes exist we pursue them, hoping to construct prac-
tical codes that solve more precise versions of the Fundamental Problem. This
is the quest of coding theory.

1.2. GENERAL COMMUNICATION SYSTEMS 5

Figure 1.1: Shannon’s model of communication

Information
Source

-

Message

Transmitter

-

Signal

Channel

-

Received
Signal

Receiver

-

Message

Destination

6

Noise
Source

1.2 General communication systems

We begin with Shannon’s model of a general communication system, Figure
1.2. This setup is sufficiently general to handle many communication situations.
Most other communication models, such as those requiring feedback, will start
with this model as their base.

Our primary concern is block coding for error correction on a discrete mem-
oryless channel. We next describe these and other basic assumptions that are
made here concerning various of the parts of Shannon’s system; see Figure 1.2.
As we note along the way, these assumptions are not the only ones that are
valid or interesting; but in studying them we will run across most of the com-
mon issues of coding theory. We shall also honor these assumptions by breaking
them periodically.

We shall usually speak of the transmission and reception of the words of the
code, although these terms may not be appropriate for a specific envisioned ap-
plication. For instance, if we are mainly interested in errors that affect computer
memory, then we might better speak of storage and retrieval.

1.2.1 Message

Our basic assumption on messages is that each possible message k-tuple is as
likely to be selected for broadcast as any other.

We are thus ignoring the concerns of source coding. Perhaps a better way
to say this is that we assume source coding has already been done for us. The
original message has been source coded into a set of k-tuples, each equally
likely. This is not an unreasonable assumption, since lossless source coding is
designed to do essentially this. Beginning with an alphabet in which different

6 CHAPTER 1. INTRODUCTION

Figure 1.2: A more specific model

-Message

k-tuple

Encoder

-

Codeword
n-tuple

Channel

-

Received
n-tuple

Decoder

-

-
Estimate of:

Message k-tuple

or
Codeword n-tuple

6

Noise

letters have different probabilities of occurrence, source coding produces more
compact output in which frequencies have been levelled out. In a typical string
of Morse code, there will be roughly the same number of dots and dashes. If the
letter “e” was mapped to two dots instead of one, we would expect most strings
to have a majority of dots. Those strings rich in dashes would be effectively
ruled out, so there would be fewer legitimate strings of any particular reasonable
length. A typical message would likely require a longer encoded string under
this new Morse code than it would with the original. Shannon made these
observations precise in his Source Coding Theorem which states that, beginning
with an ergodic message source (such as the written English language), after
proper source coding there is a set of source encoded k-tuples (for a suitably
large k) which comprises essentially all k-tuples and such that different encoded
k-tuples occur with essentially equal likelihood.

1.2.2 Encoder

We are concerned here with block coding. That is, we transmit blocks of symbolsblock coding

of fixed length n from a fixed alphabet A. These blocks are the codewords, and
that codeword transmitted at any given moment depends only upon the present
message, not upon any previous messages or codewords. Our encoder has no
memory. We also assume that each codeword from the code (the set of all
possible codewords) is as likely to be transmitted as any other.

Some work has been done on codes over mixed alphabets, that is, allowing
the symbols at different coordinate positions to come from different alphabets.
Such codes occur only in isolated situations, and we shall not be concerned with
them at all.

Convolutional codes, trellis codes, lattice codes, and others come from en-

1.2. GENERAL COMMUNICATION SYSTEMS 7

Figure 1.3: The Binary Symmetric Channel

c
c

c
c

1

0

1

0

-

-

��
��

��*
HH

HHH
Hj

q

q

p

p

coders that have memory. We lump these together under the heading of con-
volutional codes. The message string arrives at the decoder continuously rather convolutional codes

than segmented into unrelated blocks of length k, and the code string emerges
continuously as well. That n-tuple of code sequence that emerges from the en-
coder while a given k-tuple of message is being introduced will depend upon
previous message symbols as well as the present ones. The encoder “remem-
bers” earlier parts of the message. The coding most often used in modems is of
convolutional type.

1.2.3 Channel

As already mentioned, we shall concentrate on coding on a discrete memoryless
channel or DMC. The channel is discrete because we shall only consider finite discrete memoryless channel

DMCalphabets. It is memoryless in that an error in one symbol does not affect the
reliability of its neighboring symbols. The channel has no memory, just as above
we assumed that the encoder has no memory. We can thus think of the channel
as passing on the codeword symbol-by-symbol, and the characteristics of the
channel can described at the level of the symbols.

An important example is furnished by the m-ary symmetric channel. The
m-ary symmetric channel has input and output an alphabet of m symbols, say m-ary symmetric channel

x1, . . . , xm. The channel is characterized by a single parameter p, the probabil-
ity that after transmission of any symbol xj the particular symbol xi 6= xj is
received. That is,

p = Prob(xi |xj), for i 6= j .

Related are the probability
s = (m− 1)p

that after xj is transmitted it is not received correctly and the probability

q = 1− s = 1− (m− 1)p = Prob(xj |xj))

that after xj is transmitted it is received correctly. We write mSC(p) for the m- mSC(p)

ary symmetric channel with transition probability p. The channel is symmetric transition probability
in the sense Prob(xi |xj) does not depend upon the actual values of i and j but
only on whether or not they are equal. We are especially interested in the 2-ary
symmetric channel or binary symmetric channel BSC(p) (where p = s). BSC(p)

Of course the signal that is actually broadcast will often be a measure of some
frequency, phase, or amplitude, and so will be represented by a real (or complex)

8 CHAPTER 1. INTRODUCTION

number. But usually only a finite set of signals is chosen for broadcasting, and
the members of a finite symbol alphabet are modulated to the members of the
finite signal set. Under our assumptions the modulator is thought of as part
of the channel, and the encoder passes symbols of the alphabet directly to the
channel.

There are other situations in which a continuous alphabet is the most ap-
propriate. The most typical model is a Gaussian channel which has as alphabetGaussian channel

an interval of real numbers (bounded due to power constraints) with errors
introduced according to a Gaussian distribution.

The are also many situations in which the channel errors exhibit some kind
of memory. The most common example of this is burst errors. If a particular
symbol is in error, then the chances are good that its immediate neighbors are
also wrong. In telephone transmission such errors occur because of lightening
and crosstalk. A scratch on a compact disc produces burst errors since large
blocks of bits are destroyed. Of course a burst error can be viewed as just one
type of random error pattern and be handled by the techniques that we shall
develop. We shall also see some methods that are particularly well suited to
dealing with burst errors.

One final assumption regarding our channel is really more of a rule of thumb.
We should assume that the channel machinery that carries out modulation,
transmission, reception, and demodulation is capable of reproducing the trans-
mitted signal with decent accuracy. We have a

Reasonable Assumption — Most errors that occur are not severe.

Otherwise the problem is more one of design than of coding. For a DMC we
interpret the reasonable assumption as saying that an error pattern composed
of a small number of symbol errors is more likely than one with a large number.
For a continuous situation such as the Gaussian channel, this is not a good
viewpoint since it is nearly impossible to reproduce a real number with perfect
accuracy. All symbols are likely to be received incorrectly. Instead we can think
of the assumption as saying that whatever is received should resemble to a large
degree whatever was transmitted.

1.2.4 Received word

We assume that the decoder receives from the channel an n-tuple of symbols
from the transmitter’s alphabet A.

This assumption could be included in our discussion of the channel, since
it really concerns the demodulator, which we think of as part of the chan-
nel just as we do the modulator. Many implementations combine the de-
modulator with the decoder in a single machine. This is the case with com-
puter modems which serve as encoder/modulator and demodulator/decoder
(MOdulator-DEModulator).

Think about how the demodulator works. Suppose we are using a binary
alphabet which the modulator transmits as signals of amplitude +1 and −1.
The demodulator receives signals whose amplitudes are then measured. These

1.2. GENERAL COMMUNICATION SYSTEMS 9

received amplitudes will likely not be exactly +1 or −1. Instead values like
.750, and −.434 and .003 might be found. Under our assumptions each of these
must be translated into a +1 or −1 before being passed on to the decoder. An
obvious way of doing this is to take positive values to +1 and negative values to
−1, so our example string becomes +1,−1,+1. But in doing so, we have clearly
thrown away some information which might be of use to the decoder. Suppose
in decoding it becomes clear that one of the three received symbols is certainly
not the one originally transmitted. Our decoder has no way of deciding which
one to mistrust. But if the demodulator’s knowledge were available, the decoder
would know that the last symbol is the least reliable of the three while the first
is the most reliable. This improves our chances of correct decoding in the end.

In fact with our assumption we are asking the demodulator to do some
initial, primitive decoding of its own. The requirement that the demodulator
make precise (or hard) decisions about code symbols is called hard quantization. hard quantization

The alternative is soft quantization. Here the demodulator passes on information soft quantization
which suggests which alphabet symbol might have been received, but it need not
make a final decision. At its softest, our demodulator would pass on the three
real amplitudes and leave all symbol decisions to the decoder. This of course
involves the least loss of information but may be hard to handle. A mild but
still helpful form of soft quantization is to allow channel erasures. The channel erasures

receives symbols from the alphabet A but the demodulator is allowed to pass on
to the decoder symbols from A∪{?}, where the special symbol “?” indicates an
inability to make an educated guess. In our three symbol example above, the
decoder might be presented with the string +1,−1, ?, indicating that the last
symbol was received unreliably. It is sometimes helpful to think of an erasure
as a symbol error whose location is known.

1.2.5 Decoder

Suppose that in designing our decoding algorithms we know, for each n-tuple
y and each codeword x, the probability p(y|x) that y is received after the
transmission of x. The basis of our decoding is the following principle:

Maximum Likelihood Decoding — When y is received, we must
decode to a codeword x that maximizes Prob(y |x).

We often abbreviate this to MLD. While it is very sensible, it can cause prob- MLD

lems similar to those encountered during demodulation. Maximum likelihood
decoding is “hard” decoding in that we must always decode to some codeword.
This requirement is called complete decoding. complete decoding

The alternative to complete decoding is incomplete decoding, in which we incomplete decoding
either decode a received n-tuple to a codeword or to a new symbol ∞ which
could be read as “errors were detected but were not corrected” (sometimes ab-
breviated to “error detected”). Such error detection (as opposed to correction) error detection

can come about as a consequence of a decoding default. We choose this default decoding default

alternative when we are otherwise unable (or unwilling) to make a sufficiently
reliable decoding choice. For instance, if we were using a binary repetition code

10 CHAPTER 1. INTRODUCTION

of length 26 (rather than 27 as before), then majority vote still deals effectively
with 12 or fewer errors; but 13 errors produces a 13 to 13 tie. Rather than make
an arbitrary choice, it might be better to announce that the received message
is too unreliable for us to make a guess. There are many possible actions upon
default. Retransmission could be requested. There may be other “nearby” data
that allows an undetected error to be estimated in other ways. For instance,
with compact discs the value of the uncorrected sound level can be guessed to
be the average of nearby values. (A similar approach can be take for digital
images.) We will often just declare “error detected but not corrected.”

Almost all the decoding algorithms that we discuss in detail will not be
MLD but will satisfy IMLD, the weaker principle:IMLD

Incomplete Maximum Likelihood Decoding — When y is
received, we must decode either to a codeword x that maximizes
Prob(y |x) or to the “error detected” symbol ∞.

Of course, if we are only interested in maximizing our chance of successful
decoding, then any guess is better than none; and we should use MLD. But this
longshot guess may be hard to make, and if we are wrong then the consequences
might be worse than accepting but recognizing failure. When correct decoding
is not possible or advisable, this sort of error detection is much preferred over
making an error in decoding. A decoder error has occurred if x has been trans-decoder error

mitted, y received and decoded to a codeword z 6= x. A decoder error is much
less desirable than a decoding default, since to the receiver it has the appear-
ance of being correct. With detection we know something has gone wrong and
can conceivably compensate, for instance, by requesting retransmission. Finally
decoder failure occurs whenever we do not have correct decoding. Thus decoderdecoder failure

failure is the combination of decoding default and decoder error.
Consider a code C in An and a decoding algorithm A. Then Px(A) is defined

as the error probability (more properly, failure probability) that after x ∈ C is
transmitted, it is received and not decoded correctly using A. We then define

PC(A) = |C|−1
∑
x∈C

Px(A) ,

the average error expectation for decoding C using the algorithm A. This judges
how good A is as an algorithm for decoding C. (Another good gauge would
be the worst case expectation, maxx∈C Px(A).) We finally define the error
expectation PC for C viaerror expectation PC

PC = min
A
PC(A) .

If PC(A) is large then the algorithm is not good. If PC is large, then no decoding
algorithm is good for C; and so C itself is not a good code. In fact, it is not
hard to see that PC = PC(A), for every MLD algorithm A. (It would be more
consistent to call PC the failure expectation, but we stick with the common
terminology.)

We have already remarked upon the similarity of the processes of demodu-
lation and decoding. Under this correspondence we can think of the detection

1.3. SOME EXAMPLES OF CODES 11

symbol ∞ as the counterpart to the erasure symbol ? while decoder errors cor-
respond to symbol errors. Indeed there are situations in concatenated coding
where this correspondence is observed precisely. Codewords emerging from the
“inner code” are viewed as symbols by the “outer code” with decoding error
and default becoming symbol error and erasure as described.

A main reason for using incomplete rather than complete decoding is ef-
ficiency of implementation. An incomplete algorithm may be much easier to
implement but only involve a small degradation in error performance from that
for complete decoding. Again consider the length 26 repetition code. Not only
are patterns of 13 errors extremely unlikely, but they require different handling
than other types of errors. It is easier just to announce that an error has been
detected at that point, and the the algorithmic error expectation PC(A) only
increases by a small amount.

1.3 Some examples of codes

1.3.1 Repetition codes

These codes exist for any length n and any alphabet A. A message consists of a
letter of the alphabet, and it is encoded by being repeated n times. Decoding can
be done by plurality vote, although it may be necessary to break ties arbitrarily.

The most fundamental case is that of binary repetition codes, those with
alphabet A = {0, 1}. Majority vote decoding always produces a winner for
binary repetition codes of odd length. The binary repetition codes of length 26
and 27 were discussed above.

1.3.2 Parity check and sum-0 codes

Parity check codes form the oldest family of codes that have been used in prac-
tice. The parity check code of length n is composed of all binary (alphabet
A = {0, 1}) n-tuples that contain an even number of 1’s. Any subset of n − 1
coordinate positions can be viewed as carrying the information, while the re-
maining position “checks the parity” of the information set. The occurrence of
a single bit error can be detected since the parity of the received n-tuple will
be odd rather than even. It is not possible to decide where the error occurred,
but at least its presence is felt. (The parity check code is able to correct single
erasures.)

The parity check code of length 27 was discussed above.
A versions of the parity check code can be defined in any situation where

the alphabet admits addition. The code is then all n-tuples whose coordinate
entries sum to 0. When the alphabet is the integers modulo 2, we get the usual
parity check code.

1.3.3 The [7, 4] binary Hamming code

We quote from Shannon’s paper:

12 CHAPTER 1. INTRODUCTION

An efficient code, allowing complete correction of [single] errors
and transmitting at the rate C [=4/7], is the following (found by a
method due to R. Hamming):

Let a block of seven symbols be X1, X2, . . . , X7 [each either 0
or 1]. Of these X3, X5, X6, and X7 are message symbols and cho-
sen arbitrarily by the source. The other three are redundant and
calculated as follows:

X4 is chosen to make α = X4 +X5 +X6 +X7 even
X2 is chosen to make β = X2 +X3 +X6 +X7 even
X1 is chosen to make γ = X1 +X3 +X5 +X7 even

When a block of seven is received, α, β, and γ are calculated and if
even called zero, if odd called one. The binary number αβ γ then
gives the subscript of the Xi that is incorrect (if 0 then there was
no error).

This describes a [7, 4] binary Hamming code together with its decoding. We
shall give the general versions of this code and decoding in a later chapter.

R.J. McEliece has pointed out that the [7, 4] Hamming code can be nicely
thought of in terms of the usual Venn diagram:

&%
'$

&%
'$

&%
'$

X1

X7

X6X4 X2

X5 X3

The message symbols occupy the center of the diagram, and each circle is com-
pleted to guarantee that it contains an even number of 1’s (has even parity). If,
say, received circles A and B have odd parity but circle C has even parity, then
the symbol within A ∩B ∩ C is judged to be in error at decoding.

1.3.4 An extended binary Hamming code

An extension of a binary Hamming code results from adding at the beginning
of each codeword a new symbol that checks the parity of the codeword. To the
[7, 4] Hamming code we add an initial symbol:

X0 is chosen to make X0 +X1 +X2 +X3 +X4 +X5 +X6 +X7 even

The resulting code is the [8, 4] extended Hamming code. In the Venn diagram
the symbol X0 checks the parity of the universe.

The extended Hamming code not only allows the correction of single errors
(as before) but also detects double errors.

1.3. SOME EXAMPLES OF CODES 13

&%
'$

&%
'$

&%
'$

X0

X1

X7

X6X4 X2

X5 X3

1.3.5 The [4, 2] ternary Hamming code

This is a code of nine 4-tuples (a, b, c, d) ∈ A4 with ternary alphabet A =
{0, 1, 2}. Endow the set A with the additive structure of the integers modulo
3. The first two coordinate positions a, b carry the 2-tuples of information, each
pair (a, b) ∈ A2 exactly once (hence nine codewords). The entry in the third
position is sum of the previous two (calculated, as we said, modulo 3):

a+ b = c ,

for instance, with (a, b) = (1, 0) we get c = 1 + 0 = 1. The final entry is then
selected to satisfy

b+ c+ d = 0 ,

so that 0 + 1 + 2 = 0 completes the codeword (a, b, c, d) = (1, 0, 1, 2). These
two equations can be interpreted as making ternary parity statements about the
codewords; and, as with the binary Hamming code, they can then be exploited
for decoding purposes. The complete list of codewords is:

(0, 0, 0, 0) (1, 0, 1, 2) (2, 0, 2, 1)
(0, 1, 1, 1) (1, 1, 2, 0) (2, 1, 0, 2)
(0, 2, 2, 2) (1, 2, 0, 1) (2, 2, 1, 0)

(1.3.1) Problem. Use the two defining equations for this ternary Hamming code
to describe a decoding algorithm that will correct all single errors.

1.3.6 A generalized Reed-Solomon code

We now describe a code of length n = 27 with alphabet the field of real number
R. Given our general assumptions this is actually a nonexample, since the
alphabet is not discrete or even bounded. (There are, in fact, situations where
these generalized Reed-Solomon codes with real coordinates have been used.)

Choose 27 distinct real numbers α1, α2, . . . , α27 . Our message k-tuples will
be 7-tuples of real numbers (f0, f1, . . . , f6), so k = 7. We will encode a given
message 7-tuple to the codeword 27-tuple

f = (f(α1), f(α2), . . . , f(α27)) ,

14 CHAPTER 1. INTRODUCTION

where
f(x) = f0 + f1x+ f2x

2 + f3x
3 + f4x

4 + f5x
5 + f6x

6

is the polynomial function whose coefficients are given by the message. Our
Reasonable Assumption says that a received 27-tuple will resemble the codeword
transmitted to a large extent. If a received word closely resembles each of two
codewords, then they also resemble each other. Therefore to achieve a high
probability of correct decoding we would wish pairs of codewords to be highly
dissimilar.

The codewords coming from two different messages will be different in those
coordinate positions i at which their polynomials f(x) and g(x) have different
values at αi. They will be equal at coordinate position i if and only if αi is a
root of the difference h(x) = f(x) − g(x). But this can happen for at most 6
values of i since h(x) is a nonzero polynomial of degree at most 6. Therefore:

distinct codewords differ in at least 21 (= 27 − 6) coordinate posi-
tions.

Thus two distinct codewords are highly different. Indeed as many up to 10
errors can be introduced to the codeword f for f(x) and the resulting word will
still resemble the transmitted codeword f more than it will any other codeword.

The problem with this example is that, given our inability in practice to
describe a real number with arbitrary accuracy, when broadcasting with this
code we must expect almost all symbols to be received with some small error —
27 errors every time! One of our later objectives will be to translate the spirit
of this example into a more practical setting.

