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Let us define the length of an interval I (open or closed) with endpoints a < b to be
() = b—a. (1)

The extension of the notion of length to sets other than intervals, and to more general
measures of length, is known as measure theory and is a basic part of a graduate course
on real analysis. For the purpose of this discussion we need only the following notion from
measure theory:

Definition. A set S C R is said to have measure zero if for every e > 0 there is a countable
or finite collection of open intervals I;, j = 1,...,, such that

SCUIj and Zﬁ(lj)<e.
J J

Remark: We could require the intervals I; to be disjoint, as was done in class, but nothing
is gained by this.
Measure zero sets provide a characterization of Riemann integrable functions.

Theorem 1. A bounded function f : [a,b] — R is Riemann integrable if and only if
{x: f is not continuous at x} has measure zero.

A proof of Theorem 1 can be found below.
Measure zero sets are “small,” at least insofar as integration is concerned. Because of
this one defines

Definition. A proposition A(z) which depends on a real number z is said to be true
almost everywhere if {x | A(zx) is false} has measure zero.

Thus Theorem 1 states that a bounded function f is Riemann integrable if and only
if it is continuous almost everywhere.
The terminology “almost everywhere” is partially justified by the following

Theorem 2. If f and g are Riemann integrable on [a,b] and f(x) = g(x) almost every-
where, that is {z | f(z) # g(x)} has measure zero, then

/: flz)de = /tsg(x)daz

for any t,x € [a,b].



It is essential that we assume both f and g are Riemann integrable. Indeed, if f is
Riemann integrable and f(z) = g(z) almost everywhere it may nonetheless happen that
g is not Riemann integrable. For example if f(z) = 0 and

(2) = 1 z€Q
T°= Y0 zeRrR\Q

then f is Riemann integrable and g is not, but f(x) = g(x) almost everywhere since
Lemma. Any countable set has measure zero.
Proof. Exercise. O

Since Theorem 2 is really beyond the scope of this class we will not prove it here.

Proof of Theorem 1
(=) First suppose f is Riemann integrable and consider, for each ¢ > 0, the set
Sy = {z €a,b] | V6 >03y € [a,b] s.t. |z —y| <dand |f(x)— f(y)| >t}

Then S = {z : f is not continuous at x} satisfies
S = Js.
>0

Because S; C S5 for s < t, we can replace the uncountable union U;~(S; by the countable
union

S = Sim-
n=1

Thus, it suffices to show that each S; has measure zero, because of the following

Lemma. Let S, j = 1,..., be a finite or countable collection of sets such that each S;
has measure zero. Then U;S; has measure zero.

Proof of Lemma. Let € > 0. Then for each j = 1, ... there is a finite or countable collection
of open intervals I}, k = 1,..., with S; C UpJ{ and Y, £(I}) < €/27. Thus U;S; C U; Uy I3

and -
YNy <ed 2 = e
ik j=1

(Recall that a countable union of countable sets is countable. Explicitly, we enumerate I ,Jc

as follows
L=, L=} =0 L=I 6 Is=1I3, Ig=13,....

That is, first we list indices with j + & = 2 then with j + k = 3, then with j + k = 4,
etc.) O



Returning to the proof that S; has measure zero, let ¢ > 0. Since f is Riemann
integrable, there is a partition P of [a,b] with Osc(f,P) < e. Let a = 9 < 21 < xg <
-+« <z, = b be the points of the partition P and define an index set

J = {] : Sp U [xj_l,xj] #* @}

Thus Sy C Ujeslxj—1,2;], however the intervals [z;_1,x;] are closed. To obtain a covering
by open intervals, let us enlarge the closed intervals [z;_1,x;] a bit:

Ti— Tiq Ti— Ti_q
Ij:(ﬂ?jl—J 2] ,:L‘j—l—ij 2J )

Thus E(Ij) = Q(SL’j — l'jfl) and S; C Ujegl;.
It remains to estimate the sum
ZE(Ij) = 2Z:cj —Tj_1.
Jj€J jeJ
On each interval [z;_1,x;] with j € J we have

sup |f(z) = f(y)[ >t

zy€[zj_1,25]

since there is a point = € S; N [z;_1, z;]. Thus

ty (@j—zjm1) < > swp o |f(@) = fy)| - (zj —wjm1) < Osc(f,P),

jeJ ]GJ $,y€[2j71,$j]

since the oscillation involves the sum over all j = 1,...,n in place of just j € J. Therefore
e ll) = 23 e (@i —xjo1) < 2 Osc(f,P) < Z2e. Since e is arbitrary, we see that
St has measure zero. Thus S = U, /, has measure zero by the Lemma.

(<) Now suppose that S = {z : f is discontinuous at z} has measure zero. Let € > 0.
Then there is a finite or countable collection I, j = 1,... of open intervals such that
S CUjlj and ), £(I;) < e. Consider the set

K = [a,b]\UIj = {z : z€fa,band Vjz & I;}.

So K is a closed subset of [a, b] and thus is compact. Furthermore f is continuous at each
point x € K (since SUK = (). Thus, for each x € K there is d,, > 0 such that |y —z| < ¢,
implies |f(y) — f(z)| < e. Now the open intervals I, = {y : |y — | < 6.} cover K, that
is K C UxeK.E, since x € E for each x. By the Heine-Borel theorem there is a finite
subcover, namely there are points z1,...z,, € K such that

m ~
K c |JL,
j=1

Let us form a partition out of the endpoints of the intervals of this finite subcover:

P = {a,b} U{zj — 0y, xj +06x; : j=1,...,m}.



The intervals ch may overlap one another: we may have for example z; —0,; < 2 — 0z, <
x; + 0; for some pair j,k. Thus we may have to rearrange labels to write the points in
order. However P is a finite set, so we may write P = {yo0 = a < y1,... < yn, = b}.
Each point yg, k =1,...,n — 1, is equal to x; & J,, for some j. I claim that we have the
following dichotomy for each interval [yx_1, yx:

1. Thereis a j € {1,...,m} such that

[ykflayk] C I:Bj7
where Z ={y: |y — x| <d;} is the closure of I,;.
or

2. For all j € {1,...,m}, [yx—1, yx] is disjoint from the open interval 1:;]..

To see this note that no endpoint of any interval ij can fall in the interior (yg_1,yx),

since we have listed the points y, in increasing order. Thus, if er N [yr—1,yx] # 0 then

(Yr—1,Yr) C Is;.
We break the oscillation of f in the partition P into two pieces,

Osc(f,P) = S sw  f@—fO) -ve)+ S s @)W (e—vk):

k€Ecase 1 Y€ [yk—1,Y] kEcase 2 Z,Y€[Yr—1,Yk]

For k in case (1), we have for x,y € [yr—1, Yk,

[f (@) = f) < 1f (@) = Fg)| + [ f(25) = F)] < 2

by the choice of §,,. For k in case (2), we have little control over |f(z) — f(y)|, however
() — F(y)] < 2M with M = sup, | f(x)]. Thus

Osc(f,P) < 2 Y (ye—vk-1) + 2M > (Ur — yk—1)-

k€case 1 k€Ecase 2

Now each interval [yg_1,yx| for k in case 2 is disjoint for the compact set K and thus
contained in the union of open intervals U;I; covering the measure zero set S. Thus the
total length of all intervals contributing to case 2 is bounded by >, ¢(f;) < e. (Why?
This is true and, perhaps, “intuitively obvious.” The proof is left as an exercise.) Thus

Osc(f,P) < (b—a+2M)e,

since the total length of all intervals contributing to case 1 is certainly less than the total
of all intervals. As € is arbitrary, we see that f is Riemann integrable. O



