
Chapter 5

Generalized Reed-Solomon
Codes

In 1960, I.S. Reed and G. Solomon introduced a family of error-correcting codes
that are doubly blessed. The codes and their generalizations are useful in prac-
tice, and the mathematics that lies behind them is interesting. In the first sec-
tion we give the basic properties and structure of the generalized Reed-Solomon
codes, and in the second section we describe in detail one method of algebraic
decoding that is quite efficient.

5.1 Basics

Let F be a field and choose nonzero elements v1, . . . , vn ∈ F and distinct
elements α1, . . . , αn ∈ F . Set v = (v1, . . . , vn) and α = (α1, . . . , αn). For
0 ≤ k ≤ n we define the generalized Reed-Solomon codes generalized Reed-Solomon codes

GRSn,k(α,v) = { (v1f(α1), v2f(α2), . . . , vnf(αn)) | f(x) ∈ F [x]k } .

Here we write F [x]k for the set of polynomial in F [x] of degree less than k, a
vector space of dimension k over F . For fixed n, α, and v, the various GRS
codes enjoy the nice embedding property GRSn,k−1(α,v) ≤ GRSn,k(α,v).

If f(x) is a polynomial, then we shall usually write f for its associated code-
word. This codeword also depends upon α and v; so at times we prefer to write
unambiguously

evα,v(f(x)) = (v1f(α1), v2f(α2), . . . , vnf(αn)) ,

indicating that the codeword f = evα,v(f(x)) arises from evaluating the poly-
nomial f(x) at α and scaling by v.

(5.1.1) Theorem. GRSn,k(α,v) is an [n, k] linear code over F with length
n ≤ |F |. We have dmin = n − k + 1 provided k 6= 0. In particular, GRS codes
are MDS codes.
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Proof. As by definition the entries in α are distinct, we must have n ≤ |F |.
If a ∈ F and f(x), g(x) ∈ F [x]k, then af(x) + g(x) is also in F [x]k ; and

evα,v(af(x) + g(x)) = a evα,v(f(x)) + evα,v(g(x)) = af + g .

Therefore GRSn,k(α,v) is linear of length n over F .
Let f(x), g(x) ∈ F [x]k be distinct polynomials. Set h(x) = f(x)− g(x) 6= 0,

also of degree less than k. Then h = f − g and wH(h) = dH(f ,g). But the
weight of h is n minus the number of 0’s in h. As all the vi are nonzero, this
equals n minus the number of roots that h(x) has among {α1, . . . , αn}. As
h(x) has at most k − 1 roots by Proposition A.2.10, the weight of h is at least
n− (k − 1) = n− k + 1. Therefore dmin ≥ n− k + 1, and we get equality from
the Singleton bound 3.1.14. (Alternatively, h(x) =

∏k−1
i=1 (x − αi) produces a

codeword h of weight n− k + 1.)
The argument of the previous paragraph also shows that distinct polynomials

f(x), g(x) of F [x]k give distinct codewords. Therefore the code contains |F |k
codewords and has dimension k. 2

The vector v plays little role here, and its uses will be more apparent later.
At present, it serves to make sure that any code that is monomially equivalent
to a GRS code is itself a GRS code.

Let us now find a generator matrix for GRSn,k(α,v). The argument of
Theorem 5.1.1 makes it clear that any basis f1(x), . . . , fk(x) of F [x]k gives rise
to a basis f1, . . . , fk of the code. A particularly nice polynomial basis is the set
of monomials 1, x, . . . , xi, . . . , xk−1. The corresponding generator matrix, whose
ith row (numbering rows from 0 to k − 1) is

evα,v(xi) = (v1αi
1, . . . , vjα

i
j , . . . , vnα

i
n) ,

is the canonical generator matrix for GRSn,k(α,v):canonical generator matrix 

v1 v2 . . . vj . . . vn

v1α1 v2α2 . . . vjαj . . . vnαn

...
...

. . .
...

. . .
...

v1α
i
1 v2α

i
2 . . . vjα

i
j . . . vnα

i
n

...
...

. . .
...

. . .
...

v1α
k−1
1 v2α

k−1
2 . . . vjα

k−1
j . . . vnα

k−1
n


( 5.1.2) Problem. Consider the code C = GRSn,k(α,v), and assume that all the
entries of the vector α are nonzero. If

α = (α1, α2, . . . , αn) ,

define
β = (α−1

1 , α−1
2 , . . . , α−1

n ) .

Find a vector w such that C = GRSn,k(β,w).
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( 5.1.3) Problem. (a) Consider the code GRSn,k(α,v) over F . Let a, c be nonzero
elements of F , and let b be the vector of Fn all of whose entries are equal to b ∈ F .
Prove that

GRSn,k(α,v) = GRSn,k(aα + b, cv) .

(b) If n < |F |, prove that there is an α′ with no entries equal to 0 and

GRSn,k(α,v) = GRSn,k(α′,v) .

( 5.1.4) Problem. Consider the code E, which will be linear of length n + 1
and dimension k, whose generator matrix results from adding a new column to the
canonical generator matrix for GRSn,k(α,v):2666666666664

v1 v2 . . . vj . . . vn 0
v1α1 v2α2 . . . vjαj . . . vnαn 0

...
...

. . .
...

. . .
...

...
v1α

i
1 v2α

i
2 . . . vjα

i
j . . . vnα

i
n 0

...
...

. . .
...

. . .
...

...

v1α
k−2
1 v2α

k−2
2 . . . vjα

k−2
j . . . vnα

k−2
n 0

v1α
k−1
1 v2α

k−1
2 . . . vjα

k−1
j . . . vnα

k−1
n 1

3777777777775
Prove that dmin(E) = n− k + 2.

Remark. As n − k + 2 = (n + 1) − k + 1, this shows that the code E satisfies the
Singleton Bound with equality and so is maximum distance separable (MDS), just as
all GRS codes are.

It is extremely profitable to think of Theorem 5.1.1 again in terms of poly-
nomial interpolation:

Any polynomial of degree less than k is uniquely determined by its
values at k (or more) distinct points.

Here, any codeword with as many as k entries equal to 0 corresponds to a
polynomial of degree less than k whose values match the 0 polynomial in k
points and so must itself be the 0 polynomial.

Given any n-tuple f , we can easily reconstruct the unique polynomial f(x)
of degree less than n with f = evα,v(f(x)). We first introduce some notation.
Set

L(x) =
n∏

i=1

(x− αi)

and
Li(x) = L(x)/(x− αi) =

∏
j 6=i

(x− αj) .

The polynomials L(x) and Li(x) are monic of degrees n and n− 1, respectively.
The vector f has ith coordinate vif(αi), so we have enough information to
calculate, using the Lagrange interpolation formula A.2.11,

f(x) =
n∑

i=1

Li(x)
Li(αi)

f(αi) .
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The coefficients Li(αi) are always nonzero and are often easy to compute.

( 5.1.5) Problem. (a) Prove that Li(αi) = L′(αi), where L′(x) is the formal
derivative of L(x) as defined in Problem A.2.26.

(b) If n = |F | and {α1, . . . , αn} = F , then Li(αi) = −1, for all i.
(c) If {α1, . . . , αn} is composed of n roots of xn−1 in F , then Li(αi) = nα−1

i ( 6= 0).
In particular, if n = |F | − 1 and {α1, . . . , αn} = F − {0}, then Li(αi) = −α−1

i (hence
α−1

i Li(αi)
−1 = −1).

The polynomial f(x) has degree less than k, while the interpolation polyno-
mial of the righthand side above has apparent degree n − 1. The resolution of
this confusion allows us to find the dual of a GRS code easily.

(5.1.6) Theorem. We have

GRSn,k(α,v)⊥ = GRSn,n−k(α,u),

where u = (u1, . . . , un) with u−1
i = vi

∏
j 6=i(αi − αj).

Proof. By definition ui = v−1
i Li(αi)−1.

We prove that every f in GRSn,k(α,v) has dot product 0 with every g in
GRSn,n−k(α,u), from which the result is immediate. Let f = evα,v(f(x)) and
g = evα,u(g(x)). The polynomial f(x) has degree less than k while g(x) has
degree less than n − k. Therefore their product f(x)g(x) has degree at most
n− 2. By Lagrange interpolation A.2.11 we have

f(x)g(x) =
n∑

i=1

Li(x)
Li(αi)

f(αi)g(αi) .

Equating the coefficient of xn−1 from the two sides gives:

0 =
n∑

i=1

1
Li(αi)

f(αi)g(αi)

=
n∑

i=1

(vif(αi))
(

v−1
i

Li(αi)
g(αi)

)

=
n∑

i=1

(vif(αi))(uig(αi))

= f · g ,

as required. 2

The ability in the class of GRS codes to choose different vectors v to ac-
company a fixed α has been helpful here.

Of course, to specify f as a codeword in C = GRSn,k(α,v) we do not need
to check it against every g of C⊥ = GRSn,n−k(α,u). It is enough to consider
a basis of C⊥, a nice one being the rows of the canonical generator matrix for
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C⊥, a check matrix for C. Our introduction of GRS codes such as C essentially
defines them via their canonical generator matrices. As we have seen before,
describing a linear code instead in terms of a check matrix can be fruitful. In
particular this opens the possibility of syndrome decoding.

Set r = n− k, and let c = (c1, . . . , cn) ∈ Fn. Then

c ∈ C ⇐⇒ 0 = c · evα,u(xj), for 0 ≤ j ≤ r − 1

⇐⇒ 0 =
n∑

i=1

ciuiα
j
i , for 0 ≤ j ≤ r − 1 .

We rewrite these r equations as a single equation in the polynomial ring F [z]
in a new indeterminate z. The vector c is in C if and only if in F [z] we have

0 =
r−1∑
j=0

( n∑
i=1

ciuiα
j
i

)
zj

=
n∑

i=1

ciui

(r−1∑
j=0

(αiz)j
)

The polynomials 1 − αz and zr are relatively prime, so it is possible to invert
1− αz in the ring F [z] (mod zr). Indeed

1
1− αz

=
r−1∑
j=0

(αz)j (mod zr) ,

a truncation of the usual geometric series expansion (which could equally well
be taken as a definition for the inverse of 1− αz module zr). We are left with:

(5.1.7) Theorem. (Goppa formulation for GRS codes.) The general-
ized Reed-Solomon code GRSn,k(α,v) over F is equal to the set of all n-tuples
c = (c1, c2, . . . , cn) ∈ Fn, such that

n∑
i=1

ciui

1− αiz
= 0 (mod zr) ,

where r = n− k and u−1
i = vi

∏
j 6=i(αi − αj). 2

This interpretation of GRS codes has two main values. First, it is open to a
great deal of generalization, as we shall later see. Second, it suggests a practical
method for the decoding of GRS codes, the topic of the next section.

5.2 Decoding GRS codes

As GRS codes are MDS, they can be decoded using threshold decoding as in
Problem 3.2.4. We now present an efficient and more specific algorithm for
decoding the dual of GRSn,r(α,u), starting from the Goppa formulation.
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Suppose c = (c1, c2, . . . , cn) is transmitted, and p = (p1, p2, . . . , pn) is
received, so that the error vector e = (e1, e2, . . . , en) has been introduced;
p = c + e. We calculate the syndrome polynomial of p: syndrome polynomial

Sp(z) =
n∑

i=1

piui

1− αiz
(mod zr) .

Then it is easily seen that

Sp(z) = Sc(z) + Se(z) (mod zr) ,

whence, by the Goppa formulation of Theorem 5.1.7,

Sp(z) = Se(z) (mod zr) .

Let B be the set of error locations:

B = {i | ei 6= 0} .

Then we have the syndrome polynomial

Sp(z) = Se(z) =
∑
b∈B

ebub

1− αbz
(mod zr).

We now drop the subscripts and write S(z) for the syndrome polynomial.
Clear denominators to find the Key Equation:Key Equation

σ(z)S(z) = ω(z) (mod zr),

where
σ(z) = σe(z) =

∏
b∈B

(1− αbz)

and
ω(z) = ωe(z) =

∑
b∈B

ebub

( ∏
a∈B,a6=b

(1− αaz)
)
.

(Empty products are taken as 1.) The polynomial σ(z) is called the error locatorerror locator

polynomial, and the polynomial ω(z) is the error evaluator polynomial.error evaluator

The names are justifiable. Given the polynomials σ(z) = σe(z) and ω(z) =
ωe(z), we can reconstruct the error vector e. Assume for the moment that none
of the αi are equal to 0 (although similar results are true when some αi is 0) .
Then:

B = { b |σ(α−1
b ) = 0 }

and, for each b ∈ B,

eb =
−αbω(α−1

b )
ubσ′(α−1

b )
,

where σ′(z) is the formal derivative of σ(z) (see Problem A.2.26). In fact the
polynomials σ(z) and ω(z) determine the error vector even when some αi is 0.
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( 5.2.1) Problem. Let σ(z) and ω(z) be the error locator and evaluator polynomials
for the error vector e 6= 0. Set B = { b | eb 6= 0 } and B0 = { b ∈ B |αb 6= 0}. Recall
that there is at most one index b with αb = 0.

Prove the following:

(a) wH(e) = |B| is equal to |B0| + 1 or |B0| depending upon whether or not there is
an index b with αb = 0 and eb 6= 0.

(b) deg σ(z) = |B0| and degω(z) ≤ |B| − 1 .

(c) B0 = { b |αb 6= 0, σ(α−1
b ) = 0 }.

(d) The index b with αb = 0 belongs to B if and only if deg σ(z) = degω(z).

(e) For b ∈ B0, eb is given by the formula above. If b ∈ B \B0 then

eb = wu−1
b

“ Y
a∈B0

(−αa)
”−1

,

where w is the coefficient of zf in ω(z) for f = degω(z).

If the error vector e 6= 0 has weight at most r/2 (= (dmin − 1)/2), then
relative to the syndrome polynomial Se(z) = S(z) the pair of polynomials
σe(z) = σ(z) and ωe(z) = ω(z) has the three properties by which it is charac-
terized in the next theorem. Indeed (1) is just the Key Equation. Property (2)
is a consequence of the assumption on error weight and the definitions of the
polynomials σ(z) and ω(z) (see Problem 5.2.1 above). For (3) we have σ(0) = 1
trivially. As σ(z) has deg(σ(z)) distinct roots, either gcd(σ(z), ω(z)) = 1 or the
two polynomials have a common root. But for each root α−1

b of σ(z) we have
0 6= ω(α−1

b ), a factor of eb 6= 0.
Our decoding method solves the Key Equation and so finds the error vector

e as above. The following theorem provides us with a characterization of the
solutions we seek.

(5.2.2) Theorem. Given r and S(z) ∈ F [z] there is at most one pair of
polynomials σ(z), ω(z) in F [z] satisfying:

(1) σ(z)S(z) = ω(z) (mod zr);
(2) deg(σ(z)) ≤ r/2 and deg(ω(z)) < r/2;
(3) gcd(σ(z), ω(z)) = 1 and σ(0) = 1.

In fact we prove something slightly stronger.

(5.2.3) Proposition. Assume that σ(z), ω(z) satisfy (1)-(3) of Theorem
5.2.2 and that σ1(z), ω1(z) satisfy (1) and (2). Then there is a polynomial µ(z)
with σ1(z) = µ(z)σ(z) and ω1(z) = µ(z)ω(z).

Proof. From (1)

σ(z)ω1(z) = σ(z)σ1(z)S(z) = σ1(z)ω(z) (mod zr) ;

so
σ(z)ω1(z)− σ1(z)ω(z) = 0 (mod zr) .
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But by (2) the lefthand side of this equation has degree less than r. Therefore

σ(z)ω1(z) = σ1(z)ω(z) .

From (3) we have gcd(σ(z), ω(z)) = 1, so by Lemma A.2.20 σ(z) divides σ1(z).
Set σ1(z) = µ(z)σ(z). Then

σ(z)ω1(z) = σ1(z)ω(z) = σ(z)µ(z)ω(z) .

The polynomial σ(z) is nonzero since σ(0) = 1; so by cancellation ω1(z) =
µ(z)ω(z), as desired. 2

Proof of Theorem 5.2.2.
Any second such pair has

σ1(z) = µ(z)σ(z) and ω1(z) = µ(z)ω(z)

by the proposition. So µ(z) divides gcd(σ1(z), ω1(z)) which is 1 by (3). There-
fore µ(z) = µ is a constant. Indeed

1 = σ1(0) = µ(0)σ(0) = µ · 1 = µ .

Thus σ1(z) = µ(z)σ(z) = σ(z) and ω1(z) = µ(z)ω(z) = ω(z). 2

Using the characterization of Theorem 5.2.2 we now verify a method of
solving the Key Equation with the Euclidean algorithm, as presented in Section
A.3.1 of the appendix.

(5.2.4) Theorem. (Decoding GRS using the Euclidean Algorithm.)
Consider the code GRSn,k(α,v) over F , and set r = n− k. Given a syndrome
polynomial S(z) (of degree less than r), the following algorithm halts, producing
polynomials σ̃(z) and ω̃(z):

Set a(z) = zr and b(z) = S(z).
Step through the Euclidean Algorithm A.3.1

until at Step j, deg(rj(z)) < r/2.
Set σ̃(z) = tj(z)
and ω̃(z) = rj(z).

If there is an error word e of weight at most r/2 = (dmin − 1)/2 with Se(z) =
S(z), then σ̂(z) = σ̃(0)−1σ̃(z) and ω̂(z) = σ̃(0)−1ω̃(z) are the error locator and
evaluator polynomials for e.

Proof. It is the goal of the Euclidean algorithm to decrease the degree of
rj(z) at each step, so the algorithm is guaranteed to halt.

Now assume that S(z) = Se(z) with wH(e) ≤ r/2. Therefore the error
locator and evaluator pair σ(z) = σe(z) and ω(z) = ωe(z) satisfies (1), (2), and
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(3) of Theorem 5.2.2. We first check that, for the j defined, the pair tj(z) and
rj(z) satisfies (1) and (2).

Requirement (1) is just the Key Equation and is satisfied at each step of the
Euclidean algorithm since always

Ej : rj(z) = sj(z)zr + tj(z)S(z).

For (2), our choice of j gives deg(rj(z)) < r/2 and also deg(rj−1(z)) ≥ r/2.
Therefore, from Problem A.3.5,

deg(tj(z)) + r/2 ≤ deg(tj(z)) + deg(rj−1(z))
= deg(a(z)) = deg(zr) = r .

Hence deg(tj(z)) ≤ r/2, giving (2).
By Proposition 5.2.3 there is a polynomial µ(z) with

tj(z) = µ(z)σ(z) and rj(z) = µ(z)ω(z) .

Here µ(z) is not the zero polynomial by Lemma A.3.3(1).
If we substitute for tj(z) and rj(z) in equation Ej we have

sj(z)zr + (µ(z)σ(z))S(z) = µ(z)ω(z) ,

which becomes
µ(z)

(
ω(z)− σ(z)S(z)

)
= sj(z)zr .

By the Key Equation, the parenthetical expression on the left is p(z)zr, for some
p(z); so we are left with µ(z)p(z)zr = sj(z)zr or

µ(z)p(z) = sj(z) .

Thus µ(z) divides gcd(tj(z), sj(z)), which is 1 by Corollary A.3.4.
We conclude that µ(z) = µ is a nonzero constant function. Furthermore

tj(0) = µ(0)σ(0) = µ ;

so
σ(z) = tj(0)−1tj(z) and ω(z) = tj(0)−1rj(z) ,

as desired. 2

When this algorithm is used, decoding default occurs when σ̂(z) does not
split into linear factors whose roots are inverses of entries in α with multiplicity
1. (Here we assume that none of the αi are 0.) That is, the number of roots of
σ̂(z) among the α−1

i must be equal to the degree of σ̂(z). If this is not the case,
then we have detected errors that we are not able to correct. Another instance
of decoder default occurs when tj(0) = 0, so the final division to determine σ̂(z)
can not be made.
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If tj(0) 6= 0 and σ̂(z) does split as described, then we can go on to evaluate
errors at each of the located positions and find a vector of weight at most r/2
with our original syndrome. In this case we have either decoded correctly, or we
had more than r/2 errors and have made a decoding error. (We need not worry
about division by 0 in evaluating errors, since this can only happen if σ̂(z) has
roots of multiplicity greater than one; see Problem A.2.27.)

Assume now that r is even or that α has weight n. Then this algorithm only
produces error vectors of weight r/2 or less. In particular if more than r/2 errors
occur then we will have a decoding default or a decoder error. Suppose that we
have found polynomials σ̂(z) and ω̂(z) that allow us to calculate a candidate er-
ror vector e of weight at most r/2. It follows from Lagrange interpolation A.2.11
that σ̂(z) = σe(z) and ω̂(z) = ωe(z). Also since σ(z) is invertible modulo zr, we
can solve the Key Equation to find that S(z) = Se(z). Therefore the received
vector is within a sphere of radius r/2 around a codeword and is decoded to
that codeword. That is, under these conditions Euclidean algorithm decoding as
given in Theorem 5.2.4 is an explicit implementation of the decoding algorithm
SSr/2.

Example. Consider the code C = GRS6,2(α,v) over the field F7 of
integers modulo 7, where

α = (2, 4, 6, 1, 3, 5)

and
v = (1, 1, 1, 1, 1, 1) .

First calculate a vector u for which C⊥ = GRS6,4(α,u). Starting with

L(x) = (x− 2)(x− 4)(x− 6)(x− 1)(x− 3)(x− 5)

we find:

L1(2) = (−2) (−4) (1) (−1) (−3) = 24 = 3
L2(4) = (2) (−2) (3) (1) (−1) = 12 = 5
L3(6) = (4) (2) (5) (3) (1) = 120 = 1
L4(1) = (−1) (−3) (−5) (−2) (−4) = −120 = 6
L5(3) = (1) (−1) (−3) (2) (−2) = −12 = 2
L6(5) = (3) (1) (−1) (4) (2) = −24 = 4

(Notice that these values could have been found easily using Problem
5.1.5(c).) Now ui = (viLi(αi))

−1 = Li(αi)
−1 since vi = 1; so

u = (5, 3, 1, 6, 4, 2) .

Next calculate the syndrome polynomial of an arbitrary received vector

p = (p1, p2, p3, p4, p5, p6) .

In our example r = 6− 2 = 4.

Sp(z) =
5 · p1

1− 2z
+

3 · p2

1− 4z
+

1 · p3

1− 6z
+

6 · p4

1− 1z
+

4 · p5

1− 3z
+

2 · p6

1− 5z
(mod z4)
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= 5p1( 1 +2z +4z2 +z3)
+3p2( 1 +4z +2z2 +z3)
+p3( 1 +6z +z2 +6z3)

+6p4( 1 +z +z2 +z3) (mod z4)
+4p5( 1 +3z +2z2 +6z3)
+2p6( 1 +5z +4z2 +6z3)

= p1( 5 +3z +6z2 +5z3)
+p2( 3 +5z +6z2 +3z3)
+p3( 1 +6z +z2 +6z3)
+p4( 6 +6z +6z2 +6z3) (mod z4) .
+p5( 4 +5z +z2 +3z3)
+p6( 2 +3z +z2 +5z3)

Notice that this calculation amounts to finding the canonical check matrix
for the code.

We now use the algorithm of Theorem 5.2.4 to decode the received
vector

p = (1, 3, 6, 5, 4, 2) .

We have the syndrome polynomial

S(z) =
5 · 1

1− 2z
+

3 · 3
1− 4z

+
1 · 6

1− 6z
+

6 · 5
1− 1z

+
4 · 4

1− 3z
+

2 · 2
1− 5z

(mod z4)

= 1( 5 +3z +6z2 +5z3)
+3( 3 +5z +6z2 +3z3)
+6( 1 +6z +z2 +6z3)
+5( 6 +6z +6z2 +6z3) (mod z4) .
+4( 4 +5z +z2 +3z3)
+2( 2 +3z +z2 +5z3)

= 5z + 3z2 + 4z3 (mod z4) .

The algorithm now requires that, starting with initial conditions

a(z) = z4 and b(z) = 4z3 + 3z2 + 5z ,

we step through the Euclidean Algorithm until at Step j we first have
deg(rj(z)) < r/2 = 2.

This is precisely the Euclidean Algorithm example done in the ap-
pendix. At Step 2. we have the first occurrence of a remainder term with
degree less than 2; we have r2(z) = 6z . We also have t2(z) = 3z2 +6z+4,
so t2(0)−1 = 4−1 = 2. Therefore we have error locator and evaluator
polynomials:

σ(z) = t2(0)−1t2(z) = 2(3z2 + 6z + 4) = 6z2 + 5z + 1

ω(z) = t2(0)−1r2(z) = 2(6z) = 5z .

The error locations are those in B = { b | σ(α−1
b ) = 0 }; so to find the

error locations, we must extract the roots of σ(z). As F7 does not have
characteristic 2, we can use the usual quadratic formula and find that the
roots are

2 , 3 =
−5±

√
25− 4 · 6

2 · 6 .
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Now 2−1 = 4 = α2 and 3−1 = 5 = α6, so B = {2, 6}.
An error value eb is given by

eb =
−αbω(α−1

b )

ubσ′(α
−1
b )

,

where σ′(z) = 5z + 5. Thus e2 = −4·10
3·15 = 3 and e6 = −5·15

2·20 = 6 .

We have thus found

e = (0, 3, 0, 0, 0, 6) ,

so we decode the received word p to

c = p− e = (1, 3, 6, 5, 4, 2)− (0, 3, 0, 0, 0, 6) = (1, 0, 6, 5, 4, 3) .

In the example we have been able to use the quadratic formula to calculate
the roots of σ(z) and so find the error locations. This will not always be possible.
There may be more than 2 errors. In any case, the quadratic formula involves
division by 2 and so is not valid when the characteristic of the field F is 2, one
of the most interesting cases. A method that is often used is the substitution,
one-by-one, of all field elements into σ(z), a Chien search. Although this lacks Chien search

subtlety, it is manageable when the field is not too big. There do not seem to
be general alternatives that are good and simple.

( 5.2.5) Problem. Consider the GRS8,4(α,v) code C over F13 with

v = (1, 1, 1, 1, 1, 1, 1, 1)

α = (1, 4, 3, 12, 9, 10, 5, 8) .

(a) Give n, k,β,u with C⊥ = GRSn,k(β,u).

(b) When transmitting with C, assume that the vector

p = (0, 0, 0, 0, 0, 0, 3, 5) .

is received. Use the Euclidean algorithm to find an error vector e and a decoded code-
word c. (The answers should be obvious. Use the question to check your understanding
of the process.)

(c) When transmitting with C, assume that the vector

p = (3, 6, 0, 4, 0, 5, 0, 12)

is received. Use the Euclidean algorithm to find an error vector e and a decoded
codeword c.

( 5.2.6) Problem. Consider the GRS10,4(α,v) code C over F13 with

v = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

α = (1, 2, 3, 4, 6, 7, 9, 10, 11, 12) .
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(a) Give n, k,β,u with C⊥ = GRSn,k(β,u).
( Hint: u = (∗, ∗, 9, 10, 12, 1, 3, 4, ∗, ∗).)

(b) When transmitting with C, assume that the vector

p = (4, 5, 6, 0, 0, 0, 0, 0, 0, 0) .

is received. Use the Euclidean algorithm to find an error vector e and a decoded code-
word c. (The answers should be obvious. Use the question to check your understanding
of the process.)

(c) When transmitting with C, assume that the vector

p = (3, 1, 0, 0, 0, 0, 0, 5, 7, 12) .

is received. Use the Euclidean algorithm to find an error vector e and a decoded
codeword c.

( 5.2.7) Problem. Let the field F8 be given as polynomials of degree at most 2 in α, a
root of the primitive polynomial x3+x+1 ∈ F2[x]. Consider the code C = GRS7,3(α,v)
over F8 with

α = v = (1, α, α2, α3, α4, α5, α6) .

By Problem 5.1.5(c) we have C⊥ = GRS7,4(α,u) for u = (1, 1, 1, 1, 1, 1, 1).
When transmitting with C, assume that the vector

p = (0, α5, 0, 1, α6, 0, 1)

is received. Use the Euclidean Algorithm to find an error vector e and a decoded
codeword c.


