

Measure zero and the characterization of Riemann integrable functions

Jeffrey Schenker

July 25, 2007

Let us define the *length* of an interval I (open or closed) with endpoints $a < b$ to be

$$\ell(I) = b - a. \quad (1)$$

The extension of the notion of length to sets other than intervals, and to more general measures of length, is known as measure theory and is a basic part of a graduate course on real analysis. For the purpose of this discussion we need only the following notion from measure theory:

Definition. A set $S \subset \mathbb{R}$ is said to have *measure zero* if for every $\epsilon > 0$ there is a countable or finite collection of open intervals I_j , $j = 1, \dots$, such that

$$S \subset \bigcup_j I_j \quad \text{and} \quad \sum_j \ell(I_j) < \epsilon.$$

Remark: We could require the intervals I_j to be disjoint, as was done in class, but nothing is gained by this.

Measure zero sets provide a characterization of Riemann integrable functions.

Theorem 1. A bounded function $f : [a, b] \rightarrow \mathbb{R}$ is Riemann integrable if and only if $\{x : f \text{ is not continuous at } x\}$ has measure zero.

A proof of Theorem 1 can be found below.

Measure zero sets are “small,” at least insofar as integration is concerned. Because of this one defines

Definition. A proposition $A(x)$ which depends on a real number x is said to be true *almost everywhere* if $\{x \mid A(x) \text{ is false}\}$ has measure zero.

Thus Theorem 1 states that a bounded function f is Riemann integrable if and only if it is continuous almost everywhere.

The terminology “almost everywhere” is partially justified by the following

Theorem 2. If f and g are Riemann integrable on $[a, b]$ and $f(x) = g(x)$ almost everywhere, that is $\{x \mid f(x) \neq g(x)\}$ has measure zero, then

$$\int_t^s f(x)dx = \int_t^s g(x)dx$$

for any $t, x \in [a, b]$.

It is essential that we assume *both* f and g are Riemann integrable. Indeed, if f is Riemann integrable and $f(x) = g(x)$ almost everywhere it may nonetheless happen that g is *not* Riemann integrable. For example if $f(x) = 0$ and

$$g(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

then f is Riemann integrable and g is not, but $f(x) = g(x)$ almost everywhere since

Lemma. *Any countable set has measure zero.*

Proof. Exercise. □

Since Theorem 2 is really beyond the scope of this class we will not prove it here.

Proof of Theorem 1

(\Rightarrow) First suppose f is Riemann integrable and consider, for each $t > 0$, the set

$$S_t = \{x \in [a, b] \mid \forall \delta > 0 \exists y \in [a, b] \text{ s.t. } |x - y| < \delta \text{ and } |f(x) - f(y)| > t\}.$$

Then $S = \{x : f \text{ is not continuous at } x\}$ satisfies

$$S = \bigcup_{t>0} S_t.$$

Because $S_t \subset S_s$ for $s < t$, we can replace the uncountable union $\cup_{t>0} S_t$ by the countable union

$$S = \bigcup_{n=1}^{\infty} S_{1/n}.$$

Thus, it suffices to show that each S_t has measure zero, because of the following

Lemma. *Let S_j , $j = 1, \dots$, be a finite or countable collection of sets such that each S_j has measure zero. Then $\cup_j S_j$ has measure zero.*

Proof of Lemma. Let $\epsilon > 0$. Then for each $j = 1, \dots$ there is a finite or countable collection of open intervals I_k^j , $k = 1, \dots$, with $S_j \subset \cup_k I_k^j$ and $\sum_k \ell(I_k^j) < \epsilon/2^j$. Thus $\cup_j S_j \subset \cup_j \cup_k I_k^j$ and

$$\sum_j \sum_k \ell(I_k^j) < \epsilon \sum_{j=1}^{\infty} 2^{-j} = \epsilon.$$

(Recall that a countable union of countable sets is countable. Explicitly, we enumerate I_k^j as follows

$$I_1 = I_1^1, I_2 = I_1^2, I_3 = I_2^1, I_4 = I_1^3, I_5 = I_2^2, I_6 = I_3^1, \dots$$

That is, first we list indices with $j + k = 2$ then with $j + k = 3$, then with $j + k = 4$, etc.) □

Returning to the proof that S_t has measure zero, let $\epsilon > 0$. Since f is Riemann integrable, there is a partition \mathcal{P} of $[a, b]$ with $\text{Osc}(f, \mathcal{P}) < \epsilon$. Let $a = x_0 < x_1 < x_2 < \dots < x_n = b$ be the points of the partition \mathcal{P} and define an index set

$$J = \{j : S_t \cup [x_{j-1}, x_j] \neq \emptyset\}.$$

Thus $S_t \subset \bigcup_{j \in J} [x_{j-1}, x_j]$, however the intervals $[x_{j-1}, x_j]$ are closed. To obtain a covering by open intervals, let us enlarge the closed intervals $[x_{j-1}, x_j]$ a bit:

$$I_j = \left(x_{j-1} - \frac{x_j - x_{j-1}}{2}, x_j + \frac{x_j - x_{j-1}}{2} \right).$$

Thus $\ell(I_j) = 2(x_j - x_{j-1})$ and $S_t \subset \bigcup_{j \in J} I_j$.

It remains to estimate the sum

$$\sum_{j \in J} \ell(I_j) = 2 \sum_{j \in J} x_j - x_{j-1}.$$

On each interval $[x_{j-1}, x_j]$ with $j \in J$ we have

$$\sup_{x, y \in [x_{j-1}, x_j]} |f(x) - f(y)| > t$$

since there is a point $x \in S_t \cap [x_{j-1}, x_j]$. Thus

$$t \sum_{j \in J} (x_j - x_{j-1}) < \sum_{j \in J} \sup_{x, y \in [x_{j-1}, x_j]} |f(x) - f(y)| \cdot (x_j - x_{j-1}) \leq \text{Osc}(f, \mathcal{P}),$$

since the oscillation involves the sum over all $j = 1, \dots, n$ in place of just $j \in J$. Therefore $\sum_{j \in J} \ell(I_j) = 2 \sum_{j \in J} (x_j - x_{j-1}) < \frac{2}{t} \text{Osc}(f, \mathcal{P}) < \frac{2}{t} \epsilon$. Since ϵ is arbitrary, we see that S_t has measure zero. Thus $S = \bigcup_n S_{1/n}$ has measure zero by the Lemma.

(\Leftarrow) Now suppose that $S = \{x : f \text{ is discontinuous at } x\}$ has measure zero. Let $\epsilon > 0$. Then there is a finite or countable collection I_j , $j = 1, \dots$ of open intervals such that $S \subset \bigcup_j I_j$ and $\sum_j \ell(I_j) < \epsilon$. Consider the set

$$K = [a, b] \setminus \bigcup_j I_j = \{x : x \in [a, b] \text{ and } \forall_j x \notin I_j\}.$$

So K is a closed subset of $[a, b]$ and thus is compact. Furthermore f is continuous at each point $x \in K$ (since $S \cup K = \emptyset$). Thus, for each $x \in K$ there is $\delta_x > 0$ such that $|y - x| \leq \delta_x$ implies $|f(y) - f(x)| \leq \epsilon$. Now the open intervals $\tilde{I}_x = \{y : |y - x| < \delta_x\}$ cover K , that is $K \subset \bigcup_{x \in K} \tilde{I}_x$, since $x \in \tilde{I}_x$ for each x . By the Heine-Borel theorem there is a finite subcover, namely there are points $x_1, \dots, x_m \in K$ such that

$$K \subset \bigcup_{j=1}^m \tilde{I}_{x_j}.$$

Let us form a partition out of the endpoints of the intervals of this finite subcover:

$$\mathcal{P} = \{a, b\} \cup \{x_j - \delta_{x_j}, x_j + \delta_{x_j} : j = 1, \dots, m\}.$$

The intervals \tilde{I}_{x_j} may overlap one another: we may have for example $x_j - \delta_{x_j} < x_k - \delta_{x_k} < x_j + \delta_j$ for some pair j, k . Thus we may have to rearrange labels to write the points in order. However \mathcal{P} is a finite set, so we may write $\mathcal{P} = \{y_0 = a < y_1, \dots < y_n = b\}$. Each point y_k , $k = 1, \dots, n-1$, is equal to $x_j \pm \delta_{x_j}$ for some j . I claim that we have the following dichotomy for each interval $[y_{k-1}, y_k]$:

1. There is a $j \in \{1, \dots, m\}$ such that

$$[y_{k-1}, y_k] \subset \overline{\tilde{I}_{x_j}},$$

where $\overline{\tilde{I}_{x_j}} = \{y : |y - x_j| \leq \delta_j\}$ is the closure of \tilde{I}_{x_j} .

or

2. For all $j \in \{1, \dots, m\}$, $[y_{k-1}, y_k]$ is disjoint from the open interval \tilde{I}_{x_j} .

To see this note that no endpoint of any interval \tilde{I}_{x_j} can fall in the interior (y_{k-1}, y_k) , since we have listed the points y_\bullet in increasing order. Thus, if $\tilde{I}_{x_j} \cap [y_{k-1}, y_k] \neq \emptyset$ then $(y_{k-1}, y_k) \subset \tilde{I}_{x_j}$.

We break the oscillation of f in the partition \mathcal{P} into two pieces,

$$\text{Osc}(f, \mathcal{P}) = \sum_{k \in \text{case 1}} \sup_{x, y \in [y_{k-1}, y_k]} |f(x) - f(y)| (y_k - y_{k-1}) + \sum_{k \in \text{case 2}} \sup_{x, y \in [y_{k-1}, y_k]} |f(x) - f(y)| (y_k - y_{k-1}).$$

For k in case (1), we have for $x, y \in [y_{k-1}, y_k]$,

$$|f(x) - f(y)| \leq |f(x) - f(x_j)| + |f(x_j) - f(y)| \leq 2\epsilon,$$

by the choice of δ_{x_j} . For k in case (2), we have little control over $|f(x) - f(y)|$, however $|f(x) - f(y)| \leq 2M$ with $M = \sup_x |f(x)|$. Thus

$$\text{Osc}(f, \mathcal{P}) \leq 2\epsilon \sum_{k \in \text{case 1}} (y_k - y_{k-1}) + 2M \sum_{k \in \text{case 2}} (y_k - y_{k-1}).$$

Now each interval $[y_{k-1}, y_k]$ for k in case 2 is disjoint for the compact set K and thus contained in the union of open intervals $\cup_j I_j$ covering the measure zero set S . Thus the total length of all intervals contributing to case 2 is bounded by $\sum_j \ell(I_j) < \epsilon$. (Why? This is true and, perhaps, “intuitively obvious.” The proof is left as an exercise.) Thus

$$\text{Osc}(f, \mathcal{P}) \leq (b - a + 2M)\epsilon,$$

since the total length of all intervals contributing to case 1 is certainly less than the total of all intervals. As ϵ is arbitrary, we see that f is Riemann integrable. \square