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Let us define the length of an interval I (open or closed) with endpoints a < b to be

`(I) = b− a. (1)

The extension of the notion of length to sets other than intervals, and to more general
measures of length, is known as measure theory and is a basic part of a graduate course
on real analysis. For the purpose of this discussion we need only the following notion from
measure theory:

Definition. A set S ⊂ R is said to have measure zero if for every ε > 0 there is a countable
or finite collection of open intervals Ij , j = 1, . . . ,, such that

S ⊂
⋃

j

Ij and
∑

j

`(Ij) < ε.

Remark : We could require the intervals Ij to be disjoint, as was done in class, but nothing
is gained by this.

Measure zero sets provide a characterization of Riemann integrable functions.

Theorem 1. A bounded function f : [a, b] → R is Riemann integrable if and only if
{x : f is not continuous at x} has measure zero.

A proof of Theorem 1 can be found below.
Measure zero sets are “small,” at least insofar as integration is concerned. Because of

this one defines

Definition. A proposition A(x) which depends on a real number x is said to be true
almost everywhere if {x | A(x) is false} has measure zero.

Thus Theorem 1 states that a bounded function f is Riemann integrable if and only
if it is continuous almost everywhere.

The terminology “almost everywhere” is partially justified by the following

Theorem 2. If f and g are Riemann integrable on [a, b] and f(x) = g(x) almost every-
where, that is {x | f(x) 6= g(x)} has measure zero, then

∫ s

t
f(x)dx =

∫ s

t
g(x)dx

for any t, x ∈ [a, b].
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It is essential that we assume both f and g are Riemann integrable. Indeed, if f is
Riemann integrable and f(x) = g(x) almost everywhere it may nonetheless happen that
g is not Riemann integrable. For example if f(x) = 0 and

g(x) =

{
1 x ∈ Q
0 x ∈ R \Q

then f is Riemann integrable and g is not, but f(x) = g(x) almost everywhere since

Lemma. Any countable set has measure zero.

Proof. Exercise.

Since Theorem 2 is really beyond the scope of this class we will not prove it here.

Proof of Theorem 1

(⇒) First suppose f is Riemann integrable and consider, for each t > 0, the set

St = {x ∈ [a, b] | ∀δ > 0 ∃y ∈ [a, b] s.t. |x− y| < δ and |f(x)− f(y)| > t}.

Then S = {x : f is not continuous at x} satisfies

S =
⋃

t>0

St.

Because St ⊂ Ss for s < t, we can replace the uncountable union ∪t>0St by the countable
union

S =
∞⋃

n=1

S1/n.

Thus, it suffices to show that each St has measure zero, because of the following

Lemma. Let Sj, j = 1, . . . , be a finite or countable collection of sets such that each Sj

has measure zero. Then ∪jSj has measure zero.

Proof of Lemma. Let ε > 0. Then for each j = 1, . . . there is a finite or countable collection
of open intervals Ij

k, k = 1, . . ., with Sj ⊂ ∪kI
j
k and

∑
k `(Ij

k) < ε/2j . Thus ∪jSj ⊂ ∪j∪k Ij
k

and ∑

j

∑

k

`(If
k ) < ε

∞∑

j=1

2−j = ε.

(Recall that a countable union of countable sets is countable. Explicitly, we enumerate Ij
k

as follows
I1 = I1

1 , I2 = I2
1 , I3 = I1

2 , I4 = I3
1 , I5 = I2

2 , I6 = I1
3 , . . . .

That is, first we list indices with j + k = 2 then with j + k = 3, then with j + k = 4,
etc.)
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Returning to the proof that St has measure zero, let ε > 0. Since f is Riemann
integrable, there is a partition P of [a, b] with Osc(f,P) < ε. Let a = x0 < x1 < x2 <
· · · < xn = b be the points of the partition P and define an index set

J = {j : St ∪ [xj−1, xj ] 6= ∅}.

Thus St ⊂ ∪j∈J [xj−1, xj ], however the intervals [xj−1, xj ] are closed. To obtain a covering
by open intervals, let us enlarge the closed intervals [xj−1, xj ] a bit:

Ij =
(

xj−1 − xj − xj−1

2
, xj +

xj − xj−1

2

)
.

Thus `(Ij) = 2(xj − xj−1) and St ⊂ ∪j∈JIj .
It remains to estimate the sum

∑

j∈J

`(Ij) = 2
∑

j∈J

xj − xj−1.

On each interval [xj−1, xj ] with j ∈ J we have

sup
x,y∈[xj−1,xj ]

|f(x)− f(y)| > t

since there is a point x ∈ St ∩ [xj−1, xj ]. Thus

t
∑

j∈J

(xj − xj−1) <
∑

j∈J

sup
x,y∈[xj−1,xj ]

|f(x)− f(y)| · (xj − xj−1) ≤ Osc(f,P),

since the oscillation involves the sum over all j = 1, . . . , n in place of just j ∈ J . Therefore∑
j∈J `(Ij) = 2

∑
j∈J(xj − xj−1) < 2

t Osc(f,P) < 2
t ε. Since ε is arbitrary, we see that

St has measure zero. Thus S = ∪nS1/n has measure zero by the Lemma.
(⇐) Now suppose that S = {x : f is discontinuous at x} has measure zero. Let ε > 0.

Then there is a finite or countable collection Ij , j = 1, . . . of open intervals such that
S ⊂ ∪jIj and

∑
j `(Ij) < ε. Consider the set

K = [a, b] \
⋃

j

Ij = {x : x ∈ [a, b] and ∀j x 6∈ Ij} .

So K is a closed subset of [a, b] and thus is compact. Furthermore f is continuous at each
point x ∈ K (since S∪K = ∅). Thus, for each x ∈ K there is δx > 0 such that |y−x| ≤ δx

implies |f(y) − f(x)| ≤ ε. Now the open intervals Ĩx = {y : |y − x| < δx} cover K, that
is K ⊂ ∪x∈K Ĩx, since x ∈ Ĩx for each x. By the Heine-Borel theorem there is a finite
subcover, namely there are points x1, . . . xm ∈ K such that

K ⊂
m⋃

j=1

Ĩxj .

Let us form a partition out of the endpoints of the intervals of this finite subcover:

P = {a, b} ∪ {xj − δxj , xj + δxj : j = 1, . . . ,m}.
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The intervals Ĩxj may overlap one another: we may have for example xj−δxj < xk−δxk
<

xj + δj for some pair j, k. Thus we may have to rearrange labels to write the points in
order. However P is a finite set, so we may write P = {y0 = a < y1, . . . < yn = b}.
Each point yk, k = 1, . . . , n− 1, is equal to xj ± δxj for some j. I claim that we have the
following dichotomy for each interval [yk−1, yk]:

1. There is a j ∈ {1, . . . , m} such that

[yk−1, yk] ⊂ Ĩxj ,

where Ĩxj = {y : |y − xj | ≤ δj} is the closure of Ixj .

or

2. For all j ∈ {1, . . . , m}, [yk−1, yk] is disjoint from the open interval Ĩxj .

To see this note that no endpoint of any interval Ĩxj can fall in the interior (yk−1, yk),
since we have listed the points y• in increasing order. Thus, if Ĩxj ∩ [yk−1, yk] 6= ∅ then
(yk−1, yk) ⊂ Ĩxj .

We break the oscillation of f in the partition P into two pieces,

Osc(f,P) =
∑

k∈case 1

sup
x,y∈[yk−1,yk]

|f(x)−f(y)| (yk−yk−1) +
∑

k∈case 2

sup
x,y∈[yk−1,yk]

|f(x)−f(y)| (yk−yk−1).

For k in case (1), we have for x, y ∈ [yk−1, yk],

|f(x)− f(y)| ≤ |f(x)− f(xj)|+ |f(xj)− f(y)| ≤ 2ε,

by the choice of δxj . For k in case (2), we have little control over |f(x) − f(y)|, however
|f(x)− f(y)| ≤ 2M with M = supx |f(x)|. Thus

Osc(f,P) ≤ 2ε
∑

k∈case 1

(yk − yk−1) + 2M
∑

k∈case 2

(yk − yk−1).

Now each interval [yk−1, yk] for k in case 2 is disjoint for the compact set K and thus
contained in the union of open intervals ∪jIj covering the measure zero set S. Thus the
total length of all intervals contributing to case 2 is bounded by

∑
j `(Ij) < ε. (Why?

This is true and, perhaps, “intuitively obvious.” The proof is left as an exercise.) Thus

Osc(f,P) ≤ (b− a + 2M)ε,

since the total length of all intervals contributing to case 1 is certainly less than the total
of all intervals. As ε is arbitrary, we see that f is Riemann integrable.
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