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A.3 Special Topics

A.3.1 The Euclidean algorithm

Let F be a field. In Theorem A.2.16 we gave a nonconstructive proof for the
existence of the greatest common divisor of two polynomials a(x) and b(x) of
F [x]. The Euclidean algorithm is an algorithm that constructs gcd(a(x), b(x))
explicitly. The basic method is simple. If q(x) is any polynomial, then

gcd(a(x), b(x)) = gcd(a(x)− q(x)b(x), b(x)).

In particular, a(x) can be replaced in the calculation by its remainder r(x) upon
division by b(x). Assuming that a(x) has degree at least as big as that of b(x),
the remainder r(x) will have smaller degree than a(x); so the gcd of the original
pair of polynomials will be equal to the gcd of a new pair with smaller total
degree. We can continue in this fashion decreasing the degree of the remainder
at each stage until the process stops with remainder 0, and at this point the gcd
becomes clear.

In fact the approach we take is a little different. From our proof of Theorem
A.2.16 we know that gcd(a(x), b(x)) is the monic polynomial of minimal degree
within the set

G = { s(x)a(x) + t(x)b(x) | s(x), t(x) ∈ F [x] }

Thus we examine all equations of the form

p(x) = s(x)a(x) + t(x)b(x) ,

looking for one in which nonzero p(x) has minimal degree. The unique monic
scalar multiple of this p(x) is then equal to gcd(a(x), b(x)).

If we have two suitable equations:

m(x) = e(x)a(x) + f(x)b(x) ; (A.1)
n(x) = g(x)a(x) + h(x)b(x) ; (A.2)

then we can find a third with lefthand side of smaller degree. Assume that the
degree of m(x) is at least as big as that of n(x). By the Division Algorithm A.2.5
there are q(x) and r(x) with m(x) = q(x)n(x)+r(x)and deg(r(x)) < deg(n(x)).
Subtracting q(x) times equation (2) from equation (1) we have the desired

r(x) = m(x)− q(x)n(x) = (A.3)(
e(x)− q(x)g(x)

)
a(x) +

(
f(x)− q(x)h(x)

)
b(x).

Next we may divide r(x) into n(x) and, using equations (2) and (3), further
reduce the degree of the lefthand side. Continuing as before we must ultimately
arrive at an equation with 0 on the left. The lefthand side of the previous
equation will then have the desired minimal degree. A benefit of this method of
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calculation is that the appropriate polynomials s(x) and t(x) are produced at
the same time as the gcd.

To succeed with this approach we must have two equations to begin with.
These are provided by:

a(x) = 1 · a(x) + 0 · b(x); (A.4)
b(x) = 0 · a(x) + 1 · b(x). (A.5)

(A.3.1) Theorem. ( The Euclidean Algorithm.)
Assume that deg(a(x)) ≥ deg(b(x)) with a(x) 6= 0. At Step i we construct the
equation

Ei : ri(x) = si(x)a(x) + ti(x)b(x).

Equation Ei is constructed from Ei−1 and Ei−2, the appropriate initialization
being provided by (4) and (5):

r−1(x) = a(x); s−1(x) = 1; t−1(x) = 0;
r0(x) = b(x); s0(x) = 0; t0(x) = 1.

Step i. Starting with ri−2(x) and ri−1(x) (6= 0) use the Division
Algorithm A.2.5 to define qi(x) and ri(x):

ri−2(x) = qi(x)ri−1(x) + ri(x) with deg(ri(x)) < deg(ri−1(x)).

Next define si(x) and ti(x) by:

si(x) = si−2(x)− qi(x)si−1(x);
ti(x) = ti−2(x)− qi(x)ti−1(x).

We then have the equation

Ei : ri(x) = si(x)a(x) + ti(x)b(x).

Begin with i = 0. If we have ri(x) 6= 0, then proceed to Step i+1. Eventually
there will be an i with ri(x) = 0. At that point halt and declare gcd(a(x), b(x))
to be the unique monic scalar multiple of the nonzero polynomial ri−1(x).

Proof. For each i, ri(x) = ri−2(x) − qi(x)ri−1(x); so Ei holds. This also
shows that

gcd(ri−1(x), ri(x)) = gcd(ri−2(x), ri−1(x))
= · · · = gcd(r−1(x), r0(x)) = gcd(a(x), b(x)).

As long as i ≥ 0 and ri(x) 6= 0, deg(ri+1(x)) < deg(ri(x)). Thus in at most
deg(b(x)) steps ri(x) = 0 is reached. Then gcd(ri−1(x), 0) = gcd(a(x), b(x)) is
the unique monic multiple of ri−1(x), completing verification of the algorithm.
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(A.3.2) Problem.
(a) Prove that qi(x) of Theorem A.3.1 has positive degree, for all i ≥ 2.
(b) Prove that deg(si(x)) and deg(ti(x)) are increasing functions of i ≥ 1.

We can think of the Euclidean algorithm as finding a new equation Ei from
the previous two via

Ei = −qi(x)Ei−1 + Ei−2 .

This provides the entry to another presentation of the Euclidean algorithm that
for certain purposes is quite helpful.

Consider the matrix with entries from F [x]

R0 =
[
a(x) 1 0
b(x) 0 1

]
.

We wish, by elementary row operations over F [x], to reduce this matrix to
echelon form

R =
[
p(x) ∗ ∗

0 ∗ ∗

]
,

where in fact p(x) = gcd(a(x), b(x)). For each i > 1, set

Qi =
[

0 1
1 −qi(x)

]
=
[

0 1
1 0

] [
1 −qi(x)
0 1

]
,

a product of the matrices for two elementary row operations. Then after defining

Ri =
[
ri−1(x) si−1(x) ti−1(x)
ri(x) si(x) ti(x)

]
,

we find that Ri = QiRi−1, for all i ≥ 1. Therefore left multiplication by Qi
can be thought of as accomplishing Step i of the Euclidean algorithm. Because
(1,−a(x),−b(x))> is a null vector of R0, it is also a null vector of each Ri. That
is, for each i we have the equation

Ei : ri(x) = si(x)a(x) + ti(x)b(x).

When first ri(x) = 0, then ri−1(x) is a scalar multiple of gcd(a(x), b(x)); so the
desired matrix R can be realized as a scalar multiple of Ri.

For each i ≥ 1, set Si =
∏i
j=1Qj , so that SiR0 = Ri. Each Qj has deter-

minant equal to −1 (see Problem A.1.15), so Si has determinant (−1)i. If, for
each i, we define Ri(r, t) (respectively, Ri(s, t)) to be the 2× 2 submatrix of Ri
composed of the r- and t-columns (resp., s- and t-columns), then we have

Si

[
a(x) 0
b(x) 1

]
= SiR0(r, t) = Ri(r, t) =

[
ri−1(x) ti−1(x)
ri(x) ti(x)

]
.

Similarly

Si

[
1 0
0 1

]
= SiR0(s, t) = Ri(s, t) =

[
si−1(x) ti−1(x)
si(x) ti(x)

]
.

Calculating determinants, we have a proof of
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(A.3.3) Lemma. (1) ri−1(x)ti(x)− ri(x)ti−1(x) = (−1)ia(x), for i ≥ 0.
(2) si−1(x)ti(x)− si(x)ti−1(x) = (−1)i, for i ≥ 0. 2

(A.3.4) Corollary. gcd(si(x), ti(x)) = 1, for all i ≥ −1.

Proof. This follows from Lemma A.3.3(2) and Theorem A.2.16. 2

(A.3.5) Problem. Prove that deg(ri−1(x)) + deg(ti(x)) = deg(a(x)), for all i ≥ 0.
( Hint: use Problem A.3.2(b) and Lemma A.3.3(1).)

(A.3.6) Problem.
(a) Prove that ri−1(x)si(x)− ri(x)si−1(x) = (−1)i+1b(x), for all i ≥ 0.
(b) Prove that deg(ri−1(x)) + deg(si(x)) = deg(b(x)), for all i ≥ 1.
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A Euclidean Algorithm example

We calculate gcd(x4, 4x3 +3x2 +5x) = x over F7 using the Euclidean algorithm.
At Step i we define qi(x), ri(x), si(x), and ti(x) using

ri−2(x) = qi(x)ri−1(x) + ri(x)
si(x) = si−2(x)− qi(x)si−1(x)
ti(x) = ti−2(x)− qi(x)ti−1(x) .

Step i qi(x) ri(x) si(x) ti(x)
−1 − x4 1 0
0 − 4x3 + 3x2 + 5x 0 1
1 2x+ 2 5x2 + 4x 1 5x+ 5
2 5x+ 5 6x 2x+ 2 3x2 + 6x+ 4
3 2x+ 3 0 3x2 + 4x+ 2 x3

Step 1.

2x +2 = q1(x)
r0(x) = 4x3 +3x2 +5x x4 = r−1(x)

x4 +6x3 +3x2

x3 +4x2

x3 +6x2 +3x
5x2 +4x = r1(x)

r−1(x) = q1(x)r0(x) + r1(x)
x4 = (2x+ 2)(4x3 + 3x2 + 5x) + (5x2 + 4x)

q1(x) = 2x+ 2
r1(x) = 5x2 + 4x

s1(x) = s−1(x)− q1(x)s0(x)
s1(x) = 1− (2x+ 2)0 = 1

t1(x) = t−1(x)− q1(x)t0(x)
t1(x) = 0− (2x+ 2)1 = 5x+ 5
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Step 2.

r0(x) = q2(x)r1(x) + r2(x)
4x3 + 3x2 + 5x = (5x+ 5)(5x2 + 4x) + 6x

q2(x) = 5x+ 5
r2(x) = 6x

s2(x) = s0(x)− q2(x)s1(x)
s2(x) = 0− (5x+ 5)1 = 2x+ 2

t2(x) = t0(x)− q2(x)t1(x)
t2(x) = 1− (5x+ 5)(5x+ 5) = 3x2 + 6x+ 4

Step 3.

r1(x) = q3(x)r2(x) + r3(x)
5x2 + 4x = (2x+ 3)(6x) + 0

q3(x) = 2x+ 3
r3(x) = 0

s3(x) = s1(x)− q3(x)s2(x)
s3(x) = 1− (2x+ 3)(2x+ 2) = 3x2 + 4x+ 2

t3(x) = t1(x)− q3(x)t2(x)
t3(x) = (5x+ 5)− (2x+ 3)(3x2 + 6x+ 4)

= (5x+ 5)− (6x3 + 5x+ 5) = −6x3 = x3

As r3(x) = 0, gcd(x4, 4x3 + 3x2 + 5x) is the unique monic scalar multiple of
r2(x) = 6x. Thus x = gcd(x4,4x3 + 3x2 + 5x), as claimed.

We should also have r2(x) = s2(x)x4 + t2(x)(4x3 + 3x2 + 5x) and therefore
x = 6r2(x) = 6s2(x)x4 + 6t2(x)(4x3 + 3x2 + 5x). We check:

6r2(x) = 6s2(x)x4 + 6t2(x)(4x3 + 3x2 + 5x)
= 6(2x+ 2)x4 + 6(3x2 + 6x+ 4)(4x3 + 3x2 + 5x)
= (5x+ 5)x4 + (4x2 + x+ 3)(4x3 + 3x2 + 5x)
= (5x5 + 5x4) + (2x5 + 5x4 + 6x3) +

+(4x4 + 3x3 + 5x2) + (5x3 + 2x2 + x)
= x !!
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A.3.2 Finite Fields

Consider a finite field F of characteristic p. (Remember from Lemma A.1.3 that
this says 1 lies in a subfield of F that is a copy of Fp.) Let α be any element of
F . Any subfield (indeed any subring) of F that contains both the subfield Fp
and α must contain the set E of all polynomials in α with coefficients in Fp:

E = { a0 + a1α+ a2α
2 + · · ·+ akα

k | ai ∈ Fp, k > 0}.

Notice however that in this instance α is not an indeterminate; there are going
to be various different polynomials f(x) in Fp[x] that represent the same element
f(α) of F . Indeed as F is finite while Fp[x] is infinite, this must be the case.
As in the proof of Lemma A.1.3 this forces the set

I = { all polynomials f(x) ∈ Fp[x] with f(α) = 0 }

to contain polynomials other than the constant polynomial 0. As in Theorem
A.2.18, the greatest common divisor of the set I, m(x) = gcd(I), is called
the minimal polynomial of α over Fp and is usually denoted mα(x) (but alsominimal polynomial

sometimes mα,Fp(x)). The set I then consists of all members of F [x] that are
multiples of mα(x). That is, the polynomial mα(x) is uniquely determined in
Fp[x] as a monic polynomial with α as a root that divides all polynomials with
α as a root. We observe that a minimal polynomial must always be irreducible.
Indeed if m(x) = f(x)g(x), then 0 = m(α) = f(α)g(α) whence f(α) = 0 or
g(α) = 0. Therefore at least one of f(x) and g(x) is in I, but the greatest
common divisor m(x) of I has minimal degree among the nonzero elements of
I.

Let us now examine the set E. E is closed under addition and multiplication
and contains 0 and 1. Thus E is at least a subring of F . Furthermore no two
nonzero members of E have product 0, as this is true in F itself. Thus E is
moreover a sub-integral domain of F . Now Problem A.1.2 shows that E is in
fact a subfield of F , indeed the smallest subfield of F that contains α. (All
subfields contain 1 and so all of Fp.) What is the arithmetic of the subfield E?

Let us assume that the minimal polynomial m(x) has degree d (greater than
0). Then by the division algorithm every polynomial f(x) of Fp[x] has a unique
remainder r(x) of degree less than d upon division by m(x), and f(α) = r(α)
as m(α) = 0. Thus in fact

E = { r(α) | r(x) ∈ Fp[x] of degree < d }.

Furthermore two distinct polynomials r1(x), r2(x) ∈ Fp[x]d can not have r1(α) =
r2(α), because their difference would then be a nonzero polynomial of degree
less than d having α as a root. Such a polynomial would belong to I, whereas
m(x) has minimal degree among all nonzero members of I. In particular E
has exactly pd elements. Note also that for polynomials a(x), b(x) ∈ Fp[x] we
have in E that a(α)b(α) = r(α), where r(x) is the remainder of a(x)b(x) upon
division by m(x). Thus the arithmetic of E is exactly that of Fp[x] (mod m(x)).
Indeed we have:
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(A.3.7) Lemma. Let F be a finite field of characteristic p, and let α be an
arbitrary element of F . Then the smallest subfield E of F that contains α is a
copy of the field Fp[x] (mod mα(x)) where mα(x) is the minimal polynomial of
α over Fp. 2

We next examine a result of great theoretical and practical importance.

(A.3.8) Theorem. Let F be a finite field with |F | = q. Then there is an
element α in F with the property that

F − {0} = {α, α2, . . . , αq−2, αq−1 = α0 = 1}.

Proof. We first observe that for any nonzero α of F , the set

X = {α, α2, . . . , αi, . . . | i ∈ Z+}

is finite and contained within F − {0}. As before this implies that, for each
nonzero α of F , there is a positive integer n (depending upon α) with αn = 1.
The smallest such positive n is called the order of α. Among all the nonzero order

elements of F choose α one of maximal order n, say. Note that the statement
that α has order n is equivalent to the statement that the set X contains exactly
n elements of F . Additionally for each β = αi of X we have βn = (αi)n =
(αn)i = 1i = 1. The crucial point in the proof is that X, for our choice of α, is
precisely the set of all roots in F of the polynomial xn − 1. In particular any
element of F with order dividing n must belong to X. An element α ∈ F is
called a primitive nth root of unity if it has order n. primitive nth root of unity

Assume now that it is possible to find a nonzero element γ of F that does
not belong to X. By the remark at the end of the previous paragraph the order
m of g is not a divisor of n. Thus there is a prime s and a prime power si that
divides m but does not divide n. Let m = siu and n = sjv, where i is larger
than j and neither u nor v are multiples of s. A somewhat lengthy calculation
suffices to check (do it!) that the element δ = αs

j · γu has order siv. As this is
larger than n we have contradicted our original choice of α. Therefore no such
element γ can be found; and X is all of F , proving the theorem. 2

Of course for an α as in Theorem A.3.8, F itself is the smallest subfield of
F containing α. Thus from Lemma A.3.7 and Theorem A.3.8 we have:

(A.3.9) Theorem. Every finite field F can be written as Fp[x] (mod m(x))
for some prime p and some irreducible polynomial m(x) in Fp[x]. 2

Note that Theorem A.3.9 can be thought of as a converse to Theorem A.2.14
for finite fields.

An α as in Theorem A.3.8 is a primitive (|F | − 1)th root of unity in F and
is called a primitive element of F . Its minimal polynomial is called a primitive primitive element

polynomial. Thus Theorem A.3.9 remains true with the word ‘primitive’ in place primitive polynomial
of ‘irreducible’.
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One consequence of Theorem A.3.9 is that a finite field must have the number
of its elements equal to a power of a prime (although we already knew this from
Problem A.1.6). By Lemma A.1.3 there are fields of prime order for every prime,
but what about every prime power? For the time being we are content to state
without proof:

(A.3.10) Theorem. For each prime p and each positive integer d, there exist
fields containing exactly pd elements. 2

We note that by Theorem A.3.9 this is equivalent to proving that for each p and
d there is an irreducible polynomial m(x) in Fp[x] of degree d.

How do we actually find and calculate in finite fields? Theorem A.3.9 gives
the answer. If we want a field F with pd elements (usually written as F =
GF (pd) or F = Fpd), then we first find an irreducible polynomial m(x) of
degree d in Fp[x] and then realize F as Fp[x] (mod m(x)).

We can check for irreducibility of a given polynomial in a way similar to the
Sieve of Eratosthenes — if a polynomial of degree d is reducible, then it must
be a multiple of an irreducible polynomial of degree at most d/2. For example
x3 + x+ 1 ∈ F2[x] is irreducible as it has no nonscalar factor of degree at most
3/2, that is, it has no linear factors (as it has no roots in F2). Therefore even
though Theorem A.3.10 is quite difficult to prove, it may not too hard to find
an irreducible polynomial of a specific desired degree d in Fp[x]. To do so, use
the sieve to find all reducible polynomials of degree d, then all the remaining
polynomials are irreducible. (There are only finitely many polynomials of a
fixed degree in Fp[x].)

(A.3.11) Problem. (a) Find all irreducible polynomials of degree 4 or less in F2[x].
(b) Find all monic irreducible polynomials of degree 3 or less in F3[x].
(c) Find all monic irreducible polynomials of degree 2 or less in F4[x].
(d) Find all monic irreducible polynomials of degree 2 or less in F5[x].

For notational elegance, we usually do not write F as Fp[x] (mod m(x)),
but instead as the collection of polynomials of degree less than d in ρ, a root of
the degree d irreducible m(x). So, for example, rather than write the complex
numbers as R[x] (mod x2 + 1) we write them as the set of all a + bi, a, b ∈ R,
where i is a root of the irreducible polynomial x2 + 1 of degree 2.

At the end of this section we give an example of a field with 32 elements,
F32, written as polynomials of degree less than 5 in a root α of the primitive
polynomial x5 +x2 + 1 ∈ F2[x]. Notice that as α is primitive, we may also write
the nonzero elements of F32 as powers of α. This is helpful, because addition in
F32 is easily done in terms of the polynomials of degree less than 5 in α, while
multiplication is more easily done in terms of the powers of α.

(A.3.12) Problem. (a) Prove that the polynomial x4 + x3 + x2 + x + 1 ∈ F2[x] is
irreducible but not primitive.

(b) Let β be a root of the primitive polynomial x4 + x3 + 1 ∈ F2[x]. Write out
a table of the elements of a field with 16 elements, F16, both as powers of β and as
polynomials of degree less than 4 in β.
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The following simple result about finite fields is of great importance.

(A.3.13) Lemma. Let K be a field of characteristic p and J a subfield of K.
(1) If q is any power of p, then for any a, b ∈ K we have (a+ b)q = aq + bq.
(2) If |J | = q then aq = a, for all a ∈ J , and J is the complete set of

solutions to the equation xq = x in K.

Proof. (1) As (cp)p = cp
2
, (cp

2
)p = cp

3
, . . . , we need only prove (1) for

q = p. In that case it follows easily as each binomial coefficient
(
p
i

)
is 0 modulo

p, for 0 < i < p.
(2) By Theorem A.3.8 aq = a for all a ∈ J . By Proposition A.2.10 xq − x

has at most q roots in K, and these are exactly the members of J . 2

Let D be a subfield of the finite field F , and assume that D = Fq. As F can
be viewed as a vector space over D, we must have F = Fqm , for some m. Define
the trace from F to D of the element α ∈ F by trace

TrD(α) = α+ αq + αq
2

+ · · ·+ αq
m−1

.

If D is the prime subfield Fp, we often drop the subscript and write Tr for TrFp
.

(A.3.14) Proposition. (1) The trace is a map from F onto D.
(2) The trace is a D-linear; that is, for all r1, r2 ∈ D and α1, α2 ∈ F , we

have
TrD(r1α1 + r2α2) = r1TrD(α1) + r2TrD(α2) .

(3) For a fixed β ∈ F , if TrD(αβ) = 0 for all α in a D-basis of F , then
β = 0.

Proof. It is elementary to prove that the trace is a linear map into D as in
(2) using Lemma A.3.13. It is not so clear that the map is actually onto D. The
trace is given by a polynomial of degree qm−1, so by Proposition A.2.10 there
are at most qm−1 elements of F with trace 0. Since the trace is linear, the subset
K of elements of F with trace 0 is a D-subspace of F , and the value of the trace
map is constant on cosets α+K of K. Again by linearity, different cosets of K
give different values. As |F | = qm, there must be the largest possible number
q = |D| of values and cosets, and each coset must have the largest possible size,
qm−1. This gives (1).

By linearity, if TrD(αβ) = 0, for all α in a D-basis for F , then in fact
TrD(αβ) = 0, for all α ∈ F . But for β 6= 0, by (1) there are many choices of α
with TrD(αβ) 6= 0, proving (3). 2

(A.3.15) Problem. Let T : F → D be a D-linear map, that is,

T (r1α1 + r2α2) = r1T (α1) + r2T (α2) ;

and define the map B : F × F → D by B(α, β) = T (αβ).
(a) Prove that B is a symmetric D-bilinear map; that is,

B(α, β) = B(β, α) and
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B(r1α1 + r2α2, β) = r1B(α1, β) + r2B(α2, β), for all r1, r2 ∈ D .

(b) Prove that, conversely, every symmetric D-bilinear map B arises in this fashion
from a D-linear map T . ( Hint: Prove that the map T given by T (α) = B(α, 1) is
D-linear.)

(c) Prove, for a fixed nonzero β ∈ F , that B(α, β) = 0 for all α in a D-basis of F
if and only if T is the 0 map, that is, the map that takes each element of F to 0.

Let α1, . . . , αm be a basis for F over D. The second basis β1, . . . , βm is trace
dual basis to the first if TrD(αiβj) (= B(αi, βj)) is 1 when i = j and 0 whentrace dual basis

i 6= j. In the next result we see that a trace dual basis always exists.

(A.3.16) Proposition. Let D be a subfield of the finite field F , and let
α1, . . . , αm be a basis for F over D.

We let A be the m × m matrix whose {i, j}-entry is TrD(αiαj). For the
m× s matrix B let the {j, k}-entry be bj,k ∈ F . Finally let βk =

∑m
j=1 bj,kαj.

(1) The {i, k}-entry of the matrix product AB is TrD(αiβk).
(2) The matrix A is invertible.
(3) For B = A−1, the basis β1, . . . , βm is trace dual to α1, . . . , αm.

Proof. Part (1) follows by an elementary matrix calculation.
If A is not invertible, then we can find a nonzero column vector B (with

s = 1) such that AB = 0. This would correspond to a nonzero β ∈ F with
TrD(αiβ) = 0, for all i. By Proposition A.3.14(3) this can not happen. This
gives (2), and (3) is immediate from (1) and (2). 2

(A.3.17) Problem. Reprove Proposition A.3.16 starting with an arbitrary nonzero
D-linear map T .

(A.3.18) Problem. Let the field F8 be written as polynomials of degree less than 3
over F2 in the primitive element α, a root of x3 +x+1, so that α3 = α+1. The trace
Tr = TrF2 from F8 to F2 is then given by

Tr(β) = β + β2 + β4

for all β ∈ F8. Set e1 = α3, e2 = α5, e3 = α6, so that e1, e2, e3 form a basis for F8

over F2.
(a) Prove that the basis e1, e2, e3 is trace self-dual: Tr(eiej) is 1 if i = j and is 0

if i 6= j.
(b) For each r ∈ F8, let r̂ be defined by r̂ = (a, b, c), where r = ae1 + be2 + ce3, for

a, b, c ∈ F2. Prove that, for all r, s ∈ F8,

Tr(rs) = r̂ · ŝ (dot product)

= af + bg + ch

if r̂ = (a, b, c) and ŝ = (f, g, h).
(c) Let x,y be vectors in Fn8 . Define the vectors x̂, ŷ by

x̂ = (x̂1, x̂2, . . . , x̂n) for x = (x1, x2, . . . , xn) ,

ŷ = (ŷ1, ŷ2, . . . , ŷn) for y = (y1, y2, . . . , yn) .

Show that if x · y = 0 in F8, then x̂ · ŷ = 0 in F2.
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Table. F32 where α is a root of the polynomial x5 + x2 + 1

Power Polynomial of degree less 5−tuple
than 5 in α

0 0 00000
1 1 00001
α1 α1 00010
α2 α2 00100
α3 α3 01000
α4 α4 10000
α5 α2 +1 00101
α6 α3 +α1 01010
α7 α4 +α2 10100
α8 α3 +α2 +1 01101
α9 α4 +α3 +α1 11010
α10 α4 +1 10001
α11 α2 +α1 +1 00111
α12 α3 +α2 +α1 01110
α13 α4 +α3 +α2 11100
α14 α4 +α3 +α2 +1 11101
α15 α4 +α3 +α2 +α1 +1 11111
α16 α4 +α3 +α1 +1 11011
α17 α4 +α1 +1 10011
α18 α1 +1 00011
α19 α2 +α1 00110
α20 α3 +α2 01100
α21 α4 +α3 11000
α22 α4 +α2 +1 10101
α23 α3 +α2 +α1 +1 01111
α24 α4 +α3 +α2 +α1 11110
α25 α4 +α3 +1 11001
α26 α4 +α2 +α1 +1 10111
α27 α3 +α1 +1 01011
α28 α4 +α2 +α1 10110
α29 α3 +1 01001
α30 α4 +α1 10010
α31 1 00001
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A.3.3 Minimal Polynomials

Let D be any field and F an extension field of D (that is, D is a subfield of F ).
If α is any element of F , then as in Section A.3.2 we consider the collection of
polynomials that have α as a root:

I = { p(x) ∈ D[x] | p(α) = 0} .

It is possible for I to contain only the zero polynomial, an example being given
by D = Q, F = R, α = π. We are interested here in the case where F is finite,
and there the argument of Lemma A.1.3 and Section A.3.2 shows that I must
contain nonzero polynomials.

Assuming that I contains nonzero polynomials, we denote by mα,D(x) the
minimal polynomial of α over D, that is, the greatest common divisor of I.minimal polynomial

When D is the prime subfield (here, Fp for some prime p) we have abbreviated
this to mα(x). A minimal polynomial must always be irreducible.

For a finite collection S of nonzero polynomials, the least common multiple,
lcm(S), was introduced in Problem A.2.19. When all the members of S are
monic irreducible, the lcm is easy to calculate — it is just the product of all
distinct members of S (see Problem A.2.25).

(A.3.19) Lemma. Let α, β, . . . , ω be members of the extension field F of the
field D. Then the set

J = { p(x) ∈ D[x] | p(α) = p(β) = · · · = p(ω) = 0 }

consists precisely of all multiples of

g(x) = lcm(mα,D(x),mβ,D(x), . . . ,mω,D(x)).

Proof. By the definition of a minimal polynomial, for each element γ
of α, β, . . . , ω, the set J consists of multiples of mγ,D(x). Therefore by the
definition of least common multiples (see Problem A.2.19) all members of J are
multiples of g(x). On the other hand, any multiple of g(x) has each of α, β, . . . , ω
as a root and so is in J . 2

The remark before Lemma A.3.19 shows that, in the computation of g(x)
the only difficult part is the calculation of the minimal polynomials over D of
members of F . In Theorem A.3.20 and Problem A.3.21 we describe an easy
way to do this for finite D. At the end of the section an example of such a
calculation using Theorem A.3.20 is presented.

(A.3.20) Theorem. Let F be a finite field of characteristic p, and let α be a
member of F . Then for

A = {αp
i

| i = 0, 1, 2, . . . }

we have
mα(x) =

∏
a∈A

(x− a) .



A.3. SPECIAL TOPICS A-165

Proof. Let m(x) = mα(x) =
∑
imix

i with each mi in Fp. As m(α) = 0,
also (m(α))p = 0. That is,

0 = (
∑

miα
i)p =

∑
(miα

i)p by A.3.13(1)

=
∑

mp
iα

ip =
∑

mi(αp)i by A.3.13(2)

= m(αp).

Thus fromm(α) = 0 we may conclude thatm(αp) = 0 and then thatm((αp)p) =
m(αp

2
) = 0; indeed m(a) = 0, for all a ∈ A. By Lemma A.2.8 x − a divides

m(x) for each a ∈ A, and so by repeated application of Lemma A.2.9 we know
that

∏
a∈A(x − a) is in any event a divisor of m(x) in F [x]. To complete a

proof that m(x) =
∏
a∈A(x− a) it is enough to show that

∏
a∈A(x− a) in fact

has all its coefficients in Fp, for then m(x) and
∏
a∈A(x− a) will be two monic

polynomials of Fp[x] that divide each other and so must be equal.
Let A = {a1, a2, . . . , ad}. Then in

∏
a∈A(x− a) the coefficient of xk is∑

{i1,i2,...,id−k}

ai1ai2 · · · aid−k
,

where the summation runs over all d− k subsets of {1, 2, . . . , d}. By design, for
each ai in A, api is also a member of A. Therefore for each term ai1ai2 · · · aid−k

of the above summation, the power (ai1ai2 · · · aid−k
)p = api1a

p
i2
· · · apid−k

is also
one of the terms of the summation. Hence using Lemma A.3.13(1) again we
have

(
∑

ai1ai2 · · · aid−k
)p =

∑
api1a

p
i2
· · · apid−k

=
∑

ai1ai2 · · · aid−k
.

That is, the coefficient of xk in
∏
a∈A(x − a) is equal to its own pth power.

By Lemma A.3.13(2) this coefficient is a member of the prime subfield Fp, as
required. 2

Essentially the same proof with q in place of p gives the more general result
(which we leave as an exercise) with D = Fq in place of Fp:

(A.3.21) Problem. Let F be a finite field of characteristic p, D a subfield of F
containing exactly q elements, and α be a member of F . Then for

A = {αq
i

| i = 0, 1, 2, . . .}

we have
mα,D(x) =

Y
a∈A

(x− a).

Remark. At first sight, the final equations in the statement of Theorem
A.3.20 and Problem A.3.21 seem to go against our claim that minimal polynomi-
als must be irreducible. Here mα,D(x) is a minimal polynomial, but

∏
a∈A(x−a)
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appears to be a nontrivial factorization. The point is that mα,D(x) is an irre-
ducible polynomial in the polynomial ring D[x]; it has no factorizations into
polynomials of D[x] of smaller degree. The factorization

∏
a∈A(x− a) involves

factors x − a that are polynomials of F [x] but not of D[x] (as long as a 6∈ D).
For example, as a polynomial of R[x], x2 + 1 is irreducible; but as a polynomial
of C[x] it factors as x2 + 1 = (x+ i)(x− i). Indeed mi,R(x) = x2 + 1.

Below we give an example which details the calculation using Theorem
A.3.20 of the minimal polynomial of α5 over F2, mα5,F2(x), where α is a root
of the primitive polynomial x5 + x2 + 1 ∈ F2[x]. (See the table at the end of
Section A.3.2.)

(A.3.22) Problem. Let β be a root of the polynomial x4 +x3 +1 ∈ F2[x]. Calculate
the minimal polynomial of β3.

Calculation of a minimal polynomial

Let α be a primitive element in F32 with minimal polynomialmα(x) = mα,F2(x) =
x5 + x2 + 1. We wish to calculate the minimal polynomial of α5.

mα5,F2(x)
= (x− α5)(x− α10)(x− α20)(x− α9)(x− α18)
= x5 − (α5 + α10 + α20 + α9 + α18)x4

+(α15 + α25 + α14 + α23 + α30 + α19 + α28 + α29 + α38 + α27)x3

−(α47 + α37 + α48 + α39 + α32 + α43 + α34 + α33 + α24 + α35)x2

+(α57 + α52 + α42 + α53 + α44)x− α62

= x5 + 1x4 + 0x3 + 1x2 + 1x+ 1
= x5 + x4 + x2 + x+ 1 .

Where, for instance, the coefficient of x is given by:

α57 + α52 + α42 + α53 + α44

= α26 + α21 + α11 + α22 + α13

= (α4 + α2 + α+ 1) + (α4 + α3) + (α2 + α+ 1)
+(α4 + α2 + 1) + (α4 + α3 + α2)

= 1 .


