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Abstract: A technically convenient signature of localization, exhibited by discrete op-
erators with random potentials, is exponential decay of the fractional moments of the
Green function within the appropriate energy ranges. Known implications include: spec-
tral localization, absence of level repulsion, strong form of dynamical localization, and
a related condition which plays a significant role in the quantization of the Hall con-
ductance in two-dimensional Fermi gases. We present a family of finite-volume criteria
which, under some mild restrictions on the distribution of the potential, cover the regime
where the fractional moment decay condition holds. The constructive criteria permit to
establish this condition at spectral band edges, provided there are sufficient “Lifshitz
tail estimates” on the density of states. They are also used here to conclude that the
fractional moment condition, and thus the other manifestations of localization, are valid
throughout the regime covered by the “multiscale analysis”. In the converse direction,
the analysis rules out fast power-law decay of the Green functions at mobility edges.
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1. Introduction

1.1. Overview.Operators with extensive disorder are known to have spectral regimes
(energy ranges) where the spectrum consists of a dense collection of eigenvalues cor-
responding to exponentially localized eigenfunctions. This phenomenon is of relevance
in different contexts; e.g., it plays a role in the conductive properties of metals [1–3],
in the quantization of Hall conductance [4–8], and in the emerging subject of optical
crystals [9].

Most of the mathematical results on localization for operators with random potential
in dimensionsd > 1 have been derived using themultiscale analysisintroduced by
Fröhlich and Spencer [10] (and later evolved through various other works). For discrete
systems there is an alternative approach, based on the analysis of the Green function’s
fractional moments[11]. This approach has so far been developed for only a subset of
the localization regime, but where it applies it yields somewhat stronger conclusions
(through elementary arguments). In this work we present a further extension of that
method. In particular, we derive a family of constructive finite-volume criteria for the
exponential decay for the fractional moments of Green functions. This decay condition is
a technically convenient characterization of localization, for it is known to imply spectral
localization, absence of level repulsion, dynamical localization (in a strong exponential
sense) and a related condition which plays a significant role in the quantization of the
Hall conductance in two-dimensional Fermi gases. The constructive criteria are used to
prove that for the discrete random operators described below all these properties hold
throughout the regime of localization – if that is defined through either the criteria of
the multiscale analysis or those presented here. The constructive criteria also preclude
fast power-law decay of the Green functions at mobility edges.

A guiding example for the operators discussed here is the discrete Schrödinger oper-
ator, acting in�2(Zd):

Hω = T + λVω, (1.1)

with T denoting the off-diagonal part, whose matrix elements are referred to as the
hopping terms, andVω a random multiplication operator – referred to as thepotential.
The symbolω represents a particular realization of the disorder, in this case the potential
variables{Vω(x)}, andλ serves as the disorder strength parameter.
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For the discrete Schrödinger operator

Tu,v =
{

1 if |u − v| = 1,

0 if |u − v| 	= 1,
(1.2)

and the random potential is given by a collection of independent identically distributed
random variables,{Vω(x)}x∈Zd . However, we shall also consider a more general class of
operators, allowing the incorporation of magnetic fields, periodic terms, and off-diagonal
disorder (see Sect. 3). We focus on the case of extensive disorder, where the distribution
of the random operatorHω is either translation invariant, or at least gauge equivalent to
shifts by multiples of basic periods (i.e. invariant under periodic magnetic shifts).

Our main goal is to present a sequence of finite-volume criteria for localization, which
permit to conclude that the following fractional-moment condition is satisfied in some
energy interval[a, b] ∈ R:

E

(∣∣∣〈x∣∣∣ 1

Hω − E − iη

∣∣∣y〉∣∣∣s) ≤ A(s)e−µ(s)|x−y|, (1.3)

for all E ∈ [a, b], η ∈ R, and suitables ∈ (0, 1). E(·) represents here the average over
the disorder,i.e. the random potential.

Needless to say, the bound (1.3) is of interest mainly in situations where the energy
E is within the spectrum,i.e. [Hω −E]−1 is an unbounded operator and the exponential
decay occurs only due to the localization of the eigenfunctions with energies within
the interval[a, b]. As in ref. [11], fractional powers are used in order to avoid infinity,
however the value of 0< s < 1 at which Eq. (1.3) is derived is of almost no importance
(if Eq. (1.3) holds for a particular value ofs, then it will hold for all s < τ , where
τ < 1 is a number which depends only on the regularity of the probability distribution
of Vω(x), see Appendix – Lemma B.2).

For the systems considered here, Eq. (1.3) is known to imply various other properties,
mentioned above, which are commonly associated with localization. More explicitly:

(i) Spectral localization ([11] – using [12]):The spectrum ofHω within the interval
(a, b) is almost-surely of the pure-point type, and the corresponding eigenfunctions
are exponentially localized.

(ii) Dynamical localization ([13], expanded here in Appendix A):wave packets with
energies in the specified range do not spread –

E

(
sup
t∈R

|〈x|e−itH PH∈[a,b]|y〉|
)

≤ Ãe−µ̃|x−y|. (1.4)

(iii) Exponential decay of the projection kernel ([8]); the condition expressed in a bound
similar to Eq. (1.4) forE(|〈x|PH≤E |y〉|) with E ∈ [a, b]. This condition plays an
important role in the quantization of Hall conductance, in the ground state of the
two dimensional electron gas with Fermi levelEF ∈ [a, b] [7,6,8].

(iv) Absence of level repulsion ([14]).Minami has shown that Eq. (1.3) implies, for
operators of the type considered here, that in the range[a, b] the energy gaps have
Poisson-type statistics.

The fractional moment condition has already been established for certain regimes: ex-
treme energies, as well as all energies at high enough disorder [11], and also for weak
disorder but far enough from the unperturbed spectrum [13]. The results presented below
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permit to extend it to band edges, provided there are sufficient “Lifshitz tail estimates”
on the density of states (refs. [15–19]), and to other regimes mapped by a sequence of
constructive criteria.

1.2. The finite-volume criteria.Our main results admit a number of variations. In this
section we present a formulation which is natural for the prototypical example of the
discrete random Schrödinger operators, i.e. Hamiltonians of the form (1.1) withT the
discrete Laplacian (given by (1.2)). In Sect. 3 we formulate various extensions of the
results, including operators incorporating magnetic fields and to operators with hopping
terms of unbounded range.

The results are derived under some mild regularity assumptions on the probability
distribution of the variables{Vω(x)}x∈Zd which form the random potential. For simplicity
we address ourselves here to theIID case: the potential variables are independent with
a common probability distributionρ(dV ). The assumption is then thatρ(dV ) satisfies
the regularity conditions listed below,R1(s) or R2(s). However, the independence is not
essential. What matters is that the stated regularity condition be satisfied, with a uniform
constant, by the conditional distribution of each of the potential variables, conditioned
on arbitrary values of the other potentials.

The two regularity conditions mentioned here are:

R1(s): A probability distributionρ(dV ), onR, is said to bes-regular, or to satisfy the
conditionR1(s) at some 0< s ≤ 1, if there existsC < ∞ such that

ρ(a − ε, a + ε) ≤ Cεs. (1.5)

R2(s): The probability distributionρ(dV ) is said to have thedecoupling propertyR2(s),
with some 0< s ≤ 1, if there existsC < ∞ such that for any pair of functions
f andg of the form

f (V ) = 1

V − a
, g(V ) = V − b

V − c
, (1.6)

with a, b, c ∈ C, the expectation of the product can be dominated as follows:

E
(|f (V )|s |g(V )|s) ≤ CE

(|f (V )|s)E (|g(V )|s) . (1.7)

The smallestC such that Eq. (1.7) holds for alla, b, c ∈ C is called here the
decoupling constantfor ρ, and is denoted byDs(ρ).

A sufficient condition forR2(s) is thatρ have bounded support and satisfyR1(τ ) for
someτ > 4s (see Appendix C; related discussion is found in refs. [11,8].)

In Appendix B we show that given anyτ -regular measureρ and anys < τ , there is
a finite constantC such that for any 2× 2 self adjoint matrixA2×2,

∫ ∫
ρ(du)ρ(dv)

∣∣∣∣∣∣
[(

A2×2 +
(

u 0
0 v

))−1
]

i,j

∣∣∣∣∣∣
s

≤ C, (1.8)

where[·]i,j denotes thei, j matrix element withi, j = 1, 2 . Throughout this work, we
denote byCs the smallest value ofC at which (1.8) holds. Forρ(dV ) which also satisfy
R2(s) we let:C̃s = Cs · Ds(ρ)2.
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For * ⊂ Z
d we denote byH*;ω the operator obtained fromHω by “turning off”

the hopping terms outside*. Thus, the restriction ofH*;ω to �2(*) (considered as a
subspace of�2(Zd)), is nothing butHω with the Dirichlet boundary conditions on the
boundary of*.

We also denote by+(*) the set of the nearest-neighbor bonds reaching out of*

(i.e. pairs with one site in* and the other outside), by*+ the collection of sites within
distance 1 from*, and by|+(*+)| the number of bonds reaching out of that set. These
notions will be generalized in Sect. 2.1.

Following are our basic results for operators of the form (1.1).

Theorem 1.1. Let Hω be a random Schrödinger operator with the probability distribu-
tion of the potentialV (x) satisfying the regularity conditionR1(τ ) and fixs < τ . If for
somez ∈ C (possibly real) and some finite region* ⊂ Z

d which contains the origin0:

b(*, z) := sup
W⊂*

|+(*+)|Cs

λs

∑
〈u,u′〉∈+(*)

E

(∣∣∣〈0∣∣∣ 1

HW ;ω − z

∣∣∣u〉∣∣∣s)
 < 1, (1.9)

then there are someµ(s) > 0 and A(s) < ∞ – which depend on the energyz only
through the boundb(*, z) – such that for any region. ⊂ Z

d ,

E±i0

(∣∣∣〈x∣∣∣ 1

H.;ω − z

∣∣∣y〉∣∣∣s) ≤ A(s)e−µ(s) |x−y|. (1.10)

The subscript ofE±i0, in (1.10) is to be interpreted as saying that the bound is valid
for either of the two limiting expressions:

lim
η↘0

E

(∣∣∣〈x∣∣∣ 1

H.;ω − E −(+) iη

∣∣∣y〉∣∣∣s) . (1.11)

The “cutoff” ±iη is needed for an unambiguous interpretation in casez is a real energy
(E) within the spectrum ofH . For the random operators considered here it is well
understood that: (i) the expectation may be exchanged with the limitη ↘ 0, (ii) it
suffices to verify the uniform bounds (1.10) for finite regions, and (iii) the finite volume
expectations are continuous inη. In the proofs we shall be dealing with finite systems;
the subscript will, therefore, be omitted there.

Let us note that already the special case* = {0} is of interest. It provides the
following variant of the single-site criterion of ref. [11] (which is, in fact, a bit simpler
since it does not invoke thedecoupling lemma).

Corollary. For the random Schrödinger operator a sufficient condition for localization
(1.3) is that for allE ∈ [a, b],

2d(2d − 1)
Cs

λs

∫
1

|λV − E|s ρ(dV ) < 1. (1.12)

Just as the main result of ref. [11], the above criterion permits to easily conclude
localization for the cases of high disorder or extreme energies. However, we may now
move beyond that. By testing the hypothesis of Theorem 1.1 in the increasing sequence
of volumes* = [−L, L]d , one may extend the conclusion to increasing regimes in the
“energy× disorder plane”. In fact, it is easy to see that for each energy at which the
strong localization condition (1.10) is satisfied, the hypothesis (1.9) will be met at all
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sufficiently largeL. (This may, however, be far from a practical test, as the necessary
computation may be rather difficult for largeL).

Observant readers may note that the conclusion of Theorem 1.1 provides not only the
localization condition Eq. (1.3), but it also rules outextended boundary states. The flip
side of this observation is that if such states are present in some geometry, e.g. the half
space, then the hypothesis of Theorem 1.1 will fail to be satisfied even if the operator
exhibits localization in the bulk. Therefore, we present also the following result which
permits to establish bulk localization regardless of the possible presence of extended
boundary states.

Theorem 1.2. Let Hω be a random Schrödinger operator with the probability distribu-
tion of the potentialV (x) satisfyingR1(τ ) andR2(s), for somes < τ . If for somez ∈ C

and some finite region0 ∈ * ⊂ Z
d ,(

1+ C̃s

λs
|+(*)|

)2 ∑
〈u,u′〉∈+(*)

E

(∣∣∣〈0∣∣∣ 1

H*;ω − z

∣∣∣u〉∣∣∣s) < 1, (1.13)

then Hω satisfies the fractional-moment condition (1.3), and there existµ(s) > 0,
A(s) < ∞ so that for any region. ⊂ Z

d ,

E±i0

(∣∣∣〈x∣∣∣ 1

H.;ω − z

∣∣∣y〉∣∣∣s) ≤ A(s)e−µ(s) dist.(x,y), (1.14)

with

dist.(x, y) = min{|x − y|, [dist(x, ∂.) + dist(y, ∂.)]}. (1.15)

Let us add that, as in Theorem 1.1,A(s) andµ(s) of (1.14) depend onz only through
the value of the LHS in Eq. (1.13).

The modified metric, dist.(x, y), is a distance function relative to which the entire
boundary of. is regarded as one point. It permits us to state that there is exponential
decay in the bulk without ruling out non-exponential decay along the boundary. We
supplement the last result by the following observation.

Theorem 1.3. Let Hω be a random operator given by Eq.(1.1), with the probability
distribution of the potentialV (x) satisfyingR1(τ ) andR2(s), for somes < τ . If at some
energyE (or z ∈ C) the localization condition(1.3) is satisfied, with someA < ∞
and µ > 0, then for all large enough (but finite)L the condition(1.13) is met for
* = [−L, L]d .

The statement is a bit less immediate than the analogous claim for Theorem 1.1. We
shall therefore include the proof below.

It is natural to compare the above criteria for localization with those of the multiscale
analysis. The two methods share the basic feature that the analysis requires an initial
condition which one may expect to be met in a finite system provided its linear size
is of the order of the localization length, or larger. However, for the method presented
here if a suitable input is received on some scale, then the analysis can proceed using
steps, or blocks, of only that size. An important difference in the results is that the
fractional moment condition yields exponential decay for theexpectation values, which
are important for some of the conclusions listed above. Such bounds have not been
derived by methods based on the multiscale analysis, since (at least without further
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improvement) the bounds the latter yields on the “error terms”, i.e., the probabilities
of “bad blocks”, decay not faster than exp[−(logL/ logLo)α]. This rate is faster than
any power ofL, but in itself not fast enough to imply exponential bounds for the mean
values. However, it should be noted that the extension of the present method to operators
in the continuum, for which a number of basic localization results have been established
using the multiscale analysis [20,21,17], is still unaccomplished. Also not covered are
discrete operators with the potential assuming discrete values (e.g.,Vω(x) = ±1 [22]).

In Sect. 4 we discuss various implications of the basic results. In particular it is shown
that, for discrete random operators of the type considered here, the fractional moment
condition (1.3) is satisfied throughout the regime in which the multiscale analysis applies
(see Theorem 4.4). This carries the further implication that the properties listed above
hold throughout the entire regime for which localization can be proven by any of the
known methods. One of those properties is a strong form of dynamical localization, on
which more is said in Appendix A.

2. Proofs of the Main Results

2.1. Some useful notation.The proofs of the above statements will be presented in terms
which permit a direct extension to operators with more general hopping terms. We start
by generalizing the notation; in particular, the sets*+ and+(*) will be made to depend
implicitly on the operatorT .

In the study ofH.;ω we shall often consider “depleted” Hamiltonians,H
(+)
.;ω, obtained

by setting to zero the operator’s non-diagonal matrix elements (hopping terms) along
some collection of ordered pairs of sites (referred to here asbonds) + ⊂ Z

d × Z
d . The

difference is the operatorT (+), with

T (+)
x,y =

{
Tx,y if 〈x, y〉 ∈ + or 〈y, x〉 ∈ +

0 if 〈x, y〉 	∈ + and〈y, x〉 	∈ +,
(2.1)

so that

H.;ω = H
(+)
.;ω + T (+). (2.2)

Typically,+ will be a collection of bonds which forms the “cut set” of someW ⊂ Z
d ,

i.e., the set of bonds withTx,y 	= 0 connecting sites inW with sites in its complement.
Thus we denote

+(W) =
{
〈u, u′〉|u ∈ W, u′ ∈ Z

d\W, andTu,u′ 	= 0
}

, (2.3)

and also

W+ = W ∪
{
u′ ∈ Z

d |Tu,u′ 	= 0 for someu ∈ W
}

. (2.4)

The number of elements (i.e. bonds) in+ is denoted|+|.
In addition, we use the “Green function” notation:

G.;ω(x, y; z) =
〈
x

∣∣∣ 1

H.;ω − z

∣∣∣y〉, (2.5)
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with G
(+)
.;ω(x, y; z) defined correspondingly. Often, where it is obvious from context that

an operator is a random variable, we shall suppress the subscriptω.
In broad terms, the strategy for the proof is to derive a bound on the average Green

function, of the form

E
(|G.(x, y; z)|s) ≤ ∑

〈u,u′〉∈+(*(x))

γ*(x)(〈u, u′〉)|Tu,u′ |sE
(∣∣∣G(+(*(x))

. (u′, y; z)

∣∣∣s) ,

(2.6)

for all y ∈ Z
d\*(x), where:*(x) = {x + y : y ∈ *} is a finite neighborhood ofx,

translate of some fixed region* � 0, andγ*(x) is a quantity which is small when the
typical values of the finite volume Green function betweenx and the boundary of*(x)

are small (in a suitable sense).
An inequality of the form (2.6) is particularly useful when∑

〈u,u′〉∈+(*(x))

γ*(x)(〈u, u′〉)|Tu,u′ |s < 1, (2.7)

since in that case Eq. (2.6) is akin to the statement thatE (|G.(x, y; z)|s) is a strictly
subharmonic function ofx, as long as|x−y| > diam|*|, and thus – if it is also uniformly
bounded (which it is) – it decays exponentially.

The first step towards a bound of the form (2.6) is, naturally, the resolvent identity:

G.,ω = G
(+)
.,ω − G

(+)
.,ω · T (+) · G.,ω

= G
(+)
.,ω − G.,ω · T (+) · G

(+)
.,ω

(2.8)

(written here in the operator form). However, one then reaches an obstacle, since the
quantity whose mean needs to be estimated is a product of two Green functions which are
not independent. For some time now this co-dependence has been the main obstacle on
the road to an argument along the lines outlined above, since otherwise the general strat-
egy applied here is well familiar from its various successful applications in the context
of the statistical mechanics of homogeneous systems ([23–27]), and the other auxiliary
tools specific to the present context have in essence been available since ref. [11]. The
co-dependence problem is solved here through a second application of the resolvent
identity (followed by a decoupling argument of a familiar type). In fact, a similar tactic
was applied by von Dreifus to the mean correlation functions, in a study of the phase
transitions in disordered ferromagnetic models [28] (as we learned from T. Spencer after
the completion of the first draft of this work).

The two applications of the resolvent identity, for which the depletion sets+1 and+2
need not coincide, may be combined by starting our argument from the identity:

G. = G
(+1)
. − G

(+1)
. · T (+1) · G

(+2)
. + G

(+1)
. · T (+1) · G. · T (+2) · G

(+2)
. . (2.9)

Readers familiar with the current techniques may note that once the middle termG.

is replaced by a uniform bound, the remaining expression can be made free from co-
dependence by an appropriate choice of+1 and+2. The rest are technicalities, to which
we turn next.



Finite-Volume Fractional-Moment Criteria for Anderson Localization 227

2.2. Key lemmas.We shall now present three lemmas which will be used in the proofs
of our main results. The first is a known estimate which provides the afore-mentioned
uniform upper bound.

Lemma 2.1. LetV (x) be a random potential satisfying the regularity conditionR1(τ ).
Then for eachs < τ , any region., and any random operator of the form(1.1)

E
(|G.(x, y; z)|s) ≤ Cs

λs
, (2.10)

for all z ∈ C.

The statement is an immediate consequence of a version of the Wegner estimate which
we present in the appendix. (See Lemma B.1; also Eq. (2.18) below.)

Next is our new bound.

Lemma 2.2. Let Hω be a random operator given by Eq.(1.1)with the probability dis-
tribution of the potentialV (x) satisfying the regularity conditionR1(τ ), and letW be a
subset of.. Then, denoting̃+ = +(W+) and+ = +(W), for all z ∈ C:

(1) The following “depleted-resolvent bound” holds for any pair of sitesx ∈ W , y ∈
.\W+,

E
(|G.(x, y; z)|s) ≤ γ (W)

∑
〈v,v′〉∈+̃

|Tv,v′ |sE (|G.\W+(v′, y; z)|s) , (2.11)

with

γ (W) = Cs

λs

∑
〈u,u′〉∈+

|Tu,u′ |sE (|GW (x, u; z)|s) . (2.12)

(2) If, furthermore, the probability distribution of the potential satisfies alsoR2(s) then
the following bound holds for any pair of sitesx ∈ W , y ∈ .\W ,

E
(|G.(x, y; z)|s) ≤ ∑

〈v,v′〉∈+

γx(〈v, v′〉)|Tv,v′ |sE (|G.\W (v′, y; z)|s) , (2.13)

with

γx(〈v′, v〉) = E
(|GW (x, v′; z)|s)+ C̃s

λs

∑
〈u,u′〉∈+

|Tu,u′ |sE (|GW (x, u; z)|s) .

(2.14)

Proof. Both results follow from the second-order resolvent identity Eq. (2.9), which
yields:

G.(x, y; z) = G
(+1)
. (x, y; z) −

〈
x

∣∣∣G(+1)
. T

(+1)
. G

(+2)
.

∣∣∣y〉
+
〈
x

∣∣∣G(+1)
. T

(+1)
. G.T

(+2)
. G

(+2)
.

∣∣∣y〉. (2.15)
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x

y

u

v’

u’

v
W

Fig. 2.1. Diagramatic depiction of the bound (2.16) onG(x, y; z), for x, y ∈ Z
d andz ∈ C. The longsolid

lines are “depleted Green functions”, the two short segments correspond to the hoping terms (T ) and the
double line is a full Green function. Once the latter is replaced by a uniform upper bound, the expectation
value of the product of the remaining terms factorizes

For the proof of the first claim, we take+1 = + = +(W) and+2 = +̃ = +(W+).
Then, the first term of Eq. (2.15) is zero because+(W) decouplesx andy and the second
term is zero because+(W+) decouplesW+ andy. Thus

G.(x, y; z) =
∑

〈u,u′〉∈+

〈v,v′〉∈+̃

Tu,u′Tv,v′G(+)
. (x, u; z)G.(u′, v; z)G

(+̃)
. (v′, y; z) . (2.16)

It follows that for anys ∈ (0, 1),

E
(|G.(x, y; z)|s)
≤

∑
〈u,u′〉∈+

〈v,v′〉∈+̃

|Tu,u′ |s |Tv,v′ |sE
(∣∣∣G(+)

. (x, u; z)G.(u′, v; z)G
(+̃)
. (v′, y; z)

∣∣∣s) . (2.17)

(Note that for 0< s < 1: |a + b|s ≤ |a|s + |b|s .)
In estimating the terms on the right-hand side of Eq. (2.17) let us consider first the con-

ditional expectation of the central factors,G.(u′, v; z). Only these factors depend on the
values of the potential atu′ andv, and therefore they can be replaced by their conditional
expectationE

( |G.(u′, v; z)|s∣∣ {V (q)}q∈.\{u′,v}
)
. As will be proven in the Appendix,

under the regularity conditionR1(τ ) these are uniformly bounded (Lemma B.1):

E
( |G.(u′, v; z)|s∣∣ {V (q)}q∈.\{u′,v}

) ≤ Cs

λs
. (2.18)

(The proof involves a reduction to a two-dimensional problem via the Krein formula,
and a two-dimensional Wegner-type estimate.)

Once the central factor in each expectation on the right.hand side of Eq. (2.17) is
replaced by the above bound, what remains there are two independent random variables

which are|G(+)
. (x, u; z)|s = |GW (x, u; z)|s and|G(+̃)

. (v′, y; z)|s = |G.\W+(v′, y; z)|s .
The expectation now factorizes, and the resulting expression yields the first claim of the
lemma.
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For the second claim, we take+1 = +2 = + = +(W). Once again the first term
of Eq. (2.15) is zero because+(W) decouplesx andy. However, the second term is
non-zero, and we obtain

E
(|G.(x, y; z)|s)

≤
∑

〈v,v′〉∈+

|Tv′,v|sE
(∣∣G(+)

. (x, v; z)G
(+)
. (v′, y; z)

∣∣s)
+

∑
〈u,u′〉∈+
〈v,v′〉∈+

|Tu,u′ |s |Tv,v′ |sE
(∣∣G(+)

. (x, u; z)G.(u′, v; z)G
(+)
. (v′, y; z)

∣∣s) .
(2.19)

At this point we may not use the previous argument, since in the last expectationV (v)

affects each of the first two factors andV (u′) affects each of the last two factors. However,
the dependence of each of these factors on the potentials is of a particularly simple
form: they are ratios of two functions (determinants) which are separately linear in each
potential variable. Using the decoupling hypotheses,i.e. the regularity conditionsR1(τ )

andR2(s), the expectation may be bounded by the product of expectations. Specifically,
we prove in Lemma C.1 that:

E

(∣∣G(+)
. (x, u; z)G.(u′, v; z)G

(+)
. (v′, y; z)

∣∣s)
≤ C̃s

λs
E

(∣∣G(+)
. (x, u; z)G

(+)
. (v′, y; z)

∣∣s) . (2.20)

Once again, we are left with a product of two independent random variables,∣∣G(+)
. (x, u; z)

∣∣s = ∣∣GW (x, u; z)
∣∣s and

∣∣G(+)
. (v′, y; z)

∣∣s = ∣∣G.\W (v′, y; z)
∣∣s . The fac-

torization of the remaining expectation yields the second claim of the lemma, Eq. (2.13).
��

The above lemma provides a bound for the Green function in terms of its depleted
versions. This suffices for the derivation of the first of our two main theorems (Thm 1.1).
However, this does not suffice for the second theorem, Thm 1.2, for which we shall use
an inequality that is linear in the original function. That “closure” will be attained with
the help of the following bound on the depleted resolvent in terms of the full one.

Lemma 2.3. Let H.,ω be a random operator in �2(.), . ⊆ Zd , given by Eq. (1.1),
with the probability distribution of the potential V (x) satisfying the regularity conditions
R1(τ ) and R2(s) for some s < τ . Let W be a subset of .. Then, the following holds for
any pair of sites u, y ∈ .\W , and every z ∈ C:

E
(|G.\W (u, y; z)|s) ≤ E

(|G.(u, y; z)|s)
+ C̃s

λs

∑
〈v,v′〉∈+

|Tv′,v|sE
(|G.(v, y; z)|s) ,

(2.21)

with + = +(W) the “ cut-set” of W .



230 M. Aizenman, J. H. Schenker, R. M. Friedrich, D. Hundertmark

Proof. Starting from the first order resolvent identity, Eq. (2.8), and taking expectation
values of its matrix elements, we find:

E

(
|G(+)

. (u, y; z)|s
)
≤ E

(|G.(u, y; z)|s)
+

∑
〈v,v′〉∈+(W)

|Tv′,v|sE
(
|G(+)

. (u, v′; z)|s |G.(v, y; z)|s
)

,

(2.22)

where+ = +(W), andG(+) = G.\W . It suffices, therefore, to show that in the last

term the factor|G(+)
. (u, v′; z)|s may be replaced (for an upper bound) by the constant

C̃s

λs . This follows through a decoupling argument which we present in the Appendix –
see Lemma C.1. ��
Remark. In the applications we shall use Lemmas 2.2 and 2.3 both in the stated form
and in the conjugated form, with the arguments of the Green functions reversed. One
form of course implies the other (at conjugate energy).

2.3. Proofs of the main results. We are now ready to derive the results stated in the
Introduction. For simplicity these were stated in the context of the Schrödinger operators,
for whichT is the discrete Laplacian. The proofs given in this section will be restricted
to this case. A more generally applicable treatment is presented in the next section.

Proof of Theorem 1.1. Assume that for somez ∈ C and a finite region* the smallness
condition (1.9) holds. By Lemma 2.2 and translation invariance, we learn that for any
region. and anyx, y ∈ . with y ∈ Z

d\*+(x):

E
(|G.(x, y; z)|s) ≤ b · 1

|+(*+)|
∑

〈v,v′〉∈+(*+(x))

E
(|G.\*+(x)(v

′, y; z)|s) , (2.23)

whereb = b(*, z) of Eq. (1.9), and*(x) is the translate of* by x.
By Lemma 2.1, each of the terms in the sum is bounded byCs/λs . Since the sum

is normalized by the prefactor 1/|+(*+)|, the inequality (2.23) permits to improve that
bound forE(|G.(x, y; z)|s) by the factorb(< 1). Furthermore, the inequality may be
iterated a number of times, each iteration resulting in an additional factor ofb.

One should take note of the fact that the iterations bring in Green functions corre-
sponding to modified domains. It is for this reason that the initial input assumption was
required to hold for modified geometries, i.e. not just for* but also for all its subsets.

Inequality (2.23) can be iterated as long as the resulting sequences (x, v′, . . . , v(n))
do not get closer toy than the distanceL = sup{|u||u ∈ *+}. Thus:

E
(|G.(x, y; z)|s) ≤ Cs

λs
· b�|x−y|/L ≤ Cs

λsb
e−µ|x−y|, (2.24)

with µ = | ln b|/L. ��
Next, let us turn to the proof of the second theorem (Thm 1.2). The main change is

that we now proceed under the assumption that the smallness condition holds for some
region* without requiring it to hold also in all subsets. As explained in the introduction,
the difference may be meaningful ifHω has extended boundary states in some geometry.
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Proof of Theorem 1.2. Our first goal is to show that under the assumption (1.13) there is
b < 1 such that for all pairs{x, y} with *(x) ⊂ . andy ∈ .\*(x),

E
(|G.(x, y; z)|s) ≤ b

∑
u∈*+(x)

P l
x(u)E

(|G.(u, y; z)|s) , (2.25)

with non-negative weights satisfying:∑
u∈*+(x)

P l
x(u) = 1. (2.26)

We shall use this inequality along with its conjugate:

E
(|G.(x, y; z)|s) ≤ b

∑
v∈*+(y)

P r
y (v)E

(|G.(x, v; z)|s) , (2.27)

whereP r
y (v) satisfy the suitable analog of the normalization condition (2.26).

It is important that – unlike in the inequality (2.23), the functions which appear on
the right-hand side of (2.25) and (2.27) are computed in the same domain as those on
the left-hand side.

The first step is by Lemma 2.2, which yields

E
(|G.(x, y; z)|s) ≤ ∑

〈u,u′〉∈+(*(x))

γx(〈u, u′〉)E (|G.\*(x)(u
′, y; z)|s) , (2.28)

whenever*(x) ⊂ . andy ∈ Z
d\*(x), with γx(〈u, u′〉) specified in Eq. (2.14).

Next, we apply Lemma 2.3, Eq. (2.21), to boundE
(|G.\*(x)(u

′, y; z)|s) in terms of
a sum of quantities of the formE (|G.(v, y; z)|s) with v ∈ *+(x). The result is initially
expressed as a sum over bonds:

E
(|G.(x, y; z)|s) ≤ ∑

〈u,u′〉∈+(*(x))

γx(〈u, u′〉)E (|G.(u′, y; z)|s)
+ C̃s

λs
:

∑
〈u,u′〉∈+(*(x))

E
(|G.(u, y; z)|s) ,

(2.29)

where, using translation invariance,

: :=
∑

〈u,u′〉∈+(*)

γ0(〈u, u′〉).

Collecting terms, and pulling out normalizing factors, one may cast the inequality
(2.29) in the form (2.25) with

b :=
∑

〈u,u′〉∈+(*(x))

(
γx(〈u, u′〉) + C̃s

λs
:

)
=
(

1+ C̃s

λs
|+(*)|

)
: (2.30)

=
(

1+ C̃s

λs
|+(*)|

)2 ∑
〈u,u′〉∈+(*)

E
(|G*(0, u; z)|s) . (2.31)

The smallness condition (1.13) is nothing other than the assumption thatb < 1.
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The above argument proves Eq. (2.25). By the transposition, or time-reflection, sym-
metry ofH (H T = H ) also Eq. (2.27) holds. (Such symmetry ofH is not essential for
our analysis: it suffices to assume that the smallness condition Eq. (1.13) holds along
with its transpose.)

We proceed in the proof by iterating the inequalities (2.25) and (2.27). However an
adaptation is needed in the argument which was used in the proof of Theorem 1.1 since
the iteration can be carried out only as long as the two points (the arguments of the
resolvent) stay at distanceL = sup{|u| : u ∈ *+} not only from each other but also
from the boundary∂.. The relevant observation is that for every pair of sitesx, y ∈ .

there is a pair of integers{n, m} such that:

1. n + m = dist.(x, y) ,
2. the ball of radiusn centered atx and the ball of radiusm centered aty form a pair of

disjoint subsets of..

For the desired bound onE (|G.(x, y; z)|s), we shall iterate Eq. (2.25)�n/L times
from the left, and (2.27)�m/L times from the right. Similar to Eq. (2.24), we obtain:

E
(|G.(x, y; z)|s) ≤ Cs

λsb2 e−µdist.(x,y), (2.32)

with µ = | ln b|/L. ��
The third theorem stated in the introduction (Thm 1.3) is the claim that the condi-

tion which is shown above to be sufficient for exponential localization, in the sense of
Eq. (1.3), is also a necessary one. We shall now prove this to be the case.

Proof of Theorem 1.3. Suppose that Eq. (1.3) holds with someA < ∞ andµ > 0. We
need to show that also in finite systems the Green function is sufficiently small between
an interior point and the boundary. To bound the finite volume function in terms of the
infinite volume one, we may use Lemma 2.3, by which

∑
〈u,u′〉∈+(*)

E
(|G*(0, u; z)|s) ≤ ∑

〈u,u′〉∈+(*)

E
(|G(0, u; z)|s)

+ C̃s

λs
|+(*)|

∑
〈v,v′〉∈+(*)

|Tv,v′ |sE (|G(0, v′; z)|s) , (2.33)

for any finite region* containing the origin. We need to show that for* = [−L, L]d
with L large enough

(
1+ C̃s

λs
|+(*)|

)2 ∑
〈u,u′〉∈+(*)

E
(|G*(0, u; z)|s) < 1. (2.34)

After applying Eq. (2.33) to the terms on the left side of Eq. (2.34) we find that the number
of summands involved and their prefactors grow only polynomially inL, whereas under
our assumption the relevant factorsE (|G(0, u; z)|s) are exponentially small inL. Hence
the condition (2.34) is satisfied forL large enough. ��
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3. Generalizations

3.1. Formulation of the general results. We shall now turn to some generalizations of
the theorems which were presented in Sect. 1.2 for the random Schrödinger operator.
The setup may be extended in a number of ways.

1. Addition of magnetic fields. The hopping terms{Tx,y} need not be real. In particular,
the present analysis remains valid when one includes inHω a constant magnetic field,
or a random one with a translation invariant distribution.

A magnetic field is incorporated inTx,y through a factor exp(−iAx,y), with Ax,y an
anti-symmetric function of the bonds. (It represents the integral of the “vector potential”
×(−e/h̄) along the bond〈x, y〉.) Except for the trivial case, with such a factorT is no
longer shift invariant. However, in the case of a constant magnetic field,T will still be
invariant under appropriate “magnetic shifts”, which consist of ordinary shifts followed
by gauge transformations.

Translation-invariance plays a role in our discussion. However, since gauge transfor-
mations do not affect the absolute values of the resolvent, it suffices for us to assume
thatHω is stochastically invariant under magnetic shifts – in the sense of Definition 3.1.

2. Extended hopping terms. The discrete Laplacian may be replaced by an operator with
hopping terms of unlimited range. For exponential localization we shall however
require{Tx,y} to decay exponentially in|x − y|.

3. Off-diagonal disorder. {Tx,y} may also be made random. It is convenient however
to assume exponentially decaying uniform bounds. The regularity conditions on the
potential will now be assumed for the conditional distribution ofV (x) at specified
off-diagonal disorder.

4. Periodicity. Hω may also include a periodic potential, i.e., Eq. (1.1) may be modified
to:

Hω = Tx,y;ω + Uper(x) + λVω(x). (3.1)

This may be further generalized by requiring periodicity only of the probability
distribution ofH .

5. More general lattices.

In the previous discussion, the underlying setsZ
d may be replaced by other graphs,

with suitable symmetry groups. The graph structure is relevant if the hopping terms are
limited to graph edges. However, since we consider also operators with hopping terms of
unlimited range, let us formulate the result for operators on�2(T ) where the underlying
set is of the formT = G×S, withG a countable group andS a finite set. We let dist(x, y)

denote a metric onT which is invariant under the natural action ofG on that set.
For example, this setup allows forT to be a Bethe lattice, or a more general Cayley

lattice. (Instructive discussion of some statistical mechanical models in such settings
may be found in refs. [29]). The setS is included here in order to leave room for periodic
structures. We denote byC the “periodicity cell”, which is{ı}×S whereı is the identity
in G, and bygx the “G-coordinate” ofx. Thus, the latticeT is tiled by disjoint translates
of C, the tile containingx beinggxC.

Some of the relevant concepts are summarized in the following definition.

Definition 3.1. With T = G × S as above, let Hω be a random operator on �2(T ) (i.e.,
one with some specified probability distribution), whose off-diagonal part is denoted by
Tω and the diagonal part is referred to as the potential (for consistency, we denote it as
λVω).
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1. We say that Hω is stochastically invariant under magnetic shifts if for each κ ∈ G
and almost every ω there is a unitary map of the form(

Uκ,ωψ
)

(x) = eiφκ,ω(x)ψ(κx), (3.2)

(with some function φκ,ω(·) ) under which

U∗
κ,ωHωUκ,ω

D= Hω, (3.3)

where
D= means equality of the probability distributions.

2. The operator is said to have tempered off-diagonal matrix elements, at a specified
value of s < 1, if there is a kernel τx,y , and some m > 0, such that Tx,y;ω ≤ τx,y ,
almost surely, and

sup
x∈T

∑
y∈T

τ s
x,ye+m dist(x,y) < ∞. (3.4)

3. We say that the potential has an s-regular distribution if for some τ > s the con-
ditional distributions of {Vω(x)}, at specified values of the hopping terms variables
{Tu,v;ω}, are independent and satisfy the regularity conditions R1(τ ) and R2(s) with
uniform constants.

Before presenting our general theorems, Theorem 3.2 and Theorem 3.3, it is conve-
nient to introduce notation for certain quantities which appear in their statements. For
each* ⊂ T we defineτ s

u,∂*, “the hopping term fromu to the boundary”, by

τ s
u,∂* =

∑
v∈W

τs
u,v, (3.5)

whereW is either* or T \ *, whichever does not containu. The kernelk*(u, v),
which is a “dressed” version ofτ s

u,v that appears in our basic bounds (see Lemma 3.4),
is defined as follows:

k*(u, v) := τ s
u,vI[u ∈ *, v ∈ T \ *] + τ s

u,∂*τ s
v,∂*

C̃s

λs
I[u ∈ *]

+ τ s
u,∂*τ s

v,∂*

(
C̃s

λs

)2

Es(*)I[u, v ∈ *], (3.6)

whereEs(*) =∑u∈* τs
u,∂*. Notice thatk* is concentrated on the boundary of*, i.e.,

k*(u, v) ≤ C* e−m′[dist(u,∂*)+dist(v,∂*)] (3.7)

wherem′ is independent of* and dist(v, ∂*) is the distance fromv to whichever set,
* or T \ *, does not containv.

Following is the generalization of Theorem 1.1.
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Theorem 3.2. Let Hω be a random operator on �2(T ) (T = G × S, as above) with
an s-regular distribution for the potential Vω(·), and with tempered off-diagonal matrix
elements (Tx,y;ω), which is stochastically invariant under magnetic shifts. Let µ > 0, and
assume that for some z ∈ C and a finite region * ⊂ T , which contains the periodicity
cell C, the following is satisfied for all subsets W ⊂ *:

sup
x∈C

∑
〈u,v〉∈*×(T \*)

E

(∣∣∣∣〈x∣∣∣∣ 1

HW ;ω − z

∣∣∣∣u〉∣∣∣∣s
)

k*(u, v) e+µdist(x,v) < 1. (3.8)

Then there exists A < ∞ such that for all . ⊂ T , and all x ∈ .,

∑
y∈.

E±i0

(∣∣∣∣〈x∣∣∣∣ 1

H.;ω − z

∣∣∣∣y〉∣∣∣∣s
)

e+µdist(x,y) ≤ A. (3.9)

Remarks. 1. Because the hopping terms are tempered as described in Definition 3.1,
the bound (3.8) will be satisfied forsome µ > 0 provided

sup
x∈C

sup
W⊂*

∑
〈u,v〉∈*×T \*

E

(∣∣∣∣〈x∣∣∣∣ 1

HW ;ω − z

∣∣∣∣u〉∣∣∣∣s
)

k*(u, v) < 1. (3.10)

We shall use this criterion in Sect. 4 in the slightly different form(
1+ C̃s

λs
Es(*)

)2

sup
x∈C

sup
W⊂*

∑
〈u,u′〉∈*×T \*

τs
u,u′E

(∣∣∣∣〈x∣∣∣∣ 1

HW ;ω − z

∣∣∣∣u〉∣∣∣∣s
)

< 1, (3.11)

where we have summed various terms appearing ink*(u, v).

2. For graphs which grow at an exponential rate, such as the Bethe lattice, exponentially
decaying functions need not be summable. The conclusion, Eq. (3.9), was therefore
formulated in the stronger form, which implies both exponential decay, and almost sure
summability. In particular, it is useful to recall that fors/2 < 1:

E

[∑
y

|G(x, y)|2
]s/2

 ≤ E

(∑
y

|G(x, y)|s
)

. (3.12)

3. One may note that in the more general theorem we do make use of the “decoupling
lemma”, which was not used in Theorem 1.1.

4. Translation invariance played a limited role here: the analysis extends readily to
random operators with non-translation invariant distributions, provided only that the
required bounds are satisfied uniformly for all translates of*, and the distribution of the
potential is uniformlys-regular. To demonstrate the required change we cast the next
statement in that form.

As we discussed in the preceding sections, condition (3.8) may fail due to the exis-
tence of extended states at some surfaces. The following generalization of Theorem 1.2
provides criteria for localization in the bulk which are less affected by such surface
states.
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Theorem 3.3. Let Hω be a random operator on �2(T ) (T = G × S, as above) with
an s-regular distribution for the potential Vω(·), and with tempered off-diagonal matrix
elements ({Tx,y;ω}). Let µ > 0 and assume that for some z ∈ C and a finite region *,
C ⊂ * ⊂ T ,

sup
x∈T

∑
u∈gx*
v∈T

E

(∣∣∣∣〈x∣∣∣∣ 1

Hgx*;ω − z[z̄]
∣∣∣∣u〉∣∣∣∣s

)
kgx*(u, v)e+µdist(x,v) < 1, (3.13)

where z[z̄] means that the bound is satisfied for both z and z̄. Then the condition (3.9)
holds for the full operator Hω (i.e., with . = T ), and there exists B < ∞ with which
for arbitrary . ⊂ T :

E±i0

(∣∣∣∣〈x∣∣∣∣ 1

H.;ω − z

∣∣∣∣y〉∣∣∣∣s
)

≤ Be− µ̃ dist.(x,y). (3.14)

The modified distance dist.(x, y) is defined by the natural extension of Eq. (1.15).

3.2. Derivation of the general results. The derivation of Theorems 3.2 and 3.3 follows
very closely the proofs of Sect. 2. The main difference is in the second portion of the
argument where we extract decay in a single step rather than by iteration.

The first part of the proof rests on Lemmas 2.2 and 2.3 which are easily seen to extend
to the setup described in Theorem 3.3. One readily obtains the following extension (the
hopping termsTx,y appearing in Sect. 2.2 are replaced with the uniform upper-bound
τx,y):

Lemma 3.4. Let Hω be a random operator with the properties listed in Theorem 3.3, and
let * be a finite subset of T , containing the periodicity cell C, for which the condition
(3.8) is satisfied. Then the following bound is valid for any x ∈ *, y ∈ T \*,

E
(|G.(x, y; z)|s) ≤∑

<u,v>∈*×T \*

E
(|G*∩.(x, u; z)|s) k*(u, v)E

(|G.\*(v, y; z)|s) , (3.15)

and

E
(|G.(x, y; z)|s) ≤ ∑

<u,v>∈*×T
E
(|G.∩*(x, u; z)|s) k*(u, v)E

(|G.(v, y; z)|s) .

(3.16)

Notice that (3.16) differs from (3.15) in that the Green function in the region. (not
. \ *) appears on the right hand side and the summation overv extends over the entire
lattice.

Theorems 3.2 and 3.3 follow easily from Lemma 3.4:
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Proof of Theorem 3.2. To establish the claimed bound (3.9) we will show that

An := sup
.:|.|≤n

sup
x

∑
y∈.

E
(|G.(x, y; z)|s) e+µdist(x,y) (3.17)

is bounded independent ofn, thus establishing the result for finite regions. For infinite
regions (3.9) the result follows by a limiting procedure, with the convergence implied
by Fatou’s lemma.

For any given. with |.| ≤ n and any sitex ∈ .,∑
y∈.

E
(|G.(x, y; z)|s) e+µ dist(x,y) ≤ |*|eµdiam(*) Cs

λs

+
∑

y∈.\*x

u∈*x,v∈T \*x

E
(|G*x∩.(x, u; z)|s) k*(u, v)E

(|G.\*x (v, y; z)|s) e+µdist(x,y),

(3.18)

where the first term on the right side bounds the contribution to the sum from sitesy in
*x ≡ gx*, and the remaining terms were estimated by Lemma 3.4, Eq. (3.15).

Performing the summation overy first, and applying the triangle inequality to factor
the exponential weight, we obtain:∑

y∈.

E
(|G.(x, y; z)|s) e+µdist(x,y) ≤ |*|Cs

λs
eµdiam(*) + b An, (3.19)

whereb is the quantity on the left hand side of (3.8). When maximized over. andx

this leads to the boundAn ≤ Const. + bAn which, sinceb < 1, implies that

An ≤ |*|Csλ
−seµdiam(*)

1− b
, (3.20)

as claimed above.��

Proof of Theorem 3.3. The claim made for the special case. = T is covered by analysis
similar to what was just described. However the second claim, i.e., Eq. (3.14), requires
a somewhat different argument.

We will first show that for a finite region. the function

g(x, y) = E(|G.(x, y; z)|s) e+µdist.(x,y) (3.21)

attains its maximum value for some(x, y) with dist.(x, y) ≤ 2diam(*). For any pair
with a larger distance at least one of the sites, sayx, can be separated from both the
other and the boundary∂. by an appropriate translate of*, i.e. *x . We may then
use Lemma 3.4, Eq. (3.16), to boundg(x, y) by a sum of products of Green functions.
If, in this sum, we replace each factor ofE(|G.(v, y)|s)eµdist(x,y) by the upper bound
gmaxe

µdist(x,v), the resulting sum yields

g(x, y) ≤ bgmax, (3.22)

whereb is the quantity which sits on the left hand side of (3.13). Asb < 1, we learn that
g(· , ·) is not maximized at(x, y).
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Sinceg(x, y) ≤ Cs

λs eµdist.(x,y), the above implies that for any finite.

E(|G.(x, y; z)|s) ≤ Cs

λs
e2µdiam(*)e−µ dist.(x,y). (3.23)

By strong resolvent convergence arguments, the bound extends to infinite regions.��

4. Some Implications

We shall now present a number of implications of the finite volume criteria for local-
ization, focusing on the finite dimensional latticesZ

d . The statements will bear some
resemblance to results derived using the multiscale approach, however the conclusions
drawn here go beyond the latter by yielding results on the exponential decay of themean
values. The significance of that was described in the introduction.

4.1. Fast power decay ⇒ exponential decay. An interesting and useful implication (as
is seen below) is that fast enough power law implies exponential decay. In this sense,
random Schrödinger operators join other statistical mechanical models in which such
principles have been previously recognized. The list includes the general Dobrushin–
Shlosman results [24] and the more specific two-point function bounds in: percolation
(Hammersley [23] and Aizenman–Newman [27]), Ising ferromagnets (Simon [25] and
Lieb [26]), certainO(N) models (Aizenman–Simon [30]), and time-evolution models
(Aizenman–Holley [31], Maes–Shlosman [32]).

Theorem 4.1. Let Hω be a random operator on �2(Zd) with an s-regular distribution
for the potential (Vω(x)) and tempered off-diagonal matrix elements (Tx,y;ω). There are
L0, B1, B2 < ∞, which depend only on the temperedness bound (3.4), such that if for
some E ∈ R and some finite L ≥ L0, either

L3(d−1) sup
L/2≤‖x−y‖≤L

E

(∣∣∣〈x∣∣∣ 1

H*L(x),ω − E

∣∣∣y〉∣∣∣s) ≤ B1, (4.1)

or

L4(d−1) sup
L/2≤‖x−y‖≤L

E

(∣∣∣〈x∣∣∣ 1

Hω − E − i0

∣∣∣y〉∣∣∣s) ≤ B2, (4.2)

where *L(x) = [−L, L]d + x and ‖y‖ ≡ maxj |yj |, then the exponential localization
(1.3)holds for all energies in some open interval (a, b) containing E.

Proof. By Theorem 3.2, to establish exponential decay at the energyE it suffices to
show that for eachx ∈ Z

d ,(
1+ C̃s

λs
Es(*L)

)2 ∑
u∈*L(x)

u′∈Z
d\*L(x)

τ s
u,u′E

(|G*L(x)(x, u;E)|s) < 1. (4.3)

Because the off diagonal elements are tempered we have the following bounds

τ s
u,u′ ≤ Const. e−m|u−u′|, Es(*L) ≤ Const. qLd−1, (4.4)
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for somem > 0, and allL > 1. Under the assumption Eq. (4.1):

∑
u∈*L(x)

u′∈Z
d\*L(x)

τ s
u,u′E

(|G*L(x)(x, u;E)|s)

≤ C̃s

λs
Const. (L/2)de−mL/2

+ Const. sup
L/2≤‖x−y‖≤L

E

(∣∣∣〈x∣∣∣ 1

H*L(x),ω − E

∣∣∣y〉∣∣∣s)Ld−1. (4.5)

For this bound the sum was split according to‖u − u′‖ < (or ≥)L/2, and in the first
case we used the uniform upper boundE(|G(x, u;E)|s) ≤ C̃s/λs .

It is now easy to see that with an appropriate choice ofL0 andB1 condition (4.1)
implies the claimed bound (4.3) – for the given energyE. The extension to an interval of
energies aroundE then follows from the continuity of the fractional moments offinite
volume Green functions.

To show the sufficiency of the second condition, we first use Lemma 2.3 to bound
finite volume Green functions in terms of the corresponding infinite volume funtions

E
(|G*L(x)(x, y;E)|s) ≤ E

(|G(x, y;E)|s)+ C̃s

λs

∑
u∈*L(x)

u′∈Z
d\*L(x)

τ s
u′,uE

(|G(x, u′;E)|s) .

(4.6)

Splitting the sum as in Eq. (4.5), we get

sup
L/2≤‖x−y‖≤L

E
(|G*L(x)(x, y;E)|s)

≤
[

C̃s

λs

]2

Const. (L/2)de−mL/2

+
(
1+ Const. Ld−1

)
× Ld−1 sup

L/2≤‖x−y‖≤L

E
(|G(x, y;E)|s) .

(4.7)

The combination of Eq. (4.7) with (4.5), yields the claim – for the given energy. Again,
the existence of an open interval of energies in which the condition is met is implied by
the continuity of the finite-volume expectation values.��

4.2. Lower bounds for Gω(x, y;Eedge+ i0) at mobility edges. Boundary points of the
continuous spectrum are often referred to asmobility edges. (In an ergodic setting the
location of such points does not depend on the realizationω [33].) The proof of the
occurrence of continuous spectrum for random stochastically shift-invariant operators
on Z

d is still an open problem (one may add that we are here glossing over some
fine distinctions in the dynamical behaviour [34]). However it is intersting to note that
Theorem 4.1 directly yields the following pair of lower bounds on the decay rate of
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the Green function at mobility edges,Eedge, for stochastically shift invariant random
operators with regular probability distribution of the potential:

sup
L/2≤‖y‖≤L

E

(∣∣∣〈0∣∣∣ 1

H[−L,L]d ,ω − Eedge

∣∣∣y〉∣∣∣s) ≥ B1L−3(d−1), (4.8)

sup
L/2≤‖y‖≤L

E

(∣∣∣〈0∣∣∣ 1

Hω − Eedge− i0

∣∣∣y〉∣∣∣s) ≥ B2L−4(d−1), (4.9)

with ‖y‖ ≡ maxj |yj |. We do not expect the power laws provided here to be optimal. As
mentioned above, vaguely similar bounds are known for the critical two-point functions
in certain statistical mechanical models (percolation, Ising spin systems, and someO(N)

spin models).

4.3. Extending off the real axis. For various applications, such as the decay of the
projection kernel (see [8, Sect. 5]), it is useful to have bounds on the resolvent atz =
E + iη which are uniform inη. The following result shows that in order to establish
such uniform bounds it is sufficient to verify our criteria for real energies in some
neighborhood ofE.

Theorem 4.2. Let Hω be a random operator on �2(Zd) with an s-regular distribution
for the potential (Vω(x)) and tempered off-diagonal matrix elements (Tx,y;ω). Suppose
that for some E ∈ R, and IE > 0, the following bound holds uniformly for ξ ∈
[E − IE, E + IE]:

E

(∣∣∣〈x∣∣∣ 1

Hω − ξ − i0

∣∣∣y〉∣∣∣s) ≤ A e−µ|x−y|. (4.10)

Then for all η ∈ R:

E

(∣∣∣〈x∣∣∣ 1

Hω − E − iη

∣∣∣y〉∣∣∣s) ≤ Ãe−µ̃|x−y|, (4.11)

with some Ã < ∞ and µ̃ > 0 – which depend on IE and the bound (4.10).

Remarks. 1. This result is not needed in situations covered by thesingle site version
of the criterion provided by Theorem 1.1, since if Eq. (1.12) is satisfied at someE ∈ R

then it automatically holds uniformly along the entire lineE + iR. We do not see a
monotonicity argument for such a deduction in case of other finite-volumes.

2. One way to derive the statement is by using the fact that exponential decay may be
tested in finite volumes: if a finite volume criterion holds for someE then continuity
allows one to extend it to allE + iη with η sufficiently small. The Combes–Thomas
estimate [35] can then be used to cover the rest of the lineE + iR. However, by this
approach one gets only a weaker decay rate for energies off the real axis. It is tempting
to think that some contour integration argument could be found to significantly improve
on that. The proof given below is a step in that direction (though it still leaves one with
the feeling that a more efficient argument should be possible).
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Proof. Assume that condition (4.10) is satisfied for allξ ∈ [E − IE, E + IE]. We
shall show that this implies that for any powerα,

E

(∣∣∣〈x∣∣∣ 1

Hω − ξ − iη

∣∣∣y〉∣∣∣s) ≤ Aα

|x − y|α , (4.12)

with the constantAα < ∞ uniform in η. The stated conclusion then follows by an
application of Theorem 4.1 (and the uniform bounds seen in its proof).

We shall deal separately with large and small|η|, splitting the two regimes atIE ×
π/α.The case|η| ≥ IE×π/α is covered by the general bound of Combes–Thomas [35],
which states that:

|G(x, y;E + iη)| ≤ (2/η)e−m|x−y| (4.13)

for anym ≥ 0 such that ∑
x∈Zd

τ (x) (em|x| − 1) ≤ η/2. (4.14)

To estimate the resolvent for|η| ≤ IE ×π/α, we shall use the fact that the function

fL(ζ ) = E
(|G[−L,L]d (x, y; ζ )|s) (4.15)

is subharmonic in the upper half plane, and continuous at the boundary.The subharmonic-
ity is a general consequence of the analyticity of the resolvent inζ , and the continuity is
implied through the continuity of the distribution of the potential.L serves as a convenient
cutoff, which may be removed after the bounds are derived (sinceH[−L,L]d ,ω −→

L→∞Hω

in the strong resolvent sense).
LetD ⊂ C be the triangular region in the upper half plane in the form of an equilateral

triangle based on the real interval[E − IE, E + IE] with the side angles equal toθ –
determined by the condition

α = 2π

θ
− 1. (4.16)

The Poisson-kernel representation of harmonic functions yields, forE + iη ∈ D,

fL(E + iη) ≤
∫

∂D

fL(ζ )P D
E+iη(dζ ), (4.17)

whereP D
E+iη(dζ ) is a certain probability measure on∂D. We now rely on the fact that

this probability measure satisfies

P D
E+iη(dζ ) ≤ Const.d(η2π/θ ) /IE2π/θ . (4.18)

(This is easily understood upon the unfolding ofD by the mapz (→ z2π/θ applied from
either of the base corners ofD, i.e., fromζ = E ± IE, and a comparison with the
Poisson kernel in the upper half plane.)

For ζ ∈ ∂D ∩ R the integrand satisfies the exponential bound (4.10). Along the rest
of the boundary ofD we use the Combes–Thomas bound (4.13). Putting it all together
we get

fL(E + iη) ≤ A e−µ|x−y| + Const.
∫ IE θ

0

2

η
e−Const. |x−y| ηd(η2π/θ ) /IE2π/θ .

(4.19)

The claimed Eq. (4.12) follows by simple integration, and the relation (4.16).��
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4.4. Relation with the multiscale analysis and density of states estimates. Using the
above results we shall now show that the fractional moment localization condition is
satisfied throughout the regime for which localization can be shown via the multiscale
analysis, and also in regimes over which one has suitable bounds (e.g., via Lifshitz tail
estimates) on the density of states of the operators restricted to finite regions*L =
[−L, L]d . The following result is useful for the latter case.

Theorem 4.3. Let Hω be a random operator on �2(Zd) with tempered off-diagonal
matrix elements (Tx,y;ω) and a distribution of the potential which is s-regular for all
s small enough, which is stochastically invariant under magnetic shifts. Then, given
β ∈ (0, 1), C1 > 0, and ξ > 3(d − 1), there exist L0 > 0 and C2 > 0 such that if for
some L ≥ L0,

Prob
[
dist

(
σ(H*L;ω), E

) ≤ C1L−β
]

< C2L−ξ , (4.20)

at some energy E, then the exponential localization condition (1.3) holds in some open
interval containing E.

The condition (4.20) is similar to the one used in the multiscale analysis, although
there one can also find a sufficient diagnostic with arbitraryξ > 0. It may therefore
not be initially clear that the methods of this paper may be used throughout the regime
in which the multiscale analysis applies. However, the proof of Theorem 4.3 is easily
adapted to prove the following result which implies fractional moment localization via
theconclusions of the multiscale analysis.

Theorem 4.4. Let Hω be a random operator with tempered off-diagonal matrix elements
(Tx,y;ω) and a distribution of the potential which is s-regular for all s small enough,
which is stochastically invariant under magnetic shifts. If for some E ∈ R there exist
A < ∞, µ > 0 , and ξ > 3(d − 1) such that

lim
L→∞ Lξ Prob

[
|G*L;ω(0, x)| > Ae−µ|x| for some x∈ *L

]
= 0, (4.21)

then the exponential localization condition (1.3) holds in some open interval containing
E.

Remarks. 1. When the multiscale analysis applies, it allows one to conclude that there
areA < ∞ andµ > 0 such that the probabilities appearing on the left side of Eq. (4.21)
decay faster thanany power ofL asL → ∞. Thus, the conclusions of the multiscale
analysis imply that exponential localization in the stronger sense discussed in our work
applies throughout the regime which may be reached by this prior method.

2. It is of interest to combine the criterion presented above with Lifshitz tail estimates
on the density of states at the bottom of the spectrum,E0, and at band edges. Using
Lifshitz tail estimates, it is possible to show that [36]:

Prob
[
inf σ(H*L;ω) ≤ E0 + IE

] ≤ Const. Lde−IE−d/2
. (4.22)

Theorem 4.3 then implies fractional moment localization in a neighborhood ofE0; we
need only chooseIE ∝ L−β with β ∈ (0, 1) for large enoughL. Previous results in
this vein may be found in [21,16–18].
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Proof of Theorems 4.3 and 4.4. We first prove Theorem 4.3 and then indicate how the
proof can be modified to show Theorem 4.4.

Fix an energyE ∈ R. ForL > 0, define

pL(δ) := Prob
[
dist

(
σ(H*L;ω), E

) ≤ δ
]

, (4.23)

and let

δL := C1L−β . (4.24)

We will show that for suitables ∈ (0, 1), L0 > 0 andC2 > 0, if

pL(δL) < C2L−ξ , (4.25)

then the input condition (4.1) of Theorem 4.1:

L3(d−1) sup
L/2≤‖y‖≤L

E

(∣∣∣〈0∣∣∣ 1

H*L,ω − Ẽ

∣∣∣y〉∣∣∣s) ≤ B1, (4.26)

is satisfied for all energies̃E ∈ [E − 1
2δL, E + 1

2δL]. Exponential localization in the
corresponding interval (and strip, withη 	= 0) follows then by Theorems 4.1 (and
Theorem 4.2).

First we must show how to estimateE
(|G*L;ω(0, u; Ẽ)|s) in terms ofpL(δ). This

is achieved by considering separately the contributions from the “good set”:

.G = {ω|dist
(
σ(H*L;ω), E

)
> δ}, (4.27)

and its complement, the “bad set”:.B = .c
G.

On the “good set”,ω ∈ .G, the energỹE is at a small yet significant distance (IE ≥
1
2δ) from the spectrum ofH*L;ω. In this situation, we use the Combes–Thomas [35]
bound, by which:

|G*L;ω(0, u; Ẽ)| ≤ 2

IE
e−

1
2IE|u|. (4.28)

The above estimate does not apply on the “bad set”. However, using the Hölder inequality,
we find that the net contribution to the expectation is small because Prob(.B) = pL(δ)

is small. The two estimates are combined in the following bound:

E
(|G*L;ω(0, u; Ẽ)|s)
= E

(|G*L;ω(0, u; Ẽ)|sI [ω ∈ .G])+ E
(|G*L;ω(0, u; Ẽ)|sI [ω ∈ .B ])

≤ 4sδ−se−s |u| δ /4 + E
(|G*L;ω(0, u; Ẽ)|t) s

t E (I [ω ∈ .B ])1− s
t

≤ 4sδ−se−s |u| δ /4 + C
s
t
t /λs pL(δ)1− s

t ,

(4.29)

wheret is any number greater thans for which the distribution of the potential is still
t-regular (i.e.,Ct < ∞).

The required bound, Eq. (4.26), is satisfied once one choosess small enough so that
ξ ≥ t

t−s
3(d − 1), andL0 large enough so that forL > L0,

4sC−s
1 L3(d−1)−sβe−s C1 L1−β /4 ≤ B1/2. (4.30)
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Finally let us remark on how this argument can be adapted to prove Theorem 4.4. We
simply define the good and bad sets differently:

.G = {ω||G*L;ω(0, x)| ≤ Ae−µ|x| for all x ∈ *L}, (4.31)

and.B = .c
G , and then proceed as in the proof ofTheorem 4.3 using Hölder’s inequality

to estimate the contributions from.B . It is easy to see that for largeL, the condition
(4.21) implies that the input for Theorem 4.1 is satisfied.��

Thus, we have seen here that the fractional moment localization condition holds
throughout the regime for which localization can be established by any available meth-
ods. This is meaningful since that condition carries a number of physically significant
implications.

Appendix

A. Dynamical Localization

Among the implications of the fractional moment condition is dynamical localization,
expressed through uniform exponential decay of the average time evolution kernels:

E

(
sup
t∈R

∣∣∣〈x∣∣∣PHω∈F eitH
∣∣∣y〉∣∣∣) ≤ Ae−µ|x−y|, (A.1)

wherePHω∈F indicates the spectral projection ofHω onto a setF ⊂ R in which the
fractional moment condition is known to hold. A derivation of this implication, under
some auxiliary assumptions on the distribution of the potential, was given in ref. [13]. For
completeness we offer here a streamlined version of that argument, which also extends
the result in that we now allowF to be an unbounded set (in particular the full real line).

The inequality expressed in Eq. (A.1) is not special to the time evolution operators
ft (E) = eitE ; it follows, rather, from a similar bound on the average total mass of the
spectral measures,µ

x,y
ω , associated topairs of sitesx, y. The measures are defined by

the spectral representation:∫
f (E)µx,y

ω ( dE) := 〈x|f (Hω)|y〉, (A.2)

for bounded Borel functionsf . In the following discussion we denote by|µx,y
ω | the

absolute value (sometimes called thetotal variation) of µ
x,y
ω .

Theorem A.1. Let Hω be a random operator on �2(Zd) with tempered off-diagonal
matrix elements and a potential Vω which satisfies:

1. For some δ ∈ (0, 1), the δ-moments of Vω, E
(|Vω(x)|δ), are uniformly bounded.

2. For each x ∈ Z
d the conditional distribution of v = Vω(x) at specified values of

all other matrix elements has a density ρx
ω(v), and the functions ρx

ω are uniformly
bounded.

Suppose there is an energy domain F ⊂ R on which Hω satisfies a uniform fractional
moment bound, i.e., there exist A < ∞ and µ > 0 such that, for some s ∈ (0, 1),

E

(∣∣∣〈x∣∣∣ 1

H*;ω − E

∣∣∣y〉∣∣∣s) ≤ Ae−µ|x,y|, (A.3)
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for any finite region * ⊂ Z
d , any pair of sites x, y ∈ *, and every E ∈ F . Then there

exist A′ < ∞ and µ′ > 0 such that for any pair of sites x, y ∈ Z
d ,

E
(|µx,y

ω |(F )
) ≤ A′e−µ′|x−y|, (A.4)

where µ
x,y
ω is the spectral measure associated to the pair x, y and Hω.

Remarks. 1. Recall that for any regular Borel measureµ,

|µ|(F ) = sup|
∫

F

f (E)µ( dE)|,

where the supremum ranges over Borel measurable (or even just continuous) functions
f which are point-wise bounded by 1. Thus Eq. (A.4) implies that

E

(
sup

t
|〈x|ft (Hω)PHω∈F |y〉|

)
≤ CA′e−µ′|x−y| , (A.5)

for any uniformly bounded family of Borel functions{ft }. In particular, we may take
ft (E) = eitE for t ∈ R to obtain dynamical localization (A.1) as promised.

2. The requirement that the conditional densities,ρx
ω, be uniformly bounded is overly

strong. By the arguments presented in ref. [13], the result extends to potentials for which
there is someq > 0 such that

∫
(ρx

ω(v))1+qdv are uniformly bounded.

3. Since this work extends now theexponential dynamical localization to the regime
covered by the multiscale analysis, let us mention that prior results covering this regime
include the proof of localization in terms ofpower-law bounds for the time evolution
kernel [37,38]. (The analysis there is more general since it applies also to models for
which the fractional moment method has not been developed, e.g., continuum operators).

Proof of Theorem A.1. It is convenient to derive the result through the analysis of the finite
volume operators obtained by restrictingHω to finite regions,*n ⊂ Z

d . It is generally
understood that for eachx, y ∈ Z

d and each increasing sequence of finite regions*n

which contain{x, y} and whose union isZd , the associated spectral measures,µ
x,y

*n;ω,

converge in the vague topology toµx,y
ω . Thus, by the lemma of Fatou, for anyF ⊂ R:

E(|µx,y
ω |(F )) ≤ limn→∞ E(|µx,y

*n;ω|(F )).
The upshot is that it suffices to prove the following statement regarding finite volume

operators.

Under the assumptions of Theorem A.1 there exist C, r > 0 (which depend only on the
regularity assumptions for Hω) such that for any finite region * ⊂ Z

d , any x, y ∈ *,
any F ⊂ R, and any s ∈ (0, 1):

E

(∣∣∣µx,y

*;ω
∣∣∣ (F )

)
≤ C

[
sup
E∈F

E

(∣∣∣〈x∣∣∣ 1

H*,ω − E

∣∣∣y〉∣∣∣s)]r

. (A.6)

Following is a summary of the proof of this assertion.

Let us fix a finite region* ⊂ Z
d and a pair of sitesx, y ∈ *. For simplicity of

notation, we will suppress the region* and denote the restricted operator byHω and
the associated spectral measure byµ

x,y
ω .

Since�2(*) is finite dimensional,µx,y
ω is a weighted sum of Dirac measures supported

on the eigenvalues ofHω. Integrals with respect to this measure are discrete sums. The
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argument of ref. [13] makes an essential use of the following representation of this
measure.

Let v = Vω(x), and let v̂ be any other value in R. Denote +̂(E) := −1/
〈
x

∣∣∣ 1
Ĥω −E

∣∣∣x〉,
with Ĥω the operator with the potential at x changed to v̂. Then,

µx,y
ω (dE) = −(v − v̂)

〈
x

∣∣∣∣ 1

Ĥω − E

∣∣∣∣y〉δ(v − v̂ − +̂(E))dE. (A.7)

In what follows, we will takev̂ = v̂ω to be a random variable independent ofvω and
identically distributed. In this case Eq. (A.7) holds almost surely.

A special case of Eq. (A.7) is the formula (which was the basis for the important
“Kotani-argument” [39,12]) for the spectral measure atx,

µx,x
ω (dE) = δ(v − v̂ − +̂(E))dE. (A.8)

The above is a probability measure. Another normalizing condition is:

|v − v̂|2
∫ ∣∣∣∣〈x∣∣∣∣ 1

Ĥω − E

∣∣∣∣y〉∣∣∣∣2δ(v − v̂ − +̂(E))dE ≤ 1, (A.9)

(which typically holds as equality).
The reason for Eq. (A.9) is that by the general structure of the spectral measures,

µ
x,y
ω (dE) = Rω(E)µx,x

ω ( dE), with Rω(E) satisfying∫
|Rω(E)|2µx,x

ω (dE) = 〈y|Pω |y〉 ≤ 1,

wherePω is the projection onto the cyclic subspace forHω which contains|x〉.
Let us first present the necessary estimates for the case thatF ⊂ R is of finite

Lebesgue measure. Using the bound Eq. (A.9), and the Hölder inequality,

E
(∣∣µx,y

ω

∣∣ (F )
)

≤
[

E

(
|v − v̂|α

∫
F

∣∣∣∣〈x∣∣∣∣ 1

Ĥω − E

∣∣∣∣y〉∣∣∣∣αδ(v − v̂ − +̂(E))dE

)]1/(2−α)

, (A.10)

whereα( < 1) is a small number to be specified later. By a further application of the
Hölder inequality, followed by the Jensen inequality we obtain

E

(∣∣∣µx,y

*;ω
∣∣∣ (F )

)2−α ≤ [
2E(|v|δ)

]α/δ

×
[

E

(∫
F

∣∣∣∣〈x∣∣∣∣ 1

Ĥω − E

∣∣∣∣y〉∣∣∣∣sδ(v − v̂ − +̂(E))dE

)]α/s

,

(A.11)
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whereα is fixed by the equationα/s + α/δ = 1. Finally we evaluate:

E

(∫
F

|〈x| 1

Ĥω − E
|y〉|sδ(v − v̂ − +̂(E))dE

)
=
∫

F

E

(∣∣∣∣〈x∣∣∣∣ 1

Ĥω − E

∣∣∣∣y〉∣∣∣∣sρx
ω(v̂ + +̂(E))

)
dE

≤κ

∫
F

E

(∣∣∣∣〈x∣∣∣∣ 1

Ĥω − E

∣∣∣∣y〉∣∣∣∣s
)

dE,

(A.12)

whereκ is a uniform upper bound forρx
ω. These estimates can be combined to provide

a bound of the form Eq. (A.6) forF a finite interval, which was the case considered in
ref. [13]. We shall now improve the argument, to obtain a statement which covers the
case that the localized spectral regime is unbounded.

Since we do not wish our final estimate to depend on the Lebesgue measure ofF , we
seek a way of introducing an integrable weighth(E), so that the final bound involves
the integral ofh(E) dE in place of dE. This may be accomplished with the following
inequality:

∣∣µx,y
ω

∣∣ (F ) ≤
(
〈x||g(H)|2p|x〉

) 1
2p

(∫
F

|g(E)|−p′ ∣∣µx,y
ω

∣∣ (dE)

) 1
p′

, (A.13)

where 1/p +1/p′ = 1 andg is any continuous function which is bounded and bounded
away from zero. To prove Eq. (A.13), write

∣∣µx,y
ω

∣∣ (F ) = ∫
F

g(E)/g(E)
∣∣µx,y

ω

∣∣ ( dE),
and apply the Hölder inequality followed by∣∣∣∣∫ |g(E)|p ∣∣µx,y

ω

∣∣ ( dE)

∣∣∣∣ ≤ (〈x||g(H)|2p|x〉
)1/2

. (A.14)

It is convenient to chooseg(E)2p = (1+E2), since〈x|(1+H 2
ω)|x〉 = B +Vω(x)2,

whereBω is a bounded random variable which depends only on the off-diagonal part of
Hω. Upon taking expectations followed by a further application of the Hölder inequality
this leads to

E
(∣∣µx,y

ω

∣∣ (F )
) ≤ [

E

((
Bω + Vω(x)2

) q
2p

)]1/q

×

E


∫

F

1

(1+ E2)
p′
2p

∣∣µx,y
ω

∣∣ (dE)


q′
p′



1/q ′

,

(A.15)

where 1/q + 1/q ′ = 1. We estimate the two factors on the right-hand side of this
inequality separately.

The first factor can be controlled by choosingq = pδ so that

E

((
Bω + Vω(x)2

) q
2p

)
≤ ‖Bω‖δ/2∞ + E

(|Vω(x)|δ) . (A.16)
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The exponentsp, p′, q, q ′ are all specified once we choosep > 1/δ. Specifically,
q = δp, q ′ = p(p − 1/δ)−1, andp′ = p(p − 1)−1. Note thatp′ < q ′.

To estimate the second factor, we note that|µx,y
ω | is a sub-probability measure and

q ′/p′ > 1, so by the Jensen inequality,

E


∫

F

1

(1+ E2)
p′
2p

∣∣µx,y
ω

∣∣ (dE)


q′
p′
 ≤ E

∫
F

1

(1+ E2)
q′
2p

∣∣µx,y
ω

∣∣ (dE)

 .

(A.17)

Estimating the right hand side with the argument outlined above forF with finite
Lebesgue measure, we find that

E

∫
F

1

(1+ E2)
q′
2p

∣∣µx,y
ω

∣∣ (dE)

 ≤ [2E(|v|δ)
]α/δ

×
[

κ

∫
F

E

(∣∣∣∣〈x∣∣∣∣ 1

Ĥω − E

∣∣∣∣y〉∣∣∣∣s
)

dE

(1+ E2)q ′/2p

]α/s

, (A.18)

which is uniformly bounded provided we choosep such thatq ′/p > 1. This is possible
sinceq ′/p = (p − 1/δ)−1 which can be made as large as we like.

Thus, for any finite volumeE
(∣∣∣µx,y

*;ω
∣∣∣ (F )

)
can be bounded by a constant multiple

of supE∈F E

(∣∣∣〈x∣∣∣ 1
Ĥ*;ω−E

∣∣∣y〉∣∣∣s) raised to a certain power. Which multiple and which

power depend only on theδ-moments of the potential and the uniform bound on the
conditional distributionsρx

ω. By the vague convergence argument outlined at the start of
the proof, this proves the theorem.��

B. A Fractional Moment Bound

The regularity conditionsR1(τ ) andR2(s) have been used to give a priori estimates of
certain fractional moments. Such fractional moment bounds are properties of the general
class of operators with diagonal disorder. Hence, throughout this appendix, we consider
random operatorsHω on�2(T ) of the form

Hω = T0 + λVω, (B.1)

whereT0 is an arbitrary bounded self-adjoint operator andVω is a random potential for
whichVω(x) are independent random variables (T is any countable set).

Lemma B.1. Let Hω be a random operator given by Eq. (B.1) such that for each x the
probability distribution of the potential Vω(x) satisfies R1(τ ) for some fixed τ > 0 with
constants uniform in x. Then there exists κτ < ∞ such that for any finite subset * of T ,
any x, y ∈ *, any z ∈ C, and any s ∈ (0, τ ),

E

(∣∣∣〈x∣∣∣ 1

H*;ω − z

∣∣∣y〉∣∣∣s∣∣∣∣ {V (u)}u∈*\{x,y}
)

≤ τ

τ − s

(4κτ )

λs

s/τ

. (B.2)
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Proof. Let us first considerz = E ∈ R. For such energies Eq. (B.2) is a consequence
of a Wegner type estimate on the 2-dimensional subspace spanned by|x >, |y >. The
key is to determine the correct expression for the dependence of〈x| 1

H*;ω−E
|y〉 onVω(x)

andVω(y). Such an expression is given by the “Krein formula”:〈
x

∣∣∣ 1

H*;ω − E

∣∣∣y〉 = 〈1∣∣∣([A]−1 + λ

[
Vω(x) 0

0 Vω(y)

] )−1∣∣∣2〉, (B.3)

where[A] is a 2× 2 matrix whose entries do not depend onVω(x) or Vω(y). In fact,

[A] =



〈
x

∣∣∣∣ 1

Ĥ
*;ω−E

∣∣∣∣x〉 〈x∣∣∣∣ 1

Ĥ
*;ω−E

∣∣∣∣y〉〈
y

∣∣∣∣ 1

Ĥ
*;ω−E

∣∣∣∣x〉 〈
y

∣∣∣∣ 1

Ĥ
*;ω−E

∣∣∣∣y〉


, (B.4)

whereĤ*;ω denotes the operator obtained fromH*;ω by settingVω(x) andVω(y) equal
to zero.

The regularity conditionR1(τ ) implies a Wegner type estimate:

Prob

(∥∥∥∥∥
(
[A]−1 + λ

[
Vω(x) 0

0 Vω(y)

])−1
∥∥∥∥∥ > t

∣∣∣ {Vω(u)}u	=x,y

)
≤ 4κτ

(λt)τ
, (B.5)

whereκτ is any finite number such that for everyv ∈ T , a ∈ R, andε > 0,

Prob(Vω(v) ∈ (a − ε, a + ε)) ≤ κτ ετ . (B.6)

The desired bound (B.2) follows easily from Eq. (B.5). (The factor, 4, on the right hand
side of (B.5) arises as the square of the “volume” of the region{x, y}. In the casex = y,
we could replace this factor by 1.)

Although the Krein formula (B.3) is true whenE is replaced by anyz ∈ C, the
resulting matrix[A] may not be normal ifz 	∈ R. (The resolvent, 1

H−z
, is normal.

However, given an orthogonal projection,P , the operatorP 1
H−E

P may not be normal!)
Yet, the Wegner-like estimate (B.5) holds only when[A] is a normal matrix. At first, this
seems to be an obstacle to the extension of (B.2) to all values ofz. However, once the
inequality is known for real values ofz, it follows for all z ∈ C from analytic properties
of the resolvent. Specifically, the function

φ(z) =
∣∣∣〈x∣∣∣ 1

H*;ω − z

∣∣∣y〉∣∣∣s (B.7)

is sub-harmonic in the upper and lower half planes and decays asz → ∞. Hence,φ(z)

is dominated by the convolution of its boundary values with a Poisson kernel:

φ(E + iη) ≤
∫

φ(Ẽ)
|η|

(E − Ẽ)2 + η2

dẼ

π
. (B.8)

By Fubini’s theorem and Eq. (B.2) for̃E ∈ R, (B.2) is seen to hold for allz ∈ C.
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The “all for one” principle mentioned previously is actually a simple consequence
of Lemma B.1.

Lemma B.2. Let Hω be a random operator as described in Lemma B.1, and suppose
that there is a distance function dist on T such that for some s < τ and some z ∈ C

E

(∣∣∣〈x∣∣∣ 1

Hω − z

∣∣∣y〉∣∣∣s) ≤ A(s)e−µ(s) dist(x,y), (B.9)

for every x, y ∈ T . Then, in fact, (B.9) holds, with modified constants A(r) and µ(r),
when s is replaced by any r < τ .

Proof. Note that givenr, s > 0 with r < s < τ ,

E

(∣∣∣〈x∣∣∣ 1

H*;ω − E

∣∣∣y〉∣∣∣r) s
r ≤ E

(∣∣∣〈x∣∣∣ 1

H*;ω − E

∣∣∣y〉∣∣∣s)
≤ E

(∣∣∣〈x∣∣∣ 1

H*;ω − E

∣∣∣y〉∣∣∣r) t−s
t−r

E

(∣∣∣〈x∣∣∣ 1

H*;ω − E

∣∣∣y〉∣∣∣t) s−r
t−r

≤
(

(4κτ )

λt

t/τ
) s−r

t−r

E

(∣∣∣〈x∣∣∣ 1

H*;ω − E

∣∣∣y〉∣∣∣r) t−s
t−r

,

(B.10)

wheret is any number withs < t < τ . ��

C. Decoupling Inequalities

C.1. Decoupling inequalities for Green functions. The conditionR2(s) plays a crucial
role in several of the arguments presented in this paper. It has been used to bound
expectations of products of Green functions in terms of products of expectations. In
this section we demonstrate the validity of the necessary bounds. The main result is the
following:

Lemma C.1. Let Hω be a random operator given by Eq. (B.1), with an s regular distri-
bution of the potential Vω(x). Then

1. For any .1, .2 ⊂ T , any x, y ∈ .1, and any u, v ∈ .2,

E
(|G.1(x, y; z)|s |G.2(u, v; z)|s) ≤ C̃s

λs
E
(|G.1(x, y; z)|s) . (C.1)

2. For any .1 ∩ .2 = ∅, x, u ∈ .1, v, y ∈ .2, and .3 ⊂ +,

E
(|G.1(x, u; z)|s |G.3(u, v; z)|s |G.2(v, y; z)|s)

≤ C̃s

λs
E
(|G.1(x, u; z)|s)E (|G.2(v, y; z)|s) . (C.2)

Lemma C.1 is a consequence of the conditional expectation bound (B.2), the Krein
formula (B.3), and the following:
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Lemma C.2. Let V1, V2 be independent real valued random variables which satisfy
R2(s) for some s > 0. Then there exists D

(2)
s > 0 such that

E
(|F (V1, V2)|s |F (V1, V2)|s) ≤ D(2)

s E
(|F (V1, V2)|s)E (|G(V1, V2)|s) , (C.3)

where F and G are arbitrary functions of the form

F (V1, V2) = 1

L1(V1, V2)
, (C.4)

G(V1, V2) = L2(V1, V2)

L3(V1, V2)
, (C.5)

with {Li} functions which are linear in each variable separately. In fact, we may take
D

(2)
s = Ds;1Ds;2 , where, for j = 1, 2, Ds;j is the decoupling constant for Vj .

Proof. Let f (V ) andg(V ) be two functions of the appropriate form for the decoupling
lemma. Then, withj = 1, 2,

E
(|f (Vj )|s |g(Vj )|s) ≤ Ds;1E

(|f (Ṽj )|s |g(Vj )|s) , (C.6)

whereṼj indicates an independent variable distributed identically toVj .
Now, if F andG are functions of 2 variables of the given form, then at fixed values

of V2, they satisfy the 1 variable decoupling lemma, so

E
(|F (V1, V2)|s |G(V1, V2)|s) ≤ Ds;1E

(|F (Ṽ1, V2)|s |G(V1, V2)|s) . (C.7)

For fixed values of̃V1 andV1, F (Ṽ1, V2) andG(V1, V2) (as functions ofV2) are again
of the correct form to apply the 1 variable decoupling lemma. Thus,

E
(|F (V1, V2)|s |G(V1, V2)|s) ≤ Ds;1Ds;2E

(|F (Ṽ1, Ṽ2)|s |G(V1, V2)|s)
= Ds;1Ds;2E

(|F (V1, V2)|s)E (|G(V1, V2)|s) .
(C.8)

��

C.2. A condition for the validity of R2(s). Decoupling lemmas have been discussed
already in references [11,13,8]. Though these contain results similar to those required
here, they do not provide the exact condition used in this work. Hence, we briefly present
an elementary condition under whichR2(s) is satisfied. The following discussion is by
no means exhaustive. Rather, we simply wish to show that the conditionR2(s) is not
devoid of meaningful examples.

Lemma C.3. Let ρ be a measure with bounded support which satisfies R1(τ ). Then for
any s < τ

4 , ρ satisfies R2(s).

Proof. For eachs > 0, we define

φs(z) =
∫

1

|V − z|s ρ(dV ), (C.9)

ψs(z, w) =
∫ |V − z|s

|V − w|s ρ(dV ), (C.10)

γs(z, w, ζ ), =
∫ |V − z|s

|V − w|s |V − ζ |s ρ(dV ). (C.11)



252 M. Aizenman, J. H. Schenker, R. M. Friedrich, D. Hundertmark

PropertyR2(s) amounts to the statement that

sup
z,w,ζ∈C

γs(z, w, ζ )

φs(ζ )ψs(z, w)
< ∞. (C.12)

In fact, if we let

Fs(z) =
√

φ2s(z)

φs(z)
, (C.13)

Gs(z, w) =
√

ψ2s(z, w)

ψs(z, w)
, (C.14)

then by the Cauchy–Schwartz inequality, it suffices to show thatFs andGs are uniformly
bounded. However this is elementary sinceFs andGs are continuous functions which
are easily shown to have finite limits at infinity.��
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