Commun. Math. Phys. 224, 219 — 253 (2001) Communications in

Mathematical
Physics

Finite-Volume Fractional-M oment Criteria
for Anderson L ocalization*

Michael Aizenman®-2, Jeffrey H. Schenker?, Roland M. Friedrich®,
Dirk Hundertmark?

1 Department of Physics, Princeton University, Princeton, NJ 08544, USA
2 Department of Mathematics, Princeton University, Princeton, NJ 08544, USA
3 Theoretische Physik, ETH-Zurich, 8093 Zurich, Switzerland

Received: 21 October 1999 / Accepted: 31 March 2000 / Revised: 30 August 2001

To Joel L. Lebowitz on the occasion of his seventieth birthday

Abstract: A technically convenient signature of localization, exhibited by discrete op-
erators with random potentials, is exponential decay of the fractional moments of the
Green function within the appropriate energy ranges. Known implications include: spec-
tral localization, absence of level repulsion, strong form of dynamical localization, and
a related condition which plays a significant role in the quantization of the Hall con-
ductance in two-dimensional Fermi gases. We present a family of finite-volume criteria
which, under some mild restrictions on the distribution of the potential, cover the regime
where the fractional moment decay condition holds. The constructive criteria permit to
establish this condition at spectral band edges, provided there are sufficient “Lifshitz
tail estimates” on the density of states. They are also used here to conclude that the
fractional moment condition, and thus the other manifestations of localization, are valid
throughout the regime covered by the “multiscale analysis”. In the converse direction,
the analysis rules out fast power-law decay of the Green functions at mobility edges.
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1. Introduction

1.1. Overview.Operators with extensive disorder are known to have spectral regimes
(energy ranges) where the spectrum consists of a dense collection of eigenvalues cor-
responding to exponentially localized eigenfunctions. This phenomenon is of relevance
in different contexts; e.g., it plays a role in the conductive properties of metals [1-3],
in the quantization of Hall conductance [4-8], and in the emerging subject of optical
crystals [9].

Most of the mathematical results on localization for operators with random potential
in dimensionsd > 1 have been derived using theultiscale analysisntroduced by
Fréhlich and Spencer [10] (and later evolved through various other works). For discrete
systems there is an alternative approach, based on the analysis of the Green function’s
fractional moment§l1]. This approach has so far been developed for only a subset of
the localization regime, but where it applies it yields somewhat stronger conclusions
(through elementary arguments). In this work we present a further extension of that
method. In particular, we derive a family of constructive finite-volume criteria for the
exponential decay for the fractional moments of Green functions. This decay condition is
atechnically convenient characterization of localization, for itis known to imply spectral
localization, absence of level repulsion, dynamical localization (in a strong exponential
sense) and a related condition which plays a significant role in the quantization of the
Hall conductance in two-dimensional Fermi gases. The constructive criteria are used to
prove that for the discrete random operators described below all these properties hold
throughout the regime of localization — if that is defined through either the criteria of
the multiscale analysis or those presented here. The constructive criteria also preclude
fast power-law decay of the Green functions at mobility edges.

A guiding example for the operators discussed here is the discrete Schrédinger oper-
ator, acting ine2(z4):

H,=T+V,, (1.1)

with 7" denoting the off-diagonal part, whose matrix elements are referred to as the
hopping termsandV,, a random multiplication operator — referred to as plogential

The symbokb represents a particular realization of the disorder, in this case the potential
variables{V,,(x)}, andx serves as the disorder strength parameter.
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For the discrete Schrodinger operator

1 ifjlu—v=1,
y ) 1.2
o {o if lu—v| #1, (1.2)

and the random potential is given by a collection of independent identically distributed
random variableqV,,(x)},.z«. However, we shall also consider a more general class of
operators, allowing the incorporation of magnetic fields, periodic terms, and off-diagonal
disorder (see Sect. 3). We focus on the case of extensive disorder, where the distribution
of the random operatdft,, is either translation invariant, or at least gauge equivalent to
shifts by multiples of basic periods (i.e. invariant under periodic magnetic shifts).

Our main goal is to present a sequence of finite-volume criteria for localization, which
permit to conclude that the following fractional-moment condition is satisfied in some
energy intervala, b] € R:

L F —u(s)le—y]
B\ grmz=m bl ) = awemot, a3
forall E € [a, b], n € R, and suitable € (0, 1). E(.) represents here the average over
the disorderi.e. the random potential.

Needless to say, the bound (1.3) is of interest mainly in situations where the energy
E is within the spectrumi,e.[H,, — E]~tis an unbounded operator and the exponential
decay occurs only due to the localization of the eigenfunctions with energies within
the intervalla, b]. As in ref. [11], fractional powers are used in order to avoid infinity,
however the value of & s < 1 at which Eq. (1.3) is derived is of almost no importance
(if Eq. (1.3) holds for a particular value of then it will hold for alls < z, where
7 < 1is a number which depends only on the regularity of the probability distribution
of V,,(x), see Appendix — Lemma B.2).

For the systems considered here, Eq. (1.3) is known to imply various other properties,
mentioned above, which are commonly associated with localization. More explicitly:

(i) Spectral localization ([11] — using [12])The spectrum oH,, within the interval
(a, b) is almost-surely of the pure-point type, and the corresponding eigenfunctions
are exponentially localized.

(i) Dynamical localization ([13], expanded here in Appendix Wave packets with
energies in the specified range do not spread —

E (Sup|<x|€_”HPHe[a,b]|)’>|) < AemHh1, (1.4)
teR

(iii) Exponential decay of the projection kernel ([&he condition expressed in abound
similar to Eq. (1.4) folE(|(x| Pu<g|y)|) with E € [a, b]. This condition plays an
important role in the quantization of Hall conductance, in the ground state of the
two dimensional electron gas with Fermi leve} < [a, b] [7,6,8].

(iv) Absence of level repulsion ([14]Minami has shown that Eq. (1.3) implies, for
operators of the type considered here, that in the rfangd the energy gaps have
Poisson-type statistics.

The fractional moment condition has already been established for certain regimes: ex-
treme energies, as well as all energies at high enough disorder [11], and also for weak
disorder but far enough from the unperturbed spectrum [13]. The results presented below
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permit to extend it to band edges, provided there are sufficient “Lifshitz tail estimates”
on the density of states (refs. [15-19]), and to other regimes mapped by a sequence of
constructive criteria.

1.2. The finite-volume criteriaOur main results admit a number of variations. In this
section we present a formulation which is natural for the prototypical example of the
discrete random Schrédinger operators, i.e. Hamiltonians of the form (1.1Y itk
discrete Laplacian (given by (1.2)). In Sect. 3 we formulate various extensions of the
results, including operators incorporating magnetic fields and to operators with hopping
terms of unbounded range.

The results are derived under some mild regularity assumptions on the probability
distribution of the variable§/,, (x)}, .z« which form the random potential. For simplicity
we address ourselves here to thH2 case: the potential variables are independent with
a common probability distributiop(d V). The assumption is then thatd V) satisfies
the regularity conditions listed belowy (s) or R2(s). However, the independence is not
essential. What matters is that the stated regularity condition be satisfied, with a uniform
constant, by the conditional distribution of each of the potential variables, conditioned
on arbitrary values of the other potentials.

The two regularity conditions mentioned here are:

R1(s): A probability distributionp (d V), onR, is said to be-regular, or to satisfy the
conditionR1(s) at some O< s < 1, if there exist€ < oo such that

pla—e,a+¢e) <Cé. (1.5)
R2(s): The probability distribution (d V) is said to have thdecoupling propertyRa(s),

with some O< s < 1, if there exist&C < oo such that for any pair of functions
f andg of the form

1 V-—b
V)y= ——, V)y=——-o 1.6
fV)y =g gV =— (1.6)
with a, b, ¢ € C, the expectation of the product can be dominated as follows:
E(ILf(VF1gW)I*) < CE(1f W) E (Ig(V)I). (1.7)

The smallesC such that Eq. (1.7) holds for all, b, ¢ € C is called here the
decoupling constarfor p, and is denoted by, (o).

A sufficient condition forR,(s) is thatp have bounded support and satigty(t) for
somer > 4s (see Appendix C; related discussion is found in refs. [11,8].)

In Appendix B we show that given anmyregular measurg and anys < 7, there is
a finite constan€ such that for any % 2 self adjoint matrixA,«2,

_1 N
/ / p(du)p(dv) |:(A2x2+ (g S)) } <C (1.8)
ij

where[-]; ; denotes the, j matrix element with, j = 1, 2. Throughout this work, we
denote byC; the smallest value af at which (1.8) holds. Fgs (4 V) which also satisfy
Ro(s) we let:Cys = C; - Dg(p)2.
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For A c Z¢ we denote byH, ., the operator obtained frorH,, by “turning off”
the hopping terms outsid&. Thus, the restriction of, ., to £2(A) (considered as a
subspace of2(Z%)), is nothing butH,, with the Dirichlet boundary conditions on the
boundary ofA.

We also denote by (A) the set of the nearest-neighbor bonds reaching out of
(i.e. pairs with one site i\ and the other outside), ly™ the collection of sites within
distance 1 from\, and by|I"(A™)| the number of bonds reaching out of that set. These
notions will be generalized in Sect. 2.1.

Following are our basic results for operators of the form (1.1).

Theorem 1.1. Let H,, be a random Schrddinger operator with the probability distribu-
tion of the potentiaV (x) satisfying the regularity conditioR1(z) and fixs < . If for
somez e C (possibly real) and some finite regidn c Z¢ which contains the origi:

c 1
b(A.2) = sup  IFADIT Y ]E(‘(O‘H—‘u>
wca (u,u')ET'(A) Wio =2

) <1, (19

then there are somg(s) > 0 and A(s) < oo — which depend on the energyonly
through the bound (A, z) — such that for any regiof c Z¢,

1 )
Eiio (KX‘m’y) é) < A(S)E_M(S) lx_yl. (110)
o)

The subscript oK, in (1.10) is to be interpreted as saying that the bound is valid
for either of the two limiting expressions:

lim E (Kx‘ 1 ' M S) . (1.11)
n\0 HQ;w —-E _(+) n
The “cutoff” +in is needed for an unambiguous interpretation in gdse real energy
(E) within the spectrum ofH. For the random operators considered here it is well
understood that: (i) the expectation may be exchanged with the dimit 0, (ii) it
suffices to verify the uniform bounds (1.10) for finite regions, and (iii) the finite volume
expectations are continuouss;nin the proofs we shall be dealing with finite systems;
the subscript will, therefore, be omitted there.

Let us note that already the special case= {0} is of interest. It provides the
following variant of the single-site criterion of ref. [11] (which is, in fact, a bit simpler
since it does not invoke thedecoupling lemma

Corollary. Forthe random Schrddinger operator a sufficient condition for localization
(1.3) is that for allE € [a, b],

Cs 1
2d(2d —1)— | —————p@dV) <1 112
@1 -0 [ @) < (1.12)

Just as the main result of ref. [11], the above criterion permits to easily conclude
localization for the cases of high disorder or extreme energies. However, we may now
move beyond that. By testing the hypothesis of Theorem 1.1 in the increasing sequence
of volumesA = [—L, L]¢, one may extend the conclusion to increasing regimes in the
“energy x disorder plane”. In fact, it is easy to see that for each energy at which the
strong localization condition (1.10) is satisfied, the hypothesis (1.9) will be met at all
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sufficiently largeL. (This may, however, be far from a practical test, as the necessary
computation may be rather difficult for lardg).

Observant readers may note that the conclusion of Theorem 1.1 provides not only the
localization condition Eq. (1.3), but it also rules @xtended boundary stateghe flip
side of this observation is that if such states are present in some geometry, e.g. the half
space, then the hypothesis of Theorem 1.1 will fail to be satisfied even if the operator
exhibits localization in the bulk. Therefore, we present also the following result which
permits to establish bulk localization regardless of the possible presence of extended
boundary states.

Theorem 1.2. Let H,, be a random Schrodinger operator with the probability distribu-
tion of the potentiaV (x) satisfyingR1(t) and Rz (s), for somes < t. If forsomez € C
and some finite regiofl € A c Z¢,

<1+ %W(M)z 3 E(‘(o‘#@‘) <1 (1.13)

(u,u’Yel'(A)

then H,, satisfies the fractional-moment condition (1.3), and there exis) > O,
A(s) < oo so that for any regio2 ¢ Z¢,

1 K .
. - —u(s) disto(x,y)
o || =)l ) = a0 , (114)
with
dist(x, y) = min{lx — |, [dist(x, 9%2) + dist(y, 92)1}. (1.15)

Let us add that, as in Theorem 14l(s) andu (s) of (1.14) depend ononly through
the value of the LHS in Eqg. (1.13).

The modified metric, digt(x, y), is a distance function relative to which the entire
boundary ofQ2 is regarded as one point. It permits us to state that there is exponential
decay in the bulk without ruling out non-exponential decay along the boundary. We
supplement the last result by the following observation.

Theorem 1.3. Let H,, be a random operator given by E(L.1), with the probability
distribution of the potentiaV (x) satisfyingR1(z) andRx(s), for some < z. If at some
energyE (or z € C) the localization condition(1.3) is satisfied, with somd < oo
andu > 0, :tlhen for all large enough (but finite) the condition(1.13)is met for
A =[-L, L]

The statement is a bit less immediate than the analogous claim for Theorem 1.1. We
shall therefore include the proof below.

Itis natural to compare the above criteria for localization with those of the multiscale
analysis. The two methods share the basic feature that the analysis requires an initial
condition which one may expect to be met in a finite system provided its linear size
is of the order of the localization length, or larger. However, for the method presented
here if a suitable input is received on some scale, then the analysis can proceed using
steps, or blocks, of only that size. An important difference in the results is that the
fractional moment condition yields exponential decay forgkpectation valugsvhich
are important for some of the conclusions listed above. Such bounds have not been
derived by methods based on the multiscale analysis, since (at least without further
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improvement) the bounds the latter yields on the “error terms”, i.e., the probabilities
of “bad blocks”, decay not faster than éxglog L/log L,)*]. This rate is faster than

any power ofL, but in itself not fast enough to imply exponential bounds for the mean
values. However, it should be noted that the extension of the present method to operators
in the continuum, for which a number of basic localization results have been established
using the multiscale analysis [20,21,17], is still unaccomplished. Also not covered are
discrete operators with the potential assuming discrete values¥g (@), = +1 [22]).

In Sect. 4 we discuss various implications of the basic results. In particular itis shown
that, for discrete random operators of the type considered here, the fractional moment
condition (1.3) is satisfied throughout the regime in which the multiscale analysis applies
(see Theorem 4.4). This carries the further implication that the properties listed above
hold throughout the entire regime for which localization can be proven by any of the
known methods. One of those properties is a strong form of dynamical localization, on
which more is said in Appendix A.

2. Proofs of the Main Results

2.1. Some useful notatiorThe proofs of the above statements will be presented in terms
which permit a direct extension to operators with more general hopping terms. We start
by generalizing the notation; in particular, the setsandI" (A) will be made to depend
implicitly on the operatof.

In the study ofH,., we shall often consider “depleted” Hamiltoniaﬁi%zr;z), obtained
by setting to zero the operator’s non-diagonal matrix eleméraping termsalong
some collection of ordered pairs of sites (referred to hetwasly I' ¢ Z¢ x Z¢. The
difference is the operatd@ ", with

Ty if (x,y)elor(y,x)el
po [Ty 2.1
{o if (x, ) ¢ T and(y, x) ¢ T, P
so that
@2

Typically, I" will be a collection of bonds which forms the “cut set” of sofitec Z¢,
i.e., the set of bonds witli, , # 0 connecting sites i with sites in its complement.
Thus we denote

r(W) = {(u, W e W,u' € ZO\W, andT, v # o}, (2.3)
and also
wt=wu {u’ € 7Z%|T, v # 0 for someu € W} : (2.4)

The number of elements (i.e. bonds)ins denotedI|.
In addition, we use the “Green function” notation:

=) 25)

Gaolx, ;z)=<x‘—
;o X, Y Hoo — 2
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with Gg;zu(x, y; z) defined correspondingly. Often, where itis obvious from context that
an operator is a random variable, we shall suppress the subscript

In broad terms, the strategy for the proof is to derive a bound on the average Green
function, of the form

N
E(Get.vial) = Y yaw(wu)ITuulE (|6 VW, v 0] ).,
(u.u")eT (A(x))
(2.6)

for all y € Z4\A(x), where:A(x) = {x + y : y € A} is a finite neighborhood of,
translate of some fixed regioh > 0, andy, () is a quantity which is small when the
typical values of the finite volume Green function betweemd the boundary of (x)
are small (in a suitable sense).

An inequality of the form (2.6) is particularly useful when

> vamUuu)IT el <1, 2.7)
(u,u’)el' (A(x))

since in that case Eq. (2.6) is akin to the statementlEh&G o (x, y; z)|%) is a strictly
subharmonic function of, as long agx — y| > diam|A |, and thus —ifitis also uniformly
bounded (which it is) — it decays exponentially.

The first step towards a bound of the form (2.6) is, naturally, the resolvent identity:

r r
Gow=Gy) — Gy - TV . Gq,

2.8
6D~ Gay- T GE), @9
(written here in the operator form). However, one then reaches an obstacle, since the
quantity whose mean needs to be estimated is a product of two Green functions which are
not independent. For some time now this co-dependence has been the main obstacle on
the road to an argument along the lines outlined above, since otherwise the general strat-
egy applied here is well familiar from its various successful applications in the context
of the statistical mechanics of homogeneous systems ([23-27]), and the other auxiliary
tools specific to the present context have in essence been available since ref. [11]. The
co-dependence problem is solved here through a second application of the resolvent
identity (followed by a decoupling argument of a familiar type). In fact, a similar tactic
was applied by von Dreifus to the mean correlation functions, in a study of the phase
transitions in disordered ferromagnetic models [28] (as we learned from T. Spencer after
the completion of the first draft of this work).

The two applications of the resolvent identity, for which the depletionisegdr,
need not coincide, may be combined by starting our argument from the identity:

Ga=GoP —GoP . T . GS? + GOV .7V . Go . T2 . 602 (2.9)

Readers familiar with the current techniques may note that once the middlesterm

is replaced by a uniform bound, the remaining expression can be made free from co-
dependence by an appropriate choic& pandrI';. The rest are technicalities, to which

we turn next.
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2.2. Key lemmasWe shall now present three lemmas which will be used in the proofs
of our main results. The first is a known estimate which provides the afore-mentioned
uniform upper bound.

Lemma 2.1. Let V (x) be a random potential satisfying the regularity conditi®n(z).
Then for each < 7, any region$2, and any random operator of the forfh.1)

Cs
E(IGa(x, y; 2)°) < R (2.10)

forall z € C.

The statement is an immediate consequence of a version of the Wegner estimate which
we present in the appendix. (See Lemma B.1; also Eq. (2.18) below.)
Next is our new bound.

Lemma 2.2. Let H,, be a random operator given by E..1) with the probability dis-
tribution of the potential’ (x) satisfying the regularity conditioR1(z), and letW be a
subset of2. Then, denoting® = I'(W™) andI' = T'(W), for all z € C:

(1) The following “depleted-resolvent bound” holds for any pair of siteg W, y €
Q\WH,

E(IGax, y: D) <y(W) Y [T IE(1Gaw+(.y:i2l"),  (2.11)

(v,v/)eF
with
CS K} s
yWy =22 3 1TuwlPE(Gw (e uw 9F). (2.12)
(u,u’yel’

(2) If, furthermore, the probability distribution of the potential satisfies aksg@s) then
the following bound holds for any pair of sitesse W, y € Q\W,

E(Ga,y: D) < Y v VDITy v 'E(IGaw®, y: 2I), (2.13)
(v,v")el’

with
/ / K 65 K K
() =E(IGw(x, vs9F) + -5 D0 1Tuwl E(IGw(x, s 2)l").
(u,u’)el’
(2.14)

Proof. Both results follow from the second-order resolvent identity Eq. (2.9), which
yields:
)

r r r r
Go(x,y:2) =G (x, ;0 - (|GG P TEV G2

(2.15)
+(x[6E TV Gl P 642 ).
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Fig. 2.1. Diagramatic depiction of the bound (2.16) GHix, y; z), for x, y € Z¢ andz e C. The longsolid

lines are “depleted Green functions”, the two short segments correspond to the hoping Tgremsl(the
double line is a full Green function. Once the latter is replaced by a uniform upper bound, the expectation
value of the product of the remaining terms factorizes

For the proof of the first claim, we takég = I' = I'(W) andI'y = [ =T (Wwh).
Then, the firstterm of Eq. (2.15) is zero becali$® ) decouples andy and the second
term is zero becaude(W ™) decouples¥* andy. Thus

Gar.yi)= Y. TuuwTywGy (x.u:)GaW v:2)Gy (v, yiz). (2.16)

(u,u’yel’
(v,v")el

It follows that for anys € (0, 1),

E(IGa(x, y; D))
s K] T) . / . (F) / . $
< D TP ITw PFE (|G (L ui )Ga W/ v: 2)Go (. yi 2| ). (2.17)

(u,u’)el
(v,v')el’

(Note thatfor O< s < 1:|a + b|® < |a|* + |b|*.)

In estimating the terms on the right-hand side of Eq. (2.17) let us consider first the con-
ditional expectation of the central facto€sg, (1, v; z). Only these factors depend on the
values of the potential at andv, and therefore they can be replaced by their conditional
expectationE (|G o', v; 2)|*| {V(@)}gee\(w,v})- As Will be proven in the Appendix,
under the regularity conditioR(t) these are uniformly bounded (Lemma B.1):

) C
E(IGa@ ', v; D) [ {V(@)}gea\w.v)) < A_: (2.18)
(The proof involves a reduction to a two-dimensional problem via the Krein formula,
and a two-dimensional Wegner-type estimate.)

Once the central factor in each expectation on the right.hand side of Eq. (2.17) is
replaced by the above bound, what remains there are two independent random variables
whichardGg (x, u; ) = |Gw (x, u; ) and| Gy (v, y: D) = [Gaw+ (v, y3 I
The expectation now factorizes, and the resulting expression yields the first claim of the
lemma.
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For the second claim, we tak = I' = I' = I'(W). Once again the first term
of EqQ. (2.15) is zero becausg W) decouplest andy. However, the second term is
non-zero, and we obtain

E (IGa(x, y; 2)I)
< > |Tv/,v|‘YE(]Gg)(x,v;z)Gg)(v’,y;z)’s>

(v,v)el’

r r 2.19
+ Y Tl 1T E (|68 0w G oW, v: G5 (' v 0)'). (2.19)
(u,u'yel’
(v,v)el’

At this point we may not use the previous argument, since in the last expectgtion
affects each of the first two factors avdu’) affects each of the last two factors. However,

the dependence of each of these factors on the potentials is of a particularly simple
form: they are ratios of two functions (determinants) which are separately linear in each
potential variable. Using the decoupling hypothegesthe regularity condition®1(z)
andR2(s), the expectation may be bounded by the product of expectations. Specifically,
we prove in Lemma C.1 that:

E (|G§§)(x, u; )G, v; 2GS (W, y; Z)f)
C,
= 2E(|68 06 W v o). (2:20)

Once again, we are left with a product of two independent random variables,
G (xui 9| = |Gw(x, u; )| and |G (', y: )| = [Gayw (', y: 2)|". The fac-
torization of the remaining expectation yields the second claim of the lemma, Eq. (2.13).
O

The above lemma provides a bound for the Green function in terms of its depleted
versions. This suffices for the derivation of the first of our two main theorems (Thm 1.1).
However, this does not suffice for the second theorem, Thm 1.2, for which we shall use
an inequality that is linear in the original function. That “closure” will be attained with
the help of the following bound on the depleted resolvent in terms of the full one.

Lemma2.3. Let Hq ,, be a random operator in £2(Q2), @ < Z¢, given by Eq. (1.1),
with the probability distribution of the potential V (x) satisfying theregularity conditions
R1(r) and Ry(s) for somes < 7. Let W be a subset of 2. Then, the following holds for
any pair of sitesu, y € Q\W, andevery z € C:

E(IGaw(u, y; ') < E(IGa, y; 2)I')

(o
+o5 D ITvalE(IGaw, yi9)f).,

s
(v,v)el’

(2.21)

withI' = I'(W) the“ cut-set” of W.
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Proof. Starting from the first order resolvent identity, Eq. (2.8), and taking expectation
values of its matrix elements, we find:

E(1GS @,y 9F) < E(IGaw. y: )

+ Y ITWE(16E w0 ) Gav. v )l
(v,v")eT (W)
(2.22)

wherel’ = I'(W), andGD) = Go\w. It suffices, therefore, to show that in the last
term the factorng)(u, v’; 2)|* may be replaced (for an upper bound) by the constant

% This follows through a decoupling argument which we present in the Appendix —
see LemmaC.1.O0

Remark. In the applications we shall use Lemmas 2.2 and 2.3 both in the stated form
and in the conjugated form, with the arguments of the Green functions reversed. One
form of course implies the other (at conjugate energy).

2.3. Proofs of the main results. We are now ready to derive the results stated in the
Introduction. For simplicity these were stated in the context of the Schroédinger operators,
for which T is the discrete Laplacian. The proofs given in this section will be restricted
to this case. A more generally applicable treatment is presented in the next section.

Proof of Theorem 1.1. Assume that for some € C and a finite regiom the smallness
condition (1.9) holds. By Lemma 2.2 and translation invariance, we learn that for any
region2 and anyx, y € Q with y € Z4\ A ™ (x):

1
E(IGalx, y; ) <b- T E E(IGaa+m @, y:2I°), (2.23)
IC(AD)] .
(v,v")el(AT(x))

whereb = b(A, z) of Eq. (1.9), andA (x) is the translate ofA by x.
By Lemma 2.1, each of the terms in the sum is bounded’ y.*. Since the sum
is normalized by the prefactoy[T" (AT)|, the inequality (2.23) permits to improve that
bound forE(|Gq(x, y; 2)|*) by the factorb(< 1). Furthermore, the inequality may be
iterated a number of times, each iteration resulting in an additional factor of
One should take note of the fact that the iterations bring in Green functions corre-
sponding to modified domains. It is for this reason that the initial input assumption was
required to hold for modified geometries, i.e. not just fobut also for all its subsets.
Inequality (2.23) can be iterated as long as the resulting sequenaés.( . , v™)
do not get closer tg than the distancé = sug{|u|lu € AT}. Thus:

ooy < & pt—yes — Cs o —uix—y)
E(IGa(, yi o)) < =2 bV < Zemniiyl, (2.24)

withu =|Inb|/L. O
Next, let us turn to the proof of the second theorem (Thm 1.2). The main change is
that we now proceed under the assumption that the smallness condition holds for some

regionA without requiring it to hold also in all subsets. As explained in the introduction,
the difference may be meaningfulif, has extended boundary states in some geometry.
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Proof of Theorem 1.2. Our first goal is to show that under the assumption (1.13) there is
b < 1 such that for all pairgx, y} with A(x) C Q andy € Q\A(x),

E(IGatx,y: ) <b Y PLWE(IGau, y;: 2)I), (2.25)

ueAt(x)

with non-negative weights satisfying:

Y Pluwy=1 (2.26)

ueAt(x)

We shall use this inequality along with its conjugate:

E(GaGx.y: ) <b Y PJE(IGalx. v:2)l), (2.27)
veAT(y)

where P! (v) satisfy the suitable analog of the normalization condition (2.26).

It is important that — unlike in the inequality (2.23), the functions which appear on
the right-hand side of (2.25) and (2.27) are computed in the same domain as those on
the left-hand side.

The first step is by Lemma 2.2, which yields

E(1Gatx,y;0F) < Y nluwuDE(IGaawm @, y; ),  (2.28)
(u,u") €T (A(x))

wheneverA (x) ¢ Q andy e Z4\ A(x), with y, ((u, u’)) specified in Eq. (2.14).
Next, we apply Lemma 2.3, Eq. (2.21), to bouB@|G o\ a () (i, y; 2)|*) in terms of

a sum of quantities of the fori (|Gq (v, y; 2)|*) withv € AT (x). The result is initially
expressed as a sum over bonds:

E(Ga(x,y:0l) < Y. w(uu)E (G, y: 2)°)
(u,u")el (A(x))
~ (2.29)

c .
+50 > E(IGa.y:0)l).
()M (AG)

where, using translation invariance,

©:= > yoluu).

(u,u’)el'(A)

Collecting terms, and pulling out normalizing factors, one may cast the inequality
(2.29) in the form (2.25) with

C, C
b = ! —3 = _S .
> (yx«u,u D+ @) <1+ = |F(A)|>® (2.30)
(u,u") €T (A(x))
2

=(1+%|F(A)|> 3> E(GAO.u:2F). (2.31)

(u,u’)el'(A)

The smallness condition (1.13) is nothing other than the assumptioh that.
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The above argument proves Eg. (2.25). By the transposition, or time-reflection, sym-
metry of H (HT = H) also Eq. (2.27) holds. (Such symmetryHfis not essential for
our analysis: it suffices to assume that the smallness condition Eq. (1.13) holds along
with its transpose.)

We proceed in the proof by iterating the inequalities (2.25) and (2.27). However an
adaptation is needed in the argument which was used in the proof of Theorem 1.1 since
the iteration can be carried out only as long as the two points (the arguments of the
resolvent) stay at distande = sup{|u| : u € A"} not only from each other but also
from the boundary Q2. The relevant observation is that for every pair of siteg € Q
there is a pair of integeiis, m} such that:

1. n+m =distg(x, y),
2. the ball of radiug centered at and the ball of radius: centered a form a pair of
disjoint subsets of2.

For the desired bound dfi (|Gq(x, y; 2)|*), we shall iterate Eq. (2.29y:/L | times
from the left, and (2.27)m /L] times from the right. Similar to Eq. (2.24), we obtain:

, C i
E (|GQ(X, y; Z)|.§) < )\'s_lize*/ldlstfz(xsy), (232)

withu =|Inb|/L. O

The third theorem stated in the introduction (Thm 1.3) is the claim that the condi-
tion which is shown above to be sufficient for exponential localization, in the sense of
Eq. (1.3), is also a necessary one. We shall now prove this to be the case.

Proof of Theorem 1.3. Suppose that Eq. (1.3) holds with some< oo andu > 0. We

need to show that also in finite systems the Green function is sufficiently small between
an interior point and the boundary. To bound the finite volume function in terms of the
infinite volume one, we may use Lemma 2.3, by which

Y E(GAOQusnf) < Y E(IGO.u:2)l)
(u,u’yel' (A) (u,u’yel'(A)
C.
+5IMmL Y0 ITwPE(GO.v52)F),  (2:33)
(v,v")el(A)

for any finite regionA containing the origin. We need to show that for= [—L, L]¢
with L large enough

~ 2
(1+%IF(A)|) Y E(IGaOu;2)f) <1 (2.34)

(u,u')eT(A)

After applying Eq. (2.33) to the terms on the left side of Eq. (2.34) we find that the number
of summands involved and their prefactors grow only polynomiallfy,iwhereas under

our assumption the relevant fact@$|G (0, u; z)|*) are exponentially small ih. Hence

the condition (2.34) is satisfied fdr large enough. O
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3. Generalizations

3.1. Formulation of the general results. We shall now turn to some generalizations of
the theorems which were presented in Sect. 1.2 for the random Schrddinger operator.
The setup may be extended in a number of ways.

1. Addition of magnetic fields. The hopping terméT ,} need not be real. In particular,
the present analysis remains valid when one includék,ia constant magnetic field,
or a random one with a translation invariant distribution.

A magnetic field is incorporated ifi, , through a factor ex@-i A, ), with A, , an
anti-symmetric function of the bonds. (It represents the integral of the “vector potential”
x (—e/h) along the bondx, y).) Except for the trivial case, with such a fac®iis no
longer shift invariant. However, in the case of a constant magnetic fiedd]! still be
invariant under appropriate “magnetic shifts”, which consist of ordinary shifts followed
by gauge transformations.

Translation-invariance plays a role in our discussion. However, since gauge transfor-
mations do not affect the absolute values of the resolvent, it suffices for us to assume
thatH,, is stochastically invariant under magnetic shifts— in the sense of Definition 3.1.

2. Extended hopping terms. The discrete Laplacian may be replaced by an operator with
hopping terms of unlimited range. For exponential localization we shall however
require{T, ,} to decay exponentially ifx — y|.

3. Off-diagonal disorder. {7, ,} may also be made random. It is convenient however
to assume exponentially decaying uniform bounds. The regularity conditions on the
potential will now be assumed for the conditional distributionVafc) at specified
off-diagonal disorder.

4. Periodicity. H, may also include a periodic potential, i.e., Eq. (1.1) may be modified
to:

H, = Yyie T Uper(x) + AVp(x). (31)

This may be further generalized by requiring periodicity only of the probability
distribution of H.
5. More general lattices.

In the previous discussion, the underlying s&tsmay be replaced by other graphs,
with suitable symmetry groups. The graph structure is relevant if the hopping terms are
limited to graph edges. However, since we consider also operators with hopping terms of
unlimited range, let us formulate the result for operatorg%ff’) where the underlying
setis ofthe forny = G x S, with G a countable group anfla finite set. We let disk, y)
denote a metric off which is invariant under the natural action®bn that set.

For example, this setup allows f@rto be a Bethe lattice, or a more general Cayley
lattice. (Instructive discussion of some statistical mechanical models in such settings
may be found in refs. [29]). The s&tis included here in order to leave room for periodic
structures. We denote I8ythe “periodicity cell”, which is{i} x S where: is the identity
in G, and byg, the “G-coordinate” ofx. Thus, the latticg is tiled by disjoint translates
of C, the tile containingr beingg,C.

Some of the relevant concepts are summarized in the following definition.

Definition 3.1. With 7 = G x S asabove, let H,, be a random operator on ¢2(7) (i.e.,
one with some specified probability distribution), whose off-diagonal part is denoted by
T,, and the diagonal part is referred to as the potential (for consistency, we denote it as
AVey).
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1. Wesay that H,, isstochastically invariant under magnetic shiftsif for eachx € G
and almost every o thereis a unitary map of the form

(Uew¥) (x) = Py (cx), (3.2)

(with some function ¢, ,,(-) ) under which
U:,wHwUK,w 2 va (33)

where 2 means equality of the probability distributions.

2. The operator issaid to have tempered off-diagonal matrix elements, at a specified
valueof s < 1, if thereisa kernel 7, ,, and somem > 0, such that 7y .., < 7, y,
almost surely, and

Supz t;"ye“"dism’y) < 00. (3.4)
XGT}’ET

3. We say that the potential has an s-regular distribution if for some r > s the con-
ditional distributions of {V,,(x)}, at specified values of the hopping terms variables
{Tuv:0}, areindependent and satisfy the regularity conditions R1(t) and Ra(s) with
uniform constants.

Before presenting our general theorems, Theorem 3.2 and Theorem 3.3, it is conve-
nient to introduce notation for certain quantities which appear in their statements. For
eachA C T we definer; , ,, “the hopping term fron to the boundary”, by

A= D Tou (3.5)

veW

where W is either A or 7 \ A, whichever does not contain The kernelky (u, v),
which is a “dressed” version af; ,, that appears in our basic bounds (see Lemma 3.4),
is defined as follows:

C
ka(u,v) =1, ueAveT\Al+ r,f,aArlfyaA)L—jl[u € Al

2

C
+ Ty aaTv.0A (A_j) Es(M)lu,ve Al, (3.6)

whereZ;(A) =) ,ca f,f,aA- Notice thatt, is concentrated on the boundarysfi.e.,
kA(u, U) < CA e—m’[diSt(u,BA)+di$t(u,E)A)] (37)

wherem’ is independent of\ and distv, dA) is the distance from to whichever set,
A or7T \ A, does not contain.
Following is the generalization of Theorem 1.1.
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Theorem 3.2. Let H,, be a random operator on ¢2(T) (T = G x S, as above) with
an s-regular distribution for the potential V,,(-), and with tempered off-diagonal matrix
elements(7Y ,.,,), whichisstochastically invariant under magnetic shifts. Let > 0, and
assume that for some z € C and afiniteregion A C 7, which contains the periodicity
cell C, thefollowing is satisfied for all subsets W C A:

sup Y E ( <x u>
X€C 1 vyeAx (T\A)
Then thereexists A < oo such that for all @  7,and all x € ,
S
) etHdstey) < 4, (3.9)

3 Eaio ( <x y> |

yeQ
Remarks. 1. Because the hopping terms are tempered as described in Definition 3.1,
the bound (3.8) will be satisfied f@ome 1 > 0 provided

2=

Hw.w — 2

1
Hy.wo — 2

) ka(u, v) etrdisten) 1 (3.8)

1

Ho.w — 2

sup sup E ( u> ) ka(u,v) < 1. (3.10)
XeCWCA 1 yeaxT\A

We shall use this criterion in Sect. 4 in the slightly different form
2

z ,
<1 + A_j ES(A)> sup sup Z LA ( <x u>
xeCWca (u, ' ye AxXT\A

S
) <1 (3.11)
where we have summed various terms appearirig o, v).

2. For graphs which grow at an exponential rate, such as the Bethe lattice, exponentially
decaying functions need not be summable. The conclusion, Eq. (3.9), was therefore
formulated in the stronger form, which implies both exponential decay, and almost sure
summability. In particular, it is useful to recall that fof2 < 1:

s/2
E [Z G (x, y)lz} <E (Z G (x, y>|~v> : (3.12)
y y

1
HW;a) —Z

3. One may note that in the more general theorem we do make use of the “decoupling
lemma”, which was not used in Theorem 1.1.

4. Translation invariance played a limited role here: the analysis extends readily to
random operators with non-translation invariant distributions, provided only that the
required bounds are satisfied uniformly for all translates adind the distribution of the
potential is uniformlys-regular. To demonstrate the required change we cast the next
statement in that form.

As we discussed in the preceding sections, condition (3.8) may fail due to the exis-
tence of extended states at some surfaces. The following generalization of Theorem 1.2
provides criteria for localization in the bulk which are less affected by such surface
states.
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Theorem 3.3. Let H,, be a random operator on ¢2(7) (T = G x S, as above) with
an s-regular distribution for the potential V,,(-), and with tempered off-diagonal matrix
elements ({7 y.,}). Let 1 > 0 and assume that for some z € C and a finite region A,

) kg, a(u, v)etHASINY) o 1 (3.13)

1

CCcACT,
ngA;w —z[z]

sup > E (
XETungA
veT
where z[z] means that the bound is satisfied for both z and z. Then the condition (3.9)
holds for the full operator H,, (i.e., with Q = 7), and there exists B < oo with which

for arbitrary Q c T
A
<x ) < Be~ Adista(x.y), (3.14)

o=

The modified distance digtx, y) is defined by the natural extension of Eq. (1.15).

1
HQ;a) —Z

3.2. Derivation of the general results. The derivation of Theorems 3.2 and 3.3 follows
very closely the proofs of Sect. 2. The main difference is in the second portion of the
argument where we extract decay in a single step rather than by iteration.

The first part of the proof rests on Lemmas 2.2 and 2.3 which are easily seen to extend
to the setup described in Theorem 3.3. One readily obtains the following extension (the
hopping termdT, , appearing in Sect. 2.2 are replaced with the uniform upper-bound

Ty,y):

Lemma 3.4. Let H,, bearandomoperator with the propertieslistedin Theorem 3.3, and
let A be afinite subset of 7, containing the periodicity cell C, for which the condition
(3.8)is satisfied. Then the following bound isvalid for any x € A,y € T\A,

E(IGa(x, y; 2)I) <

Y E(IGane(. w5 2)Y) ka(u, V)E (|Gaa (v, y: D)), (3.15)
<u,v>eAxT\A

and

E(IGax, y; 2)I) < Z E (IGana(x, u: 2)°) ka(u, V)E (IGa(v, y; 2)|°).
<u,v>€AXT

(3.16)

Notice that (3.16) differs from (3.15) in that the Green function in the regtofmot
Q\ A) appears on the right hand side and the summationwegtends over the entire
lattice.

Theorems 3.2 and 3.3 follow easily from Lemma 3.4:
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Proof of Theorem 3.2. To establish the claimed bound (3.9) we will show that

Ap = sup supy E(|Ga(x,y:z)|") etrastey (3.17)
Q:|Q<n x yeQ
is bounded independent of thus establishing the result for finite regions. For infinite
regions (3.9) the result follows by a limiting procedure, with the convergence implied
by Fatou’s lemma.
For any giver2 with |Q2| < n and any sitec € Q,

c

Y E(IGa(x, y; o)) " HASE) < [pjendemt) =2
yeQ
+ > E(Gane@. ) kal, v)E(1Ga\a, (v, y; 7)) etrdisten),

YEQ\A,
u€Ay,veT\Ax

(3.18)

where the first term on the right side bounds the contribution to the sum fronmysites
Ay = gy A, and the remaining terms were estimated by Lemma 3.4, Eq. (3.15).

Performing the summation oveffirst, and applying the triangle inequality to factor
the exponential weight, we obtain:

. C .
D E(1Ga(x, yi o)) e IS < |5 A-jﬂ““““ +b Ay, (3.19)
yeQ

whereb is the quantity on the left hand side of (3.8). When maximized e¥&ndx
this leads to the bound,, < Const + bA,, which, sinceb < 1, implies that

A < |A|CS)L7$e/tdiam(A)
n = 1—b s

(3.20)
as claimed above. o

Proof of Theorem 3.3. The claim made for the special ca®e= T is covered by analysis
similar to what was just described. However the second claim, i.e., Eq. (3.14), requires
a somewhat different argument.

We will first show that for a finite regiof the function

g(x,y) = E(|Gq(x, y; 2)|*) etrdistatx.y) (3.21)

attains its maximum value for songe, y) with distq(x, y) < 2diam(A). For any pair
with a larger distance at least one of the sites, sayan be separated from both the
other and the boundar§2 by an appropriate translate of, i.e. A,. We may then
use Lemma 3.4, Eq. (3.16), to boupdr, y) by a sum of products of Green functions.
If, in this sum, we replace each factorBf|G o (v, y)|*)etdt*-) py the upper bound
gmaxe"dS1Y) the resulting sum yields

g(x,y) < bgmaxs (3.22)

whereb is the quantity which sits on the left hand side of (3.13)bAs 1, we learn that
g(-, ) is not maximized afx, y).
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Sinceg(x, y) < Serdisatx)) | the above implies that for any finite

Cs o oy
E(IGa(x, y: 2)I°) < A—&”"""”““k‘“"'*“J’. (3.23)

By strong resolvent convergence arguments, the bound extends to infinite regions.

4. Some Implications

We shall now present a number of implications of the finite volume criteria for local-
ization, focusing on the finite dimensional lattic$. The statements will bear some
resemblance to results derived using the multiscale approach, however the conclusions
drawn here go beyond the latter by yielding results on the exponential decaynadahe
values. The significance of that was described in the introduction.

4.1. Fast power decay = exponential decay. An interesting and useful implication (as

is seen below) is that fast enough power law implies exponential decay. In this sense,
random Schrodinger operators join other statistical mechanical models in which such
principles have been previously recognized. The list includes the general Dobrushin—
Shlosman results [24] and the more specific two-point function bounds in: percolation
(Hammersley [23] and Aizenman—Newman [27]), Ising ferromagnets (Simon [25] and
Lieb [26]), certainO (N) models (Aizenman-Simon [30]), and time-evolution models
(Aizenman—Holley [31], Maes—Shlosman [32]).

Theorem 4.1. Let H,, be a random operator on ¢2(Z%) with an s-regular distribution
for the potential (V,,(x)) and tempered off-diagonal matrix elements (7 y..,). Thereare
Lo, B1, B, < oo, which depend only on the temperedness bound (3.4), such that if for
some E € R and somefinite L > Lo, either

1
L34=D  sup E <‘<x‘—‘y>
L/2<|lx—yl<L Hppo0 — E

) < By, (4.1)

or

1 :
LAY gy E(M—M ) < By, (4.2)
L/2<|lx—yll=L H,—E—i0

where Ay (x) = [—L, L1 +xand |y = mayx; |y;|, then the exponential localization
(1.3)holds for all energiesin some open interval (a, b) containing E.

Proof. By Theorem 3.2, to establish exponential decay at the enBrgysuffices to
show that for each € Z¢,

~ 2
C , ,
(1 + _x: ES(AL)> > 70 vE(IGA, 0 (x, us E)[°) < 1. (4.3)

uely(x)
u' €ZN\AL (x)

Because the off diagonal elements are tempered we have the following bounds

75, < Const el = (AL) < Const L4, (4.4)
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for somem > 0, and allL > 1. Under the assumption Eq. (4.1):

Y n E(GAwmE s B

ueAr(x)
u' €ZN\AL (x)

~

C
< chOnst (L/2)%e L )2

1 s
+Const sup E (‘(x‘—‘y)‘ ) L7l (4.5)
L/2<|lx—yll<L Hppow — E

For this bound the sum was split according|to— u’|| < (or >)L/2, and in the first
case we used the uniform upper boldG (x, u; E)|*) < C,/A%.

It is now easy to see that with an appropriate choicé&®fnd B1 condition (4.1)
implies the claimed bound (4.3) —for the given enekgy he extension to an interval of
energies around then follows from the continuity of the fractional momentdfiofte
volume Green functions.

To show the sufficiency of the second condition, we first use Lemma 2.3 to bound
finite volume Green functions in terms of the corresponding infinite volume funtions

~

N

C
E(IGaLo (s y; B)) = E(IGG, 3 E)) + 55 > w.E(IGxu;E)N).

uelAy(x)
u' €ZN\A L (x)
(4.6)
Splitting the sum as in Eq. (4.5), we get
sup  E(IGa, ) (x, y; E)I°)
L/2<|lx—yl <L
5 2
< [A—S] Const (L/2)%e "L /2 (4.7

+ <1+ Const L"*l) x L7t sup E(IG(x,y; E)).
L/2<|x—yl=L

The combination of Eq. (4.7) with (4.5), yields the claim — for the given energy. Again,
the existence of an open interval of energies in which the condition is met is implied by
the continuity of the finite-volume expectation valuesi

4.2. Lower boundsfor G, (x, y; Eedge+ i0) at mobility edges. Boundary points of the
continuous spectrum are often referred tarability edges. (In an ergodic setting the
location of such points does not depend on the realizati¢83].) The proof of the
occurrence of continuous spectrum for random stochastically shift-invariant operators
on Z4 is still an open problem (one may add that we are here glossing over some
fine distinctions in the dynamical behaviour [34]). However it is intersting to note that
Theorem 4.1 directly yields the following pair of lower bounds on the decay rate of
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the Green function at mobility edgeBedge for stochastically shift invariant random
operators with regular probability distribution of the potential:

1 s
sup E(|(o )] = B3y, (4.8)
L/2<|ly|<L Hi_ 114, — Eedge

1
s (ool
L/2<|yll<L H, — Eedge— i0

with ||y|| = max; |y;|. We do not expect the power laws provided here to be optimal. As
mentioned above, vaguely similar bounds are known for the critical two-point functions
in certain statistical mechanical models (percolation, Ising spin systems, andgame

spin models).

) > BpL~4d=D), (4.9)

4.3. Extending off the real axis. For various applications, such as the decay of the
projection kernel (see [8, Sect. 5]), it is useful to have bounds on the resolvert at

E + in which are uniform imy. The following result shows that in order to establish
such uniform bounds it is sufficient to verify our criteria for real energies in some
neighborhood of.

Theorem 4.2. Let H,, be a random operator on ¢2(Z%) with an s-regular distribution
for the potential (V,,(x)) and tempered off-diagonal matrix elements (7% ,..,). Suppose
that for some E € R, and AE > 0, the following bound holds uniformly for & €
[E— AE,E+ AE]:

(St

) < AeHhl, (4.10)

Then for all n € R:

= (el ==l ) = e @11

with some A < oo and i > 0—which depend on AE and the bound (4.10).

Remarks. 1. This result is not needed in situations covered bysthgle site version
of the criterion provided by Theorem 1.1, since if Eq. (1.12) is satisfied at gom&®
then it automatically holds uniformly along the entire lile+ iR. We do not see a
monotonicity argument for such a deduction in case of other finite-volumes.

2. One way to derive the statement is by using the fact that exponential decay may be
tested in finite volumes: if a finite volume criterion holds for soméhen continuity
allows one to extend it to alk + in with n sufficiently small. The Combes—Thomas
estimate [35] can then be used to cover the rest of theHinReiR. However, by this
approach one gets only a weaker decay rate for energies off the real axis. It is tempting
to think that some contour integration argument could be found to significantly improve
on that. The proof given below is a step in that direction (though it still leaves one with
the feeling that a more efficient argument should be possible).



Finite-Volume Fractional-Moment Criteria for Anderson Localization 241

Proof. Assume that condition (4.10) is satisfied forale [E — AE, E + AE]. We
shall show that this implies that for any power

e ([ bl ) < 2 (12
H, —§ —in lx — yl*
with the constantA, < oo uniform in 5. The stated conclusion then follows by an
application of Theorem 4.1 (and the uniform bounds seen in its proof).

We shall deal separately with large and smlll splitting the two regimes ak E x
w/a.Thecasén| > AE xm/aiscovered by the general bound of Combes—Thomas[35],
which states that:

G(x, y; E+in)| < 2/me" ! (4.13)
for anym > 0 such that
Y ) ("M -1 <n/2 (4.14)
xezd
To estimate the resolvent fof] < AE x 7 /a, we shall use the fact that the function
fL() ZE(|G[7L,L]d(X»y;C)|S) (4.15)

is subharmonicinthe upper half plane, and continuous atthe boundary. The subharmonic-
ity is a general consequence of the analyticity of the resolventamd the continuity is
implied through the continuity of the distribution of the potentiaserves as a convenient
cutoff, which may be removed after the bounds are derived (sthce ;¢ ., 7= Ho

in the strong resolvent sense).

Let D c Cbe the triangular region in the upper half plane in the form of an equilateral
triangle based on the real interydl — AE, E + AE] with the side angles equal fo-
determined by the condition

2

=—-1 4.16
o= (4.16)

The Poisson-kernel representation of harmonic functions yields; fetin € D,
fu(E +in) < /3 L@ PR ), (4.17)

wherePé’er(d;) is a certain probability measure 6. We now rely on the fact that

this probability measure satisfies
PP,;,(dt) < Constd(n®/%) | AEZ/°. (4.18)

(This is easily understood upon the unfoldingldby the mag — z2/? applied from
either of the base corners &f, i.e., from¢ = E + AE, and a comparison with the
Poisson kernel in the upper half plane.)

For¢ € aD N R the integrand satisfies the exponential bound (4.10). Along the rest
of the boundary oD we use the Combes—Thomas bound (4.13). Putting it all together
we get

AEO 2
fL(E +in) < Ae#rl 4 Constf = emConstix=yin g p27/0y JAEZTIO.

0 n
(4.19)
The claimed Eq. (4.12) follows by simple integration, and the relation (4.18).
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4.4. Relation with the multiscale analysis and density of states estimates. Using the
above results we shall now show that the fractional moment localization condition is
satisfied throughout the regime for which localization can be shown via the multiscale
analysis, and also in regimes over which one has suitable bounds (e.g., via Lifshitz tail
estimates) on the density of states of the operators restricted to finite regjors

[—L, L1%. The following result is useful for the latter case.

Theorem 4.3. Let H,, be a random operator on ¢2(Z%) with tempered off-diagonal
matrix elements (7 ,.,,) and a distribution of the potential which is s-regular for all
s small enough, which is stochastically invariant under magnetic shifts. Then, given
Be(0,1,CL>0andé > 3(d— 1), thereexist Log > 0and C» > 0 such that if for
some L > Lo,

Prob[dist(o (Ha,;0), E) < C1L7P] < C2L7%, (4.20)

at some energy E, then the exponential localization condition (1.3) holds in some open
interval containing E.

The condition (4.20) is similar to the one used in the multiscale analysis, although
there one can also find a sufficient diagnostic with arbitégary 0. It may therefore
not be initially clear that the methods of this paper may be used throughout the regime
in which the multiscale analysis applies. However, the proof of Theorem 4.3 is easily
adapted to prove the following result which implies fractional moment localization via
the conclusions of the multiscale analysis.

Theorem 4.4. Let H,, bearandomoperator with tempered off-diagonal matrix elements
(Tx,y.0) and a distribution of the potential which is s-regular for all s small enough,
which is stochastically invariant under magnetic shifts. If for some E € R there exist
A <oo,u>0,and& > 3(d — 1) such that

lim L& Prob[|GAL;w(O, x)| > Ae "I for some xe AL] =0, (4.21)

L—oo

then the exponential localization condition (1.3) holdsin some open interval containing
E.

Remarks. 1. When the multiscale analysis applies, it allows one to conclude that there
areA < oo andu > 0 such that the probabilities appearing on the left side of Eq. (4.21)
decay faster thaany power of L asL. — oo. Thus, the conclusions of the multiscale
analysis imply that exponential localization in the stronger sense discussed in our work
applies throughout the regime which may be reached by this prior method.

2. ltis of interest to combine the criterion presented above with Lifshitz tail estimates
on the density of states at the bottom of the spectrig,and at band edges. Using
Lifshitz tail estimates, it is possible to show that [36]:

Prob[inf o' (Hy,:) < Eo + AE] < Const Lle—AET2, (4.22)

Theorem 4.3 then implies fractional moment localization in a neighborhodij;ofve
need only choos& E o« L~# with 8 € (0, 1) for large enouglL. Previous results in
this vein may be found in [21,16-18].
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Proof of Theorems 4.3 and 4.4. We first prove Theorem 4.3 and then indicate how the
proof can be modified to show Theorem 4.4.
Fix an energyE € R. ForL > 0, define

pL(8) := Prob[dist(o (Ha,:0), E) < 3], (4.23)
and let
8 :=C1L7P . (4.24)
We will show that for suitable € (0, 1), Lo > 0 andC> > O, if
pL(dr) < C2L~%, (4.25)

then the input condition (4.1) of Theorem 4.1:

1 o
L3¢ sup E <’<0‘—~’y> ) < By, (4.26)
L/2<|lyl<L Hpp o —

is satisfied for all energie8 € [E — 15, E + 35, 1. Exponential localization in the
corresponding interval (and strip, with % 0) follows then by Theorems 4.1 (and
Theorem 4.2). _

First we must show how to estimale(|G », .., (0, u; E)I*) in terms of p; (). This
is achieved by considering separately the contributions from the “good set”:

Q¢ = {o|dist(c (Hp ), E) > 8}, (4.27)

and its complement, the “bad sef2z = Q.

Onthe “good set’y € Qg, the energyE is at a small yet significant distanca £ >
%8) from the spectrum of,, ... In this situation, we use the Combes—Thomas [35]
bound, by which:

-2
G0 B = S 201, (4.28)

The above estimate does not apply on the “bad set”. However, using the Holder inequality,
we find that the net contribution to the expectation is small becausé®g0ob= p; (8)
is small. The two estimates are combined in the following bound:

E(IGA,:0(0, u; E)I°)
=E (G001 ) o € Q1) + E (G a0, u; E)'Io € Q31)
<85 WA LB (1G .00, B))TE (o € QD) (4.29)
< @57 M Ol pL ()

wherer is any number greater tharfor which the distribution of the potential is still
t-regular (i.e.C; < 00).

The required bound, Eq. (4.26), is satisfied once one choasesll enough so that
&> LSB(d — 1), andLg large enough so that fdr > Lo,

r—

4 LD CLLY /A < By (4.30)
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Finally let us remark on how this argument can be adapted to prove Theorem 4.4. We
simply define the good and bad sets differently:

Q6 = {0||Ga,.0(0, x)| < Ae * forall x e AL}, (4.31)

andQp = Q; ,andthen proceed as inthe proof of Theorem 4.3 using Holder’s inequality
to estimate the contributions frofp. It is easy to see that for large, the condition
(4.21) implies that the input for Theorem 4.1 is satisfied.

Thus, we have seen here that the fractional moment localization condition holds
throughout the regime for which localization can be established by any available meth-
ods. This is meaningful since that condition carries a humber of physically significant
implications.

Appendix
A. Dynamical L ocalization

Among the implications of the fractional moment condition is dynamical localization,
expressed through uniform exponential decay of the average time evolution kernels:

© (gl s o)) = e =
teR
where Py, cr indicates the spectral projection &f, onto a setF C R in which the
fractional moment condition is known to hold. A derivation of this implication, under
some auxiliary assumptions on the distribution of the potential, was givenin ref. [13]. For
completeness we offer here a streamlined version of that argument, which also extends
the resultin that we now allow to be an unbounded set (in particular the full real line).
The inequality expressed in Eq. (A.1) is not special to the time evolution operators
fi(E) = ¢''F; it follows, rather, from a similar bound on the average total mass of the
spectral measureg,,”, associated tpairs of sitesx, y. The measures are defined by
the spectral representation:

/f(E)ij;y(dE) = (x| f(Hw)ly), (A.2)
for bounded Borel functiong. In the following discussion we denote Iy, | the

absolute value (sometimes called thietal variation) of j;,” .

Theorem A 1. Let H, be a random operator on ¢2(Z¢) with tempered off-diagonal
matrix elements and a potential V,, which satisfies:
1. For somes € (0, 1), the s-moments of V,,, E (|Vw(x)|5), are uniformly bounded.

2. For each x € Z¢ the conditional distribution of v = V,,(x) at specified values of
all other matrix elements has a density o (v), and the functions p;, are uniformly
bounded.

Suppose there is an energy domain F C R on which H,, satisfies a uniform fractional
moment bound, i.e., thereexist A < oo and u > 0 such that, for somes € (0, 1),

2 ([l =)

S) < Ae—mx,yl’ (A.3)
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for any finiteregion A c Z¢, any pair of sitesx, y € A, and every E € F. Then there
exist A’ < oo and i/ > 0 such that for any pair of sitesx, y € Z¢,
E (|57 1(F)) < Ale™# =, (A.4)

w
where ;" isthe spectral measure associated to the pair x, y and H,,.

Remarks. 1. Recall that for any regular Borel measure

|LI(F) = sup| fF FE)U(E)],

where the supremum ranges over Borel measurable (or even just continuous) functions
f which are point-wise bounded by 1. Thus Eq. (A.4) implies that

E (sgm <x|f,<Hw>PHweF|y>|) < CAe Wl (A.5)

for any uniformly bounded family of Borel functior{s;}. In particular, we may take
fi(E) = ¢''F for t € R to obtain dynamical localization (A.1) as promised.

2. The requirement that the conditional densitjgs, be uniformly bounded is overly
strong. By the arguments presented in ref. [13], the result extends to potentials for which
there is somg > 0 such thatf (o (v))*¢dv are uniformly bounded.

3. Since this work extends now tlegponential dynamical localization to the regime
covered by the multiscale analysis, let us mention that prior results covering this regime
include the proof of localization in terms pbwer-law bounds for the time evolution
kernel [37,38]. (The analysis there is more general since it applies also to models for
which the fractional moment method has not been developed, e.g., continuum operators).

Proof of TheoremA. 1. Itis convenient to derive the result through the analysis of the finite
volume operators obtained by restrictifg, to finite regions A, c Z?. It is generally
understood that for each y € Z? and each increasing sequence of finite regiaps
which contain{x, y} and whose union ig¢, the associated spectral measures,. ,,

converge in the vague topology tg,” . Thus, by the lemma of Fatou, for afy C R:
E(ue” |(F)) < lim,,_, o E(y. | (F).

The upshot is that it suffices to prove the following statement regarding finite volume
operators.

Under the assumptions of Theorem A.1 there exist C, » > 0 (which depend only on the
regularity assumptions for H,,) such that for any finite region A c Z¢, any x, y € A,

any F Cc R,andanys € (0, 1):
)] . (A.6)

1
=] ) = [z o2
Ao EeF Hpyw—E
Following is a summary of the proof of this assertion.

Let us fix a finite regionA ¢ Z¢ and a pair of sites, y € A. For simplicity of
notation, we will suppress the regiagn and denote the restricted operator By and
the associated spectral measuredyy .

Sincef?(A) s finite dimensionaly;,” is aweighted sum of Dirac measures supported
on the eigenvalues df,,. Integrals with respect to this measure are discrete sums. The
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argument of ref. [13] makes an essential use of the following representation of this
measure.

Let v = V,(x), and let ¥ be any other valuein R. Denote T'(E) := —1/<x _1 - ‘x>
with H,, the operator with the potential at x changed to . Then,
wSY(dE) = —(v — ﬁ)<x 'y>8(v — 9 —T(E))dE. (A7)

In what follows, we will takev = v, to be a random variable independentgfand
identically distributed. In this case Eq. (A.7) holds almost surely.

A special case of Eqg. (A.7) is the formula (which was the basis for the important
“Kotani-argument” [39, 12]) for the spectral measure at

WS¥(dE) =8 — 0 — ['(E))dE. (A.8)

The above is a probability measure. Another normalizing condition is:

lv— x| = y
H,—E

(which typically holds as equality).
The reason for Eqg. (A.9) is that by the general structure of the spectral measures,
Ue” (dE) = Y, (E)uS* (dE), with ¥, (E) satisfying

2
S(v—d—T(E)E < 1, (A.9)

f W (E) Ul (dE) = (y| Py ly) < 1

whereP,, is the projection onto the cyclic subspace f which containgx).

Let us first present the necessary estimates for the casd'ti@atR is of finite
Lebesgue measure. Using the bound Eqg. (A.9), and the Holder inequality,

E |1z | ()

(e f

wherea( < 1) is a small number to be specified later. By a further application of the
Holder inequality, followed by the Jensen inequality we obtain

B (Ju

o

=l

1/(2-)
S(v—1— f*(E))dE)i| . (A.10)

2| #) < [2mu ]

[E(/ [

K als
S(v—10— f‘(E))dE):| ,

(A.11)

)
= y
H,—-FE
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whereq is fixed by the equation/s + «/8 = 1. Finally we evaluate:

1 R
E(/ (x| |y>|“a<v—ﬁ—r(E>>dE)
F H,—E
=/E<<x ~ L ’y> Pff)(f}—i-f‘(E)))dE
F H,—FE
1 S
o {5
F H, - E

wherex is a uniform upper bound fqu. These estimates can be combined to provide
a bound of the form Eq. (A.6) foF a finite interval, which was the case considered in
ref. [13]. We shall now improve the argument, to obtain a statement which covers the
case that the localized spectral regime is unbounded.

Since we do not wish our final estimate to depend on the Lebesgue measyneef
seek a way of introducing an integrable wei@hE), so that the final bound involves
the integral ofi(E) d E in place of dE. This may be accomplished with the following
inequality:

s

12)

3 v
15| () = (GellgCRDIP 1)) ™ (fF g(E)|™" |u$*”|(dE)> S CNE)

where ¥p +1/p" = 1 andg is any continuous function which is bounded and bounded
away from zero. To prove Eq. (A.13), write,,” | (F) = [, g(E)/g(E) |’ | (dE),
and apply the Hélder inequality followed by

1/2
’ / 8N |13 (dB)| = ((xllg(HDPP1) . (A.14)

Itis convenient to choosg(E)?” = (1+ E?), since(x|(1L+ H2)|x) = B + V,,(x)?,
whereB,, is a bounded random variable which depends only on the off-diagonal part of
H,,. Upon taking expectations followed by a further application of the Hélder inequality
this leads to

. 25\
E (g | (F)) = [E ((Bw+ Vol)?) ”)]

q/ 1/(1/
1 v
x| E /—p W | (E) ,
Fa+E)>

where ¥g + 1/¢’ = 1. We estimate the two factors on the right-hand side of this
inequality separately.
The first factor can be controlled by choosipg= pé§ so that

(A.15)

a4
E <(Bw + Vo (0)?) ZP) < 1Bu 136 + E (Vo)) (A.16)
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The exponentp, p’, q, q' are all specified once we chooge> 1/5. Specifically,
g =08p,q =p(p—1/8)~1 andp’ = p(p — 1)~L. Note thatp’ < ¢'.

To estimate the second factor, we note the}”| is a sub-probability measure and
q'/p’ > 1, so by the Jensen inequality,

1
o| ([ —2
( Fa+Ee3)>

Estimating the right hand side with the argument outlined aboveFfawith finite
Lebesgue measure, we find that

1
A+ ey

!

1| (dE) <E / %!ugwdm :
Fa+ ey

(A.17)

s <dE)) < [2E(lv))]*"

1
X |k | Ef{[{x|=
which is uniformly bounded provided we chogssuch that;’/p > 1. This is possible
sinceq’/p = (p — 1/8)~1 which can be made as large as we like.

Thus, for any finite volumé& (‘M’f\yw’ (F)) can be bounded by a constant multiple

/s
: dE
)(1+E2)q’/2p . (A18)

N
7 L 5 ‘y>‘ raised to a certain power. Which multiple and which
A

of supg.r E (Kx

power depend only on themoments of the potential and the uniform bound on the
conditional distributiong;, . By the vague convergence argument outlined at the start of
the proof, this proves the theoremo

B. A Fractional Moment Bound

The regularity condition®1(t) and R2(s) have been used to give a priori estimates of
certain fractional moments. Such fractional moment bounds are properties of the general
class of operators with diagonal disorder. Hence, throughout this appendix, we consider
random operatoral,, on ¢2(7) of the form

H, = To+ AV, (B.1)

whereTy is an arbitrary bounded self-adjoint operator afds a random potential for
which V,,(x) are independent random variablésié any countable set).

LemmaB.1. Let H, be a random operator given by Eq. (B.1) such that for each x the
probability distribution of the potential V,,(x) satisfies R1(z) for somefixed T > 0 with
constants uniformin x. Then thereexistsx; < oo such that for any finite subset A of 7,
anyx,y e A,anyz € C,andany s € (0, 1),

E (M#MH {V(u)}ueA\{x,y}> < (4;’)”{. (B.2)
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Proof. Let us first considet = E € R. For such energies Eq. (B.2) is a consequence
of a Wegner type estimate on the 2-dimensional subspace spanmed>byy >. The
key is to determine the correct expression for the dependen{meﬁf— [y) onV,(x)

andV,(y). Such an expression is given by the “Krein formula”:

Mﬁl_EM = (1|(tar*+2 [V‘“éx) Vw?y)} ) o) (8.3)

where[A] is a 2x 2 matrix whose entries do not dependds(x) or V,(y). In fact,

1
bla=zh)

A] = <y x> , (B.4)

o
L HA;wa

whereﬁA;w denotes the operator obtained fréfR., by settingV,,(x) andV,,(y) equal
to zero.

The regularity conditiorR1 () implies a Wegner type estimate:

-1
1 Vo(x) O dic;
Prob(H ([A] +a [ 5 Vw(y)D > 1 ‘ {Vw(u)}m,)) S G
wherex, is any finite number such that for evarye 7, a € R, ande > 0,
Prob(V,(v) € (a —€,a + €)) < k.€et. (B.6)

The desired bound (B.2) follows easily from Eq. (B.5). (The factor, 4, on the right hand
side of (B.5) arises as the square of the “volume” of the region}. In the casa = vy,
we could replace this factor by 1.)

Although the Krein formula (B.3) is true whef is replaced by any, e C, the
resulting matrix{A] may not be normal it ¢ R. (The resolvent , is normal.

However, given an orthogonal projectiah, the operatol = P may not be normal!)
Yet, the Wegner-like estimate (B.5) holds only whéj is a normal matrix. At first, this
seems to be an obstacle to the extension of (B.2) to all valugsHdwever, once the
inequality is known for real values af it follows for all z € C from analytic properties
of the resolvent. Specifically, the function

N

6@ = |(x] B.7)

HAw—Z‘y>

is sub-harmonic in the upper and lower half planes and decays as co. Henceg (z)
is dominated by the convolution of its boundary values with a Poisson kernel:

Il dE

¢(E +in) §f¢(E)m o

(B.8)

By Fubini's theorem and Eq. (B.2) fdf € R, (B.2) is seen to hold for alf € C.
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The “all for one” principle mentioned previously is actually a simple consequence
of Lemma B.1.

LemmaB.2. Let H, be a random operator as described in Lemma B.1, and suppose
that thereis a distance function dist on 7 such that for somes < r andsomez € C

v) < A(s)eiu(x)diSt(x’y)v (B.9)

2 ([l =)

for every x, y € 7. Then, in fact, (B.9) holds, with modified constants A(r) and w(r),
when s isreplaced by any r < .

Proof. Note that giverr, s > Owithr <5 < t,
E(K’C’ﬁl_EM ) SE(K"\W{EM )
=
<5 ([l =z b)) B (0 =

e t—s
< (%) e (el

r)r—r
wherer is any number with <t < 7. O

§=r
l) t—r

(B.10)

C. Decoupling Inequalities

C.1. Decoupling inequalities for Green functions. The conditionR,(s) plays a crucial

role in several of the arguments presented in this paper. It has been used to bound
expectations of products of Green functions in terms of products of expectations. In
this section we demonstrate the validity of the necessary bounds. The main result is the
following:

Lemma C.1. Let H,, be arandom operator given by Eq. (B.1), with an s regular distri-
bution of the potential V,,(x). Then

1. ForanyQ1, Q2 C 7T,anyx,y € Qp,andanyu, v € Qo,

~

Cs s
E(IGa.(x, y; DI |Ga,(u, v; 2)|°) < FE(|G91(X, y;iol'). (C1)

2. ForanyQ1NQo =0, x,uc€Qy,v,ye Q,andQ3 T,

E (1Gay (x, u; 2)|'|Gag(u, v; 2) [ |G, (v, y; 2)I°)

CS s s
5FE(IGszl(x,u;z)l‘)E(IGszz(v,y;z)l‘)~ (C.2)

Lemma C.1 is a consequence of the conditional expectation bound (B.2), the Krein
formula (B.3), and the following:
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Lemma C.2. Let V1, V2 be independent real valued random variables which satisfy
Ro(s) for somes > 0. Then there exists D‘EZ) > 0 such that

E(|F(V1, V)P |F(V1, V2)I) < DPE (|F(V1, V2)I') E(IG(V1, Vo)), (C.3)
where F and G are arbitrary functions of the form
1

F(V1, Vo) = m, (C.4)
_ La(V1, V2)
GV, Vo) = m, (C.5)

with {L;} functions which are linear in each variable separately. In fact, we may take
D‘EZ) = D;;1D;;» , Where, for j =1, 2, Dy, ; isthe decoupling constant for V;.

Proof. Let f(V) andg(V) be two functions of the appropriate form for the decoupling
lemma. Then, withj =1, 2,

E (1 (V)IF18(V)I) < Deal (LF (V) 1g(V)I) . (C.6)

whereV; indicates an independent variable distributed identicallyjto
Now, if F andG are functions of 2 variables of the given form, then at fixed values
of V,, they satisfy the 1 variable decoupling lemma, so

E (IF(V1. V2)I'|G(V1, V2)I') < Dea (|F (V1. V) |G (V1. Vo)) . (C.7)

For fixed values o, and Vi, F(V4, Vo) andG(V1, V2) (as functions ofl,) are again
of the correct form to apply the 1 variable decoupling lemma. Thus,

E (|F(V1, V2)I'IG(V1, Vo)) < Dy1 Dy 2E (|F (V1, Vo) FIG(Va, V) I¥)

C.8
= Dy:1D;2E (IF(V1, Vo)) E (IG(V1, V2)If) . (©8)

C.2. A condition for the validity of Ro(s). Decoupling lemmas have been discussed
already in references [11, 13, 8]. Though these contain results similar to those required
here, they do not provide the exact condition used in this work. Hence, we briefly present
an elementary condition under whi@h(s) is satisfied. The following discussion is by

no means exhaustive. Rather, we simply wish to show that the condition is not
devoid of meaningful examples.

Lemma C.3. Let p be a measure with bounded support which satisfies R1(t). Then for
anys < 7, p satisfies R(s).

Proof. For eachs > 0, we define
1
$s(2) = / @V, (C.9)
|V —z|¢

VvV — 7|
wdau0=1/l——£%puvx (C.10)
|V —w|

o= [
VS Za ’ y |V—u)|S|V

1§Ppwvy (C.11)



252

M. Aizenman, J. H. Schenker, R. M. Friedrich, D. Hundertmark

PropertyR>(s) amounts to the statement that

sup _rs@wl) < 00. (C.12)

z,w, eC ¢s(§)¢s (Z, w)

In fact, if we let

R = Y22 (€.13)

¢S(Z)
Gz w) = YY2EW (C.14)
ws (z, w)

then by the Cauchy—Schwartz inequality, it suffices to showKhahdG, are uniformly
bounded. However this is elementary sinfgeand G, are continuous functions which
are easily shown to have finite limits at infinityo
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