
Acta Numerica (2020), pp. 403–572 © The Author(s), 2020

doi:10.1017/S0962492920000021 Published by Cambridge University Press

Randomized numerical linear algebra:
Foundations and algorithms

Per-Gunnar Martinsson
Department of Mathematics,

University of Texas at Austin

Austin, TX 78712, USA

E-mail: pgm@oden.utexas.edu

Joel A. Tropp
Computing & Mathematical Sciences,

California Institute of Technology

Pasadena, CA 91125, USA

E-mail: jtropp@cms.caltech.edu

This survey describes probabilistic algorithms for linear algebraic computations,
such as factorizing matrices and solving linear systems. It focuses on techniques
that have a proven track record for real-world problems. The paper treats both the
theoretical foundations of the subject and practical computational issues.

Topics include norm estimation, matrix approximation by sampling, structured
and unstructured random embeddings, linear regression problems, low-rank approx-
imation, subspace iteration and Krylov methods, error estimation and adaptivity,
interpolatory and CUR factorizations, Nyström approximation of positive semidef-
inite matrices, single-view (‘streaming’) algorithms, full rank-revealing factoriza-
tions, solvers for linear systems, and approximation of kernel matrices that arise in
machine learning and in scientific computing.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

404 P.-G. Martinsson and J. A. Tropp

CONTENTS

1 Introduction 404
2 Linear algebra preliminaries 411
3 Probability preliminaries 416
4 Trace estimation by sampling 417
5 Schatten p-norm estimation by sampling 426
6 Maximum eigenvalues and trace functions 429
7 Matrix approximation by sampling 438
8 Randomized embeddings 446
9 Structured random embeddings 455
10 How to use random embeddings 462
11 The randomized rangefinder 467
12 Error estimation and adaptivity 481
13 Finding natural bases: QR, ID and CUR 487
14 Nyström approximation 495
15 Single-view algorithms 498
16 Factoring matrices of full or nearly full rank 504
17 General linear solvers 515
18 Linear solvers for graph Laplacians 520
19 Kernel matrices in machine learning 529
20 High-accuracy approximation of kernel matrices 542
References 556

1. Introduction

Numerical linear algebra (NLA) is one of the great achievements of scientific
computing. On most computational platforms, we can now routinely and
automatically solve small- and medium-scale linear algebra problems to high
precision. The purpose of this survey is to describe a set of probabilistic
techniques that have joined the mainstream of NLA over the last decade.
These new techniques have accelerated everyday computations for small-
and medium-size problems, and they have enabled large-scale computations
that were beyond the reach of classical methods.

1.1. Classical numerical linear algebra

NLA definitively treats several major classes of problems, including:

• solution of dense and sparse linear systems;

• orthogonalization, least-squares and Tikhonov regularization;

• determination of eigenvalues, eigenvectors and invariant subspaces;

• singular value decomposition (SVD) and total least-squares.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 405

In spite of this catalogue of successes, important challenges remain. The
sheer scale of certain datasets (terabytes and beyond) makes them impervi-
ous to classical NLA algorithms. Modern computing architectures (GPUs,
multi-core CPUs, massively distributed systems) are powerful, but this
power can only be unleashed by algorithms that minimize data movement
and that are designed ab initio with parallel computation in mind. New
ways to organize and present data (out-of-core, distributed, streaming) also
demand alternative techniques.

Randomization offers novel tools for addressing all of these challenges.
This paper surveys these new ideas, provides detailed descriptions of al-
gorithms with a proven track record, and outlines the mathematical tech-
niques used to analyse these methods.

1.2. Randomized algorithms emerge

Probabilistic algorithms have held a central place in scientific computing
ever since Ulam and von Neumann’s groundbreaking work on Monte Carlo
methods in the 1940s. For instance, Monte Carlo algorithms are essential for
high-dimensional integration and for solving PDEs set in high-dimensional
spaces. They also play a major role in modern machine learning and uncer-
tainty quantification.

For many decades, however, numerical analysts regarded randomized al-
gorithms as a method of last resort, to be invoked only in the absence
of an effective deterministic alternative. Indeed, probabilistic techniques
have several undesirable features. First, Monte Carlo methods often produce
output with low accuracy. This is a consequence of the central limit the-
orem, and in many situations it cannot be avoided. Second, many computa-
tional scientists have a strong attachment to the engineering principle that
two successive runs of the same algorithm should produce identical results.
This requirement aids with debugging, and it can be critical for applications
where safety is paramount, for example simulation of infrastructure or con-
trol of aircraft. Randomized methods do not generally offer this guarantee.
(Controlling the seed of the random number generator can provide a partial
work-around.)

Nevertheless, in the 1980s, randomized algorithms started to make in-
roads into NLA. Some of the early work concerns spectral computations,
where it was already traditional to use random initialization. Dixon (1983)
recognized that a variant of the power method with a random start provably
approximates the largest eigenvalue of a positive semidefinite (PSD) mat-
rix, even without a gap between the first and second eigenvalue. Kuczyński
and Woźniakowski (1992) provided a sharp analysis of this phenomenon
for both the power method and the Lanczos algorithm. Around the same
time, Girard (1989) and Hutchinson (1990) proposed Monte Carlo methods

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

406 P.-G. Martinsson and J. A. Tropp

for estimating the trace of a large PSD matrix. Soon after, Parker (1995)
demonstrated that randomized transformations can be used to avoid pivot-
ing steps in Gaussian elimination.

Starting in the late 1990s, researchers in theoretical computer science
identified other ways to apply probabilistic algorithms in NLA. Alon, Matias
and Szegedy (1999) and Alon, Gibbons, Matias and Szegedy (2002) showed
that randomized embeddings allow for computations on streaming data with
limited storage. Papadimitriou, Raghavan, Tamaki and Vempala (2000) and
Frieze, Kannan and Vempala (2004) proposed Monte Carlo methods for low-
rank matrix approximation. Drineas, Kannan and Mahoney (2006a, 2006b,
2006c) wrote the first statement of theoretical principles for randomized
NLA. Sarlós (2006) showed how subspace embeddings support linear algebra
computations.

In the mid-2000s, numerical analysts introduced practical randomized al-
gorithms for low-rank matrix approximation and least-squares problems.
This work includes the first computational evidence that randomized al-
gorithms outperform classical NLA algorithms for particular classes of prob-
lems. Early contributions include those of Martinsson, Rokhlin and Ty-
gert (2006a), Liberty et al. (2007), Rokhlin and Tygert (2008) and Woolfe,
Liberty, Rokhlin and Tygert (2008). These papers inspired later work by
Avron, Maymounkov and Toledo (2010), by Halko, Martinsson and Tropp
(2011a) and by Halko, Martinsson, Shkolnisky and Tygert (2011b) that has
made a direct impact in applications.

Parallel with the advances in numerical analysis, a tide of enthusiasm
for randomized algorithms has flooded into cognate fields. In particular,
stochastic gradient descent (Bottou 2010) has become a standard algorithm
for solving large optimization problems in machine learning.

At the time of writing, in late 2019, randomized algorithms have joined
the mainstream of NLA. They now appear in major reference works and
textbooks (Golub and Van Loan 2013, Strang 2019). Key methods are being
incorporated into standard software libraries (The Numerical Algorithms
Group (NAG) 2019, Xiao, Gu and Langou 2017, Ghysels, Li, Gorman and
Rouet 2017).

1.3. What does randomness accomplish?

Over the course of this survey we will explore a number of different ways
that randomization can be used to design effective NLA algorithms. For the
moment, let us just summarize the most important benefits.

Randomized methods can handle certain NLA problems faster than any
classical algorithm. In Section 10 we describe a randomized algorithm that
can solve a dense m× n least-squares problem with m ≫ n using about
O(mn+n3) arithmetic operations (Rokhlin and Tygert 2008). Meanwhile,

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 407

classical methods require O(mn2) operations. In Section 18 we present an
algorithm called SparseCholesky that can solve the Poisson problem on
a dense undirected graph in time that is roughly quadratic in the number
of vertices (Kyng and Sachdeva 2016). Standard methods have a cost that
is cubic in the number of vertices. The improvements can be even larger for
sparse graphs.

Randomization allows us to tackle problems that otherwise seem im-
possible. Section 15 contains an algorithm that can compute a rank-r trun-
cated SVD of an m×n matrix in a single pass over the data using working
storage O(r(m+n)). The first reference for this kind of algorithm is Woolfe
et al. (2008). We know of no classical method with this computational
profile.

From an engineering point of view, randomization has another crucial
advantage: it allows us to restructure NLA computations in a fundament-
ally different way. In Section 11 we will introduce the randomized SVD
algorithm (Halko et al. 2011a, Martinsson et al. 2006a). Essentially all the
arithmetic in this procedure takes place in a short sequence of matrix–
matrix multiplications. Matrix multiplication is a highly optimized primitive
on most computer systems, it parallelizes easily, and it performs particu-
larly well on modern hardware such as GPUs. In contrast, classical SVD
algorithms require either random access to the data or sequential matrix–
vector multiplications. As a consequence, the randomized SVD can process
matrices that are beyond the reach of classical SVD algorithms.

1.4. Algorithm design considerations

Before we decide what algorithm to use for a linear algebra computation, we
must ask how we are permitted to interact with the data. A recurring theme
of this survey is that randomization allows us to reorganize algorithms so
that they control whichever computational resource is the most scarce (flops,
communication, matrix entry evaluation, etc.). Let us illustrate with some
representative examples.

• Streaming computations (‘single-view’). There is rising demand for
algorithms that can treat matrices that are so large that they cannot
be stored at all; other applications involve matrices that are presented
dynamically. In the streaming setting, the input matrix A is given by
a sequence of simple linear updates that can viewed only once:

A=H1+H2+H3+ · · · . (1.1)

We must discard each innovation Hi after it has been processed. As it
happens, the only type of algorithm that can handle the model (1.1) is
one based on randomized linear dimension reduction (Li, Nguyen and

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

408 P.-G. Martinsson and J. A. Tropp

Woodruff 2014b). Our survey describes a number of algorithms that
can operate in the streaming setting; see Sections 4, 5, 14 and 15.

• Dense matrices stored in RAM. One traditional computational model
for NLA assumes that the input matrix is stored in fast memory, so that
any entry can quickly be read and/or overwritten as needed. The abil-
ity of CPUs to perform arithmetic keeps growing rapidly, but memory
latency has not kept up. Thus it has become essential to formulate
blocked algorithms that operate on submatrices. Section 16 shows how
randomization can help.

• Large sparse matrices. For sparse matrices, it is natural to search for
techniques that interact with a matrix only through its application to
vectors, such as Krylov methods or subspace iteration. Randomization
expands the design space for these methods. When the iteration is
initialized with a random matrix, we can reach provably correct and
highly accurate results after a few iterations; see Sections 11.6 and 11.7.

Another idea is to apply randomized sampling to control sparsity levels.
This technique arises in Section 18, which contains a randomized
algorithm that accelerates incomplete Cholesky preconditioning for
sparse graph Laplacians.

• Matrices for which entry evaluation is expensive. In machine learning
and computational physics, it is often desirable to solve linear systems
where it is too expensive to evaluate the full coefficient matrix. Ran-
domization offers a systematic way to extract data from the matrix
and to compute approximations that serve for the downstream applic-
ations. See Sections 19 and 20.

1.5. Overview

This paper covers fundamental mathematical ideas, as well as algorithms
that have proved to be effective in practice. The balance shifts from the-
ory at the beginning toward computational practice at the end. With the
practitioner in mind, we have attempted to make the algorithmic sections
self-contained, so that they can be read with a minimum of references to
other parts of the paper.

After introducing notation and covering preliminaries from linear algebra
and probability in Sections 2–3, the survey covers the following topics.

• Sections 4–5 discuss algorithms for trace estimation and Schatten
p-norm estimation based on randomized sampling (i.e. Monte Carlo
methods). Section 6 shows how iteration can improve the quality of es-
timates for maximum eigenvalues, maximum singular values and trace
functions.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 409

• Section 7 develops randomized sampling methods for approximating
matrices, including applications to matrix multiplication and approx-
imation of combinatorial graphs.

• Sections 8–9 introduce the notion of a randomized linear embedding.
These maps are frequently used to reduce the dimension of a set of
vectors, while preserving their geometry. In Section 10 we explore
several ways to use randomized embeddings in the context of an over-
determined least-squares problem.

• Sections 11–12 demonstrate how randomized methods can be used to
find a subspace that is aligned with the range of a matrix and to assess
the quality of this subspace. Sections 13, 14 and 15 show how to use
this subspace to compute a variety of low-rank matrix approximations.

• Section 16 develops randomized algorithms for computing a factoriz-
ation of a full-rank matrix, such as a pivoted QR decomposition or a
URV decomposition.

• Section 17 describes some general approaches to solving linear sys-
tems using randomized techniques. Section 18 presents the Sparse

Cholesky algorithm for solving the Poisson problem on an undirected
graph (i.e. a linear system in a graph Laplacian).

• Last, Sections 19 and 20 show how to use randomized methods to
approximate kernel matrices that arise in machine learning, computa-
tional physics and scientific computing.

1.6. Omissions

While randomized NLA was a niche topic 15 years ago, we have seen an
explosion of research over the last decade. This survey can only cover a small
subset of the many important and interesting ideas that have emerged.

Among many other omissions, we do not discuss spectral computations in
detail. There have been interesting and very recent developments, especially
for the challenging problem of computing a spectral decomposition of a
nonnormal matrix (Banks, Vargas, Kulkarni and Srivastava 2019). We also
had to leave out a treatment of tensors and the rapidly developing field of
randomized multilinear algebra.

There is no better way to demonstrate the value of a numerical method
than careful numerical experiments that measure its speed and accuracy
against state-of-the-art implementations of competing methods. Our selec-
tion of topics and our implementation advice are heavily influenced by such
comparisons; for reasons of space, we have often had to settle for citations
to the literature, instead of including the numerical evidence.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

410 P.-G. Martinsson and J. A. Tropp

The intersection between optimization and linear algebra is of crucial
importance in applications, and it remains a fertile ground for theoretical
work. Randomized algorithms are invaluable in this context, but we realized
early on that the paper would double in length if we included just the
essential facts about randomized optimization algorithms.

There is a complementary perspective on randomized numerical analysis
algorithms, called probabilistic numerics. See the website of Hennig and
Osborne (2019) for a comprehensive bibliography.

For the topics that we do cover, we have made every effort to include all
essential citations. Nevertheless, the literature is vast, and we are sure to
have overlooked important work; we apologize in advance for these over-
sights.

1.7. Other surveys

There are a number of other survey papers on randomized algorithms for
randomized NLA and related topics.

• Halko et al. (2011a) develop and analyse computational methods for
low-rank matrix approximation (including the ‘randomized SVD’ al-
gorithm) from the point of view of a numerical analyst. The main idea
is that randomization can furnish a subspace that captures the action
of a matrix, and this subspace can be used to build structured low-rank
matrix approximations.

• Mahoney (2011) treats randomized methods for least-squares compu-
tations and for low-rank matrix approximation. He emphasizes the
useful principle that we can often decouple the linear algebra and the
probability when analysing randomized NLA algorithms.

• Woodruff (2014) describes how to use subspace embeddings as a primit-
ive for developing randomized linear algebra algorithms. A distinctive
feature is the development of lower bounds.

• Tropp (2015) gives an introduction to matrix concentration inequalit-
ies, and includes some applications to randomized NLA algorithms.

• The survey of Kannan and Vempala (2017) appeared in a previous
volume of Acta Numerica. A unique aspect is the discussion of ran-
domized tensor computations.

• Drineas and Mahoney (2018) have updated the presentation in Ma-
honey (2011), and include an introduction to linear algebra and prob-
ability that is directed toward NLA applications.

• Martinsson (2018) focuses on computational aspects of randomized
NLA. A distinctive feature is the discussion of efficient algorithms for
factorizing matrices of full, or nearly full, rank.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 411

• Tropp (2019) gives a mathematical treatment of how matrix concen-
tration supports a few randomized NLA algorithms, and includes a
complete proof of correctness for the SparseCholesky algorithm de-
scribed in Section 18.

2. Linear algebra preliminaries

This section contains an overview of the linear algebra tools that arise in
this survey. It collects the basic notation, along with some standard and
not-so-standard definitions. It also contains a discussion about the role of
the spectral norm.

Background references for linear algebra and matrix analysis include Bha-
tia (1997) and Horn and Johnson (2013). For a comprehensive treatment
of matrix computations, we refer to Golub and Van Loan (2013), Trefethen
and Bau III (1997) and Stewart (1998, 2001).

2.1. Basics

We will work in the real field (R) or the complex field (C). The symbol F
refers to either the real or complex field, in cases where the precise choice
is unimportant. As usual, scalars are denoted by lowercase italic Roman
(a,b,c) or Greek (α,β) letters.

Vectors are elements of F
n, where n is a natural number. We always

denote vectors with lowercase bold Roman (a,b,u,v) or Greek (α,β) letters.
We write 0 for the zero vector and 1 for the vector of ones. The standard
basis vectors are denoted as δ1, . . . ,δn. The dimensions of these special
vectors are determined by context.

A general matrix is an element of Fm×n, where m,n are natural numbers.
We always denote matrices with uppercase bold Roman (A,B,C) or Greek
(∆,Λ) letters. We write 0 for the zero matrix and I for the identity matrix;
their dimensions are determined by a subscript or by context.

The parenthesis notation is used for indexing into vectors and matrices:
(a)i is the ith coordinate of vector a, while (A)ij is the (i,j)th coordinate of
matrix A. In some cases it is more convenient to invoke the functional form
of indexing. For example, A(i,j) also refers to the (i,j)th coordinate of the
matrix A.

The colon notation is used to specify ranges of coordinates. For example,
(a)1:i and a(1 : i) refer to the vector comprising the first i coordinates of a.
The colon by itself refers to the entire range of coordinates. For instance,
(A)i: denotes the ith row of A, while (A):j denotes the j th column.

The symbol ∗ is reserved for the (conjugate) transpose of a matrix of
vector. A matrix that satisfies A = A∗ is said to be self-adjoint. It is

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

412 P.-G. Martinsson and J. A. Tropp

convenient to distinguish the space Hn of self-adjoint n×n matrices over
the scalar field. We may write Hn(F) if it is necessary to specify the field.

The operator † extracts the Moore–Penrose pseudoinverse of a matrix.
More precisely, for A ∈ F

m×n, the pseudoinverse A† ∈ F
n×m is the unique

matrix that satisfies the following:

(1) AA† is self-adjoint;

(2) A†A is self-adjoint;

(3) AA†A= A;

(4) A†AA† = A†.

If A has full column rank, then A† = (A∗A)−1A∗, where (·)−1 denotes the
ordinary matrix inverse.

2.2. Eigenvalues and singular values

A positive semidefinite matrix is a self-adjoint matrix with nonnegative
eigenvalues. We will generally abbreviate positive semidefinite to PSD. Like-
wise, a positive definite (PD) matrix is a self-adjoint matrix with positive
eigenvalues.

The symbol 4 denotes the semidefinite order on self-adjoint matrices.
The relation A4 B means that B−A is PSD.

We write λ1 ≥ λ2 ≥ ·· · for the eigenvalues of a self-adjoint matrix. We
write σ1 ≥ σ2 ≥ ·· · for the singular values of a general matrix. If the matrix
is not clear from context, we may include it in the notation, so that σj(A)
is the j th singular value of A.

Let f : R→R be a function on the real line. We can extend f to a spectral
function f : Hn →Hn on self-adjoint matrices. Indeed, for a matrix A ∈Hn

with eigenvalue decomposition

A=
∑n

i=1
λiuiu

∗
i , we define f(A) :=

∑n

i=1
f(λi)uiu

∗
i .

The Pascal notation for definitions (:= and =:) is used sparingly, when we
need to emphasize that the definition is taking place.

2.3. Inner product geometry

We equip F
n with the standard inner product and the associated ℓ2 norm.

For all vectors a,b ∈ F
n,

〈a, b〉 := a ·b :=
∑n

i=1
(a)∗i (b)i and ‖a‖2 := 〈a, a〉.

We write S
n−1 for the set of vectors in F

n with unit ℓ2 norm. If needed, we
may specify the field: Sn−1(F).

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 413

The trace of a square matrix is the sum of its diagonal entries:

trace(A) :=
∑n

i=1
(A)ii for A ∈ F

n×n.

Nonlinear functions bind before the trace. We equip F
m×n with the standard

trace inner product and the Frobenius norm. For all matrices A,B ∈ F
m×n,

〈A,B〉 := trace(A∗B) and ‖A‖2F := 〈A,A〉.

For vectors, these definitions coincide with the ones in the last paragraph.
We say that a matrix U is orthonormal when its columns are orthonormal

with respect to the standard inner product. That is, U∗U = I. If U is also
square, we say instead that U is orthogonal (F= R) or unitary (F= C).

2.4. Norms on matrices

Several different norms on matrices arise during this survey. We use con-
sistent notation for these norms.

• The unadorned norm ‖ · ‖ refers to the spectral norm of a matrix, also
known as the ℓ2 operator norm. It reports the maximum singular value
of its argument. For vectors, it coincides with the ℓ2 norm.

• The norm ‖ · ‖
∗
is the nuclear norm of a matrix, which is the dual of the

spectral norm. It reports the sum of the singular values of its argument.

• The symbol ‖ · ‖
F

refers to the Frobenius norm, defined in the last
subsection. The Frobenius norm coincides with the ℓ2 norm of the
singular values of its argument.

• The notation ‖ · ‖p denotes the Schatten p-norm for each p ∈ [1,∞].
The Schatten p-norm is the ℓp norm of the singular values of its argu-
ment. Special cases with their own notation include the nuclear norm
(Schatten 1), the Frobenius norm (Schatten 2) and the spectral norm
(Schatten ∞).

Occasionally other norms may arise, and we will define them explicitly when
they do.

2.5. Approximation in the spectral norm

Throughout this survey we will almost exclusively use the spectral norm
to measure the error in matrix computations. Let us recall some of the
implications that follow from spectral norm bounds.

Suppose that A ∈ F
m×n is a matrix and Â ∈ F

m×n is an approximation.
If the approximation satisfies the spectral norm error bound

‖A− Â‖ ≤ ε,

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

414 P.-G. Martinsson and J. A. Tropp

then we can transfer the following information.

• Linear functionals: |〈F,A〉−〈F, Â〉| ≤ ε‖F‖
∗
for every matrix F∈ F

m×n.

• Singular values: |σj(A)−σj(Â)| ≤ ε for each index j.

• Singular vectors: if the j th singular value σj(A) is well separated from
the other singular values, then the j th right singular vector of A is well
approximated by the j th right singular vector of Â; a similar statement
holds for the left singular vectors.

Detailed statements about the singular vectors are complicated, so we refer
the reader to Bhatia (1997, Chapters VII, X) for his treatment of perturb-
ation of spectral subspaces.

For one-pass and streaming data models, it may not be possible to obtain
good error bounds in the spectral norm. In this case we may retrench to
Frobenius norm or nuclear norm error bounds. These estimates give weaker
information about linear functionals, singular values and singular vectors.

Remark 2.1 (Frobenius norm approximation). In the literature on
randomized NLA, some authors prefer to bound errors with respect to the
Frobenius norm because the arguments are technically simpler. In many
instances, these bounds are less valuable because the error can have the
same scale as the matrix that we wish to approximate.

For example, let us consider a variant of the spiked covariance model
that is common in statistics applications (Johnstone 2001). Suppose we
need to approximate a rank-one matrix contaminated with additive noise:
A = uu∗ + εG ∈ R

n×n, where ‖u‖ = 1 and G ∈ R
n×n has independent

normal(0,n−1) entries. It is well known that ‖G‖ ≈ 2, while ‖G‖F ≈ √
n.

With respect to the Frobenius norm, the zero matrix is almost as good an
approximation of A as the rank-one matrix uu∗:

E‖A−uu∗‖2F = ε2n and E‖A−0‖2F = ε2n+1.

The difference is visible only when the size of the perturbation ε ≈ n−1/2.
In contrast, the spectral norm error can easily distinguish between the good
approximation uu∗ and the vacuous approximation 0, even when ε=O(1).

For additional discussion, see Tropp (2015, Section 6.2.3) and Li et al.
(2017, Appendix).

2.6. Intrinsic dimension and stable rank

Let A ∈Hn be a PSD matrix. We define its intrinsic dimension:

intdim(A) :=
trace(A)

‖A‖ . (2.1)

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 415

The intrinsic dimension of a nonzero matrix satisfies the inequalities 1 ≤
intdim(A)≤ rank(A); the upper bound is saturated when A is an orthogonal
projector. We can interpret the intrinsic dimension as a continuous measure
of the rank, or the number of energetic dimensions in the matrix.

Let B ∈ F
m×n be a rectangular matrix. Its stable rank is

srank(B) := intdim(B∗B) =
‖B‖2F
‖B‖2

. (2.2)

Similar to the intrinsic dimension, the stable rank provides a continuous
measure of the rank of B.

2.7. Schur complements

Schur complements arise from partial Gaussian elimination and partial least-
squares. They also play a key role in several parts of randomized NLA. We
give the basic definitions here, referring to Zhang (2005) for a more complete
treatment.

Let A∈ F
n×n be a PSD matrix, and let X∈ F

n×k be a fixed matrix. First,
define the PSD matrix

A〈X〉 := (AX)(X∗AX)†(AX)∗. (2.3)

The Schur complement of A with respect to X is the PSD matrix

A/X := A−A〈X〉. (2.4)

The matrices A〈X〉 and A/X depend on X only through its range. They
also enjoy geometric interpretations in terms of orthogonal projections with
respect to the A semi-inner-product.

2.8. Miscellaneous

We use big-O notation following standard computer science convention. For
instance, we say that a method has (arithmetic) complexity O(nα) if there is
a finite C for which the number of floating-point operations (flops) expended
is bounded by Cnα as the problem size n→∞.

We use MATLAB-inspired syntax in summarizing algorithms. For in-
stance, the task of computing an SVD A = UΣV∗ of a given matrix A

is written as [U,Σ,V] = svd(A). We have taken the liberty to modify the
syntax when we believe that this improves clarity. For instance, we write
[Q,R] = qr econ(A) to denote the economy-size QR factorization where
the matrix Q has size m×min(m,n) for an input matrix A ∈ F

m×n. Ar-
guments that are not needed are replaced by ‘ ∼’, so that, for example,
[Q, ∼] = qr econ(A) returns only the matrix Q whose columns form an
orthonormal basis for the range of A.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

416 P.-G. Martinsson and J. A. Tropp

3. Probability preliminaries

This section summarizes the key definitions and background from probab-
ility and high-dimensional probability. Later in the survey we will present
more complete statements of foundational results, as they are needed.

Grimmett and Stirzaker (2001) provide an accessible overview of applied
probability. Vershynin (2018) introduces the field of high-dimensional prob-
ability. For more mathematical presentations, see the classic book of Ledoux
and Talagrand (1991) or the lecture notes of Van Handel (2016).

3.1. Basics

We work in a master probability space that is rich enough to support all of
the random variables that are defined. We will not comment further about
the underlying model.

In this paper the unqualified term random variable encompasses random
scalars, vectors and matrices. Scalar-valued random variables are usually
(but not always) denoted by uppercase italic Roman letters (X,Y ,Z). A
random vector is denoted by a lowercase bold letter (x,ω). A random matrix
is denoted by an uppercase bold letter (X,Y,Γ,Ω). This notation works in
concert with the notation for deterministic vectors and matrices.

The map P(E) returns the probability of an event E. We usually specify
the event using the compact set builder notation that is standard in prob-
ability. For example, P{X > t} is the probability that the scalar random
variable X exceeds a level t.

The operator E returns the expectation of a random variable. For vectors
and matrices, the expectation can be computed coordinate by coordinate.
The expectation is linear, which justifies relations like

E[AX] = AE[X] when A is deterministic and X is random.

We use the convention that nonlinear functions bind before the expectation;
for instance, EX2 = E[X2]. The operator Var[·] returns the variance of a
scalar random variable.

We say that a random variable is centred when its expectation equals zero.
A random vector x is isotropic when E[xx∗] = I. A random vector is stand-
ardized when it is both centred and isotropic. In particular, a scalar random
variable is standardized when it has expectation zero and variance one.

When referring to independent random variables, we often include the
qualification ‘statistically independent’ to make a distinction with ‘linearly
independent’. We abbreviate the term (statistically) ‘independent and iden-
tically distributed’ as i.i.d.

3.2. Distributions

To refer to a named distribution, we use small capitals. In this context, the
symbol ∼ means ‘has the same distribution as’.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 417

We write unif for the uniform distribution over a finite set (with counting
measure). In particular, a scalar Rademacher random variable has the dis-
tribution unif{±1}. A Rademacher random vector has i.i.d. coordinates,
each distributed as a scalar Rademacher random variable. We sometimes
require the uniform distribution over a Borel subset of Fn, equipped with
Lebesgue measure.

We write normal(µ,C) for the normal distribution on F
n with expect-

ation µ ∈ F
n and PSD covariance matrix C ∈ Hn(F). A standard normal

random variable or random vector has expectation zero and covariance mat-
rix equal to the identity. We often use the term Gaussian to refer to normal
distributions.

3.3. Concentration inequalities

Concentration inequalities provide bounds on the probability that a random
variable is close to its expectation. A good reference for the scalar case is
the book by Boucheron, Lugosi and Massart (2013). In the matrix setting,
closeness is measured in the spectral norm. For an introduction to matrix
concentration, see Tropp (2015, 2019). These results play an important role
in randomized linear algebra.

3.4. Gaussian random matrix theory

On several occasions we use comparison principles to study the action of
a random matrix with i.i.d. Gaussian entries. In particular, these meth-
ods can be used to control the largest and smallest singular values. The
main classical comparison theorems are associated with the names Slepian,
Chevet and Gordon. For accounts of this, see Ledoux and Talagrand (1991,
Section 3.3), Davidson and Szarek (2001, Section 2.3) or Vershynin (2018,
Sections 7.2–7.3). More recently, it has been observed that Gordon’s in-
equality can be reversed in certain settings (Thrampoulidis, Oymak and
Hassibi 2014).

In several instances we require more detailed information about Gaussian
random matrices. General resources include Muirhead (1982) and Bai and
Silverstein (2010). Most of the specific results we need are presented in
Halko et al. (2011a).

4. Trace estimation by sampling

We commence with a treatment of matrix trace estimation problems. These
questions stand among the simplest linear algebra problems because the
desired result is just a scalar. Even so, the algorithms have a vast sweep of
applications, ranging from computational statistics to quantum chemistry.
They also serve as building blocks for more complicated randomized NLA

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

418 P.-G. Martinsson and J. A. Tropp

algorithms. We have chosen to begin our presentation here because many
of the techniques that drive algorithms for more difficult problems already
appear in a nascent – and especially pellucid – form in this section.

Randomized methods for trace estimation depend on a natural technical
idea: One may construct an unbiased estimator for the trace and then aver-
age independent copies to reduce the variance of the estimate. Algorithms
of this type are often called Monte Carlo methods. We describe how to use
standard methods from probability and statistics to develop a priori and
a posteriori guarantees for Monte Carlo trace estimators. We show how to
use structured random distributions to improve the computational profile
of the estimators. Last, we demonstrate that trace estimators also yield ap-
proximations for the Frobenius norm and the Schatten 4-norm of a general
matrix.

In Section 5 we present more involved Monte Carlo methods that are
required to estimate Schatten p-norms for larger values of p, which give
better approximations for the spectral norm. Section 6 describes iterative
algorithms that lead to much higher accuracy than Monte Carlo methods.
In Section 6.6 we touch on related probabilistic techniques for evaluating
trace functions.

4.1. Overview

We will focus on the problem of estimating the trace of a nonzero PSD
matrix A ∈ Hn. Our goal is to to produce an approximation of trace(A),
along with a measure of quality.

Trace estimation is easy in the case where we have inexpensive access to
the entries of the matrix A because we can simply read off the n diagonal
entries. But there are many environments where the primitive operation
is the matrix–vector product u 7→ Au. For example, u 7→ Au might be the
solution of a (discretized) linear differential equation with initial condition
u, implemented by some computer program. In this case we would really
prefer to avoid n applications of the primitive. (We can obviously compute
the trace by applying the primitive to each standard basis vector δi.)

The methods in this section all use linear information about the matrix
A. In other words, we will extract data from the input matrix by comput-
ing the product Y = AΩ, where Ω ∈ F

n×k is a (random) test matrix. All
subsequent operations involve only the sample matrix Y and the test matrix
Ω. Since the data collection process is linear, we can apply randomized trace
estimators in the one-pass or streaming environments. Moreover, parts of
these algorithms are trivially parallelizable.

The original application of randomized trace estimation was to perform
a posteriori error estimation for large least-squares computations. More
specifically, it was used to accelerate cross-validation procedures for esti-

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 419

Algorithm 1 Trace estimation by random sampling.
See Section 4.2.
Input: PSD input matrix A ∈Hn, number k of samples
Output: Trace estimate X̄k and sample variance Sk

1 function TraceEstimate(A, k)
2 for i= 1, . . . ,k do ⊲ Compute trace samples
3 Draw an isotropic test vector ωi ∈ F

n

4 Compute Xi = ω∗
i (Aωi)

5 Form trace estimator: X̄k = k−1
∑k

i=1Xi

6 Form sample variance: Sk = (k−1)−1
∑k

i=1(Xi− X̄k)
2

⊲ Use compensated summation techniques for large k!

mating the optimal regularization parameter in a smoothing spline (Girard
1989, Hutchinson 1990). See Fitzsimons, Osborne, Roberts and Fitzsimons
(2018) for a list of contemporary applications in machine learning, uncer-
tainty quantification and other fields.

4.2. Trace estimation by randomized sampling

Randomized trace estimation is based on the insight that it is easy to con-
struct a random variable whose expectation equals the trace of the input
matrix.

Consider a random test vector ω ∈ F
n that is isotropic: E[ωω∗] = I. By

the cyclicity of the trace and by linearity,

X = ω∗(Aω) satisfies EX = trace(A). (4.1)

In other words, the random variable X is an unbiased estimator of the trace.
Note that the distribution of X depends on the unknown matrix A.

A single sample of X is rarely adequate because its variance, Var[X],
will be large. The most common mechanism for reducing the variance is to
average k independent copies of X. For k ∈ N, define

X̄k =
1

k

∑k

i=1
Xi where Xi ∼X are i.i.d. (4.2)

By linearity, X̄k is also an unbiased estimator of the trace. The individual
samples are statistically independent, so the variance decreases. Indeed,

E[X̄k] = trace(A) and Var[X̄k] =
1

k
Var[X].

The estimator (4.2) can be regarded as the most elementary method in
randomized linear algebra. See Algorithm 1.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

420 P.-G. Martinsson and J. A. Tropp

To compute X̄k, we must simulate k independent copies of the random
vector ω ∈ F

n and perform k matrix–vector products with A, plus O(kn)
additional arithmetic.

Example 4.1 (Girard 1989). Consider a standard normal random vec-
tor ω ∼ normal(0,I). The variance of the resulting trace estimator (4.1)–
(4.2) satisfies

Var[X̄k] =
2

k

∑n

i,j=1
|(A)ij |2 =

2

k
‖A‖2F ≤ 2

k
‖A‖trace(A). (4.3)

The rotational invariance of the standard normal distribution allows us to
characterize the behaviour of this estimator in full detail.

Example 4.2 (Hutchinson 1990). Consider a Rademacher random vec-
tor ω∼unif{±1}n. The variance of the resulting trace estimator (4.1)–(4.2)
satisfies

Var[X̄k] =
4

k

∑
1≤i<j≤n

|(A)ij |2 <
2

k
‖A‖2F ≤ 2

k
‖A‖trace(A).

This is the minimum variance trace estimator generated by an isotropic
random vector ω with statistically independent coordinates. It also avoids
the simulation of normal variables.

Girard (1989) also studied the estimator obtained by drawing ω ∈ F
n

uniformly at random from the sphere
√
nSn−1(F) for F= R. When F= C,

this approach has the minimax variance among all trace estimators of the
form (4.1)–(4.2). We return to this example in Section 4.7.1.

Remark 4.3 (general matrices). The assumption that A is PSD allows
us to conclude that the standard deviation of the randomized trace estim-
ate is smaller than the trace of the matrix. The same methods allow us
to estimate the trace of a general square matrix, but the variance of the
estimator may no longer be comparable with the trace.

4.3. A priori error estimates

We can use theoretical analysis to obtain prior guarantees on the perform-
ance of the trace estimator. These results illuminate what features of the
input matrix affect the quality of the trace estimate, and they tell us how
many samples k suffice to achieve a given error tolerance. Note, however,
that these bounds depend on properties of the input matrix that are often
unknown to the user of the trace estimator.

Regardless of the distribution of the isotropic test vector ω, Chebyshev’s
inequality delivers a simple probability bound for the trace estimator:

P{|X̄k− trace(A)| ≥ t} ≤ Var[X]

kt2
for t > 0. (4.4)

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 421

We can specialize this result to specific trace estimators by inserting the
variance.

Example 4.4 (Girard trace estimator). If the test vector ω is stand-
ard normal, the trace estimator X̄k satisfies

P{|X̄k− trace(A)| ≥ t · trace(A)} ≤ 2

k intdim(A) t2
.

The bound follows from (4.3), (4.4) and (2.1). In words, the trace estimator
achieves a relative error bound that is sharpest when the intrinsic dimension
(2.1) of A is large.

For specific distributions of the random test vector ω, we can obtain
much stronger probability bounds for the resulting trace estimator using
exponential concentration inequalities. Here is a recent analysis for Girard’s
estimator based on fine properties of the standard normal distribution.

Theorem 4.5 (Gratton and Titley-Peloquin 2018). Let A ∈Hn(R)
be a nonzero PSD matrix. Consider the trace estimator (4.1)–(4.2) obtained
from a standard normal test vector ω ∈ R

n. For τ > 1 and k ≤ n,

P{X̄k ≥ τ trace(A)} ≤ exp
(
−1

2k intdim(A)(
√
τ −1)2

)
,

P{X̄k ≤ τ−1 trace(A)} ≤ exp
(
−1

4k intdim(A)(τ−1−1)2
)
.

When A∈Hn(C) is PSD and ω ∈C
n is complex standard normal, the same

bounds hold with an extra factor two in the exponent. (So the estimator
works better in the complex setting.)

Sketch of proof. Carefully estimate the moment generating function of the
random variable X, and use the Cramér–Chernoff method to obtain the
probability inequalities. �

4.4. Universality

Empirically, for a large sample, the performance of the trace estimator X̄k

only depends on the distribution of the test vector ω through the variance
of the resulting sample X. In a word, the estimator exhibits universality.
As a consequence, we can select the distribution that is most convenient for
computational purposes.

Classical probability theory furnishes justification for these claims. The
strong law of large numbers tells us that

X̄k → trace(A) almost surely as k→∞.

Concentration inequalities (Boucheron et al. 2013) allow us to derive rates
of convergence akin to Theorem 4.5.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

422 P.-G. Martinsson and J. A. Tropp

To understand the sampling distribution of the estimator X̄k, we can
invoke the central limit theorem:

√
k(X̄k− trace(A))→ normal(0,Var[X]) in distribution as k→∞.

We can obtain estimates for the rate of convergence to normality using the
Berry–Esséen theorem and its variants (Ross 2011, Chen, Goldstein and
Shao 2011).

Owing to the universality phenomenon, we can formally use the normal
limit to obtain heuristic error estimates and insights for trace estimators
constructed with test vectors from any distribution. This strategy becomes
even more valuable when the linear algebra problem is more complicated.

Warning 4.6 (CLT). Estimators based on averaging independent samples
cannot overcome the central limit theorem. Their accuracy will always be
limited by fluctuations on the scale of

√
Var[X]. In other words, we must

extract ε−2 samples to reduce the error to ε
√

Var[X] for small ε > 0. This
is the curse of Monte Carlo.

4.5. A posteriori error estimates

In practice, we rarely have access to all the information required to activate
a priori error bounds. It is wiser to assess the quality of the estimate from
the information that we actually collect. Since we have full knowledge of
the random process that generates the trace estimate, we can confidently
use approaches from classical statistics.

At the most basic level, the sample variance is an unbiased estimator for
the variance of the individual samples:

Sk =
1

k−1

∑k

i=1
(Xi− X̄k)

2 satisfies E[Sk] = Var[X].

The variance of Sk depends on the fourth moment of the random variable
X. A standard estimate is

Var[Sk]≤
1

k
E[(X−EX)4].

Bounds and empirical estimates for the variance of Sk can also be obtained
using the Efron–Stein inequality (Boucheron et al. 2013, Section 3.1).

For α∈ (0,1/2), we can construct the (symmetric, Student’s t) confidence
interval at level 1−2α:

trace(A) ∈ X̄k± tα,k−1

√
Sk,

where tα,k−1 is the α quantile of the Student’s t-distribution with k− 1
degrees of freedom. We interpret this result as saying that trace(A) lies in the
specified interval with probability roughly 1− 2α (over the randomness in

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 423

Algorithm 2 Bootstrap confidence interval for trace estimation.
See Section 4.6.
Input: PSD input matrix A ∈ Hn, number k of trace samples, number B

of bootstrap replicates, parameter α for level of confidence
Output: Confidence interval [X̄k+ qα,X̄k+ q1−α] at level 1−2α

1 function BootstrapTraceEstimate(A, k, b, α)
2 for i= 1, . . . ,k do ⊲ Compute trace estimators
3 Draw an isotropic test vector ωi ∈ F

n

4 Form Xi = ω∗
i (Aωi)

5 X = (X1, . . . ,Xk) ⊲ Collate sample

6 X̄k = k−1
∑k

i=1Xi ⊲ Trace estimate
7 for b= 1, . . . ,B do ⊲ Bootstrap replicates
8 Draw (X∗

1 , . . . ,X
∗
k) from X with replacement

9 Compute e∗b = (k−1
∑k

i=1X
∗
i)− X̄k

10 Find qα and q1−α quantiles of errors (e∗1, . . . ,e
∗
b)

the trace estimator). The usual rule of thumb is that the sample size should
be moderate (say, k ≥ 30), while α cannot be too small (say, α≥ 0.025).

4.6. Bootstrapping the sampling distribution

Miles Lopes has proposed a sweeping program that uses the bootstrap
to construct data-driven confidence sets for randomized NLA algorithms
(Lopes 2019). For trace estimation, this approach is straightforward to
describe and implement; see Algorithm 2.

Let X = (X1, . . . ,Xk) be the empirical sample from (4.2). The bootstrap
draws further random samples from X to elicit more information about the
sampling distribution of the trace estimator X, such as confidence sets.

(1) For each b= 1, . . . ,B:

– Draw a bootstrap replicate (X∗

1
, . . . ,X∗

k) uniformly from X with re-
placement.

– Compute the error estimate e∗b = X̄∗

k − X̄k, where X̄
∗

k is the sample
average of the bootstrap replicate.

(2) Compute quantiles qα and q1−α of the error distribution (e∗1, . . . ,e
∗
B).

(3) Report the 1−2α confidence set [X̄k+ qα,X̄k+ q1−α].

Typical values are k ≥ 30 samples and B ≥ 1000 bootstrap replicates when
α ≥ 0.025. This method is effective for a wide range of distributions on
the test vector, and it extends to other problems. See Efron (1982) for an
introduction to resampling methods.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

424 P.-G. Martinsson and J. A. Tropp

4.7. Structured distributions for test vectors

As discussed, there is a lot of flexibility in designing the distribution of the
test vector. We can exploit this freedom to achieve additional computational
goals. For example, we might:

• minimize the variance Var[X] of each sample;

• minimize the number of random bits required to construct ω;

• design a test vector ω that is ‘compatible’ with the input matrix A

to facilitate the matrix–vector product. For example, if A has a tensor
product structure, we might require ω to share the tensor structure.

Let us describe a general construction for test vectors that can help achieve
these desiderata. The ideas come from frame theory and quantum informa-
tion theory. The approach here extends the work in Fitzsimons et al. (2018).

4.7.1. Optimal measurement systems
In this section we work in the complex field. Consider a discrete set U :=
{u1, . . . ,um} ⊂ C

n of vectors, each with unit ℓ2 norm. We say that the U is
an optimal measurement system when

1

m

∑m

i=1
(u∗iMui)uiu

∗
i =

1

(n+1)n
[M+trace(M) I] (4.5)

for all M∈Hn(C). The reproducing property (4.5) shows that the system of
vectors acquires enough information to reconstruct an arbitrary self-adjoint
matrix. A similar definition is valid for an infinite system of unit vectors,
provided we replace the sum in (4.5) with an integral.

Now, suppose that we draw a random test vector ω =
√
nu, where u is

drawn uniformly at random from an optimal measurement system U . Then
the resulting trace estimator is unbiased:

X = ω∗(Aω) satisfies EX = trace(A). (4.6)

The variance of this trace estimator satisfies

Var[X] =
n

n+1

[
‖A‖2F−

1

n
trace(A)2

]
. (4.7)

The identities (4.6) and (4.7) follow quickly from (4.5). As it happens, this
is the minimax variance achievable for a best isotropic distribution on test
vectors (Kueng 2019)

4.7.2. Examples
Optimal measurement systems arise in quantum information theory (as
near-isotropic measurement systems), in approximation theory (as projective

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 425

2-designs) and in frame theory (as tight fusion frames). The core examples
are as follows.

(1) A set of n2 equiangular lines in C
n, each spanned by a unit vector

in {u1, . . . ,un2}, gives an optimal measurement system. In this case,

equiangularity means that |〈ui, uj〉|2 = (d+1)−1 whenever i 6= j. It is
conjectured that these systems exist for every natural number n.

(2) The columns of a family of (n+1) mutually unbiased bases in F
n com-

pose an optimal measurement system with n(n+1) unit vectors. For
reference, a pair (U,V) of n× n unitary matrices is called mutually
unbiased if δ∗i (U

∗V)δj = n−1 for all i,j. (For instance, consider the
identity matrix and the discrete Fourier transform matrix.) These sys-
tems exist whenever n is a power of a prime number (Wootters and
Fields 1989).

(3) The ℓ2 unit sphere Sn−1(C) in C
n, equipped with the uniform measure,

is a continuous optimal measurement system. The real case was studied
by Girard (1989), but the complex case is actually more natural.

See Tropp (2019, Lecture 3) for more discussion and an application to
quantum state tomography. Waldron (2018) provides a good survey of what
is currently known about finite optimal measurement systems.

4.8. Extension: The Frobenius norm and the Schatten 4-norm

The randomized trace estimators developed in this section can also be de-
ployed to estimate a couple of matrix norms.

Consider a rectangular matrix B ∈ F
m×n, accessed via the matrix–vector

product u 7→ Bu. Let us demonstrate how to estimate the Frobenius norm
(i.e. Schatten 2-norm) and the Schatten 4-norm of B.

For concreteness, suppose that we extract test vectors from the standard
normal distribution. Draw a standard normal matrixΩ∈F

n×k with columns
ωi. Construct the random variable

X̄k :=
1

k
‖BΩ‖2F =

1

k

∑k

i=1
ω∗

i (B
∗B)ωi =:

1

k

∑k

i=1
Xi.

We compute X̄k by simulating nk standard normal variables, taking k
matrix–vector products with B, and performing O(km) additional arith-
metic.

To analyse X̄k, note that it is an instance of the randomized trace estim-
ator, where A= B∗B. In particular, its statistics are

E[X̄k] = ‖B‖2F and Var[X̄k] =
2

k
‖B‖44.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

426 P.-G. Martinsson and J. A. Tropp

We see that X̄k provides an unbiased estimate for the squared Frobenius
norm of the matrix B. Meanwhile, by rescaling the sample variance S2

k of
the data (X1, . . . ,Xk), we obtain an unbiased estimate for the fourth power
of the Schatten 4-norm of B.

Our discussion shows how we can obtain a priori guarantees and a posteri-
ori error estimates for these norm computations; the results can be expressed
in terms of the stable rank (2.2) of B. We can also obtain norm estimators
that are more computationally efficient using structured distributions for
the test vectors, such as elements from an optimal measurement system.

5. Schatten p-norm estimation by sampling

As we saw in Section 4.8, we can easily construct unbiased estimators for
the Schatten 2-norm and the Schatten 4-norm of a matrix by randomized
sampling. What about the other Schatten norms? This type of computation
can be used to obtain better approximations of the spectral norm, or it
can be combined with the method of moments to approximate the spectral
density of the input matrix (Kong and Valiant 2017).

In this section we show that it is possible to use randomized sampling
to construct unbiased estimators for the Schatten 2p-norm for each natural
number p ∈ N. In contrast with the case p ∈ {1,2}, estimators for p≥ 3 are
combinatorial. They may also require a large number of samples to ensure
that the variance of the estimator is controlled.

In the next section we explain how to use iterative methods to approx-
imate the spectral norm (i.e. the Schatten ∞-norm). Iterative algorithms
also lead to much more reliable estimators for general Schatten norms.

5.1. Overview

Consider a general matrix B∈F
m×n, accessed via the matrix–vector product

u 7→ Bu. For a sample size k, let Ω ∈ F
n×k be a (random) test matrix that

does not depend on B. For a natural number p≥ 3, we consider the problem
of estimating the Schatten 2p-norm ‖B‖2p from the sample matrix Y=BΩ.
The key idea is to cleverly process the sample matrix Y to form an unbiased
estimator for the 2pth power of the norm. Since the methods in this section
use linear information, they can be parallelized, and they are applicable in
the one-pass and streaming environments.

Of course, if we are given a singular value decomposition (SVD) of B,
it is straightforward to extract the Schatten 2p-norm. We are interested in
methods that are much less expensive than the O(min{mn2,nm2}) cost of
computing an SVD with a classical direct algorithm. Randomized SVD or
URV algorithms (Sections 11.2, 15 and 16) can also be used for Schatten
norm estimation, but this approach is typically overkill.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 427

5.2. Interlude: Lower bounds

How large a sample size k is required to estimate ‖B‖2p up to a fixed con-

stant factor with 75% probability over the randomness in Ω? The answer,
unfortunately, turns out to be k & min{m,n}1−2/p. In other words, for a
general matrix, we cannot approximate the Schatten 2p-norm for any p > 2
unless the sample size k grows polynomially with the dimension.

A more detailed version of this statement appears in Li, Nguyen and
Woodruff (2014a, Theorem 3.2). The authors exhibit a particularly difficult
type of input matrix (a standard normal matrix with a rank-one spike, as
in Remark 2.1) to arrive at the negative conclusion.

If you have a more optimistic nature, you can also take the inspiration
that other types of input matrices might be easier to handle. For example,
it is possible to use a small random sample to compute the Schatten norm
of a matrix that enjoys some decay in the singular value spectrum.

5.3. Estimating Schatten norms the hard way

First, let us describe a technique from classical statistics that leads to an
unbiased estimator of ‖B‖2p2p. This estimator is both highly variable and
computationally expensive, so we must proceed with caution.

For the rest of this section, we assume that the random test matrix Ω ∈
F
n×k has isotropic columns ωi that are i.i.d. Form the sample matrix Y =

BΩ. Abbreviate A= B∗B and X= Y ∗Y. Observe that

(X)ij = (Y∗Y)ij = ω∗
iAωj .

Therefore, for any natural numbers that satisfy 1≤ i1, . . . ,ip ≤ k,

(X)i1i2(X)i2i3 · · ·(X)ipi1 = trace[ωi1ω
∗
i1A · · ·ωipω

∗
ipA].

If we assume that i1, . . . ,ip are distinct, we can use independence and iso-
tropy to compute the expectation:

E[(X)i1i2(X)i2i3 · · ·(X)ipi1] = trace[Ap] = ‖B‖2p2p.

By averaging over all sequences of distinct indices, we obtain an unbiased
estimator:

Up =
(k−p)!
k!

∑◦

1≤i1,...,ip≤k
(X)i1i2(X)i2i3 · · ·(X)ipi1 .

The circle over the sum indicates that the indices must be distinct. Since
EUp = ‖B‖2p2p, our hope is that

U1/(2p)
p ≈ ‖B‖2p.

To ensure that the approximation is precise, the standard deviation of Up

should be somewhat smaller than the mean of Up.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

428 P.-G. Martinsson and J. A. Tropp

To understand the statistic Up, we can use tools from the theory of U -
statistics (Koroljuk and Borovskich 1994). For instance, when p is fixed, we
have the limit

kVar[Up]→ p2Var[ω∗Apω] as k→∞.

In particular, if the test vector ω ∼ normal(0,I), then

kVar[Up]→ 2p2‖B‖4p4p as k→∞.

We can reduce the variance further by using test vectors from an optimal
measurement system.

Unfortunately, it is quite expensive to compute the statistic Up because it
involves almost kp summands. When p is a small constant (say, p= 4 or p=
5), it is not too onerous to form Up. On the other hand, in the worst case,
we cannot beat the lower bound k & min{m,n}1−2/p, where computation
of Up requires O(min{m,n}p) operations. Good (1977) proposes some small
economies in this computation.

5.4. Estimating Schatten norms the easy way

Next, we describe a more recent approach that was proposed by Kong and
Valiant (2017). This method suffers from even higher variance, but it is
computationally efficient. As a consequence, we can target larger values of
p and exploit a larger sample size k.

Superficially, the Kong and Valiant estimator appears similar to the stat-
istic Up. With the same notation, they restrict their attention to increasing
sequences i1 < i2 < · · ·< ip of indices. In other words,

Vp =

(
k

p

)−1∑
1≤i1<···<ip≤k

(X)i1i2(X)i2i3 · · ·(X)ipi1 .

Much as before, Vp gives an unbiased estimator for ‖B‖2p2p.
Although Vp still appears to be combinatorial, the restriction to increasing

sequences allows for a linear algebraic reformulation of the statistic. Let
T : Hk → F

k×k be the linear map that reports the strict upper triangle of a
self-adjoint matrix. Then

Vp =

(
k

p

)−1

trace[T (X)p−1X].

The cost of computing Vp is usually dominated by the O(k2n) arithmetic
required to form X given Y. See Algorithm 3 for the procedure.

Kong and Valiant (2017) obtain bounds for the variance of the estim-
ator Vp to justify its employment when the number k of samples satisfies
k & min{m,n}1−2/p. This bound is probably substantially pessimistic for
matrices that exhibit spectral decay, but these theoretical and computa-
tional questions remain open.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 429

Algorithm 3 Schatten 2p-norm estimation by random sampling.
See Section 5.4.
Input: Input matrix B ∈ F

m×n, order p of norm, number k of samples
Output: Schatten 2p-norm estimate Vp

1 function SchattenEstimate(B, p, k)
2 Draw a test matrix Ω ∈ F

n×k with i.i.d. isotropic columns
3 Compute the sample matrix Y = BΩ

4 Form the Gram matrix X= Y∗Y ∈ F
k×k

5 Extract the strict upper triangle T= T (X)
6 Compute Tp−1 by repeated squaring
7 Return Vp = trace(Tp−1X)

5.5. Bootstrapping the sampling distribution

Given the lack of prior guarantees for the estimators Up and Vp described in
this section, we recommend that users apply resampling methods to obtain
empirical information about the sampling distribution. See Arcones and
Gine (1992) for reliable bootstrap procedures for U -statistics.

5.6. Extension: Estimating the spectral norm by random sampling

Recall that the spectral norm of B is comparable with the Schatten 2p-norm
of B for an appropriate choice of p. Indeed,

‖B‖2p ≥ ‖B‖ ≥min{m,n}−1/(2p)‖B‖2p for p≥ 1/2.

Thus the Schatten 2p-norm is equivalent to the spectral norm when p &
logmin{m,n}. In fact, when the matrix B has a decaying singular value
spectrum, the Schatten 2p-norm may already be comparable with the spec-
tral norm for much smaller values of p.

Thus we can try to approximate the spectral norm by estimating the
Schatten 2p-norm for a sufficiently large value of p. Resampling techniques
can help ensure that the estimate is reliable. Nevertheless, this method
should be used with caution.

6. Maximum eigenvalues and trace functions

Our discussion of estimating the spectral norm from a random sample indic-
ates that there is no straightforward way to construct an unbiased estimator
for the maximum eigenvalue of a PSD matrix. Instead, we turn to Krylov
methods, which repeatedly apply the matrix to appropriate vectors to ex-
tract more information.

The power method and the Lanczos method are two classic algorithms
of this species. Historically, these algorithms have been initialized with a

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

430 P.-G. Martinsson and J. A. Tropp

random vector to ensure that the starting vector has a component in the
direction of a maximum eigenvector. Later, researchers recognized that the
randomness has ancillary benefits. In particular, randomized algorithms
can produce reliable estimates of the maximum eigenvalue, even when it
is not separated from the rest of the spectrum (Dixon 1983, Kuczyński and
Woźniakowski 1992).

In this section we summarize theoretical results on the randomized power
method and randomized Krylov methods for computing the maximum
eigenvalue of a PSD matrix. These results also have implications for es-
timating the minimum eigenvalue of a PSD matrix and the spectral norm
of a general matrix. Last, we explain how the Lanczos method leads to
accurate estimates for trace functions.

6.1. Overview

Consider a PSD matrix A ∈ Hn with decreasingly ordered eigenvalues
λ1 ≥ λ2 ≥ ·· · ≥ λn ≥ 0. We are interested in the problem of estimating the
maximum eigenvalue λ1. As in the last two sections, we assume access to A

via the matrix–vector product u 7→ Au.
In contrast to the methods in Sections 4 and 5, the algorithms in this sec-

tion require sequential applications of the matrix–vector product. In other
words, we now demand nonlinear information about the input matrix A. As
a consequence, these algorithms resist parallelization, and they cannot be
used in the one-pass or streaming environments.

The theoretical treatment in this section also covers the case of estimating
the spectral norm ‖B‖ of a rectangular matrix B ∈ F

m×n. Indeed, we can
simply pass to the PSD matrix A = B∗B. From an applied point of view,
however, it is important to develop separate algorithms that avoid squaring
the matrix B. For brevity, we omit a discussion about estimating spectral
norms; see Golub and Van Loan (2013, Section 10.4).

6.2. The randomized power method

The randomized power method is a simple iterative algorithm for estimating
the maximum eigenvalue.

6.2.1. Procedure
First, draw a random test vector ω ∈ F

n. Since the maximum eigenvalue
is unitarily invariant, it is most natural to draw the test vector ω from a
rotationally invariant distribution, such as ω ∼ normal(0,I). The power
method iteratively constructs the sequence

y0 =
ω

‖ω‖ and yq =
Ayq−1

‖Ayq−1‖
for q ≥ 1.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 431

Algorithm 4 Randomized power method.
See Section 6.2.
Input: PSD input matrix A ∈Hn, maximum number q of iterations, stop-

ping tolerance ε
Output: Estimate ξ of maximum eigenvalue of A

1 function RandomizedPower(A, q, ε)
2 ω = randn(n,1) ⊲ Starting vector is random
3 y0 = ω/‖ω‖
4 for i= 1, . . . ,q do
5 yi = Ayi−1

6 ξi−1 = y∗i−1yi
7 yi = yi/‖yi‖
8 if |ξi−1− ξi−2| ≤ εξi−1 then break ⊲ [opt] Stopping rule

9 return ξi−1

At each step, we obtain an eigenvalue estimate

ξq = y∗qAyq =
ω∗A2q+1ω

ω∗A2qω
for q ≥ 0.

The randomized power method requires simulation of a single random
test vector ω. To perform q iterations, it takes q sequential matrix–vector
products with A and lower-order arithmetic. It operates with storage O(n).
See Algorithm 4 for pseudocode.

6.2.2. Analysis
The question is how many iterations q suffice to make ξq close to the max-
imum eigenvalue λ1. More precisely, we aim to control the relative error eq
in the eigenvalue estimate ξq:

eq =
λ1− ξq
λ1

.

The error eq is always nonnegative because of the Rayleigh theorem. Note
that the computed vector yq always has a substantial component in the
invariant subspace associated with eigenvalues larger than ξq, but it may
not be close to any maximum eigenvector, even when ξq ≈ λ1.

Kuczyński and Woźniakowski (1992) have established several remarkable
results about the evolution of the error.

Theorem 6.1 (randomized power method). Let A ∈Hn(R) be a real
PSD matrix. Draw a real test vector ω ∼ normal(0,I). After q iterations
of the randomized power method, the error eq in the maximum eigenvalue

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

432 P.-G. Martinsson and J. A. Tropp

estimate ξq satisfies

Eeq ≤ 0.871 · logn
q−1

for q ≥ 2. (6.1)

Furthermore, if γ = (λ1−λ2)/λ1 is the relative spectral gap, then

Eeq ≤ 1.254 ·
√
nγe−qγ for q ≥ 1. (6.2)

The second result (6.2) does not appear explicitly in Kuczyński and
Woźniakowski (1992), but it follows from related ideas (Tropp 2018).

6.2.3. Discussion
Theorem 6.1 makes two different claims. First, the power method can ex-
hibit a burn-in period of q ≈ logn iterations before it produces a nontrivial
estimate of the maximum eigenvalue; after this point, it always decreases
the error in proportion to the number q of iterations. The second claim
concerns the situation where the matrix has a spectral gap γ bounded away
from zero. In the latter case, after the burn-in period, the error decreases at
each iteration by a constant factor that depends on the spectral gap. The
burn-in period of q ≈ logn iterations is necessary for any algorithm that es-
timates the maximum eigenvalue of A from q matrix–vector products with
the matrix (Simchowitz, Alaoui and Recht 2017).

Whereas classical analyses of the power method depend on the spectral
gap γ, Theorem 6.1 comprehends that we can estimate the maximum eigen-
value even when γ ≈ 0. On the other hand, it is generally not possible to
obtain a reliable estimate of the maximum eigenvector in this extreme (Leyk
and Woźniakowski 1998).

Theorem 6.1 can be improved in several respects. First, we can develop
variants where the dimension n of the matrix A is replaced by its intrinsic
dimension (2.1), or by smaller quantities that reflect spectral decay. Second,
when the maximum eigenvalue has multiplicity greater than one, the power
method estimates the maximum eigenvalue faster. Third, the result can be
extended to the complex setting. See Tropp (2018) for further discussion.

Although the power method is often deprecated because it converges
slowly, it is numerically stable, and it enjoys the (minimal) storage cost
of O(n).

6.3. Randomized Krylov methods

The power method uses the qth power of the matrix to estimate the max-
imum eigenvalue. A more sophisticated approach allows any polynomial
with degree q. Algorithms based on this general technique are often re-
ferred to as Krylov subspace methods. The most famous instantiation is the
Lanczos method, which is an efficient implementation of a Krylov subspace
method for estimating the eigenvalues of a self-adjoint matrix.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 433

6.3.1. Abstract procedure
Draw a random test vector ω ∈ F

n. It is natural to use a rotationally
invariant distribution, such as ω ∼ normal(0,I). For a depth parameter
q ∈ N, a randomized Krylov subspace method implicitly constructs the
subspace

Kq+1 := span{ω,Aω, . . . ,Aqω}.
We can estimate the maximum eigenvalue of A as

ξq = max
u∈Kq+1

u∗Au

u∗u
= max

degp≤q

ω∗Ap2(A)ω

‖p(A)ω‖2
.

The maximum occurs over polynomials p with coefficients in F and with
degree at most q. The notation p(A) refers to the spectral function induced
by the polynomial p. We will discuss implementations of Krylov methods
below in Section 6.3.4.

6.3.2. Analysis
Since the Krylov subspace is invariant to shifts of the spectrum of A, it
is more natural to compute the error relative to the spectral range of the
matrix:

fq =
λ1− ξq
λ1−λn

.

The error fq is always nonnegative because it is a Rayleigh quotient.
Kuczyński and Woźniakowski (1992) have established striking results for

the maximum eigenvalue estimate obtained via a randomized Krylov sub-
space method.

Theorem 6.2 (randomized Krylov method). Let A ∈ Hn(R) be
a real PSD matrix. Draw a real test vector ω ∼ normal(0,I). After q
iterations of the randomized Krylov method, the error fq in the maximum
eigenvalue estimate ξq satisfies

Efq ≤ 2.575 ·
(
logn

q−1

)2

for q ≥ 4. (6.3)

Furthermore, if γ = (λ1−λ2)/λ1 is the relative spectral gap, then

Efq ≤ 2.589 ·
√
ne−2(q−1)

√
γ for q ≥ 1. (6.4)

The second result (6.4) is a direct consequence of a more detailed formula
reported in Kuczyński and Woźniakowski (1992).

6.3.3. Discussion
Like the randomized power method, a randomized Krylov method can also
exhibit a burn-in period of q ≈ logn steps. Afterwards, the result (6.3)

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

434 P.-G. Martinsson and J. A. Tropp

shows that the error is proportional to 1/q2, which is much faster than
the 1/q rate achieved by the power method. Furthermore, the result (6.4)
shows that each iteration decreases the error by a constant factor e−2

√
γ ,

where γ is the spectral gap. In contrast, the power method only decreases
the error by a constant factor e−γ .

Theorem 6.2 admits the same kind of refinements as Theorem 6.1. In
particular, we can replace the dimension n with measures that reflect the
spectral decay of the input matrix. See Tropp (2018) for details.

6.3.4. Implementing Krylov methods
What do we have to pay for the superior performance of the randomized
Krylov method? If we only need an estimate of the maximum eigenvalue,
without an associated eigenvector estimate, the cost is almost the same
as for the randomized power method! On the other hand, if we desire
the eigenvector estimate, it is common practice to store a basis for the
Krylov subspace Kq. This is a classic example of a time–data tradeoff in
computation.

We present pseudocode for the randomized Lanczos method, which is an
efficient formulation of the Krylov method. Algorithm 5 is a direct imple-
mentation of the Lanczos recursion, but it exhibits complicated perform-
ance in floating-point arithmetic. Algorithm 5 includes the option to add
full reorthogonalization; this step removes the numerical shortcomings at a
substantial price in arithmetic (and storage).

If we use the Lanczos method without orthogonalization, then q iterations
require q matrix–vector multiplies with A plus O(qn) additional arithmetic.
The orthogonalization step adds a total of O(q2n) additional arithmetic.
Computing the maximum eigenvalue (and eigenvector) of the tridiagonal
matrix T can be performed with O(q) arithmetic (Golub and Van Loan
2013, Section 8.4).

If we do not require the maximum eigenvector, the Lanczos method
without orthogonalization operates with storage O(n). If we need the max-
imum eigenvector or we add orthogonalization, the storage cost grows to
O(qn). It is possible to avoid the extra storage by recomputing the Lanczos
vectors, but this approach requires great care. One of the main thrusts
in the literature on Krylov methods is to reduce these storage costs while
maintaining rapid convergence and numerical stability.

Warning 6.3 (Lanczos method). Algorithm 5 should be used with cau-
tion. For a proper discussion about designing Krylov methods, we recom-
mend the books by Parlett (1998), Bai et al. (1987) and Golub and Van
Loan (2013). There is also some recent theoretical work on the numerical
stability of Lanczos methods by Musco, Musco and Sidford (2018) and Car-
mon, Duchi, Sidford and Tian (2019).

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 435

Algorithm 5 Randomized Lanczos method (with full reorthogonalization).
Use with caution! See Section 6.3.4.
Input: PSD input matrix A ∈Hn, maximum number q of iterations
Output: Estimate (ξ,y) for a maximum eigenpair of A

1 function RandomizedLanczos(A, q)
2 q =min(q,n−1)
3 Q(: ,1) = randn(n,1) ⊲ Starting vector ω is random
4 Q(: ,1) =Q(: ,1)/‖Q(: ,1)‖
5 for i= 1, . . . ,q do
6 Q(: ,i+1) = AQ(: ,i)
7 αi = real(Q(: ,i)∗Q(: ,i+1))
8 if i= 1 then
9 Q(: ,i+1) =Q(: ,i+1)−αiQ(: ,i)

10 else
11 Q(: ,i+1) =Q(: ,i+1)−αiQ(: ,i)−βi−1Q(: ,i−1)

⊲ [opt] Reorthogonalize via double Gram–Schmidt
12 Q(: ,i+1) =Q(: ,i+1)−Q(: ,1 : i)(Q(: ,1 : i)∗Q(: ,i+1))
13 Q(: ,i+1) =Q(: ,i+1)−Q(: ,1 : i)(Q(: ,1 : i)∗Q(: ,i+1))

14 βi = ‖Q(: ,i+1)‖
15 if βi < µ

√
n then break ⊲ µ is machine precision

16 Q(: ,i+1) =Q(: ,i+1)/βi

17 T= tridiag(β(1 : i−1),α(1 : i),β(1 : i−1))
18 [V,D] = eig(T)
19 [ξ,ind] = min(diag(D))
20 y =Q(: ,1 : i)V(: ,ind) ⊲ [opt] Estimate max eigenvector

6.4. The minimum eigenvalue

The randomized power method and the randomized Krylov method can be
used to estimate the minimum eigenvalue λn of the PSD matrix A ∈Hn.

The first approach is to apply the randomized power method to the shifted
matrix νI−A, where the shift is chosen so that ν ≥ λ1. In this case the
algorithm produces an approximation for ν − λn. Note that the error in
Theorem 6.1 is relative to ν−λn, rather than λn.

The second approach begins with the computation of the Krylov sub-
space Kq+1. Instead of maximizing the Rayleigh quotient over the Krylov
subspace, we minimize it:

ζq = min
u∈Kq+1

u∗Au

u∗u
.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

436 P.-G. Martinsson and J. A. Tropp

This approach directly produces an estimate ζq for λn. The Krylov subspace
is invariant under affine transformations of the spectrum of A, so we can
obtain an error bound for ζq by applying Theorem 6.2 formally to λnI−A.

Remark 6.4 (inverses). If we can apply the matrix inverse A−1 to vec-
tors, then we gain access to a wider class of algorithms for computing the
minimum eigenvalue, including (shifted) inverse iteration and the Rayleigh
quotient iteration. See Parlett (1998) and Golub and Van Loan (2013).

6.5. Block methods

The basic power method and Krylov method can be extended by apply-
ing the iteration simultaneously to a larger number of (random) test vec-
tors. The resulting algorithms are called subspace iteration and block Krylov
methods, respectively. Historically, the reason for developing block methods
was to resolve repeated or clustered eigenvalues.

In randomized linear algebra, we discover additional motivations for de-
veloping block methods. When the test vectors are drawn at random, block
methods may converge slightly faster, and they succeed with much higher
probability. On modern computer architectures, the cost of a block method
may be comparable with the cost of a simple vector iteration, which makes
this modification appealing. We will treat this class of algorithm more
thoroughly in Section 11, so we postpone a full discussion. See also Tropp
(2018).

6.6. Estimating trace functions

Finally, we turn to the problem of estimating the trace of a spectral function
of a PSD matrix.

6.6.1. Overview
Consider a PSD matrix A ∈Hn with eigenpairs (λj,uj) for j = 1, . . . ,n. Let
f : R+ → R be a function, and suppose that we wish to approximate

tracef(A) =
∑n

j=1
f(λj).

We outline an incredible approach to this problem, called stochastic Lanczos
quadrature (SLQ), that marries the randomized trace estimator (Section 4)
to the Lanczos iteration (Algorithm 5).

This algorithm was devised by Golub and Meurant (1994). Our present-
ation is based on Golub and Van Loan (2013, Section 10.2) and Ubaru,
Chen and Saad (2017). Golub and Meurant (2010) provide a more com-
plete treatment, and Musco et al. (2018) give a theoretical discussion about
stability.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 437

Related ideas can be used to estimate the trace of a spectral function of
a rectangular matrix; that is, the sum of a function of each singular value
of the matrix. For brevity, we omit all details on the rectangular case.

6.6.2. Examples
Computing the trace of a spectral function is a ubiquitous problem with a
huge number of applications. Let us mention some of the key examples.

(1) For f(λ) = λ−1, the resulting trace function is the trace of the matrix
inverse. This computation arises in electronic structure calculations.

(2) For f(t) = log t, the associated trace function is the log-determinant.
This computation arises in Gaussian process regression.

(3) For f(t) = tp with p ≥ 1, the trace function is the pth power of the
Schatten p-norm. SLQ offers a more powerful alternative to the meth-
ods in Section 5.

We refer to Ubaru et al. (2017) for additional discussion.

6.6.3. Procedure
Let us summarize the mathematical ideas that lead to SLQ. As usual, we
draw an isotropic random vector ω ∈ F

n. Then the random variable

X = ω∗f(A)ω satisfies EX = tracef(A).

Using the spectral resolution of A, we can rewrite X in the form

X =
∑n

j=1
f(λj) |u∗jω|2 =

∫

R+

f(λ)ν(dλ)

for an appropriate measure ν on R+ that depends on A and ω. Although
we cannot generally compute the integral directly, we can approximate it
by using a numerical quadrature rule:

X ≈
∑q+1

ℓ=1
τ2ℓ f(θℓ) =: Z.

What is truly amazing is that the weights τ2ℓ and the nodes θℓ for the
quadrature rule can be extracted from the tridiagonal matrix T ∈ Hq+1

produced by q iterations of the Lanczos iteration with starting vector ω.
This point is not obvious, but a full explanation exceeds our scope.

SLQ approximates the trace function by averaging independent copies of
the simple approximation:

tracef(A)≈ 1

k

∑k

i=1
Zi where Zi ∼ Z are i.i.d.

The analysis of the SLQ approximation requires heavy machinery from ap-
proximation theory. See Golub and Meurant (2010) and Ubaru et al. (2017)
for more details.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

438 P.-G. Martinsson and J. A. Tropp

Algorithm 6 Stochastic Lanczos quadrature.
See Section 6.6.
Input: PSD input matrix A∈Hn, function f , number k of samples, number

q of Lanczos iterations
Output: Estimate Z̄k for tracef(A)

1 function StochasticLanczosQuadrature(A, f , k, q)
2 for i= 1, . . . ,k do ⊲ Extract k independent samples
3 Draw a random isotropic vector ωi ∈ F

n

4 Form T=RandomizedLanczos(A,ωi,q)
⊲ Apply q steps of Lanczos with starting vector ωi

5 [V,Θ] = eig(T) ⊲ Tridiagonal eigenproblem
6 Extract nodes Θ= diag(θ1, . . . ,θq+1)
7 Extract weights δ∗1V = (τ1, . . . ,τq+1)

8 Form the approximation Zi =
∑q+1

ℓ=1 τ
2
ℓ f(θℓ)

9 Return Z̄k = k−1
∑k

i=1Zi

Algorithm 6 contains pseudocode for SLQ. The dominant cost is O(kq)
matrix–vector multiplies with A, plus O(kq2) additional arithmetic. We
recommend using structured random test vectors to reduce the variance
of the resulting approximation. The storage cost is O(qn) numbers.

7. Matrix approximation by sampling

In Section 4 we have seen that it is easy to form an unbiased estimator for
the trace of a matrix. By averaging multiple copies of the simple estim-
ator, we can improve the quality of the estimate. The same idea applies in
the context of matrix approximation. In this setting, the goal is to produce
a matrix approximation that has more ‘structure’ than the target matrix.
The basic approach is to find a structured unbiased estimator for the mat-
rix and to average multiple copies of the simple estimator to improve the
approximation quality.

This section outlines two instances of this methodology. First, we develop
a toy algorithm for approximate multiplication of matrices. Second, we show
how to approximate a dense graph Laplacian by a sparse graph Laplacian;
this construction plays a role in the SparseCholesky algorithm presented
in Section 18. Section 19 contains another example, the method of random
features in kernel learning.

The material in this section is summarized from the treatments of matrix
concentration in Tropp (2015, 2019).

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 439

7.1. Empirical approximation

We begin with a high-level discussion of the method of empirical approx-
imation of a matrix. The examples in this section are all instances of this
general idea.

Let B ∈ F
m×n be a target matrix that we wish to approximate by a more

‘structured’ matrix. Suppose that we can express the matrix B as a sum of
‘simple’ matrices:

B=
∑I

i=1
Bi. (7.1)

In the cases we will study, the summands Bi will be sparse or low-rank.
Next, consider a probability distribution {pi : i = 1, . . . ,I} over the in-

dices in the sum (7.1). For now, we treat this distribution as given. Con-
struct a random matrix X ∈ F

m×n that takes values

X= p−1
i Bi with probability pi for each i= 1, . . . ,I.

(Enforce the convention that 0/0 = 0.) It is clear that X is an unbiased
estimator for B:

EX=
∑I

i=1
(p−1

i Bi)pi = B.

The random matrix X enjoys the same kind of structure as the summands
Bi. On the other hand, a single draw of the matrix X is rarely a good
approximation of the matrix B.

To obtain a better estimator for B, we average independent copies of the
initial estimator:

X̄k =
1

k

∑k

i=1
Xi where Xi ∼ X are i.i.d.

By linearity of expectation, X̄k is also unbiased:

E X̄k = B.

If the parameter k remains small, then X̄k inherits some of the structure
from the Bi. The question is how many samples k we need to ensure that
X̄k also approximates B well.

Remark 7.1 (history). Empirical approximation was first developed by
Maurey in unpublished work from the late 1970s on the geometry of Banach
spaces. The idea was first broadcast by Carl (1985), in a paper on approx-
imation theory. Applications to randomized linear algebra were proposed
by Frieze et al. (2004) and Drineas, Kannan and Mahoney (2006a, 2006b,
2006c). More refined analyses of empirical matrix approximation were ob-
tained by Rudelson and Vershynin (2007) and Tropp (2015). Many other
papers consider specific applications of the same methodology.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

440 P.-G. Martinsson and J. A. Tropp

7.2. The matrix Bernstein inequality

The main tool for analysing the sample average estimator X̄k from the last
section is a variant of the matrix Bernstein inequality. The following result
is drawn from Tropp (2015).

Theorem 7.2 (matrix Monte Carlo). Let B∈ F
m×n be a fixed matrix.

Construct a random matrix X ∈ F
m×n that satisfies

EX= B and ‖X‖ ≤R.

Define the per-sample second moment:

v(X) := max{‖E[XX∗]‖,‖E[X∗X]‖}.
Form the matrix sampling estimator

X̄k =
1

k

∑k

i=1
Xi where Xi ∼ X are i.i.d.

Then

E‖X̄k−B‖ ≤
√

2v(X) log(m+n)

k
+

2R log(m+n)

3k
.

Furthermore, for all t≥ 0,

P{‖X̄k−B‖ ≥ t} ≤ (m+n)exp

(−kt2/2
v(X)+2Rt/3

)
.

To explain the meaning of this result, let us determine how large k should
be to ensure that the expected approximation error lies below a positive
threshold ε. The bound

k ≥ 2v(X) log(m+n)

ε2
∨ 2R log(m+n)

3ε

implies that E‖X̄k−B‖ ≤ ε+ ε2. In other words, the number k of samples
should be proportional to the larger of the second moment v(X) and the
upper bound R.

This fact points toward a disappointing feature of empirical matrix ap-
proximation: to make ε small, the number k of samples must increase with
ε−2 and often with log(m+n) as well. This phenomenon is an unavoidable
consequence of the central limit theorem and the geometry induced by the
spectral norm. It means that matrix sampling estimators are not suitable
for achieving high-precision approximations. See Tropp (2015, Section 6.2.3)
for further discussion. The logarithmic terms are also necessary in the worst
case.

Remark 7.3 (history). The matrix Bernstein inequality has a long his-
tory, outlined in Tropp (2015). The earliest related results concern uni-
form smoothness estimates (Tomczak-Jaegermann 1974) and Khintchine

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 441

inequalities (Lust-Piquard 1986) for the Schatten classes. A first applic-
ation to statistics appears in Rudelson (1999). Modern approaches are
based on the matrix Laplace transform method (Ahlswede and Winter
2002, Oliveira 2009a, Tropp 2012b) or on the method of exchangeable pairs
(Mackey et al. 2014, Tropp 2016).

7.3. Approximate matrix multiplication

A first application of empirical matrix approximation is to approximate
the product of two matrices: M=BC where B ∈ F

m×I and C ∈ F
I×n. Com-

puting this product by direct matrix–matrix multiplication requires O(mnI)
arithmetic operations. When the inner dimension I is very large as compared
with m and n, we might try to reduce the cost by sampling.

In our own work, we have not encountered situations where approximate
matrix multiplication is practical because the quality of the approximation
is very low. Nevertheless, the theory serves a dual purpose as the foundation
for subspace embedding by discrete sampling (Section 9.6).

7.3.1. Matrix multiplication by sampling
To simplify the analysis, let us pre-scale the matrices B and C so that each
one has spectral norm equal to one:

‖B‖= ‖C‖= 1.

This step can be performed efficiently using the spectral norm estimators
outlined in Section 6. This normalization will remain in force for the rest of
Section 7.3.

Observe that the matrix–matrix product satisfies

BC=
∑I

i=1
(B):i(C)i:,

where (B):i is the ith column of B and (C)i: is the ith row of C. This
expression motivates us to approximate the product by sampling terms at
random from the sum.

Let {pi : i = 1, . . . ,I} be a sampling distribution, to be specified later.
Form a random rank-one unbiased estimator for the product:

X= p−1
i · (B):i(C)i: with probability pi for each i= 1, . . . ,I.

By construction, EX = BC. We can average k independent copies of X

to obtain a better approximation X̄k to the matrix product. The cost of
computing the estimator X̄k of the matrix product explicitly is only O(mnk)
operations, so it is more efficient than the full multiplication when k≪ I.

Theorem 7.2 yields an easy analysis of this approach. The conclusion
depends heavily on the choice of sampling distribution. Regardless, we can
never expect to attain a high-accuracy approximation of the product by

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

442 P.-G. Martinsson and J. A. Tropp

sampling because the number k of samples must scale proportionally with
the inverse square ε−2 of the accuracy parameter ε.

7.3.2. Uniform sampling
The easiest way to approximate matrix multiplication is to choose uniform
sampling probabilities: pi = 1/I for each i = 1, . . . ,I. To analyse this case,
we introduce the coherence parameter:

µ(B) := I · max
i=1,...,I

‖(B):i‖2.

Up to scaling, this is the maximum squared norm of a column of B. Since
B ∈ F

m×I and ‖B‖= 1, the coherence lies in the range [m,I]. The difficulty
of approximating matrix multiplication by uniform sampling increases with
the coherence of B and C∗.

To invoke Theorem 7.2, observe that the per-sample second moment and
the spectral norm of the estimator X satisfy the bound

max{v(X),‖X‖} ≤max{µ(B),µ(C∗)}.
Let ε ∈ (0,1] be an accuracy parameter. If

k ≥ 2ε−2max{µ(B),µ(C∗)} log(m+n),

then
E‖X̄k−BC‖ ≤ 2ε.

In other words, the number k of rank-one factors we need to obtain a rel-
ative approximation of the matrix product is proportional to the maximum
coherence of B and C∗. In the best scenario, the number of samples is pro-
portional to max{m,n} log(m+n); in the worst case, the sample complexity
can be as large as I.

7.3.3. Importance sampling
If the norms of the columns of the factors B and C∗ vary wildly, we may need
to use importance sampling to obtain a nontrivial approximation bound.
Define the sampling probabilities

pi =
‖(B):i‖2+‖(C):i‖2

‖B‖2F+‖C‖2F
for i= 1, . . . ,I.

These probabilities are designed to balance terms arising from Theorem 7.2.
In most cases we compute the sampling distribution by directly evaluating
the formula, at the cost of O((m+n)I) operations.

With the importance sampling distribution, the per-sample second mo-
ment and the spectral norm of the estimator X satisfy

max{v(X),‖X‖} ≤ 1

2
(srank(B)+srank(C)).

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 443

The stable rank is defined in (2.2). Let ε ∈ (0,1] be an accuracy parameter.
If

k ≥ ε−2(srank(B)+srank(C)) log(m+n),

then

E‖X̄k−BC‖ ≤ 2ε.

In other words, the number of rank-one factors we need to approximate the
matrix product by importance sampling is log(m+n) times the total stable
rank of the matrices.

The sample complexity bound for importance sampling always improves
over the bound for uniform sampling. Indeed, srank(B) ≤ µ(B) under
the normalization ‖B‖ = 1. There are also many situations where the
stable rank is smaller than either dimension of the matrix. These are the
cases where one might consider using approximate matrix multiplication by
importance sampling.

7.3.4. History
Randomized matrix multiplication was proposed in Cohen and Lewis (1999).
It is implicit in Frieze et al. (2004), while Drineas, Kannan and Mahoney
(2006a) give a more explicit treatment. The analysis here has its origins in
Rudelson and Vershynin (2007), and the detailed presentation is adapted
from Zouzias (2013). Another interesting approach to randomized matrix
multiplication appears in Pagh (2013). See Tropp (2015, Chapter 6 Notes)
for further references.

7.4. Approximating a graph by a sparse graph

As a second application of empirical matrix approximation, we will show
how to take a dense graph and find a sparse graph that serves as a proxy.
This procedure operates by replacing the Laplacian matrix of the graph
with a sparse Laplacian matrix. Beyond its intrinsic interest as a fact about
graphs, this technique plays a central role in randomized solvers for Lapla-
cian linear systems (Section 18).

7.4.1. Graphs and Laplacians
We will consider weighted, loop-free, undirected graphs on the vertex set
V = {1, . . . ,n}. We can specify a weighted graph G on V by means of a
nonnegative weight function w : V ×V → R+. The graph is loop-free when
wii =0 for each vertex i∈ V . The graph is undirected if and only if wij =wji

for each pair (i,j). The sparsity of an undirected graph is the number of
strictly positive weights wij with i≤ j.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

444 P.-G. Martinsson and J. A. Tropp

Alternatively, we can work with graph Laplacians. The elementary Lapla-
cian ∆ij on a vertex pair (i,j) ∈ V ×V is the PSD matrix

∆ij = (δi−δj)(δi−δj)
∗ ∈Hn(R).

Let w be the weight function of a loop-free, undirected graph G. The
Laplacian associated with the graph G is the matrix

LG =
∑

1≤i<j≤n
wij∆ij ∈Hn(R). (7.2)

The Laplacian LG is PSD because it is a nonnegative linear combination of
PSD matrices.

The Laplacian of a graph is analogous to the Laplacian differential oper-
ator. You can think about LG as an analogue of the heat kernel that models
the diffusion of a particle on the graph. The Poisson problem LGx= f serves
as a primitive for answering a wide range of questions involving undirected
graphs (Teng 2010). Applications include clustering and partitioning data,
studying random walks on graphs, and solving finite-element discretizations
of elliptic PDEs.

7.4.2. Spectral approximation
Fix a parameter ε ∈ (0,1). We say that a graph H is an ε-spectral ap-
proximation of a graph G if their Laplacians are comparable in the PSD
order:

(1−ε)LG 4 LH 4 (1+ε)LG. (7.3)

The relation (7.3) ensures that the graph H and the graph G are close
cousins.

In particular, under (7.3), the matrix LH serves as an excellent precondi-
tioner for the Laplacian LG. In other words, if we can easily solve (consistent)
linear systems of the form LHy = b, then we can just as easily solve the
Poisson problem LGx= f.

For an arbitrary input graph G, we will demonstrate that there is a sparse
graph H that is a good spectral approximation of G. For several reasons,
this construction does not immediately lead to effective methods for design-
ing preconditioners. Nevertheless, related ideas have resulted in practical,
fast solvers for Poisson problems on undirected graphs. We will make this
connection in Section 18.

7.4.3. The normalizing map
It is convenient to present a few more concepts from spectral graph theory.
Let us introduce the normalizing map

KG(A) := (L†
G)

1/2A(L†
G)

1/2 for A ∈Hn(R).

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 445

As usual, (·)† is the pseudoinverse and (·)1/2 is the PSD square root of a
PSD matrix. We use the normalizing map to compare graph Laplacians.
Indeed,

‖KG(LH −LG)‖ ≤ ε (7.4)

implies that the graph H is an ε-spectral approximation of the graph G.
This claim follows easily from (7.3).

7.4.4. Effective resistance
Next, define the effective resistance ̺ij of a vertex pair (i,j) in the graph
G as

̺ij := trace[KG(∆ij)]≥ 0 for each 1≤ i < j ≤ n. (7.5)

We can compute the family of effective resistances in time O(n3) by means of
a Cholesky factorization of LG, although faster algorithms are now available
(Kyng 2017).

To understand the terminology, let us regard the graph G as an electrical
network where wij is the conductivity of the wire connecting the vertex pair
(i,j). The effective resistance ̺ij is the resistance of the entire electrical
network G against passing a unit of current from vertex i to vertex j.

7.4.5. Sparsification by sampling
We are now prepared to construct a sparse approximation of a loop-free,
undirected graph G specified by the weight function w. The representation
(7.2) of the graph Laplacian immediately suggests that we can apply the
empirical approximation paradigm. To do so, we must design an appropriate
sampling distribution.

Define the sampling probabilities

pij =
wij ̺ij

rank(LG)
for each 1≤ i < j ≤ n.

It is clear that pij ≥ 0. With some basic matrix algebra, we can also confirm
that

∑
i<j pij = 1.

Following our standard approach, we construct the random matrix

X=
wij

pij
∆ij with probability pij for each i < j.

Next, we average k independent copies of the estimator:

X̄k =
1

k

∑k

i=1
Xi where Xi ∼ X are i.i.d.

By construction, the estimator is unbiased: E X̄k = LG. Moreover, X̄k is itself
the graph Laplacian of a (random) graph H with sparsity at most k. We
just need to determine the number k of samples that are sufficient to make
H a good spectral approximation of G.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

446 P.-G. Martinsson and J. A. Tropp

Given the effective resistances, computation of the sampling probabilities
requires O(s) time, where s is the sparsity of the graph. The cost of sampling
k copies of X is Õ(s+k). It is natural to represent X̄k using a sparse matrix
data structure, with storage cost O(k logn).

7.4.6. Analysis
The analysis involves a small twist. In view of (7.4), we need to demonstrate
that KG(LH) ≈ KG(LG). Therefore, instead of considering the random
matrix X̄k, we pass to the random matrix KG(X̄k), which is an unbiased
estimator for KG(LG).

Note that the random matrix KG(X) satisfies

max{v(KG(X)),‖KG(X)‖2} ≤ rank(LG)< n.

Suppose that we choose

k ≥ 3ε−2n log(2n) where ε ∈ (0,1).

Then Theorem 7.2 implies

E‖KG(X̄k−LG)‖2 ≤ ε.

We conclude that the random graph H with Laplacian LH = X̄k has at most
k nonzero weights, and it is an ε-spectral approximation to the graph G.

In other words, every graph on n vertices has a (1/2)-spectral approxim-
ation with at most 12n logn nonzero weights. Modulo the precise constant,
this is the tightest result that can be obtained if we form the graph H via
random sampling.

7.4.7. History
The idea of approximating a matrix in the spectral norm by means of
random sampling of entries was proposed by Achlioptas and McSherry
(2001, 2007). This work initiated a line of literature on matrix sparsific-
ation in the randomized NLA community; see Tropp (2015) for more refer-
ences. Let us emphasize that these general approaches achieve much weaker
approximation guarantees than (7.3).

The idea of sparsifying a graph by randomly sampling edges in proportion
to the effective resistances was developed by Spielman and Srivastava (2011);
the analysis above is drawn from Tropp (2019). A deterministic method for
graph sparsification, with superior guarantees, appears in Batson, Spielman
and Srivastava (2014).

8. Randomized embeddings

One of the core tools in randomized linear algebra is randomized linear
embedding, often assigned the misnomer random projection. The application
of randomized embeddings is often referred to as sketching.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 447

This section begins with a formal definition of a randomized embedding.
Then we introduce the Gaussian embedding, which is the simplest construc-
tion, and we summarize its analysis. Randomized embeddings have a wide
range of applications in randomized linear algebra. Some implications of this
theory include the Johnson–Lindenstrauss lemma and a simple construction
of a subspace embedding. We also explain why results for Gaussians trans-
fer to a wider setting. Last, we give a short description of random partial
isometries, a close cousin of Gaussian embeddings.

8.1. What is a random embedding?

Let E ⊆ F
n be a set, and let ε ∈ (0,1) be a distortion parameter. We say

that a linear map S : Fn → F
d is an (ℓ2) embedding of E with distortion ε

when

(1−ε)‖x‖ ≤ ‖Sx‖ ≤ (1+ε)‖x‖ for all x ∈ E. (8.1)

It is sometimes convenient to abbreviate this kind of two-sided inequality
as ‖Sx‖= (1±ε)‖x‖.

We usually think about the case where d ≪ n, so the map S enacts
a dimension reduction. In other words, S transfers data from the high-
dimensional space F

n to the low-dimensional space F
d. As we will discuss,

the low-dimensional representation of the data can be used to obtain fast,
approximate solutions to computational problems.

The relation (8.1) expresses the idea that the embedding S should preserve
the geometry of the set E. Unfortunately, we do not always know the set E
in advance. Moreover, we would like the map S to be easy to construct, and
it should be computationally efficient to apply S to the data. These goals
may be in tension.

We can resolve this dilemma by drawing the embedding S from a prob-
ability distribution. Many types of probability distributions serve. In partic-
ular, we can use highly structured random matrices (Section 9) that are easy
to build, to store, and to apply to vectors. Section 10 presents a case study
about how random embeddings can be applied to solve overdetermined least-
squares problems.

8.2. Restricted singular values

Our initial goal is to understand something about the theoretical behaviour
of randomized embeddings. To that end, let us introduce quantities that
measure how much an embedding distorts a set. Let S ∈ F

d×n be a linear
map, and let E ⊆ S

n−1(F) be an arbitrary subset of the unit sphere in
F
n. The minimum and maximum restricted singular value are, respectively,

defined as

σmin(S;E) := min
x∈E

‖Sx‖ and σmax(S;E) := max
x∈E

‖Sx‖. (8.2)

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

448 P.-G. Martinsson and J. A. Tropp

If E composes the entire unit sphere, then these quantities coincide with the
ordinary minimum and maximum singular value of S. More generally, the
restricted singular values describe how much the linear map S can contract
or expand a point in E.

Remark 8.1 (general sets). In this treatment, we require E to be a
subset of the unit sphere. Related, but more involved, results hold when
E is a general set. See Thrampoulidis et al. (2014) and Oymak and Tropp
(2018) for more results and applications.

8.3. Gaussian embeddings

Our theoretical treatment of random embeddings focuses on the most highly
structured case. A Gaussian embedding is a random matrix of the form

Γ ∈ F
d×n with i.i.d. entries (Γ)ij ∼ normal(0,d−1).

The cost of explicitly storing a Gaussian embedding is O(dn), and the cost
of applying it to a vector is O(dn).

The scaling of the matrix ensures that

E‖Γx‖2 = ‖x‖2 for each x ∈ F
n.

We wish to understand how large to choose the embedding dimension d so
that the map Γ approximately preserves the norms of all points in a given
set E. We can do so by obtaining bounds for the restricted singular values.
For a Gaussian embedding, we will see that σmin(Γ;E) and σmax(Γ;E) are
controlled by the geometry of the set E.

Remark 8.2 (Why Gaussians?). Gaussian embeddings admit a simple
and beautiful analysis. In our computational experience, many other em-
beddings exhibit the same (universal) behaviour as a Gaussian map. In
spite of that, the rigorous analysis of other types of embeddings tends to
be difficult, even while it yields rather imprecise results. The confluence of
these facts motivates us to argue that the Gaussian analysis provides enough
insight for many practical purposes.

8.4. The Gaussian width

For the remainder of Section 8 we will work in the real field (F=R). Given
a set E ⊆ S

n−1(R), define the Gaussian width w(E) via

w(E) := E sup
x∈E

〈g, x〉 where g ∈ R
n is standard normal.

The Gaussian width is a measure of the content of the set E. It plays a
fundamental role in the performance of randomized embeddings.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 449

Here are some basic properties of the Gaussian width.

• The width is invariant under rotations: w(QE) =w(E) for each ortho-
gonal matrix Q.

• The width is increasing with respect to set inclusion: E ⊆ F implies
that w(E)≤ w(F).

• The width lies in the range 0≤ w(E)≤ E‖g‖<√
n.

The width can be calculated accurately for many sets of interest. In partic-
ular, if L is an arbitrary k -dimensional subspace of Rn, then

√
k−1<w(L∩S

n−1)<
√
k. (8.3)

Indeed, it is productive to think about the squared width w2(E) as a measure
of the ‘dimension’ of the set E.

Remark 8.3 (statistical dimension). The statistical dimension is an-
other measure of content that is closely related to the squared Gaussian
width. The statistical dimension has additional geometric properties that
make it easier to work with in some contexts. See Amelunxen, Lotz, McCoy
and Tropp (2014), McCoy and Tropp (2013, 2014) and Goldstein, Nourdin
and Peccati (2017) for more information.

8.5. Restricted singular values of Gaussian matrices

In a classic work on Banach space geometry, Gordon (1988) showed that
the Gaussian width controls both the minimum and maximum restricted
singular values of a subset of the sphere.

Theorem 8.4 (restricted singular values: Gaussian matrix). Fix a
subset E ⊆ S

n−1(R) of the unit sphere. Draw a Gaussian matrix Γ ∈ R
d×n

whose entries are i.i.d. normal(0,d−1). For all t > 0,

P

{
σmin(Γ;E)≤ 1− w(E)+1√

d
− t

}
≤ e−dt2/2,

P

{
σmax(Γ;E)≥ 1+

w(E)√
d

+ t

}
≤ e−dt2/2.

Sketch of proof. The first inequality is a consequence of Gordon’s minimax
theorem and Gaussian concentration. The second inequality is essentially
Chevet’s theorem, which follows from Slepian’s lemma. See Ledoux and
Talagrand (1991, Chapter 3.3) for an overview of these ideas. �

Theorem 8.4 yields the relations

1− w(E)+1√
d

/ σmin(Γ;E)≤ σmax(Γ;E)/ 1+
w(E)√

d
.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

450 P.-G. Martinsson and J. A. Tropp

In other words, the embedding dimension should satisfy d > (w(E) + 1)2

to ensure that the map Γ is unlikely to annihilate any point in E. For this
choice of d, the random embedding is unlikely to dilate any point in E by
more than a factor of two.

As a consequence, we have reduced the problem of computing embed-
ding dimensions for Gaussian maps to the problem of computing Gaussian
widths. In the next two subsections, we work out two important examples.

Remark 8.5 (optimality). The statements in Theorem 8.4 are nearly
optimal. One way to see this is to consider the set E = S

n−1(R), for which
the theorem implies that

1−
√
n/d/ Eσmin(Γ)≤ Eσmax(Γ)≤ 1+

√
n/d.

The Bai–Yin law (Bai and Silverstein 2010, Section 5.2) confirms that the
first and last inequality are sharp as n,d→∞ with n/d→ const. ∈ [0,1].

Moreover, if E is spherically convex (i.e. the intersection of a convex cone
with the unit sphere), then the minimum restricted singular value satisfies
the reverse inequality

P

{
σmin(Γ;E)≥ 1− w(E)√

d
+ t

}
≤ 2e−dt2/2.

This result is adapted from Thrampoulidis et al. (2014).
In addition, fifteen years of computational experiments have also shown

that the predictions from Theorem 8.4 are frequently sharp. See Oymak and
Tropp (2018) for some examples and references.

Remark 8.6 (history). The application of Gaussian comparison theor-
ems in numerical analysis can be traced to work in mathematical signal
processing. Rudelson and Vershynin (2008) used a corollary of Gordon’s
minimax theorem to study ℓ1 minimization problems. Significant exten-
sions and improvements of this argument were made by Stojnic (2010)
and Chandrasekaran, Recht, Parrilo and Willsky (2012). Amelunxen et al.
(2014, Remark 2.9) seem to have been the first to recognize that Gordon’s
minimax theorem can be reversed in the presence of convexity. A substan-
tial refinement of this observation appeared in Thrampoulidis et al. (2014).
There is a long series of follow-up works by Babak Hassibi’s group that apply
this insight to other problems in signal processing and communications.

8.6. Example: Johnson–Lindenstrauss

As a first application of Theorem 8.4, let us explain how it implies the classic
dimension reduction result of Johnson and Lindenstrauss (1984).

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 451

8.6.1. Overview
Let {a1, . . . ,aN} ⊂ R

n be a discrete point set. We would like to know when
a Gaussian embedding Γ ∈ R

d×n approximately preserves all the pairwise
distances between these points:

1−ε≤ ‖Γ(ai−aj)‖
‖ai−aj‖

≤ 1+ε for all i 6= j. (8.4)

The question is how large we must set the embedding dimension d to achieve
distortion ε ∈ (0,1).

8.6.2. Analysis
We can solve this problem using the machinery described in Section 8.5.
Consider the set E of normalized chords:

E =

{
ai−aj

‖ai−aj‖
: 1≤ i < j ≤N

}
.

By the definition (8.2) of the restricted singular values,

σmin(Γ;E)≤ ‖Γ(ai−aj)‖
‖ai−aj‖

≤ σmax(Γ;E).

Therefore we can invoke Theorem 8.4 to determine how the embedding
dimension controls the distortion.

Let us summarize the argument. First, observe that the Gaussian width
of the set E satisfies

w(E) = Emax
x∈E

〈g, x〉 ≤
√

2log#E < 2
√

log(N/2).

As a consequence,

P{σmin(Γ;E)≤ 1− (1+2
√

log(N/2))/
√
d− t} ≤ e−dt2/2,

P{σmax(Γ;E)≥ 1+2
√

log(N/2)/
√
d+ t} ≤ e−dt2/2.

To achieve distortion ε with high probability, it is sufficient to choose

d≥ 8ε−2 logN.

In other words, the embedding dimension only needs to be logarithmic in
the cardinality N of the point set. With some additional calculation, we can
also extract precise failure probabilities from this analysis.

8.6.3. Discussion
Let us close this example with a few comments. In spite of its prominence,
the Johnson–Lindenstrauss embedding lemma is somewhat impractical. In-
deed, since the embedding dimension d is proportional to ε−2, it is a chal-
lenge to achieve small distortions. Even if we consider the setting where

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

452 P.-G. Martinsson and J. A. Tropp

ε≈ 1, the uniform bound (8.4) may require the embedding dimension to be
prohibitively large.

As a step toward more applicable results, note that the bound on the
minimum restricted singular value is more crucial than the bound on the
maximum restricted singular value, because the former ensures that no two
points coalesce after the random embedding. Similarly, it is often more
valuable to preserve the distances between nearby points than between far-
flung points. This observation is the starting point for the theory of locality
sensitive hashing (Gionis, Indyk and Motwani 1999).

8.6.4. History
Johnson and Lindenstrauss (1984) were concerned with a problem in Banach
space geometry, namely the prospect of extending a Lipschitz function from
a finite metric space into a Hilbert space. The famous lemma from their
paper took on a life of its own when Linial, London and Rabinovich (1995)
used it to design efficient approximation algorithms for some graph prob-
lems. Indyk and Motwani (1999) used random embeddings to develop new
algorithms for the approximate nearest neighbour problem. Alon et al.
(1999, 2002) introduced the term sketching, and they showed how to use
sketches to track streaming data. Soon afterwards, Papadimitriou et al.
(2000) and Frieze et al. (2004) proposed using random embeddings and
matrix sampling for low-rank matrix approximation, bringing these ideas
into the realm of computational linear algebra.

8.7. Example: Subspace embedding

Next, we consider a question at the heart of randomized linear algebra. Can
we embed an unknown subspace into a lower-dimensional space?

8.7.1. Overview
Suppose that L is a k -dimensional subspace in R

n. We say that a dimension
reduction map S is a subspace embedding for L with distortion ε ∈ (0,1) if

(1−ε)‖x‖ ≤ ‖Sx‖ ≤ (1+ε)‖x‖ for every x ∈ L. (8.5)

We say that S is oblivious if it can be constructed without knowledge of the
subspace L, except for its dimension.

Two questions arise. First, what types of dimension reduction maps yield
(oblivious) subspace embeddings? Second, how large must we choose the
embedding dimension to achieve this outcome?

8.7.2. Analysis
Gaussian dimension reduction maps yield very good oblivious subspace em-
beddings. Theorem 8.4 easily furnishes the justification. Consider the unit

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 453

sphere in the subspace: E = L∩ S
n−1(R). Then construct the Gaussian

dimension reduction map Γ ∈ R
d×n. In view of (8.3), we have

P{σmin(Γ;E)≤ 1− (1+
√
k)/

√
d− t} ≤ e−dt2/2,

P{σmax(Γ;E)≥ 1+
√
k/

√
d+ t} ≤ e−dt2/2.

As a specific example, we can set the embedding dimension d= 2k to ensure
that ‖Γx‖ = (1± 0.8)‖x‖ simultaneously for all points x ∈ L, except with
probability e−ck. In some applications of subspace embeddings, we can even
choose the dimension as small as d= k+5 or d= k+10.

Many theoretical papers on randomized NLA use subspace embeddings
as a primitive for designing algorithms for other linear algebra problems.
For example, Section 10 describes several ways to use subspace embeddings
to solve overdetermined least-squares problems.

8.7.3. History
Subspace embeddings were explicitly introduced by Sarlós (2006); see also
Drineas, Mahoney and Muthukrishnan (2006d). As work on randomized
NLA accelerated, researchers became interested in more structured types of
subspace embeddings; an early reference is Woolfe et al. (2008). Section 9
covers these extensions. See Woodruff (2014) for a theoretical perspective
on randomized NLA where subspace embeddings take pride of place.

8.8. Universality of the minimum restricted singular value

We have seen how to apply Gaussian dimension reduction for embedding
discrete point sets and for embedding subspaces. Theorem 8.4 contains
precise theoretical results on the behaviour of Gaussian maps in terms of
the Gaussian width. To what extent can we transfer this analysis to other
types of random embeddings?

The following theorem (Oymak and Tropp 2018, Theorem 9.1) shows
that the bound on the minimum restricted singular value in Theorem 8.4
is universal for a large class of random embeddings. In particular, this class
includes sparse random matrices, whose nonzero entries compose a vanishing
proportion of the total.

Theorem 8.7 (universality). Fix a set E ⊆ S
n−1. Let S ∈ R

d×n be a
random matrix whose entries are independent random variables that satisfy

E[(S)ij] = 0, E[(S)2ij] = d−1, E[(S)5ij]≤R.

When d≤ n, with high probability,

σmin(S;E)≥ 1− w(E)√
d

−o(
√
n/d).

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

454 P.-G. Martinsson and J. A. Tropp

The constant in o(
√
n/d) depends only on R. A matching lower bound for

σmin(S;E) holds when E is spherically convex.

In other words, if E is a moderately large set, the distribution of the
entries of the random map S does not have an impact on the embedding
dimension d sufficient to ensure no point in E is annihilated.

Theorem 8.7 is confirmed by extensive numerical experiments (Oymak
and Tropp 2018), which demonstrate that dimension reduction maps with
independent, standardized entries have identical performance for a wide
range of examples.

It is perhaps surprising that the bound on the maximum restricted singu-
lar value from Theorem 8.4 is not universal. For some sets E, the quantity
σmax(S;E) depends heavily on the distribution of the entries of S.

Remark 8.8 (universality for least-squares). Dobriban and Liu
(2019) give some asymptotic universality results for random embeddings
in the context of least-squares problems.

8.9. Random partial isometries

Last, we consider a variant of Gaussian embedding that is more suitable
when the embedding dimension d is close to the ambient dimension n. In
this section we allow the field F to be real or complex.

First, suppose that d ≤ n, and let Γ ∈ F
d×n be a Gaussian embedding.

Almost surely, the co-range of Γ is a uniformly random d -dimensional sub-
space of Fn. Construct an embedding S ∈ F

d×n with orthonormal rows that
span the co-range of Γ; for example, by QR factorization.

Similarly, we can consider a Gaussian embedding Γ ∈ F
d×n with d≥ n. In

this case the range of Γ is almost surely a uniformly random n-dimensional
subspace of F

d. Construct an embedding S ∈ F
d×n with orthonormal

columns that span the range of Γ, for example by QR factorization.
In each case, we call S a random partial isometry. The cost of storing a

random partial isometry is O(dn), and the cost of applying it to a vector is
O(dn). (We should warn the punctilious reader that QR factorization of Γ
may not produce a matrix S that is Haar-distributed on the Stiefel manifold.
To achieve this guarantee, use the algorithms from Mezzadri (2007).)

When d≈ n, random partial isometries are better embeddings than Gaus-
sian maps (because the nonzero singular values of a partial isometry are all
equal). When d and n are significantly different, the two models are quite
similar to each other.

Thrampoulidis and Hassibi (2015) have established some theoretical res-
ults on the embedding behaviour of real partial isometries (F = R). Un-
fortunately, the situation is more complicated than in Theorem 8.4. More
relations between Gaussian matrices and partial isometries follow from the

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 455

Marcus–Pisier comparison theorem (Marcus and Pisier 1981); see also Tropp
(2012a).

9. Structured random embeddings

Gaussian embeddings and random partial isometries work extremely well.
But they are not suitable for all practical applications because they are
expensive to construct, to store, and to apply to vectors. Instead, we may
prefer to implement more structured embedding matrices that alleviate
these burdens.

This section summarizes a number of constructions that have appeared in
the literature, with a focus on methods that have been useful in applications.
Except as noted, these approaches have the same practical performance as
either a Gaussian embedding or a random partial isometry.

Although many of these approaches are supported by theoretical analysis,
the results are far less precise than for Gaussian embeddings. As such, we will
not give detailed mathematical statements about structured embeddings.
See Section 9.7 for a short discussion about how to manage the lack of
theoretical guarantees.

9.1. General techniques

Many types of structured random embeddings operate on the same prin-
ciple, articulated in Ailon and Chazelle (2009). When we apply the random
embedding to a fixed vector, it should homogenize (‘mix’) the coordinates
so that each one carries about the same amount of energy. Then the em-
bedding can sample coordinates at random to extract a lower-dimensional
vector whose norm is proportional to the norm of the original vector and
has low variance. Random embeddings differ in how they perform the ini-
tial mixing step. Regardless of how it is done, mixing is very important for
obtaining embeddings that work well in practice.

With this intuition at hand, let us introduce a number of pre- and post-
processing transforms that help us design effective random embeddings.
These approaches are used in many of the constructions below.

We say that a random variable is a random sign if it is uniform{z ∈
F : |z|= 1}. A random matrix E ∈ F

n×n is called a random sign flip if it is
diagonal, and the diagonal entries are i.i.d. random sign variables.

A random permutation Π ∈ F
n×n is a matrix drawn uniformly at random

from the set of permutation matrices. That is, each row and column of Π has
a single nonzero entry, which equals one, and all such matrices are equally
likely.

For d ≤ n, a random matrix R ∈ F
d×n is called a random restriction if

it selects d uniformly random entries from its input. With an abuse of
terminology, we extend the definition to the case d≥ n by making R ∈ F

d×n

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

456 P.-G. Martinsson and J. A. Tropp

the matrix that embeds its input into the first n coordinates of the output.
That is, (R)ij = 1 when i= j and zero otherwise.

Random sign flips and permutations are useful for preconditioning the
input to a random embedding. Random restrictions are useful for reducing
the dimension of a vector that has already been homogenized.

9.2. Sparse sign matrices

Among the earliest proposals for non-Gaussian embedding is to use a sparse
random matrix whose entries are random signs.

Here is an effective construction of a sparse sign matrix S ∈ F
d×n. Fix a

sparsity parameter ζ in the range 2≤ ζ ≤ d. The random embedding takes
the form

S=

√
n

ζ

[
s1 · · · sn

]
∈ F

d×n.

The columns si ∈ F
d are i.i.d. random vectors. To construct each column,

we draw ζ i.i.d. random signs, and we situate them in ζ uniformly ran-
dom coordinates. Tropp, Yurtsever, Udell and Cevher (2019) recommend
choosing ζ =min{d,8} in practice.

We can store a sparse embedding using about O(ζn logd) numbers. We
can apply it to a vector in F

n with O(ζn) arithmetic operations. The main
disadvantage is that we must use sparse data structures and arithmetic to
achieve these benefits. Sparse sign matrices have similar performance to
Gaussian embeddings.

Cohen (2016) has shown that a sparse sign matrix serves as an oblivious
subspace embedding with constant distortion for an arbitrary k -dimensional
subspace of Rn when the embedding dimension d=O(k logk) and the per-
column sparsity ζ = O(logk). It is conjectured that improvements are still
possible.

Remark 9.1 (history). Sparse random embeddings emerged from the
work of Achlioptas (2003) and Charikar, Chen and Farach-Colton (2004).
For randomized linear algebra applications, sparse embeddings were pro-
moted in Clarkson and Woodruff (2013), Meng and Mahoney (2013), Nelson
and Nguyen (2013) and Urano (2013). Analyses of the embedding behaviour
of a sparse map appear in Bourgain, Dirksen and Nelson (2015) and Cohen
(2016).

9.3. Subsampled trigonometric transforms

Another type of structured randomized embeddings is designed to mimic the
performance of a random partial isometry. One important class of examples
consists of the subsampled randomized trigonometric transforms (SRTTs).

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 457

To construct a random embedding S ∈ F
d×n with d ≤ n, we select a

unitary trigonometric transform F ∈ F
n×n. Then we form

S=

√
n

d
RFEΠ,

where R∈ F
d×n is a random restriction, E ∈ F

n×n is a random sign flip, and
Π ∈ F

n×n is a random permutation. Note that S is a partial isometry.
The trigonometric transform F can be any one of the usual suspects. In

the complex case (F=C), we often use a discrete Fourier transform. In the
real case (F=R), common choices are the discrete cosine transform (DCT2)
or the discrete Hartley transform (DHT). When n is a power of two, we can
consider a Walsh–Hadamard transform (WHT). The paper (Avron et al.
2010) reports that the DHT is the best option in the real case.

The cost of storing a SRTT is O(n logn), and it can be applied to a vector
in O(n logd) operations using a fast subsampled trigonometric transform
algorithm. The main disadvantage is that it requires a good implementation
of the fast transform.

Tropp (2011b) has shown that an SRTT serves as an oblivious subspace
embedding with constant distortion for an arbitrary k -dimensional subspace
of F

n provided that d = O(k logk). This paper focuses on the Walsh–
Hadamard transform, but the analysis extends to other SRTTs. In practice,
it often suffices to choose d=O(k), but no rigorous justification is available.

Remark 9.2 (rerandomization). It is also common to repeat the ran-
domization and trigonometric transformations:

S=

√
n

d
RFE′Π′FEΠ,

with an independent sign flip E′ and an independent permutation Π′. This
enhancement can make the embedding more robust, although it is not al-
ways necessary.

Remark 9.3 (history). Parker (1995) proposed the use of randomized
trigonometric transforms to precondition linear systems. The idea of ap-
plying an SRTT for dimension reduction appears in Ailon and Chazelle
(2006, 2009). Woolfe et al. (2008) developed algorithms for low-rank mat-
rix approximation based on SRTTs. Embedding properties of an SRTT for
general sets follow from Rudelson and Vershynin (2008) and Krahmer and
Ward (2011); see Foucart and Rauhut (2013, Chapter 12) or Pilanci and
Wainwright (2015).

9.4. Tensor random projections

Next, we describe a class of random embeddings that are useful for very
large linear algebra and multilinear algebra problems. This approach invokes

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

458 P.-G. Martinsson and J. A. Tropp

tensor products to form a random embedding for a high-dimensional space
from a family of random embeddings for lower-dimensional spaces.

Let S1 ∈ F
d×m1 and S2 ∈ F

d×m2 be statistically independent
random embeddings. We define the tensor random embedding

S := S1⊙S2 ∈ F
d×n where n=m1m2

to be the Khatri–Rao product of S1 and S2. That is, the ith row of S is

(S)i: =
[
(S1)i1(S2)i: · · · (S1)im(S2)i:

]
for i= 1, . . . ,d.

Under moderate assumptions on the component embeddings S1 and S2, the
tensor random embedding S preserves the squared Euclidean norm of an
arbitrary vector in F

n.
A natural extension of this idea is to draw many component embeddings

Si ∈ F
d×mi for i= 1, . . . ,k and to form the tensor random embedding

S := S1⊙S2⊙·· ·⊙Sk ∈ F
d×n where n=

∏k

i=1
mi.

This embedding also inherits nice properties from its components.
The striking thing about this construction is that the tensor product em-

bedding operates on a much larger space than the component embeddings.

The storage cost for the component embeddings is O(d(
∑k

i=1mi)), or less.
We can apply the tensor random embedding to a vector directly with O(dn)
arithmetic. We can accelerate the process by using component embeddings
that have fast transforms, and we can obtain improvements for vectors that
have a compatible tensor product structure. Some theoretical analysis is
available, but results are not yet complete.

Remark 9.4 (history). Tensor random embeddings were introduced by
Kasiviswanathan, Rudelson, Smith and Ullman (2010) on differential pri-
vacy. They were first analysed by Rudelson (2012). Sun, Guo, Tropp and
Udell (2018) proposed the application of tensor random embeddings for
randomized linear algebra; some extensions appear in Jin, Kolda and Ward
(2019) and Malik and Becker (2019). See Baldi and Vershynin (2019) and
Vershynin (2019) for related theoretical results.

9.5. Other types of structured random embeddings

We have described the random embeddings that have received the most
attention in the NLA literature. Yet there are other types of random em-
beddings that may be useful in special circumstances. Some examples in-
clude random filters (Tropp et al. 2006, Krahmer and Ward 2011, Rauhut,
Romberg and Tropp 2012, Mendelson, Rauhut andWard 2018), the Kac ran-
dom walk (Kac 1956, Rosenthal 1994, Oliveira 2009b, Pillai and Smith 2017)
and sequences of random reflections (Sloane 1983, Porod 1996). Liberty
(2009) discusses a number of other instances.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 459

9.6. Coordinate sampling

So far we have discussed random embeddings that mix up the coordinates of
a vector. It is sometimes possible to construct embeddings just by sampling
coordinates at random. Coordinate sampling can be appealing in special-
ized situations (e.g. kernel computations), where we only have access to
individual entries of the data. On the other hand, this approach requires
strong assumptions, and it is far less reliable than random embeddings that
mix coordinates. In this section we summarize the basic facts about sub-
space embedding via random coordinate sampling.

A note on terminology: we will use the term coordinate sampling to
distinguish these maps from random embeddings that mix coordinates.

9.6.1. Coherence and leverage
Let L⊂F

n be a k -dimensional subspace. The coherence µ(L) of the subspace
with respect to the standard basis is

µ(L) := n · max
i=1,...,n

‖PLδi‖2,

where PL ∈Hn is the orthogonal projector onto L and δi is the ith standard
basis vector. The coherence µ(L) lies in the range [k,n]. The behaviour of
coordinate sampling methods degrades as the coherence increases.

Next, define the (subspace) leverage score distribution with respect to the
standard coordinate basis:

pi =
1

k
‖PLδi‖2 for i= 1, . . . ,n.

It is straightforward to verify that (p1, . . . ,pn) is a probability distribution.
In most applications, it is expensive to compute or estimate subspace lever-
age scores because we typically do not have a basis for the subspace L at
hand.

9.6.2. Uniform sampling
We can construct an embedding S ∈ F

d×n by sampling each output co-
ordinate uniformly at random. That is, the rows of S are i.i.d., and each
row takes values δi/

√
d, each with probability 1/n. (We can also sample

coordinates uniformly without replacement; this approach performs slightly
better but requires more work to analyse.)

The embedding dimension d must be chosen to ensure that

‖Sx‖2 = (1±ε)‖x‖2 for all x ∈ L. (9.1)

To achieve this goal, it suffices that

d≥ 2ε−2µ(L) log(2k).

In other words, the embedding dimension is proportional to the coherence

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

460 P.-G. Martinsson and J. A. Tropp

of the subspace, up to a logarithmic factor. We expect uniform sampling to
work well precisely when the coherence is small (µ(L)≈ k).

To prove this result, letU∈F
n×k be an orthonormal basis for the subspace

L. We can approximate the product Ik = U∗U by sampling columns of U
uniformly at random. The analysis in Section 7.3.2 furnishes the conclusion.

9.6.3. Leverage score sampling
When the coherence is large, it seems more natural to sample with respect
to the leverage score distribution (p1, . . . ,pn) described above. That is, the
embedding S ∈ F

d×n has i.i.d. rows, and each row takes value δi/
√
d with

probability pi.
To achieve the embedding guarantee (9.1) with this sampling distribution,

we should choose the embedding dimension

d≥ 2ε−2k log(2k).

In other words, it suffices that the embedding dimension is proportional to
the dimension k of the subspace, up to the logarithmic factor. This result
follows from the analysis of matrix multiplication by importance sampling
(Section 7.3.3).

9.6.4. Discussion
Uniform sampling leads to an oblivious subspace embedding, although it
is not obvious how to select the embedding dimension in advance because
the coherence is usually not available. Leverage score sampling is defin-
itely not oblivious, because we need to compute the sampling probabilities
(potentially at great cost).

In practice, uniform sampling works better than one might anticipate,
and it has an appealing computational profile. As a consequence, it has
become a workhorse for large-scale kernel computation; see Kumar, Mohri
and Talwalkar (2012), Bach (2013) and Rudi, Carratino and Rosasco (2017).

Our experience suggests that leverage score sampling is rarely a com-
petitive method for constructing subspace embeddings, especially once we
take account of the effort required to compute the sampling probabilities.
We recommend using other types of random embeddings (Gaussians, sparse
maps, SRTTs) in lieu of coordinate sampling whenever possible.

Although coordinate sampling may seem like a natural approach to con-
struct matrix approximations involving rows or columns, we can obtain
better algorithms for this problem by using (mixing) random embeddings.
See Section 13 for details.

Coordinate sampling can be a compelling choice in situations where other
types of random embeddings are simply unaffordable. For instance, a vari-
ant of leverage score sampling leads to effective algorithms for kernel ridge

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 461

regression; see Rudi, Calandriello, Carratino and Rosasco (2018) for evid-
ence. Indeed, in the context of kernel computations, coordinate sampling
and random features may be the only tractable methods for extracting in-
formation from the kernel matrix. We discuss these ideas in Section 19.

An emerging research direction uses coordinate sampling for solving cer-
tain kinds of continuous problems, such as function interpolation. In this
setting, sampling corresponds to function evaluation, while mixing embed-
dings may lead to operations that are impossible to implement in the con-
tinuous space. For some examples, see Rauhut and Ward (2012), Cohen,
Davenport and Leviatan (2013), Hampton and Doostan (2015), Rauhut and
Ward (2016), Cohen and Migliorati (2017), Arras, Bachmayr and Cohen
(2019), Avron et al. (2019) and Chen and Price (2019).

9.6.5. History
Most of the early theoretical computer science papers on randomized NLA
rely on coordinate sampling methods. These approaches typically construct
an importance sampling distribution using the norms of the rows or columns
of a matrix. For examples, see Frieze et al. (2004), Drineas and Mahoney
(2005) and Drineas et al. (2006a, 2006b, 2006c). These papers measure
errors in the Frobenius norm. The first spectral norm analysis of coordinate
sampling appears in Rudelson and Vershynin (2007).

Leverage scores are a classical tool in statistical regression, used to identify
influential data points. Drineas, Mahoney and Muthukrishnan (2008) pro-
posed the subspace leverage scores as a sampling distribution for construct-
ing low-rank matrix approximations. Mahoney and Drineas (2009) identified
the connection with regression. Mahoney (2011) made a theoretical case for
using leverage scores as the basis for randomized NLA algorithms. Alaoui
and Mahoney (2015) introduced an alternative definition of leverage scores
for kernel ridge regression.

It is somewhat harder to trace the application of uniform sampling in
randomized NLA. Several authors have studied the behaviour of uniform
sampling in the context of Nyström approximation; see Williams and Seeger
(2001), Kumar et al. (2012) and Gittens (2013). An analysis of uniform
coordinate sampling is implicit in the theory on SRTTs; see Tropp (2011b,
Lemma 3.4). See Kannan and Vempala (2017) for more discussion about
sampling methods in NLA.

9.7. But how does it work in theory?

Structured random embeddings and random coordinate sampling lack the
precise guarantees that we can attribute to Gaussian embedding matrices.
So how can we apply them with confidence?

First, we advocate using a posteriori error estimators to assess the qual-
ity of the output of a randomized linear algebra computation. These error

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

462 P.-G. Martinsson and J. A. Tropp

estimators are often quite cheap, yet they can give (statistical) evidence
that the computation was performed correctly. We also recommend adapt-
ive algorithms that can detect when the accuracy is insufficient and make
refinements. With this approach, it is not pressing to produce theory that
justifies all of the internal choices (e.g. the specific type of random embed-
ding) in the NLA algorithm. See Section 12 for further discussion.

Even so, we would like to have a priori predictions about how our al-
gorithms will behave. Beyond that, we need reliable methods for selecting
algorithm parameters, especially in the streaming setting where we cannot
review the data and repeat the computation.

Here is one answer to these concerns. As a practical matter, we can simply
invoke the lessons from the Gaussian theory, even when we are using a
different type of random embedding. The universality result, Theorem 8.7,
gives a rationale for this approach in one special case. We also recommend
undertaking computational experiments to verify that the Gaussian theory
gives an adequate description of the observed behaviour of an algorithm.

Warning 9.5 (coordinate sampling). Mixing random embeddings per-
form similarly to Gaussian embeddings, but coordinate sampling methods
typically exhibit behaviour that is markedly worse.

10. How to use random embeddings

Algorithm designers have employed random embeddings for many tasks in
linear algebra, optimization and related areas. Methods based on random
embedding fall into three rough categories: (1) sketch and solve, (2) iterative
sketching, and (3) sketch and precondition. To draw distinctions among
these paradigms, we use each one to derive an algorithm for solving an
overdetermined least-squares problem.

10.1. Overdetermined least-squares

Overdetermined least-squares problems sometimes arise in statistics and
data-analysis applications. We may imagine that some of the data in these
problems is redundant. As such, it seems plausible that we could reduce
the size of the problem to accelerate computation without too much loss in
accuracy.

Consider a matrix A ∈ F
m×n with m≫ n and a vector b ∈ F

m. An over-
determined least-squares problem has the form

minimize
x∈Fn

1

2
‖Ax−b‖2. (10.1)

Following Pilanci and Wainwright (2015), we can also rewrite the least-

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 463

squares problem to emphasize the role of the matrix:

minimize
x∈Fn

1

2
‖Ax‖2−〈x,A∗b〉. (10.2)

Write x⋆ for an arbitrary solution to the problem (10.1).
To make a clear comparison among algorithm design templates, we will

assume that A is dense and unstructured. In this case the classical approach
to solving (10.1) is based on factorization of the coefficient matrix (such as
QR or SVD) at a cost of O(mn2) arithmetic operations.

When A is sparse, we would typically use iterative methods (such as CG),
which have a different computational profile. For sparse matrices, we would
also make different design choices in a sketch-based algorithm. Nevertheless,
for simplicity, we will not discuss the sparse case.

10.2. Subspace embeddings for least-squares

To design a sketching algorithm for the overdetermined least-squares prob-
lem (10.1), we need to construct a subspace embedding S ∈ F

d×m that
preserves the geometry of the range of the matrix A ∈ F

m×n. In some cases
we may also need the embedding to preserve the range of the bordered
matrix

[
A b

]
∈ F

m×(n+1).
Since the matrix A is dense and unstructured, we will work with a struc-

tured subspace embedding, such as an SRTT (Section 9.3). More precisely,
we will assume that evaluating the product SA costs only O(mn logd) arith-
metic operations. The best theoretical results for these structured sketches
require that the embedding dimension d∼ n log(n)/ε2 to achieve distortion
ε, although the logarithmic factor seems to be unnecessary in practice.

Throughout this section we use the heuristic notation ∼ to indicate quant-
ities that are proportional. We also write ≪ to mean ‘much smaller than’.

10.3. Sketch and solve

The sketch-and-solve paradigm maps the overdetermined least-squares
problem (10.1) into a smaller space. Then it uses the solution to the
reduced problem as a proxy for the solution to the original problem. This
approach can be very fast, and we only need one view of the matrix A. On
the other hand, the results tend to be very inaccurate.

Let S ∈ F
d×m be a subspace embedding for the range of

[
A b

]
with

distortion ε. Consider the compressed least-squares problem

minimize
x∈Rn

1

2
‖S(Ax−b)‖2. (10.3)

Since S preserves geometry, we may hope that the solution x̂ to the sketched
problem (10.3) can replace the solution x⋆ to the original problem (10.2).

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

464 P.-G. Martinsson and J. A. Tropp

A typical theoretical bound is

‖Ax̂−b‖ ≤ (1+ε)‖Ax⋆−b‖ when d∼ n log(n)/ε2.

See Sarlós (2006). Although the residuals are comparable, it need not be
the case that x̂≈ x⋆, even when the solution to (10.1) is unique.

The sketch-and-solve paradigm requires us to form the matrix SA at
a cost of O(mn logd) operations. We would typically solve the (dense)
reduced problem with a direct method, using O(dn2) operations. Assuming
d∼ n log(n)/ε2, the total arithmetic cost is O(mn log(n/ε2)+n3 log(n)/ε2).

In summary, we witness an improvement in computational cost over clas-
sical methods if logn≪ n≪m/ logn and ε is constant. But we must also
be willing to accept large errors, because we cannot make ε small.

Remark 10.1 (history). The sketch-and-solve paradigm is attributed to
Sarlós (2006). It plays a major role in the theoretical algorithms literature;
see Woodruff (2014) for advocacy. It has also been proposed for enormous
problems that might otherwise be entirely hopeless (Lim and Weare 2017).

10.4. Iterative sketching

Iterative sketching attempts to remediate the poor accuracy of the sketch-
and-solve paradigm by using it repeatedly to reduce the residual error.

First we construct an initial solution x0 ∈ F
n using the sketch-and-solve

paradigm with a constant distortion embedding. For each iteration i, draw
a fresh random subspace embedding Si ∈ F

d×m for range(A), with constant
distortion. We can solve a sequence of least-squares problems

minimize
x∈Rn

1

2
‖SiA(x−xi−1)‖2+ 〈x−xi−1,A

∗(b−Axi−1)〉. (10.4)

The solution xi to this subproblem is fed into the next subproblem. Without
the sketch, each subproblem is equivalent to solving (10.2) with b replaced
by the residual ri−1 = b−Axi−1. The sketch Si preserves the geometry while
reducing the problem size. A typical theoretical error bound would be

‖Axj −b‖ ≤ (1+ε)‖Ax⋆−b‖ when j ∼ log(1/ε) and d∼ n logn.

See Pilanci and Wainwright (2016) for related results.
In each iteration, the iterative sketching approach requires us to form SiA

at a cost of O(mn logd). We compute A∗ri−1 at a cost of O(mn). Although
it is unnecessary to solve each subproblem accurately, we cannot obtain
reliable behaviour without using a dense method at a cost of O(dn2) per
iteration. With the theoretical parameter choices, the total arithmetic is
O((mn+n3) log(n) log(1/ε)) to achieve relative error ε.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 465

The interesting parameter regime is logn≪ n≪m/ logn, but we can now
allow ε to be tiny. In this setting, iterative sketching costs slightly more than
the sketch-and-solve paradigm to achieve constant relative error, while it is
faster than the classical approach. At the same time, it can produce errors
as small as traditional least-squares algorithms. A shortcoming is that this
method requires repeated sketches of the matrix A.

For overdetermined least-squares, we can short-circuit the iterative
sketching approach. In this setting, we can sketch the input matrix just once
and factorize it. We can use the same factorized sketch in each iteration to
solve the subproblems faster. For problems more general than least-squares,
it may be necessary to extract a fresh sketch at each iteration, as we have
done here.

Remark 10.2 (history). Iterative sketching can be viewed as an ex-
tension of stochastic approximation methods from optimization, for ex-
ample stochastic gradient descent (Bottou 2010). In the context of random-
ized NLA, these algorithms first appeared in the guise of the randomized
Kaczmarz iteration (Strohmer and Vershynin 2009); see Section 17.4. Gower
and Richtárik (2015) reinterpreted randomized Kaczmarz as an iterative
sketching method and developed generalizations. Pilanci and Wainwright
(2016) proposed a similar method for solving overdetermined least-squares
problems with constraints; they observed that better numerical performance
is obtained by sketching (10.2) instead of (10.1).

10.5. Sketch and precondition

The sketch-and-precondition paradigm uses random embedding to find a
proxy for the input matrix. We can use this proxy to precondition a classical
iterative algorithm so it converges in a minimal number of iterations.

Let S ∈ F
d×m be a subspace embedding for range(A) with constant dis-

tortion. Compress the input matrix A, and then compute a (pivoted) QR
factorization:

Y = SA and Y =QR.

Since S preserves the range of A when d∼ n logn, we anticipate that Y∗Y≈
A∗A. As a consequence, AR† should be close to an isometry. Thus we can
pass to the preconditioned problem

minimize
x∈Rn

1

2
‖(AR†)(Rx)−b‖2. (10.5)

Construct an initial solution x0 ∈ F
n using the sketch-and-solve paradigm

with the embedding S. From this starting point, we solve (10.5) using

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

466 P.-G. Martinsson and J. A. Tropp

preconditioned LQSR. The j th iterate satisfies

‖Axj −b‖ ≤ (1+ε)‖Ax⋆−b‖ when j ∼ log(1/ε).

This statement is a reinterpretation of the theory in Rokhlin and Tygert
(2008).

The cost of sketching the input matrix and performing the QR decom-
position is O(mn logd+ dn2). Afterwards, we pay O(mn) for each itera-
tion of PCG. With the theoretical parameter settings, the total cost is
O(mn log(n/ε)+n3 logn) operations.

Once again, the interesting regime is logn≪ n≪m/ logn, and the value
of ε can be very small. For overdetermined least-squares, this approach is
faster than both the sketch-and-solve paradigm and the iterative sketching
paradigm. The sketch-and-precondition approach leads to errors that are
comparable with classical linear algebra algorithms, but it may be a factor
of n/ log(n) faster. On the other hand, it requires repeated applications of
the matrix A.

Remark 10.3 (history). The randomized preconditioning idea was pro-
posed by Rokhlin and Tygert (2008). Avron et al. (2010) demonstrate that
least-squares algorithms based on randomized preconditioning can beat the
highly engineered software in LAPACK. The same method drives the al-
gorithms in Meng, Saunders and Mahoney (2014). Avron (2018) contains a
recent summary of existing randomized preconditioning methods.

10.6. Comparisons

If we seek a high-precision solution to a dense, unstructured, overdetermined
least-squares problem, randomized preconditioning leads to the most effi-
cient existing algorithm. For the same problem, if we can only view the
input matrix once, then the sketch-and-solve paradigm still allows us to
obtain a low-accuracy solution. Although iterative sketching is less efficient
than its competitors in this setting, it remains useful for solving constrained
least-squares problems, and it has further connections with optimization.

10.7. Summary

From the perspective of a numerical analyst, randomized preconditioning
and iterative sketching should be the preferred methods for designing sketch-
ing algorithms because they allow for high precision. The sketch-and-solve
approach is appropriate only when data access is severely constrained.

In spite of this fact, a majority of the literature on randomized NLA
develops algorithms based on the sketch-and-solve paradigm. There are
far fewer works on randomized preconditioning or iterative sketching. This
discrepancy points to an opportunity for further research.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 467

11. The randomized rangefinder

A core challenge in linear algebra is to find a subspace that captures a
lot of the action of a matrix. We call this the rangefinder problem. As
motivation for considering this problem, we will use the rangefinder to derive
the randomized SVD algorithm. Then we will introduce several randomized
algorithms for computing the rangefinder primitive, along with theoretical
guarantees for these methods. These algorithms all make use of random
embeddings, but their performance depends on more subtle features than
the basic subspace embedding property.

In Section 12 we will complement the algorithmic discussion with de-
tails about error estimation and adaptivity for the rangefinder primitive. In
Sections 13–16 we will see that the subspace produced by the rangefinder
can be used as a primitive for other linear algebra computations.

Most of the material in this section is adapted from Halko, Martinsson
and Tropp (2011a) and Halko, Martinsson, Shkolnisky and Tygert (2011b).
We have also incorporated more recent perspectives.

11.1. The rangefinder: Problem statement

Let B ∈ F
m×n be an input matrix, and let ℓ ≤min{m,n} be the subspace

dimension. The goal of the rangefinder problem is to produce an orthonor-
mal matrix Q ∈ F

m×ℓ whose range aligns with the dominant left singular
vectors of B.

To measure the quality of Q, we use the spectral norm error

‖B−QQ∗B‖= ‖(I−QQ∗)B‖. (11.1)

If the error measure (11.1) is small, then the rank- ℓ matrix B̂=QQ∗B can
serve as a proxy for B. See Section 11.2 for an important application.

11.1.1. The randomized rangefinder: A pseudoalgorithm
Using randomized methods, it is remarkably easy to find an initial solution
to the rangefinder problem. We simply multiply the target matrix by a
random embedding and then orthogonalize the resulting matrix.

More rigorously: consider a target matrix B ∈ F
m×n and a subspace

dimension ℓ. We draw a random test matrix Ω ∈ F
n×ℓ, where Ω∗ is a

mixing random embedding. We form the product Y = BΩ ∈ F
m×ℓ. Then

we compute an orthonormal basis Q ∈ F
m×ℓ for the range of Y using a QR

factorization method. See Algorithm 7 for pseudocode.
In a general setting, the arithmetic cost of this procedure is dominated

by O(mnℓ) operations for the matrix–matrix multiplication. The QR fac-
torization of Y requires O(mℓ2) arithmetic, and we also need to simulate
the n× ℓ random matrix Ω. Economies are possible when either B or Ω

admits fast multiplication.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

468 P.-G. Martinsson and J. A. Tropp

Algorithm 7 The randomized rangefinder.
Implements the procedure from Section 11.1.1.

Input: Input matrix B ∈ F
m×n, subspace dimension ℓ

Output: Orthonormal matrix Q ∈ F
m×ℓ

1 function RandomRangefinder(B, ℓ)
2 Draw a random matrix Ω ∈ F

n×ℓ

3 Form Y = BΩ

4 Compute [Q, ∼] = qr econ(Y)

11.1.2. Practicalities
To implement Algorithm 7 effectively, several computational aspects require
attention.

• How do we choose the subspace dimension? If we have advance know-
ledge of the ‘effective rank’ r of the target matrix B, the theory (The-
orem 11.5 and Corollary 11.9) indicates that we can select the subspace
dimension ℓ to be just slightly larger, say, ℓ = r+ p where p = 5 or
p=10. The value p is called the oversampling parameter. Alternatively,
we can use an error estimator to decide when the computed subspace
Q is sufficiently accurate; see Section 12.1.

• What kind of random matrix? We can use most types of mixing random
embeddings to implement Algorithm 7. We highly recommend Gaussi-
ans and random partial isometries (Section 8). Sparse maps, SRTTs
and tensor random embeddings (Section 9) also work very well. In
practice, all these approaches exhibit similar behaviour; see Section 11.5
for more discussion. We present analysis only for Gaussian dimension
reduction because it is both simple and precise.

• Matrix multiplication. The randomized rangefinder is powerful because
most of the computation takes place in the matrix multiplication step,
which is a highly optimized primitive on most computer systems. When
the target matrix admits fast matrix–vector multiplications (e.g. due
to sparsity), the rangefinder can exploit this property.

• Powering. As we will discuss in Sections 11.6 and 11.7, it is often bene-
ficial to enhance Algorithm 7 by means of powering or Krylov subspace
techniques.

• Orthogonalization. The columns of the matrix Y tend to be strongly
aligned, so it is important to use a numerically stable orthogonalization
procedure (Golub and Van Loan 2013, Chapter 5), such as Householder
reflectors, double Gram–Schmidt or rank-revealing QR. The rangefinder
algorithm is also a natural place to invoke a TSQR algorithm (Demmel,
Grigori, Hoemmen and Langou 2012).

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 469

See Halko et al. (2011a) for much more information.

11.2. The randomized singular value decomposition (RSVD)

Before we continue with our discussion of the rangefinder, let us summarize
one of the key applications: the randomized SVD algorithm.

Low-rank approximation problems often arise when a user seeks an in-
complete matrix factorization that exposes structure, such as a truncated
eigenvalue decomposition or a partial QR factorization. The randomized
rangefinder, described in Section 11.1.1, can be used to perform the heavy
lifting in these computations. Afterwards, we perform some light post-
processing to reach the desired factorization.

To illustrate how this works, suppose that we want to compute an approx-
imate rank- ℓ truncated singular value decomposition of the input matrix
B ∈ F

m×n. That is,

B≈UΣV∗,

where U ∈ F
m×ℓ and V ∈ F

n×ℓ are orthonormal matrices and Σ ∈ F
ℓ×ℓ is

a diagonal matrix whose diagonal entries approximate the largest singular
values of A.

Choose a target rank ℓ, and suppose that Q ∈ F
m×ℓ is a computed solu-

tion to the rangefinder problem. The rangefinder furnishes an approximate
rank- ℓ factorization of the input matrix: B≈Q(Q∗A). To convert this rep-
resentation into a truncated SVD, we just compute an economy-size SVD
of the matrix C :=Q∗A ∈ F

ℓ×n and consolidate the factors.
In symbols, once Q is available, the computation proceeds as follows:

B ≈QQ∗B {matrix–matrix multiplication: C=Q∗B}
=QC {economy-size SVD: C= ÛΣV∗}
=QÛΣV∗ {matrix–matrix multiplication: U=QÛ}
=UΣV∗.

After the rangefinder step, the remaining computations are all exact (mod-
ulo floating-point arithmetic errors). Therefore

‖B−UΣV∗‖= ‖B−QQ∗B‖.
In words, the accuracy of the approximate SVD is determined entirely by
the error in the rangefinder computation!

Empirically, the smallest singular values and singular vectors of the ap-
proximate SVD contribute to the accuracy of the approximation, but they
are not good estimates for the true singular values and vectors of the mat-
rix. Therefore it can be valuable to truncate the rank by zeroing out the
smallest computed singular values. We omit the details. See Halko et al.
(2011a), Gu (2015) and Tropp et al. (2019) for further discussion.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

470 P.-G. Martinsson and J. A. Tropp

Algorithm 8 Randomized singular value decomposition (RSVD).
Implements the procedure from Section 11.2.

Input: Input matrix B ∈ F
m×n, factorization rank ℓ

Output: Orthonormal matrices U∈ F
m×ℓ, V ∈ F

n×ℓ and a diagonal matrix
Σ ∈ F

ℓ×ℓ such that B≈UΣV∗

1 function RSVD(B, ℓ)
2 Q=RandomRangefinder(B,ℓ) ⊲ Algorithm 7
3 C=Q∗B
4 [Û,Σ,V] = svd econ(B)

5 U=QÛ

6 [optional] Truncate the factorization to rank r ≤ ℓ

Algorithm 8 contains pseudocode for the randomized SVD. In a general
setting, the dominant cost after the rangefinder step is the matrix–matrix
multiply, which requires O(mnℓ) operations. The storage requirements are
O((m+n)ℓ) numbers.

The rangefinder primitive allows us to perform other matrix computations
as well. For example, in Section 13 we explain how to use the rangefinder
to construct matrix factorizations where a subset of the rows/columns are
picked to form a basis for the row/column spaces. This approach gives far
better results than the more obvious randomized algorithms based on co-
ordinate sampling.

11.3. The rangefinder and Schur complements

Why does the randomized rangefinder work? We will demonstrate that
the procedure has its most natural expression in the language of
Schur complements. This point is implicit in the analysis in Halko et al.
(2011a), and it occasionally appears more overtly in the literature (e.g. in
Gittens 2013 and Tropp, Yurtsever, Udell and Cevher 2017a). Nevertheless,
this connection has not been explored in a systematic way.

Proposition 11.1 (rangefinder: Schur complements). Let Y = BX

for an arbitrary test matrix X∈F
n×ℓ, and let PY be the orthogonal projector

onto the range of Y. Define the approximation error as

E := E(B,X) := (I−PY)B.

Then the squared error can be written as a Schur complement (2.4):

|E|2 := E∗E= (B∗B)/X.

We emphasize that |E|2 is a PSD matrix, not a scalar.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 471

Proof. This result follows from a short calculation. We can write the ortho-
gonal projector PY in the form

PY = (BX)((BX)∗(BX))†(BX)∗.

Abbreviating A= B∗B, we have

E∗E= B∗(I−PY)B= A− (AX)(X∗AX)†(AX)∗.

This is precisely the definition (2.4) of the Schur complement A/X. �

Proposition 11.1 gives us access to the deep theory of Schur complements
(Zhang 2005). In particular, we have a beautiful monotonicity property that
follows instantly from Ando (2005, Theorem 5.3).

Corollary 11.2 (monotonicity). Suppose that B∗B4C∗C with respect
to the semidefinite order 4. For each fixed test matrix X,

|E(B,X)|2 = (B∗B)/X

4 (C∗C)/X= |E(C,X)|2

In particular, the error increases if we increase any singular value of B
while retaining the same right singular vectors; the error decreases if we
decrease any singular value of B. The left singular vectors do not play a
role here. This observation allows us to identify which target matrices are
hardest to approximate.

Example 11.3 (extremals). Consider the parametrized matrix B(σ) =
Udiag(σ)V∗ ∈ F

n×n, where U,V are unitary. Suppose that we fix σ1 and

σk+1. For each test matrix X, the error |E(B(σ),X)|2 is maximal in the
semidefinite order when

σ = (σ1, . . . ,σ1︸ ︷︷ ︸
k

, σk+1, . . . ,σk+1︸ ︷︷ ︸
n−k

).

It has long been appreciated that Example 11.3 is the hardest matrix to
approximate; see Martinsson et al. (2006a, Section 5, Examples 4, 5). The
justification of this insight is new.

11.4. A priori error bounds

Proposition 11.1 shows that the error in the rangefinder procedure can be
written as a Schur complement. Incredibly, the Schur complement of a PSD
matrix with respect to a random subspace tends to be quite small. In this
section we summarize a theoretical analysis, due to Halko et al. (2011a),
that explains why this claim is true.

11.4.1. Master error bound
First, we present a deterministic upper bound on the error incurred by the
rangefinder procedure. This requires some notation.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

472 P.-G. Martinsson and J. A. Tropp

Without loss of generality, we may assume that m = n by extending B

with zeros. For any k≤ ℓ, construct a partitioned SVD of the target matrix:

B=U

[
Σ1

Σ2

][
V1 V2

]∗
with Σ1 ∈ R

k×k and V1 ∈ F
n×k.

The factors U,Σ,V are all square matrices. As usual, the entries of Σ =
diag(σ1,σ2, . . .) are arranged in weakly decreasing order. So Σ1 lists the first
k singular values, and Σ2 lists the remaining n− k singular values. The
matrix V1 contains the first k right singular vectors; the matrix V2 contains
the remaining n−k right singular vectors.

For any test matrix X ∈ F
n×ℓ, define

X1 = V∗
1X and X2 = V∗

2X.

These matrices reflect the alignment of the test matrix X with the matrix
V1 of dominant right singular vectors of B. We assume X1 has full row rank.

With this notation, we can present a strong deterministic bound on the
error in Algorithm 7.

Theorem 11.4 (rangefinder: deterministic bound). Let Y = BX be
the sample matrix obtained by testing B with X. With the notation and
assumptions above, for all k ≤ ℓ,

‖(I−PY)B‖ ≤ σk+1+‖Σ2X2X
†
1‖. (11.2)

A related inequality holds for every quadratic unitarily invariant norm.

The result and its proof are drawn from Halko et al. (2011a, Theorem
9.1). The same bound was obtained independently in Boutsidis, Mahoney
and Drineas (2009) by means of a different technique.

Theorem 11.4 leads to sharp bounds on the performance of the rangefinder
in most situations of practical interest. Let us present a sketch of the argu-
ment. Our approach can be modified to obtain matching lower and upper
bounds, but they do not give any additional insight into the performance.

Proof. In view of Proposition 11.1, we want to bound the spectral norm of

|(I−PY)B|2 = (B∗B)/X.

First, change coordinates so that the right singular vectors of B are the
identity: V = I. In particular, B∗B = Σ2 is diagonal. By homogeneity of
(11.2), we may assume that σ1 = 1. Next, using Corollary 11.2, we may also
assume that σ1 = · · ·= σk = 1, which leads to the worst-case error. Thus it
suffices to bound the spectral norm of the PSD matrix

S :=

[
Ik 0

0 Σ2
2

]
/X.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 473

To accomplish this task, we may as well take the Schur complement of
the diagonal matrix with respect to a test matrix that has a smaller range
than X; see Ando (2005, Theorem 5.9(iv)). Define X̃ := XX

†
1 = [Ik;X2X

†
1].

Since range(X̃)⊆ range(X),

S4

[
Ik 0

0 Σ2
2

]
/X̃=: S̃.

Using the definition of the Schur complement, we can write out the matrix
on the right-hand side in block form. With the abbreviation F :=Σ2X2X

†
1,

S̃=

[
I− (I+FF∗)

−1
⋆

⋆ Σ2
2−F(I+FF∗)

−1
F∗

]
.

The ⋆ symbol denotes matrices that do not play a role in the rest of the
argument. We can bound the block matrix above in the PSD order:

S̃4

[
FF∗ ⋆

⋆ Σ2
2

]

The inequality for the top-left block holds because 1− (1+a)−1 ≤ a for all
numbers a≥ 0. Last, take the spectral norm:

‖S‖ ≤ ‖S̃‖ ≤
∥∥∥∥
[
FF∗ ⋆

⋆ Σ2
2

]∥∥∥∥≤ ‖FF∗‖+‖Σ2
2‖.

This bound is stronger than the stated result. �

11.4.2. Gaussian test matrices
We can obtain precise results for the behaviour of the randomized range-
finder when the test matrix is (real) standard normal. Let us present a
variant of Halko et al. (2011a, Theorem 10.1).

Theorem 11.5 (rangefinder: Gaussian analysis). Fix a matrix B ∈
R

m×n with singular values σ1 ≥ σ2 ≥ ·· · . Draw a standard normal test
matrix Ω ∈ F

n×ℓ, and construct the sample matrix Y = BΩ. Choose
k < ℓ−1, and introduce the random variable

Z = ‖Γ†‖ where Γ ∈ R
k×ℓ is standard normal.

Then the expected error in the random rangefinder satisfies

E‖(I−PY)B‖ ≤
(
1+

√
k

ℓ−k−1

)
σk+1+(EZ)

(∑
j>k

σ2
j

)1/2

.

In other words, the randomized rangefinder computes an ℓ-dimensional
subspace that captures as much of the action of the matrix B as the best
k -dimensional subspace. If we think about k as fixed and ℓ as the variable,
we only need to choose ℓ slightly larger than k to enjoy this outcome.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

474 P.-G. Martinsson and J. A. Tropp

The error is comparable with σk+1, the error in the best rank-k approxim-
ation, provided that the tail singular values σj for j > k have small ℓ2 norm.
This situation occurs, for example, when B has a rapidly decaying spectrum.

Proof. Here is a sketch of the argument. Since the test matrixΩ is standard
normal, the matrices Ω1 := V∗

1Ω and Ω2 := V∗
2Ω are independent stand-

ard normal matrices because V1 and V2 are orthonormal and mutually
orthogonal. Using Chevet’s theorem (Halko et al. 2011a, Proposition 10.1),

E‖Σ2Ω2Ω
†
1‖= EΩ1

EΩ2

[
‖Σ2Ω2Ω

†
1‖
]

≤ E
[
‖Σ2‖‖Ω†

1‖F+‖Σ1‖F‖Ω
†
1‖
]

≤
√

k

ℓ−k−1
‖Σ2‖+(EZ)‖Σ2‖F.

The last inequality involves a well-known estimate for the trace of an inver-
ted Wishart matrix (Halko et al. 2011a, Proposition 10.2). �

To make use of the result, we simply insert estimates for the expectation
of the random variable Z. For instance,

EZ ≤ e
√
ℓ

ℓ−k when 2≤ k < ℓ and EZ ≈ 1√
ℓ−

√
k

for k≪ ℓ.

These estimates lead to very accurate performance bounds across a wide
selection of matrices and parameters.

The rangefinder also operates in the regime k ∈ {ℓ− 1,ℓ}. In this case it
attains significantly larger errors. A heuristic is

‖(I−PY)B‖/ (1+k)σk+1+
√
k
(∑

j>k
σ2
j

)1/2

.

This point follows because ‖Ω†
1‖F ≈ k and ‖Ω†

1‖ ≈
√
k when k ≈ ℓ.

For relevant results about Gaussian random matrices, we refer the reader
to Edelman (1989), Davidson and Szarek (2001), Chen and Dongarra (2005),
Bai and Silverstein (2010) and Halko et al. (2011a).

11.5. Other test matrices

In many cases it is too expensive to use Gaussian test matrices to implement
Algorithm 7. Instead, we may prefer to apply (the adjoint of) one of the
structured random embeddings discussed in Section 9.

11.5.1. Random embeddings for the rangefinder
Good alternatives to Gaussian test matrices include the following.

• Sparse maps. Sparse dimension reduction maps work well in the range-
finder procedure, even if the input matrix is sparse. The primary short-

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 475

coming is the need to use sparse data structures and arithmetic. See
Section 9.2.

• SRTTs. In practice, subsampled randomized trigonometric transforms
perform slightly better than Gaussian maps. The main difficulty is
that the implementation requires fast trigonometric transforms. See
Section 9.3.

• Tensor product maps. Emerging evidence suggests that tensor product
random projections are also effective in practice. See Section 9.4.

Some authors have proposed using random coordinate sampling to solve
the rangefinder problem. We cannot recommend this approach unless it
is impossible to use one of the random embeddings described above. See
Section 9.6 for a discussion of random coordinate sampling and situations
where it may be appropriate.

11.5.2. Universality
In practice, if the test matrix is a mixing random embedding, the error in
the rangefinder is somewhat insensitive to the precise distribution of the test
matrix. In this case we can use the Gaussian theory to obtain good heuristics
about the performance of other types of embeddings. Regardless, we always
recommend using a posteriori error estimates to validate the performance
of the rangefinder method, as well as downstream matrix approximations;
see Section 12.

11.5.3. Aside: Subspace embeddings
If we merely assume that the test matrix is a subspace embedding, then we
can still perform a theoretical analysis of the rangefinder algorithm. Here is
a typical result, adapted from Halko et al. (2011a, Theorem 11.2).

Theorem 11.6 (rangefinder: SRTT). Fix a matrix B ∈ F
m×n with

singular values σ1 ≥ σ2 ≥ ·· · . Choose a natural number k, and draw an
SRTT embedding matrix Ω ∈ F

n×ℓ where

ℓ≥ 8(k+8log(kn)) logk.

Construct the sample matrix Y = BΩ. Then

‖(I−PY)B‖ ≤ (1+3
√
n/ℓ) ·σk+1,

with failure probability at most O(k−1).

Sketch of proof. By Theorem 11.4,

‖(I−PY)B‖ ≤ [1+‖Ω2‖‖Ω†
1‖]σk+1.

With the specified choice of ℓ, the test matrix Ω is likely to be an oblivious
subspace embedding of the k -dimensional subspace V1 with distortion 1/3.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

476 P.-G. Martinsson and J. A. Tropp

Thus the matrix Ω
†
1 has spectral norm bounded by 3. The matrix

√
ℓ/nΩ

is orthonormal, so the spectral norm of Ω2 is bounded by
√
n/ℓ. �

The lower bound in the subspace embedding property (8.5) is the primary
fact about the SRTT used in the proof. But this is only part of the reason
that the rangefinder works. Accordingly, the outcome of this ‘soft’ analysis is
qualitatively weaker than the ‘hard’ analysis in Theorem 11.5. The resulting
bound does not explain the actual (excellent) performance of Algorithm 7
when implemented with an SRTT.

11.6. Subspace iteration

Theorem 11.5 shows that the basic randomized rangefinder procedure, Al-
gorithm 7, can be effective for target matrices B with a rapidly decaying
spectrum. Nevertheless, in many applications, we encounter matrices that
do not meet this criterion. As in the case of spectral norm estimation (Sec-
tion 6), we can resolve the problem by powering the matrix.

11.6.1. Rangefinder with powering
Let B ∈ F

m×n be a fixed input matrix, and let q be a natural number. Let
Ω ∈ F

m×ℓ be a random test matrix. We form the sample matrix

Y = (BB∗)qΩ

by repeated multiplication. Then we compute an orthobasis Q ∈ F
m×ℓ for

the range of Y using a QR factorization method.
See Algorithm 9 for pseudocode. In general, the arithmetic cost is domin-

ated by the O(qmnℓ) cost of the matrix–matrix multiplications. Economies
are possible when B admits fast multiplication. Unfortunately, when power-
ing is used, it is not possible to fundamentally accelerate the computation
by using a structured test matrix Ω.

Algorithm 9 coincides with the classic subspace iteration algorithm with a
random start. Historically, subspace iteration was regarded as a method for
spectral computations. The block size ℓ was often chosen to be quite small,
say ℓ=3 or ℓ=4, because the intention was simply to resolve singular values
with multiplicity greater than one.

The randomized NLA literature contains several new insights about the
behaviour of randomized subspace iteration. It is now recognized that iter-
ation is not required. In practice, q = 2 or q = 3 is entirely adequate to solve
the rangefinder problem to fairly high accuracy. The modern perspective
also emphasizes the value of running subspace iteration with a very large
block size ℓ to obtain matrix approximations.

Remark 11.7 (history). Rokhlin, Szlam and Tygert (2009) introduced
the idea of using randomized subspace iteration to obtain matrix approx-
imations by selecting a large block size ℓ and a small power q. Halko et al.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 477

Algorithm 9 The powered randomized rangefinder.
Implements the procedure from Section 11.6.

Input: Input matrix B ∈ F
m×n, target rank ℓ, depth q

Output: Orthonormal matrix Q ∈ F
m×ℓ

1 function PowerRangefinder(B, ℓ, q)
2 Draw a random matrix Ω ∈ F

m×ℓ

3 Y0 =Ω

4 for i= 1, . . . ,q do
5 [Yi−1, ∼] = qr econ(Yi−1)
6 Yi = B(B∗Yi−1)

7 [Q, ∼] = qr econ(Yq)

(2011a) refactored and simplified the algorithm, and they presented a com-
plete theoretical justification for the approach. Subsequent analysis appears
in Gu (2015).

11.6.2. Analysis
The analysis of the powered rangefinder is an easy consequence of the fol-
lowing lemma (Halko et al. 2011a, Proposition 8.6).

Lemma 11.8 (powering). Let B ∈ F
m×n be a fixed matrix, and let

P ∈ F
m×m be an orthogonal projector. For any number q ≥ 1,

‖(I−P)B‖2q ≤ ‖(I−P)(BB∗)q‖.

Proof. This bound follows immediately from the Araki–Lieb–Thirring in-
equality (Bhatia 1997, Theorem IX.2.10). �

Theorem 11.5 gives us bounds for the right-hand side of the inequality in
Lemma 11.8 when P is the orthogonal projector onto the subspace generated
by the powered rangefinder.

Corollary 11.9 (powered rangefinder: Gaussian analysis). Under
the same conditions as Theorem 11.5, let Y= (BB∗)qΩ be the sample matrix
computed by Algorithm 9. Then

E‖(I−PY)B‖ ≤ (E‖(I−PY)B‖2q)1/(2q)

≤
[(

1+

√
k

ℓ−k−1

)
σ2q
k+1+(EZ)

(∑
j>k

σ4q
j

)1/2
]1/(2q)

.

In other words, powering the matrix B drives the error in the rangefinder
to σk+1 exponentially fast as the parameter q increases. In cases where the
target matrix has some spectral decay, it suffices to take q = 2 or q = 3 to
achieve satisfactory results. For matrices with a flat spectral tail, however,

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

478 P.-G. Martinsson and J. A. Tropp

Algorithm 10 The Krylov randomized rangefinder.
Implements the procedure from Section 11.7.
Use with caution! Unreliable in floating-point arithmetic.

Input: Input matrix B ∈ F
m×n, target rank ℓ, depth q

Output: Orthonormal matrix Q ∈ F
m×2(q+1)ℓ

1 function KrylovRangefinder(B, ℓ, q)
2 Draw a random matrix Ω ∈ F

n×ℓ

3 [Y0, ∼] = qr econ(Ω)
4 for i= 1, . . . ,q do
5 [Yi−1, ∼] = qr econ(Yi−1)
6 Yi = B(B∗Yi−1)

7 [Q, ∼] = qr econ([Y0, . . . ,Yq])

we may need to set q ≈ logmin{m,n} to make the error a constant multiple
of σk+1.

11.7. Block Krylov methods

As in the case of spectral norm estimation (Section 6), we can achieve
more accurate results with Krylov subspace methods. Nevertheless, this
improvement comes at the cost of additional storage and more complicated
algorithms.

11.7.1. Rangefinder with a Krylov subspace
Let B ∈ F

m×n be a fixed input matrix, and let q be a natural number.
Let Ω ∈ F

m×ℓ be a random test matrix. We can form the extended sample
matrix

Y =
[
Ω (B∗B)Ω · · · (B∗B)qΩ

]
.

Then we compute an orthobasis Q ∈ F
m×(q+1)ℓ using a QR factorization

method.
See Algorithm 10 for pseudocode. This dominant source of arithmetic is

the O(qmnℓ) cost of matrix–matrix multiplication. The QR factorization
now requires O(q2ℓ2m) operations, a factor of q2 more than the powered
rangefinder. We also need to store O(qmℓ) numbers, which is roughly a
factor q more than the powered rangefinder. Nevertheless, there is evidence
that we can balance the values of ℓ and q to make the computational cost
of the Krylov method comparable with the cost of the power method – and
still achieve higher accuracy.

Historically, block Lanczos methods were used for spectral computations
and for SVD computations. The block size ℓ was typically chosen to be
fairly small, say ℓ = 3 or ℓ = 4, with the goal of resolving singular values

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 479

with multiplicity greater than one. The depth q of the iteration was usually
chosen to be quite large. There is theoretical and empirical evidence that
this parameter regime is the most efficient for resolving the largest singular
values to high accuracy (Yuan, Gu and Li 2018).

The randomized NLA literature has recognized that there are still poten-
tial advantages to choosing the block size ℓ to be very large and to choose
the depth q to be quite small (Halko et al. 2011b, Musco and Musco 2015).
This parameter regime leads to algorithms that are more efficient on mod-
ern computer architectures, and it still works extremely well for matrices
with a modest amount of spectral decay (Tropp 2018). The contemporary
literature also places a greater emphasis on the role of block Krylov methods
for computing matrix approximations.

Remark 11.9 (history). Block Lanczos methods, which are an efficient
implementation of the block Krylov method for a symmetric matrix, were
proposed by Cullum and Donath (1974) and by Golub and Underwood
(1977). The extension to the rectangular case appears in Golub, Luk and
Overton (1981). These algorithms have received renewed attention, begin-
ning with Halko et al. (2011b). The theoretical analysis of randomized block
Krylov methods is much more difficult than the analysis of randomized sub-
space iteration. See Musco and Musco (2015), Yuan et al. (2018) and Tropp
(2018) for some results.

11.7.2. Alternative bases
Algorithm 10 computes a monomial basis for the Krylov subspace, which is
a poor choice numerically. Let us mention two more practical alternatives.

(1) Block Lanczos. The classical approach uses the block Lanczos itera-
tion with reorthogonalization to compute a Lanczos-type basis for the
Krylov subspace. Algorithm 11 contains pseudocode for this approach
adapted from Golub et al. (1981). The basis computed by this algorithm
has the property that the blocks Qi ∈ F

m×ℓ of the sample matrix are
mutually orthogonal. The cost is similar to the cost of computing the
monomial basis, but there are advantages when the subspace is used
for spectral computations (Section 6). Indeed, we can approximate the
largest singular values of A by means of the largest singular values of
the band matrix

R=




R1 R∗
2

R3 R∗
4

. . .
. . .

R2q−1 R∗
2q

R2q+1



.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

480 P.-G. Martinsson and J. A. Tropp

Algorithm 11 The Lanczos randomized rangefinder.
Implements the Krylov rangefinder (Section 11.7) with block Lanczos bi-
diagonalization.

Input: Input matrix B ∈ F
m×n, target rank ℓ, depth q

Output: Orthonormal matrix Q ∈ F
m×(q+1)ℓ

1 function LanczosRangefinder(B, ℓ, q)
2 Draw a random matrix Ω ∈ F

m×ℓ

3 [Q0, ∼] = qr econ(Ω)
4 W0 = BQ0

5 [P0,R1] = qr econ(W0)
6 for i= 1, . . . ,q do
7 Zi = B∗Pi−1−Qi−1R

∗
2i−1 ⊲ Lanczos recursion, part 1

8 for j = 0, . . . ,i−1 do ⊲ Double Gram–Schmidt
9 Zi = Zi−Qj(Q

∗
jZi)

10 Zi = Zi−Qj(Q
∗
jZi)

11 [Qi,R2i] = qr econ(Zi)
12 Wi = BQi−Pi−1R

∗
2i ⊲ Lanczos recursion, part 2

13 for j = 0, . . . ,i−1 do ⊲ Double Gram–Schmidt
14 Wi =Wi−Pj(P

∗
jWi)

15 Wi =Wi−Pj(P
∗
jWi)

16 [Pi,R2i+1] = qr econ(Wi)

17 Q= [Q0, . . . ,Qq]

(The notation in this paragraph corresponds to the quantities computed
in Algorithm 11.)

(2) Chebyshev. Suppose that we have a good upper bound for the spectral
norm of the target matrix. (For example, we can obtain one using
techniques from Section 6.) Then we can compute a Chebyshev basis
for the Krylov subspace. The advantage of this approach is that we can
postpone all normalization and orthogonalization steps to the end of
the computation, which is beneficial for distributed computation. This
approach, which is being presented for the first time, is inspired by
Joubert and Carey (1991). See Algorithm 12 for pseudocode.

11.7.3. Analysis
We are not aware of a direct analysis of Krylov subspace methods for solving
the rangefinder problem. One may extract some bounds from analysis of
randomized SVD algorithms. The following result is adapted from Tropp
(2018).

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 481

Algorithm 12 The Chebyshev randomized rangefinder.
Implements the Krylov rangefinder (Section 11.7) with a Chebyshev basis.

Input: Input matrix B ∈ F
m×n, target rank ℓ, depth q and norm bound

‖B‖ ≤ ν
Output: Orthonormal matrix Q ∈ F

m×(q+1)ℓ

1 function ChebyshevRangefinder(B, ℓ, q)
2 Draw a random matrix Ω ∈ F

m×ℓ

3 [Y0, ∼] = qr econ(Ω)
4 Y1 = (2/ν)B(B∗Y0)−Y0

5 for i= 2, . . . ,q do
6 Yi = (4/ν)B(B∗Yi−1)−2Yi−1−Yi−2 ⊲ Chebyshev recursion

7 [Q, ∼] = qr econ([Y0, . . . ,Yq])

Theorem 11.11 (Krylov rangefinder: Gaussian analysis). Under
the conditions in Theorem 11.5, let Y be the sample matrix computed by
Algorithm 10. For 0≤ ε≤ 1/2,

E‖(I−PY)B‖2 ≤
[
1+2ε+

9nk(ℓ−k)
ℓ−k−2

· e−4q
√
ε

]
σ2
k+1.

In other words, the Krylov method can drive the error bound for the
rangefinder to O(ε) by using a Krylov subspace with depth q≈ log(n/ε)/

√
ε.

In contrast, the power method needs about q ≈ (logn)/ε iterations to reach
the same target. The difference can be very substantial when ε is small.

11.7.4. Spectral computations
The Krylov rangefinder can also be used for highly accurate computation of
the singular values of a general matrix and the eigenvalues of a self-adjoint
matrix. See Musco and Musco (2015), Yuan et al. (2018) and Tropp (2018)
for discussion and analysis.

12. Error estimation and adaptivity

The theoretical analysis of the randomized rangefinder in Section 11 de-
scribes with great precision when the procedure is effective, and what errors
to expect. From a practical point of view, however, the usefulness of this
analysis is limited by the fact that we rarely have advance knowledge of
the singular values of the matrix to be approximated. In this section we
consider the more typical situation where we are given a matrix A ∈ F

m×n

and a tolerance ε, and it is our job to find a low-rank factorization of A
that is accurate to within precision ε. In other words, part of the task to be
solved is to determine the ε-rank of A.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

482 P.-G. Martinsson and J. A. Tropp

To complete this job, we must equip the rangefinder with an a posteriori
error estimator: given an orthonormal matrix Q ∈ F

m×ℓ whose columns
form a putative basis for the range of A, it estimates the corresponding
approximation error ‖A−QQ∗A‖.

To solve the fixed-error approximation problem, the idea is to start with
a lowball ‘guess’ at the rank, run the rangefinder, and then check to see
if we are within the requested tolerance. If the answer is negative, then
there are several strategies for how to proceed. Typically, we would just
draw more samples to enrich the basis we already have on hand. But in
some circumstances, it may be better to start over or to try an alternative
approach, such as increasing the amount of powering that is done.

12.1. A posteriori error estimation

Let A ∈ F
m×n be a target matrix, and let Q ∈ F

m×ℓ be an orthonormal
matrix whose columns may or may not form a good basis for the range of
A. We typically think of Q as being the output of one of the rangefinder
algorithms described in Section 11. Our goal is now to produce an inexpens-
ive and reliable estimate of the error |||(I−QQ∗)A||| with respect to some
norm |||·|||.

To do so, we draw on the techniques for norm estimation by sampling
(Sections 4–5). The basic idea is to collect a (small) auxiliary sample

Z= AΦ, (12.1)

where the test matrix Φ ∈ F
n×s is drawn from a Gaussian distribution. We

assume that Φ is statistically independent from whatever process was used
to compute Q. Then

(I−QQ∗)Z= (I−QQ∗)AΦ ∈ F
m×s (12.2)

is a random sample of the error in the approximation. We can now use any
of the methods from Sections 4–5 to estimate the error from this sample.
For example,

‖(I−QQ∗)A‖2F ≈ 1

s
‖(I−QQ∗)Z‖2F.

The theory in Section 4 gives precise tail bounds for this estimator. Sim-
ilarly, we can approximate the Schatten 4-norm by computing a sample
variance. Beyond that, the Valiant–Kong estimator (Section 5.4) allows us
to approximate higher-order Schatten norms.

The cost of extracting the auxiliary sample (12.1) is almost always much
smaller than the cost of running the rangefinder itself; it involves only s
additional matrix–vector multiplications, where s can be thought of as a
small fixed number, say s= 10.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 483

12.2. A certificate of accuracy for structured random matrices

The idea of drawing an auxiliary sample (12.1) for purposes of error estima-
tion is particularly appealing when the rangefinder implementation involves
a structured random test matrix (see Section 11.5). These structured ran-
dom maps can be much faster than Gaussian random matrices, while pro-
ducing errors that are just as small (Halko et al. 2011a, Section 7.4). Their
main weakness is that they come with far weaker a priori error guarantees;
see Theorem 11.6.

Now, consider a situation where we use a structured random matrix to
compute an approximate basis Q for the range of a matrix A (via Al-
gorithm 7), and a small Gaussian random matrix Φ to draw an auxiliary
sample (12.1) from A. The additional cost of extracting the ‘extra’ sample is
small, both in terms of practical execution time and in terms of the asymp-
totic cost estimates (which would generally remain unchanged). However,
the computed output can now be relied on with supreme confidence, since it
is backed up by the strong theoretical results that govern Gaussian matrices.

One may even push these ideas further and use the ‘certificate of accuracy’
to gain confidence in randomized sampling methods based on heuristics
or educated guesses about the matrix being estimated. For instance, one
may observe that matrices that arise in some application typically have low
coherence (Section 9.6), and one may implement a fast uniform sampling
strategy that only works in this setting. No matter how unsafe the sampling
strategy, we can trust the a posteriori error estimator when it promises that
the computed factorization is sufficiently accurate.

The general idea of observing the action of a residual on random vectors
in order to get an estimate for its magnitude can be traced back at least as
far as Girard (1989). Here, we followed the discussion in Martinsson (2018,
Section 14) and Tropp et al. (2019, Section 6).

Remark 12.1 (rank doubling). Let us consider what should be done if
the a posteriori error estimator tells us that a requested tolerance has not
yet been met. Since many structured random matrices have the unfortu-
nate property that it is not an easy matter to recycle the sample already
computed in order to build a larger one, it often makes sense to simply start
from scratch, but doubling the number of columns in the test matrix. Such
a strategy of doubling the rank at each attempt typically does not change
the order of the dominant term in the asymptotic cost. It may, however, be
somewhat wasteful from a practical point of view.

12.3. Adaptive rank determination using Gaussian test matrices

When a Gaussian test matrix is used, we can incorporate a posteriori error
estimation into the rangefinder algorithm with negligible increase in the
amount of computation.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

484 P.-G. Martinsson and J. A. Tropp

To illustrate, let us first consider a situation where we are given a matrix
A, and we use the randomized rangefinder (Algorithm 7) with a Gaussian
random matrix to find an orthonormal basis for its approximate range. We
do not know the numerical rank of A in advance, so we use a number ℓ of
samples that we believe is likely to be more than enough.

In order to include a posteriori error estimation, we conceptually split
the test matrix so that

Ω= [Ω1 Ω2], (12.3)

where Ω1 holds the first ℓ− s columns of Ω. The thin sliver Ω2 that holds
the last s columns will temporarily play the part of the independent test
matrix Φ. (Note that the matrices Ωi defined here are different from those
in the proof of Theorem 11.5.)

The sample matrix inherits a corresponding split

Y = AΩ= [AΩ1 AΩ2] =: [Y1 Y2]. (12.4)

In order to orthonormalize the columns of Y to form an approximate basis
for the column space, we perform an unpivoted QR factorization:

Y = [Q1 Q2]

[
R11 R12

0 R22

]
,

where the partitioning conforms with (12.4). Thus Y1 = Q1R11 and Y2 =
Q1R12+Q2R22. Now, observe that

Q2R22 = Y2−Q1R12 = Y2−Q1Q
∗
1Y2 = (I−Q1Q

∗
1)AΩ2.

In other words, the matrix Q2R22 is a sample of the residual error result-
ing from using Ω1 as the test matrix. We can analyse the sample Q2R22

using the techniques described in Section 12.1 to derive an estimate on
the norm of the residual error. If the resulting estimate is small enough,
we can confidently trust the computed factorization. (When the rangefinder
is used as a preliminary step towards computing a partial SVD of the matrix,
we may as well use the full orthonormal basis in Q in any steps that follow.)

If the error estimate computed is larger than what is acceptable, then
additional work must be done, typically by drawing additional samples to
enrich the basis already computed, as described in the next section.

12.4. An incremental algorithm based on Gaussian test matrices

The basic error estimation procedure outlined in Section 12.3 is appropriate
when it is not onerous to draw a large number ℓ of samples and when
the a posteriori error merely serves as an insurance policy against a rare
situation where the singular values decay more slowly than expected. In
this section we describe a technique that is designed for situations where
we have no notion what the rank may be in advance. The idea is to build

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 485

Algorithm 13 Incremental rangefinder.
Implements the first procedure from Section 12.4.
This technique builds an ON basis for a given matrix by processing blocks
of vectors at a time. The method stops when an a posteriori error estimator
indicates that a specified tolerance has been met.

Input: Target matrix A ∈ F
m×n, tolerance τ ∈ R+, block size b

Output: ON matrix Q such that ‖A−QQ∗A‖ ≤ τ with high probability

1 function IncrementalRangefinder(A, τ , b)
2 Y = AΩ ⊲ Draw Ω ∈ F

n×b from a Gaussian distribution
3 [Q1, ∼] = qr econ(Y)
4 i= 1
5 while norm est(Y)> τ do ⊲ Norm estimator in Section 12.1
6 i= i+1
7 Y = AΩ ⊲ Draw Ω ∈ F

n×b from a Gaussian distribution
8 Y = Y−∑i−1

j=1Qj(Q
∗
jY)

9 [Qi, ∼] = qr econ(Y)

10 Q=
[
Q1 Q2 · · · Qi−1

]

the approximate basis incrementally by drawing and processing one batch
of samples at a time, while monitoring the errors as we go. The upshot is
that this computation can be organized in such a way that the total cost
is essentially the same as it would have been had we known the numerical
rank in advance.

We frame the rangefinder problem as usual: for a given matrix A and a
given tolerance τ , we seek to build an orthonormal matrix Q such that

‖A−QQ∗A‖ ≤ τ.

The procedure that we describe will be controlled by a tuning parameter b
that specifies how many columns we process at a time. If we choose b too
large, we may overshoot the numerical rank of A and perform more work
than necessary. If b is too small, computational efficiency may suffer; see
Section 16.2. In many environments, picking b between 10 and 100 would
be about right.

While the a posteriori error estimator signals that the error tolerance has
not been met, the incremental rangefinder successively draws blocks of b
Gaussian random vectors, computes the corresponding samples, and adds
them to the basis. See Algorithm 13. To understand how the method works,
observe that, after line 8 has been executed, the matrix Y holds the sample

Y = (I−QQ∗)AΩ (12.5)

from the residual (I−QQ∗)A, where Q is the cumulative basis that has been

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

486 P.-G. Martinsson and J. A. Tropp

Algorithm 14 Incremental rangefinder with updating.
Implements the second procedure from Section 12.4.
This variation of Algorithm 13 is suitable when the given matrix A is small
enough that it can be updated explicitly. The method builds an approximate
factorization A ≈ QB that is guaranteed to satisfy ‖A−QB‖ ≤ τ for a re-
quested tolerance τ .

Input: Target matrix A ∈ F
m×n, tolerance τ ∈ R+, block size b

Output: ON matrix Q and a matrix B such that ‖A−QB‖ ≤ τ

1 function IncrementalRangefinderWithUpdating(A, τ , b)
2 Y = AΩ ⊲ Draw Ω ∈ F

n×b from a Gaussian distribution
3 [Q1, ∼] = qr econ(Y)
4 B1 =Q∗

1A

5 A= A−Q1B1

6 i= 1
7 while ‖A‖> τ do ⊲ Use an inexpensive norm such as Frobenius
8 i= i+1
9 Y = AΩ ⊲ Draw Ω ∈ F

n×b from a Gaussian distribution
10 [Qi, ∼] = qr econ(Y)
11 Bi =Q∗

iA

12 A= A−QiBi

13 Q=
[
Q1 Q2 · · · Qi

]

14 B=
[
B∗

1 B∗
2 · · · B∗

i

]∗

built at that point and where Ω is an n× b matrix drawn from a Gaussian
distribution. Since (12.5) holds, we can estimate ‖(I−QQ∗)A‖ using the
techniques described in Section 12.1.

In situations where the matrix A is small enough to fit in RAM, it of-
ten makes sense to explicitly update it after every step. The benefit to
doing so is that one can then determine the norm of the remainder matrix
explicitly. Algorithm 14 summarizes the resulting procedure. After line 9
of the algorithm has been executed, the formula (12.5) holds because, at
this point in the computation, A has been overwritten by (I−QQ∗)A.
Algorithm 14 relates to Algorithm 13 in the same way that modified Gram–
Schmidt relates to classical Gram–Schmidt.

For matrices whose singular values decay slowly, incorporating a few steps
of power iteration (as described in Section 11.6) is very beneficial. In this
environment, it is often necessary to incorporate additional reorthonormal-
izations to combat loss of orthogonality due to round-off errors. Full descrip-
tions of the resulting techniques can be found in Martinsson and Voronin
(2016).

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 487

A version of Algorithm 14 suitable for sparse matrices or matrices stored
out-of-core is described in Yu et al. (2017b). This variant reorganizes the
computation to avoid the explicit updating step and to reduce the commu-
nication requirements overall. Observe that it is still possible to evaluate the
Frobenius norm of the residual exactly (without randomized estimation) by
using the identity

‖A‖2F = ‖(I−QQ∗)A‖2F+‖QQ∗A‖2F
= ‖(I−QQ∗)A‖2F+‖QB‖2F
= ‖(I−QQ∗)A‖2F+‖B‖2F,

where the first equality holds since the column spaces of (I−QQ∗)A and
QQ∗A are orthogonal and where the third equality holds since Q is or-
thonormal. For an error measure, we can use the resulting relationship,

‖(I−QQ∗)A‖F =

√
‖A‖2F−‖B‖2F,

observing that both ‖A‖F and ‖B‖F can be computed explicitly.

13. Finding natural bases: QR, ID and CUR

In Section 11 we explored a number of efficient techniques for building a tall
thin matrix Q whose columns form an approximate basis for the range of
an input matrix A that is numerically rank-deficient. The columns of Q are
orthonormal, and they are formed as linear combinations of many columns
from the matrix A.

It is sometimes desirable to work with a basis for the range that consists
of a subset of the columns of A itself. In this case one typically has to give
up on the requirement that the basis vectors be orthogonal. We gain the
advantage of a basis that shares properties with the original matrix, such
as sparsity or nonnegativity. Moreover, for purposes of data interpretation
and analysis, it can be very useful to identify a subset of the columns that
distils the information in the matrix.

In this section we start by describing some popular matrix decompositions
that use ‘natural’ basis vectors for the column space or the row space, or for
both. We show how these matrices can be computed somewhat efficiently by
means of slight modifications to classical deterministic techniques. Then we
describe how to combine deterministic and randomized methods to obtain
algorithms with superior performance.

13.1. The CUR decomposition, and three flavours of interpolative
decompositions

To introduce the low-rank factorizations that we investigate in this section,
we describe how they can be used to represent an m×n matrix A of exact

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

488 P.-G. Martinsson and J. A. Tropp

rank k, where k <min(m,n). This is an artificial setting, but it allows us to
convey the key ideas using a minimum of notational overhead.

A basic interpolative decomposition (ID) of a matrix A with exact rank
k takes the form

A = C Z,
m×n m×k k×n (13.1)

where the matrix C is given by a subset of the columns of A and where
Z is a matrix that contains the k×k identity matrix as a submatrix. The
fact that the decomposition (13.1) exists is an immediate consequence of
the definition of rank. A more significant observation is that there exists a
factorization of the form (13.1) that is well-conditioned, in the sense that
no entry of Z is larger than one in modulus. This claim can be established
through an application of Cramer’s rule. See Goreinov, Zamarashkin and
Tyrtyshnikov (1997) and Martinsson, Rokhlin and Tygert (2006b)

The factorization (13.1) uses a subset of the columns of A to span its
column space. Of course, there is an analogue factorization that uses a
subset of the rows of A to span the row space. We write this as

A = X R,
m×n m×k k×n (13.2)

where R is a matrix consisting of k rows of A, and where X is a matrix that
contains the k×k identity matrix.

For bookkeeping purposes, we introduce index vectors Js and Is that
identify the columns and rows chosen in the factorizations (13.1) and (13.2).
To be precise, let Js ⊂ {1,2, . . . ,n} denote the index vector of length k such
that

C= A(: ,Js).

Analogously, we let Is ⊂ {1,2, . . . ,m} denote the index vector for which

R= A(Is, :).

The index vectors Is and Js are often referred to as skeleton index vectors,
whence the subscript ‘s’. This terminology arises from the original literature
about these factorizations (Goreinov et al. 1997).

A related two-sided factorization is based on extracting a row/column
submatrix. In this case the basis vectors for the row and column space are
less interpretable. More precisely,

A = X As Z,
m×n m×k k×k k×n (13.3)

where X and Z are the same matrices as those that appear in (13.1) and
(13.2), and where As is the k×k submatrix of A given by

As = A(Is,Js).

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 489

To distinguish among these variants, we refer to (13.1) as a column ID, to
(13.2) as a row ID, and to (13.3) as a double-sided ID.

We introduce a fourth factorization, often called the CUR decomposition.
For a matrix of exact rank k, it takes the form

A = C U R,
m×n m×k k×k k×n (13.4)

where C and R are the matrices that appeared in (13.1) and (13.2), which
consist of k columns and k rows of A, and where U is a small matrix that
links them together. In the present case, where A has exact rank k, the
matrix U must take the form

U= (A(Is,Js))
−1. (13.5)

The factorizations (13.3) and (13.4) are related through the formula

A= XAsZ= (XAs)︸ ︷︷ ︸
=C

A−1
s︸︷︷︸

=U

(AsZ)︸ ︷︷ ︸
=R

.

Comparing the two formats, we see that the CUR (13.4) has an advantage
in that it requires very little storage. As long as A is stored explicitly (or is
easy to retrieve), the CUR factorization (13.4) is determined by the index
vectors Is and Js and the linking matrix U. If A is not readily available,
then, in order to use the CUR, we need to evaluate and store the matrices
C and R. When A is sparse, the latter approach can still be more efficient
than storing the matrices X and Z.

A disadvantage of the CUR factorization (13.4) is that, when the singular
values of A decay rapidly, the factorization (13.4) is typically numerically
ill-conditioned. The reason is that, whenever the factorization is a good
representation of A, the singular values of As should approximate the k
dominant singular values of A, so the singular values of U end up approx-
imating the inverses of these singular values. This means that U will have
elements of magnitude 1/σk, which is clearly undesirable when σk is small.
In contrast, the ID (13.3) is numerically benign.

In the numerical analysis literature, what we refer to as an interpolative
decomposition is often called a skeleton factorization of A. This term dates
back at least as far as Goreinov et al. (1997), where the term pseudo-skeleton
was used for the CUR decomposition (13.4).

Remark 13.1 (storage-efficient ID). We mentioned that the matrices
X and Z that appear in the ID are almost invariably dense, which appears
to necessitate the storage of (m+n)k floating-point numbers for the double-
sided ID. Observe, however, that these matrices satisfy the relations

X= CA−1
s and Z= A−1

s R.

This means that as long as we store the index vectors Is and Js, the matrices

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

490 P.-G. Martinsson and J. A. Tropp

X and Z can be applied on the fly whenever needed, and do not need to be
explicitly formed.

13.2. Approximate rank

In practical applications, the situation we considered in Section 13.1, where
a matrix has exact rank k, is rare. Instead, we typically work with a matrix
whose singular values decay fast enough that it is advantageous to form
a low-rank approximation. Both the ID and the CUR can be used in this
environment, but now the discussion becomes slightly more involved.

To illustrate, let us consider a situation where we are given a tolerance
ε, and we seek to compute an approximation Ak of rank k, with k as small
as possible, such that ‖A−Ak‖ ≤ ε. If Ak is a truncated singular value
decomposition, then the Eckart–Young theorem implies that the rank k
of the approximation Ak will be minimal. When we use an approximate
algorithm, such as the RSVD (Section 11.2), we may not find the exact
optimum, but we typically get very close.

What happens if we seek an ID Ak that approximates A to a fixed tol-
erance? There is no guarantee that the rank k (i.e. the number of rows or
columns involved) will be close to the rank of the truncated SVD. How close
can we get in practice?

When the singular values of A decay rapidly, then the minimal rank at-
tainable by an approximate ID is close to what is attainable with an SVD.
Moreover, the algorithms we will describe for computing an ID produce an
answer that is close to the optimal one.

When the singular values decay slowly, however, the difference in
rank between the optimal ID and the optimal SVD can be quite substantial
(Gu and Eisenstat 1996). On top of that, the algorithms used to compute
the ID can result in answers that are still further away from the optimal
value (Cheng, Gimbutas, Martinsson and Rokhlin 2005).

When the CUR decomposition is used in an environment of approximate
rank, standard algorithms start by determining index sets Is and Js that
identify the spanning rows and columns, and then proceed to the problem
of finding a ‘good’ linking matrix Us. One could still use the formula (13.5),
but this is rarely a good idea. The most obvious reason is that the matrix
A(Is,Js) need not be invertible in this situation. Indeed, when randomized
sampling is used to find the index sets, it is common practice to compute
index vectors that hold substantially more elements than is theoretically
necessary, which can easily make A(Is,Js) singular or, at the very least,
highly ill-conditioned. In this case a better approximation is given by

U= C†AR†, (13.6)

with C† and R† the pseudoinverses of C and R. (As always, pseudoinverses
should be applied numerically by computing a QR or SVD factorization.)

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 491

13.3. Deterministic methods, and the connection to column-pivoted QR

A substantial amount of research effort has been dedicated to the ques-
tion of how to find a set of good spanning columns and/or rows of a given
matrix. It is known that the task of finding the absolutely optimal one is
combinatorially hard, but efficient algorithms exist that are guaranteed to
produce a close-to-optimal answer (Gu and Eisenstat 1996). In this subsec-
tion we briefly discuss some deterministic methods that work well for dense
matrices of modest size. In Section 13.4 we will show how these methods
can be combined with randomized techniques to arrive at algorithms that
work well for general matrices, whether they are small or huge, sparse or
dense, available explicitly or not, etc.

Perhaps the most obvious deterministic method for computing an ID is
the classical Gram–Schmidt process, which selects the columns or rows in
a greedy fashion. Say we are interested in the column ID (13.1) of a given
matrix A. The Gram–Schmidt procedure first grabs the largest column and
places it in the first column of C. Then it projects the remaining columns
onto the orthogonal complement of the one that was picked. It places the
largest of the resulting columns in the second column of C, and so on.

In the traditional numerical linear algebra literature, it is customary to
formulate the Gram–Schmidt process as a column-pivoted QR (CPQR) de-
composition. After k steps, this factorization results in a partial decompos-
ition of A such that

A Π = Q S + E,
m×n n×n m×k k×n m×n (13.7)

where the columns of Q form an orthonormal basis for the space spanned
by the k selected columns of A, where S is upper-triangular, where E is a
‘remainder matrix’ holding what remains of the n−k columns of A that have
not yet been picked, and where Π is a permutation matrix that reorders the
columns of A in such a way that the k columns picked are the first k columns
of AΠ. (We use the letter S for the upper-triangular factor in lieu of the
more traditional R to avoid confusion with the matrix R holding spanning
rows in (13.2) and (13.4).)

In order to convert (13.7) into the ID (13.1), we split off the first k columns
of S into a k×k upper-triangular matrix S11, so that

S=
[k n−k

k S11 S12

]
.

Upon multiplying (13.7) by Π∗ from the right, we obtain

A=QS11︸ ︷︷ ︸
=:C

[
Ik S−1

11 S12

]
Π∗

︸ ︷︷ ︸
=:Z

+EΠ∗. (13.8)

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

492 P.-G. Martinsson and J. A. Tropp

We recognize equation (13.8) as the ID (13.1), with the only difference that
there is now a remainder term that results from the fact that A is only
approximately rank-deficient. (Observe that the remainder terms in (13.7)
and in (13.8) are identical, up to a permutation of the columns.)

A row ID can obviously be computed by applying Gram–Schmidt to the
rows of A instead of the columns. Alternatively, one may express this as a
column-pivoted QR factorization of A∗ instead of A.

In order to build a double-sided ID, one starts by computing a single-
sided ID. If m ≥ n, it is best to start with a column ID of A to determine
Js and Z. Then we perform a row ID on the rows of A(: ,Js) to determine
Is and X.

Finally, in order to build a CUR factorization of A, we can easily convert
the double-sided ID to a CUR factorization using (13.5) or (13.6).

Detailed descriptions of all algorithms can be found in Sections 10 and
11 of Martinsson (2018), while analysis and numerical results are given in
Voronin and Martinsson (2017). A related set of deterministic techniques
that are efficient and often result in slightly higher quality spanning sets
than column pivoting are described in Sorensen and Embree (2016). Tech-
niques based on optimized spanning volumes of submatrices are described
in Goreinov et al. (2010) and Thurau, Kersting and Bauckhage (2012).

Remark 13.2 (quality of ID). In this section we have described simple
methods based on the column-pivoted QR factorization for computing a
CUR decomposition, as well as all three flavours of interpolatory decom-
positions. In discussing the quality of the resulting factorizations, we will
address two questions: (1) How close to minimal is the resulting approxim-
ation error? (2) How well-conditioned are the basis matrices?

The NLA literature contains a detailed study of both questions. This
enquiry was instigated by Kahan’s construction of matrices for which
CPQR performs very poorly (Kahan 1966, Section 5). Gu and Eisenstat
(1996) provided a comprehensive analysis of the situation and presented
an algorithm whose asymptotic complexity in typical environments is only
slightly worse than that of CPQR and that is guaranteed to produce near-
optimal results.

In practice, CPQR works well. In almost all cases it yields factoriza-
tions that are close to optimal. Moreover, it gives well-conditioned factor-
izations as long as orthonormality of the basis is scrupulously maintained
(Martinsson et al. 2006b, Cheng et al. 2005).

A more serious problem with the ID and the CUR is that these decom-
positions can exhibit much larger approximation errors than the SVD when
the input matrix has slowly decaying singular values. This issue persists
even when the optimal index sets are used.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 493

13.4. Randomized methods for finding natural bases

The deterministic techniques for computing an ID or a CUR decomposition
in Section 13.3 work very well for small, dense matrices. In this section we
describe randomized methods that work much better for matrices that are
sparse or are just very large.

To be concrete, we consider the problem of finding a vector Is that identi-
fies a set of rows that form a good basis for the row space of a given matrix
A. To do so, we use the randomized rangefinder to build a matrix Y whose
columns accurately span the column space of A as in Section 11. Since Y is
far smaller than A, we can use the deterministic methods in Section 13.3 to
find a set Is of rows of Y that form a basis for the row space of Y. Next, we
establish a simple but perhaps non-obvious fact: the set Is also identifies a
set of rows of A that form a good basis for the row space of A.

To simplify the argument, let us first suppose that we are given an m×n
matrix A of exact rank k, and that we have determined by some means (say,
the randomized rangefinder) an m× k matrix Y whose columns span the
column space of A. Then A admits by definition a factorization

A = Y F,
m×n m×k k×n (13.9)

for some matrix F. Now compute a row ID of Y, by performing Gram–
Schmidt on its rows, as described in Section 13.3. The result is a matrix X

and an index vector Is such that

Y = X Y(Is, :).
m×k m×k k×k (13.10)

The claim is now that {Is,X} is automatically a row ID of A as well. To
prove this, observe that

XA(Is, :) = XY(Is, :)F {use (13.9) restricted to the rows in Is}
= YF {use (13.10)}
= A {use (13.9)}.

The key insight here is simple and powerful: In order to compute a row ID
of a matrix A, the only information needed is a matrix Y whose columns
span the column space of A.

The task of finding a matrix Y such that (13.9) holds to high accuracy
is particularly well suited for the randomized rangefinder described in Sec-
tion 11. Putting everything together, we obtain Algorithm 15. When a
Gaussian random matrix is used, the method has complexity O(mnk).

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

494 P.-G. Martinsson and J. A. Tropp

Algorithm 15 Randomized ID.
Implements the procedure from Section 13.4.
The function ID row refers to any algorithm for computing a row-ID, so
that given a matrix B and a rank k, calling [Is,X] = row ID(B,k) results
in an approximate factorization B ≈ XB(Is, :). The techniques based on
column-pivoted QR described in Section 13.3 work well.

Input: Matrix A ∈ F
m×n, target rank k, oversampling parameter p

Output: An m×k interpolation matrix X and an index vector Is such that
A≈ XA(Is, :)

1 function RandomizedID(A, k, p)
2 Draw an n× (k+p) test matrix Ω, e.g. from a Gaussian distribution
3 Form the sample matrix Y = AΩ ⊲ Powering may be used
4 Form an ID of the n× (k+p) sample matrix: [Is,X] = ID row(Y,k)

Remark 13.3 (O(mn logk) complexity methods). An interesting
thing happens if we replace the Gaussian random matrix Ω in Algorithm 15
with a structured random matrix, as described in Section 9. Then Y is com-
puted at cost O(mn logk), and every step after that has cost O((m+n)k2)
or less.

13.5. Techniques based on coordinate sampling

To find natural bases for a matrix, it is tempting just to sample coordinates
from some probability distribution on the full index vector. Some advantages
and disadvantages of this approach were discussed in Section 9.6.

In the current context, the main appeal of coordinate sampling is that
the cost is potentially lower than the techniques described in this section,
provided that we do not need to expend much effort to compute the sampling
probabilities. This advantage can be decisive in applications where mixing
random embeddings are too expensive.

Coordinate sampling has several disadvantages in comparison to using
mixing random embeddings. Coordinate sampling typically results in worse
approximations for a given budget of rows or columns. Moreover, the quality
of the approximation obtained from coordinate sampling tends to be highly
variable. These vulnerabilities are less pronounced when the matrix has
very low coherence, so that uniform sampling works well. There are also a
few specialized situations where we can compute subspace leverage scores
efficiently. (Section 9.6.1 defines coherence and leverage scores.)

In certain applications, a hybrid approach can work well. First, form an
initial approximation by drawing a very large subset of columns using a
cheap coordinate sampling method. Then slim it down using the techniques

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 495

described here, based on mixing random embeddings. An example of this
methodology appears in Li, Bi, Kwok and Lu (2015a).

There is a distinct class of methods, based on coresets, that explicitly
takes advantage of coordinate structure for computing matrix approxima-
tions. For example, see Feldman, Volkov and Rus (2016). These techniques
can be useful for processing enormous matrices that are very sparse. On
the other hand, they may require larger sets of basis vectors to achieve the
same quality of approximation.

14. Nyström approximation

We continue our discussion of matrix approximation with the problem of
finding a low-rank approximation of a positive semidefinite (PSD) matrix.
There is an elegant randomized method for accomplishing this goal that is
related to our solution to the rangefinder problem.

14.1. Low-rank PSD approximation

Let A∈Hn be a PSD matrix. For a rank parameter k, the goal is to produce
a rank-k PSD matrix Âk ∈ Hn that approximates A nearly as well as the
best rank-k matrix:

‖A− Âk‖. σk+1.

To obtain the approximation, we will adapt the randomized rangefinder
method (Algorithm 7).

14.2. The Nyström approximation

The most natural way to construct a low-rank approximation of a PSD
matrix is via the Nyström method. Let X ∈ F

n×ℓ be an arbitrary test
matrix. The Nyström approximation of A with respect to X is the PSD
matrix

A〈X〉 := (AX)(X∗AX)†(AX)∗. (14.1)

An alternative presentation of this formula is

A〈X〉= A1/2PA1/2XA
1/2,

where PY is the orthogonal projector onto the range of Y. In particular, the
Nyström approximation only depends on the range of the matrix X.

The Nyström approximation (14.1) is closely related to the Schur com-
plement (2.4) of A with respect to X. Indeed,

A/X= A−A〈X〉= A1/2(I−PA1/2X)A1/2.

That is, the Schur complement of A with respect to X is precisely the error
in the Nyström approximation.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

496 P.-G. Martinsson and J. A. Tropp

Proposition 11.1 indicates that the Nyström decomposition is also con-
nected with our approach to solving the rangefinder problem. We immedi-
ately perceive the opportunity to use a random test matrix X to form the
Nyström approximation. Let us describe how this choice leads to algorithms
for computing a near-optimal low-rank approximation of the matrix A.

14.3. Randomized Nyström approximation algorithms

Here is a simple and effective procedure for computing a rank-k PSD ap-
proximation of the PSD matrix A ∈Hn.

First, draw a random test matrix Ω∈ F
n×ℓ, where ℓ≥ k. Form the sample

matrix Y = AΩ ∈ F
n×ℓ. Then compute the Nyström approximation

Â= A〈Ω〉= Y(Ω∗Y)†Y∗. (14.2)

The initial approximation Â has rank ℓ. To truncate the rank to k, we just
report a best rank-k approximation Âk of the initial approximation Â with
respect to the Frobenius norm; see Tropp, Yurtsever, Udell and Cevher
(2017a), Pourkamali-Anaraki and Becker (2019) and Wang, Gittens and
Mahoney (2019).

Let us warn the reader that the formula (14.2) is not suitable for numer-
ical computation. See Algorithm 16 for a numerically stable implementa-
tion adapted from Li et al. (2017) and Tropp et al. (2017a). In general, the
matrix–matrix multiply with A dominates the cost, with O(n2ℓ) arithmetic
operations; this expense can be reduced if either A or Ω admits fast multi-
plication. The approximation steps involve O(nℓ2) arithmetic. Meanwhile,
storage costs are O(nℓ).

Another interesting aspect of Algorithm 16 is that it only uses linear
information about the matrix A. Therefore it can be implemented in the
one-pass or the streaming data model. Remark 15.1 gives more details about
matrix approximation in the streaming model. See Section 19.3.5 for an
application to kernel principal component analysis.

14.4. Analysis

The randomized Nyström method enjoys the same kind of guarantees as the
randomized rangefinder. The following result (Tropp et al. 2017a, Theorem
4.1) extends earlier contributions from Halko et al. (2011a) and Gittens
(2013).

Theorem 14.1 (Nyström: Gaussian analysis). Fix a PSD matrix
A ∈ Hn(F) with eigenvalues λ1 ≥ λ2 ≥ ·· · . Let 1 ≤ k < ℓ ≤ n. Draw a
random test matrix Ω ∈ F

n×ℓ that is standard normal. Then the rank-k
PSD approximation Âk computed by Algorithm 16 satisfies

E‖A− Âk‖ ≤ λk+1+
k

ℓ−k−1

(∑
j>k

λj

)
.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 497

Algorithm 16 Randomized Nyström approximation.
Implements the procedure from Section 14.3.

Input: PSD target matrix A ∈ Hn(F), rank k for approximation, number
ℓ of samples

Output: Rank-k PSD approximation Âk ∈ Hn(F) expressed in factored

form Âk = UΛU∗, where U ∈ F
n×k is orthonormal and Λ ∈ Hk(F) is

nonnegative and diagonal

1 function RandomNyström(A, k, ℓ)
2 Draw a random matrix Ω ∈ F

n×ℓ

3 Form Y = AΩ

4 ν =
√
neps(norm(Y)) ⊲ Compute shift

5 Yν = Y+νΩ ⊲ Samples of shifted matrix
6 C= chol(Ω∗Yν)
7 B= YνC

−1 ⊲ Triangular solve!
8 [U,Σ, ∼] = svd(B) ⊲ Dense SVD
9 Λ=max{0,Σ2−νI} ⊲ Remove shift

10 U=U(: ,1 : k) and Λ= Λ(1 : k,1 : k) ⊲ Truncate rank to k

In other words, the computed rank-k approximation Âk achieves almost
the error λk+1 in the optimal rank-k approximation of A. The error de-
clines as the number ℓ of samples increases and as the ℓ1 norm of the tail
eigenvalues decreases.

When the target matrix A has a sharply decaying spectrum, Theorem 14.1
can be pessimistic. See Tropp et al. (2017a, Section 4) for additional theor-
etical results.

14.5. Powering

We can reduce the error in the randomized Nyström approximation by
powering the input matrix, much as subspace iteration improves the per-
formance in the randomized rangefinder (Section 11.6).

Let A ∈Hn be a PSD matrix. Draw a random test matrix Ω ∈ F
n×ℓ. For

a natural number q, we compute Y=AqΩ by repeated multiplication. Then
the Nyström approximation of the input matrix takes the form

Â= [(Aq)〈Ω〉]1/q = [Y(Ω∗Y)†Y∗]1/q.

This approach requires very careful numerical implementation. As in the
case of subspace iteration, it drives down the error exponentially fast as q
increases. We omit the details.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

498 P.-G. Martinsson and J. A. Tropp

14.6. History

The Nyström approximation was developed in the context of integral equa-
tions (Nyström 1930). It has had a substantial impact in machine learning,
beginning with the work of Williams and Seeger (2001) on randomized low-
rank approximation of kernel matrices. Section 19 contains a discussion of
this literature. Note that the Nyström approximation of a kernel matrix
is almost always computed with respect to a random coordinate subspace,
in contrast to the uniformly random subspace induced by a Gaussian test
matrix.

Algorithmic and theoretical results on Nyström approximation with re-
spect to general test matrices have appeared in a number of papers, in-
cluding Halko et al. (2011a), Gittens (2013), Li et al. (2017) and Tropp,
Yurtsever, Udell and Cevher (2017b).

15. Single-view algorithms

In this section we will describe a remarkable class of algorithms that are
capable of computing a low-rank approximation of a matrix that is so large
that it cannot be stored at all.

We will consider the specific problem of computing an approximate sin-
gular value decomposition of a matrix A∈ F

m×n under the assumption that
we are allowed to view each entry of A only once and that we cannot spe-
cify the order in which they are viewed. To the best of our knowledge, no
deterministic techniques can carry off such a computation without a priori
information about the singular vectors of the matrix.

For the case where A is PSD, we have already seen a single-view algorithm:
the Nyström technique of Algorithm 16. Here we concentrate on the more
difficult case of general matrices. This presentation is adapted from Halko
et al. (2011a, Section 5.5) and Tropp et al. (2017b, 2019).

15.1. Algorithms

In the basic RSVD algorithm (Section 11.2), we view each element of the
given matrix A at least twice. In the first view, we form a sample matrix
Y = AΩ for a given test matrix Ω. We orthonormalize the columns of Y to
form the matrix Q and then visit A again to form a second sample C=Q∗A.
The columns of Y form an approximate basis for the column space of A,
and the columns of C form an approximate basis for the row space.

In the single-view framework, we can only visit A once, which means that
we must sample both the row and the column space simultaneously. To this
end, let us draw tall thin random matrices

Υ ∈ F
m×ℓ and Ω ∈ F

n×ℓ (15.1)

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 499

and then form the two corresponding sample matrices

X= A∗Υ ∈ F
n×ℓ and Y = AΩ ∈ F

m×ℓ. (15.2)

In (15.1), we draw a number ℓ of samples that is slightly larger than the rank
k of the low-rank approximation that we seek. (Section 15.2 gives details
about how to choose ℓ.) Observe that both X and Y can be formed in a
single pass over the matrix A.

Once we have seen the entire matrix, the next step is to orthonormalize
the columns of X and Y to obtain orthonormal matrices

[P, ∼] = qr econ(X) and [Q, ∼] = qr econ(Y). (15.3)

At this point, P and Q hold approximate bases for the row and column
spaces of A, so we anticipate that

A≈QQ∗APP∗ =QCP∗, (15.4)

where we defined the ‘core’ matrix

C :=Q∗AP ∈ F
ℓ×ℓ. (15.5)

Unfortunately, since we cannot revisit A, we are not allowed to form C

directly by applying formula (15.5).
Instead, we develop a relation that C must satisfy approximately, which

allows us to estimate C from the quantities we have on hand. To do so,
right-multiply the definition (15.5) by P∗Ω to obtain

C(P∗Ω) =Q∗AP(P∗Ω). (15.6)

Inserting the approximation APP∗ ≈ A into (15.6), we find that

C(P∗Ω)≈Q∗AΩ=Q∗Y. (15.7)

In (15.7), all quantities except C are known explicitly, which means that we
can solve it, in the least-squares sense, to arrive at an estimate

Capprox = (Q∗Y)(P∗Ω)†, (15.8)

where † denotes the Moore–Penrose pseudoinverse. As always, the pseudo-
inverse is applied by means of an orthogonal factorization. Once Capprox has
been computed via (15.8), we obtain the rank- ℓ approximation

A≈QCapproxP
∗, (15.9)

which we can convert into an approximate SVD using the standard post-
processing steps. For additional implementation details, see Halko et al.
(2011a, Section 5.5) and Martinsson (2018, Section 5). Extensions of this
approach, with theoretical analysis, appear in Tropp et al. (2017b).

Recently, Tropp et al. (2019) have demonstrated that the numerical per-
formance of the single-view algorithm can be improved by extracting a third

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

500 P.-G. Martinsson and J. A. Tropp

sketch of A that is independent from X and Y. The idea is to draw tall thin
random matrices

Φ ∈ F
m×s and Ψ ∈ F

n×s,

where s is another oversampling parameter. Then we form a ‘core sketch’

Z=Φ∗AΨ ∈ F
s×s. (15.10)

This extra data allows us to derive an alternative equation for the core
matrix C. We left- and right-multiply the definition (15.5) by Φ∗Q and
P∗Ψ to obtain the relation

(Φ∗Q)C(P∗Ψ) =Φ∗QQ∗APP∗Ψ. (15.11)

Inserting the approximation A≈QQ∗APP∗ into (15.11), we find that

(Φ∗Q)C(P∗Ψ)≈Φ∗AΨ= Z. (15.12)

An improved approximation to the core matrix C results by solving (15.12)
in a least-squares sense; to wit, C= (Φ∗Q)†Z(P∗Ψ)†.

Remark 15.1 (streaming algorithms). Single-view algorithms are re-
lated to the streaming model of computation (Muthukrishnan 2005). Clark-
son and Woodruff (2009) were the first to explicitly study matrix computa-
tions in streaming data models.

One important streaming model poses the assumption that the input
matrix A is presented as a sequence of innovations:

A=H1+H2+H3+ · · · .
Typically, each update Hi is simple; for instance, it may be sparse or low-
rank. The challenge is that the full matrix A is too large to be stored. Once
an innovation Hi has been processed, it cannot be retained. This is called
the ‘turnstile’ model in the theoretical computer science literature.

The algorithms described in this section handle this difficulty by creating
a random linear transform S that maps A down to a low-dimensional sketch
that is small enough to store. What we actually retain in memory is the
evolving sketch of the input:

S(A) = S(H1)+S(H2)+S(H3)+ · · · .
In Algorithm 17, we instantiate S by drawing the random matrices Υ, Ω,
Φ, and Ψ, and then work with the sketch

S(H) = (Υ∗H,HΩ,Φ∗HΨ).

The fact that the sketch is a linear map is essential here. Li et al. (2014b)
prove that randomized linear embeddings are essentially the only kind of
algorithm for handling the turnstile model. In contrast, the sketch implicit

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 501

Algorithm 17 Single-view SVD.
Implements the algorithm from Section 15.1.
This algorithm computes an approximate partial singular value decomposi-
tion of a given matrix A, under the constraint that each entry of A may be
viewed only once.

Input: Target matrix A ∈ F
m×n, rank k, sampling sizes ℓ and s

Output: Orthonormal matrices U ∈ F
m×k and V = F

n×k, and a diagonal
matrix Σ ∈ F

k×k such that A≈UΣV∗

1 function SingleViewSVD(A, k, ℓ, s)
2 Draw test matrices Υ ∈ F

m×ℓ, Ω ∈ F
n×ℓ, Φ ∈ F

m×s, Ψ ∈ F
n×s

3 Form X= A∗Υ, Y = AΩ, Z=Φ∗AΨ ⊲ Viewing A only once!
4 [P, ∼] = qr econ(X), [Q, ∼] = qr econ(Y)
5 C= (Φ∗Q)†Z(P∗Ψ)† ⊲ Execute using a least-squares solver

6 [Û,Σ̂,V̂] = svd(C) ⊲ A full SVD

7 U=QÛ(: ,1 : k), V = PV̂(: ,1 : k), Σ= Σ̂(1 : k,1 : k)

in the RSVD algorithm from Section 11.2 is a quadratic or higher-order
polynomial in the input matrix.

Remark 15.2 (single-view versus out-of-core algorithms). In prin-
ciple, the methods discussed in this section can also be used in situations
where a matrix is stored in slow memory, such as a spinning disk hard drive,
or on a distributed memory system. However, one has to carefully weigh
whether the decrease in accuracy and increase in uncertainty that is inher-
ent to single-view algorithms is worth the cost savings. As a general matter,
revisiting the matrix at least once is advisable whenever it is possible.

15.2. Error estimation, parameter choices and truncation

In the single-view computing environment, one must choose sampling para-
meters before the computation starts, and there is no way to revisit these
choices after data has been gathered. This constraint makes a priori error
analysis particularly important, because we need guidance on how large to
make the sketches given some prior knowledge about the spectral decay of
the input matrix. To illustrate how this may work, let us cite Tropp et al.
(2019, Theorem 5.1).

Theorem 15.3 (single-view SVD: Gaussian analysis). Suppose that
Algorithm 17 is executed for an input matrix A ∈ C

m×n and for sampling
parameters s and ℓ that satisfy s ≥ 2ℓ. When the test matrices are drawn
from a standard normal distribution, the computed matrices P, C and Q

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

502 P.-G. Martinsson and J. A. Tropp

satisfy

E‖A−QCP∗‖2F ≤ s

s− ℓ min
k<ℓ

(
ℓ+k

ℓ−k
∑min(m,n)

j=k+1
σ2
j

)
.

As usual, σj is the j th largest singular value of A. A very similar bound
holds for the real field.

This result suggests that more aggressive oversampling is called for in
the single-view setting, as compared to the basic rangefinder problem. For
instance, if we aim for an approximation error that is comparable to the
best possible approximation with rank k, then we might choose ℓ= 4k and
s= 8k to obtain

E‖A−QCP∗‖2F ≤ 10

3

∑min(m,n)

j=k+1
σ2
j =

10

3
‖A−Ak‖2F,

where Ak is the best possible rank-k approximation of A. As usual, the like-
lihood of large deviations from the expectation is negligible. (For contrast,
recall that the basic rangefinder algorithm often works well when we select
ℓ= k+5 or ℓ= k+10.)

Besides computing P, C and Q, Algorithm 17 also prunes the approx-
imation A≈QCP∗ by computing an SVD of C (line 6) and then throwing
out the trailing ℓ−k modes (line 7). The motivation for this truncation is
that the approximation A≈QCP∗ tends to capture the dominant singular
modes of A well, but the trailing ones have very low accuracy. The same
thing happens with the basic RSVD (Section 11.2), but the phenomenon
is more pronounced in the single-view environment, in part because ℓ is
substantially larger than k. Theorem 15.3 can be applied to prove that the
truncated factorization is as accurate as one can reasonably hope for; see
Tropp et al. (2019, Corollary 5.5) for details.

Remark 15.4 (spectral norm bounds?). Theorem 15.3 provides a Fro-
benius norm error bound for a matrix approximation algorithm. For our
survey, this is a rara avis in terra . Unfortunately, relative error spec-
tral norm error bounds are not generally possible in the streaming setting
(Woodruff 2014, Chapter 6).

15.3. Structured test matrices

Algorithm 17 can – and should – be implemented with structured test
matrices, rather than Gaussian test matrices. This modification is espe-
cially appealing in the single-view environment, where storage is often the
main bottleneck.

For instance, consider the parameter selections ℓ= 4k and s= 8k that we
referenced above. Then the four test matrices consist of 12k(m+n) floats
that must be stored, and the sketches add another 4k(m+n)+64k2 floats.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 503

Since m and n can be huge, these numbers could severely limit the rank k
of the final matrix approximation.

If we swap out the Gaussian matrices for structured random matrices,
we can almost remove the cost associated with storing the test matrices. In
particular, the addition of the core sketch (15.10) has a very light memory
footprint because the sketch itself only uses O(k2) floats. Empirically, when
we use a structured random matrix, such as a sparse sign matrix (Sec-
tion 9.2) or an SRTT (Section 9.3), the observed errors are more or less
indistinguishable from the errors attained with Gaussian test matrices. See
Tropp et al. (2019, Supplement, Figures SM2–7).

15.4. A posteriori error estimation

In order to reduce the uncertainty associated with the single-view algorithms
described in this section, the ‘certificate of accuracy’ technique described in
Section 12.2 is very useful.

Recall that the idea is to draw a separate test matrix whose only purpose
is to provide an independent estimate of the error in the computed solution.
This additional test matrix can be very thin (say 5 or 10 columns wide),
and it still provides a dependable bound on the computed error. These
techniques can be incorporated without any difficulty in the single-view
environment, as outlined in Tropp et al. (2019, Section 6).

Let us mention one caveat. In the single-view environment, we have no
recourse when the a posteriori error estimator signals that the approxim-
ation error is unacceptable. On the other hand, it is reassuring that the
algorithm can sound a warning that it has not met the desired accuracy.

15.5. History

To the best of our knowledge, Woolfe et al. (2008, Section 5.2) described
the first algorithm that can compute a low-rank matrix approximation in
the single-view computational model. Their paper introduced the idea of
independently sampling the row- and the column-space of a matrix, as sum-
marized in formulas (15.1)–(15.9). This approach inspired the single-view
algorithms presented in Halko et al. (2011a, Section 5.5). It is interesting
that the primary objective of Woolfe et al. (2008) was to reduce the asymp-
totic flop count of the computation through the use of structured random
test matrices.

Clarkson and Woodruff (2009) gave an explicit discussion of randomized
NLA in a streaming computational model. They independently proposed
a variant of the algorithm from Halko et al. (2011a, Section 5.5). Later
contributions to the field appeared in Li et al. (2014b), Boutsidis, Woodruff
and Zhong (2016), Feldman et al. (2016), Ghashami, Liberty, Phillips and
Woodruff (2016a) and Tropp et al. (2017b). The idea of introducing an

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

504 P.-G. Martinsson and J. A. Tropp

additional sketch such as (15.10) to capture the ‘core’ matrix was proposed
by Upadhyay (2016). Tropp et al. (2019) have provided improvements to
his approach, further analysis, and computational considerations.

16. Factoring matrices of full or nearly full rank

So far we have focused on techniques for computing low-rank approxima-
tions of an input matrix. We will now upgrade to techniques for computing
full rank-revealing factorizations such as the column-pivoted QR (CPQR)
decomposition.

Classical deterministic techniques for computing these factorizations pro-
ceed through a sequence of rank-one updates to the matrix, making them
communication-intensive and slow when executed on modern hardware.
Randomization allows the algorithms to be reorganized so that the vast
majority of the arithmetic takes place inside matrix–matrix multiplications,
which greatly accelerates the execution speed.

When applied to an n×n matrix, most of the algorithms described in this
section have the same O(n3) asymptotic complexity as traditional methods;
the objective is to improve the practical speed by reducing communication
costs. However, randomization also allows us to incorporate Strassen-type
techniques to accelerate the matrix multiplications in a numerically stable
manner, attaining an overall cost of O(nω) where ω is the exponent of square
matrix–matrix multiplication.

As well as the CPQR decomposition, we will consider algorithms for com-
puting factorizations of the form A = URV∗, where U and V are unitary
matrices and R is upper-triangular. Factorizations of this form can be used
for almost any task where either the CPQR or the SVD is currently used.
The additional flexibility allows us to improve on both the computational
speed and on the rank-revealing qualities of the factorization.

Sections 16.1–16.4 introduce the key concepts by describing a simple al-
gorithm for computing a rank-revealing factorization of a matrix. This
method is both faster than traditional column-pivoted QR and better at
revealing the spectral properties of the matrix. Sections 16.5–16.7 are more
technical; they describe how randomization can be used to resolve a long-
standing challenge of how to block a classical algorithm for computing a
column-pivoted QR decomposition by applying groups of Householder re-
flectors simultaneously. They also describe how these ideas can be extended
to the task of computing a URV factorization.

16.1. Rank-revealing factorizations

Before we discuss algorithms, let us first define what we mean when we say
that a factorization is rank-revealing. Given an m×n matrix A, we will

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 505

consider factorizations of the form

A = U R V∗,
m×n m× c c×n n×n (16.1)

where c = min(m,n), where U and V are orthonormal, and where R is
upper-triangular (or banded upper-triangular). We want the factorization
to reveal the numerical rank of A in the sense that we obtain a near-optimal
approximation of A when we truncate (16.1) to any level k. That is,

‖A−U(: ,1 : k)R(1 : k, :)V∗‖ ≈ inf{‖A−B‖ : B has rank k} (16.2)

for k ∈ {1,2, . . . ,c}. The factorization (16.1) can be viewed either as a
generalization of the SVD (for which R is diagonal) or as a generalization of
the column-pivoted QR factorization (for which V is a permutation matrix).

A factorization such as (16.1) that satisfies (16.2) is very handy. It can
be used to solve ill-conditioned linear systems or least-squares problems,
it can be used for estimating the singular spectrum of A (and all Schat-
ten p-norms), and it provides orthonormal bases for approximations to the
four fundamental subspaces of the matrix. Finally, it can be used to com-
pute approximate low-rank factorizations efficiently in situations where the
numerical rank of the matrix is not that much smaller than m or n. In
contrast, all techniques described up to now are efficient only when the
numerical rank k satisfies k≪min(m,n).

16.2. Blocking of matrix computations

A well-known feature of modern computing is that we can execute increas-
ingly many floating-point operations because CPUs are gaining more cores
while GPUs and other accelerators are becoming more affordable and more
energy-efficient. In contrast, the cost of communication (data transfer up
and down levels of a memory hierarchy, among servers and across networks,
etc.) is declining very slowly. As a result, reducing communication is often
the key to accelerating numerical algorithms in the real world.

In the context of matrix computations, the main reaction to this develop-
ment has been to cast linear-algebraic operations as operating on blocks of
the matrix, rather than on individual entries or individual columns and rows
(Whaley and Dongarra 1998, Mathias and Stewart 1993, Martinsson 2015).
The objective is to reorganize an algorithm so that the majority of flops can
be executed using highly efficient algorithms for matrix–matrix multiplica-
tion (BLAS3), rather than the slower methods for matrix–vector multiplic-
ations (BLAS2).

Unfortunately, it turns out that classical algorithms for computing rank-
revealing factorizations of matrices are very challenging to block. Column-
pivoted QR proceeds through a sequence of rank-one updates to the matrix.
The next pivot cannot be found until the previous update has been applied.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

506 P.-G. Martinsson and J. A. Tropp

Techniques for computing an SVD of a matrix start by reducing the matrix
to bidiagonal form. Then they iterate on the bidiagonal matrix to drive it
towards diagonal form. Both steps are challenging to block.

To emphasize just how much of a difference blocking makes, let us peek
ahead at the plot in Figure 16.1. This graph shows computational times for
computing certain matrix factorizations versus matrix size on a standard
desktop PC. In particular, look at the times for column-pivoted QR (red
solid line) and for unpivoted QR (red dashed line). The asymptotic flop
counts of these two algorithms are identical in the dominant term. Yet the
unpivoted factorization can easily be blocked, which means that it executes
one order of magnitude faster than the pivoted one.

16.3. The powerURV algorithm

There is a simple randomized algorithm for computing a rank-revealing fac-
torization of a matrix that perfectly illustrates the power of randomization
to reduce communication. Our starting point is an algorithm proposed by
Demmel, Dumitriu and Holtz (2007). Given an m×n matrix A, typically
with m≥ n, it proceeds as follows.

(1) Draw an n×n matrix Ω from a standard normal distribution.

(2) Perform an unpivoted QR factorization of Ω so that [V, ∼] = qr(Ω).

(3) Perform an unpivoted QR factorization of AV so that [U,R] = qr(AV).

Observe that the purpose of steps (1) and (2) is simply to generate a matrix
V whose columns serve as a ‘random’ orthonormal basis. It is easily verified
that the matrices U, R and V satisfy

A=URV∗. (16.3)

The factorization (16.3) is rank-revealing in theory (see Demmel et al. (2007,
Theorem 5.2) and Ballard, Demmel, Dumitriu and Rusciano (2019)), but it
does not reveal the rank particularly well in practice.

The cost to compute (16.3) is dominated by the cost to perform two
unpivoted QR factorizations, and one matrix–matrix multiplication. (Sim-
ulating the random matrix Ω requires only O(n2) flops.)

To improve the rank-revealing ability of the factorization, one can in-
corporate a small number of power iteration steps (Gopal and Martinsson
2018), so that step (2) in the recipe gets modified to

[V, ∼] = qr((A∗A)qΩ), (16.4)

where q is a small integer. In practice, q = 1 or q = 2 is often enough
to dramatically improve the accuracy of the computation. Of course,
incorporating power iteration increases the cost of the procedure by adding
2q additional matrix–matrix multiplications. When the singular values of

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 507

Algorithm 18 powerURV.
This algorithm computes a rank-revealing URV factorization of a given
matrix A; see Section 16.3. Reorthonormalization may be required between
applications of A and A∗ on line 3 to combat round-off errors.

Input: Target matrix A ∈ F
m×n for m≥ n, power parameter q

Output: Orthonormal matrices U ∈ F
m×n and V = F

n×n, and upper tri-
agonal R ∈ F

n×n such that A=URV∗

1 function powerURV(A, q)
2 Draw a test matrix Ω ∈ F

n×n from a standard normal distribution
3 [V, ∼] = qr econ((A∗A)qΩ) ⊲ Unpivoted QR
4 [U,R] = qr econ(AV) ⊲ Unpivoted QR

A decay rapidly, reorthonormalization in between each application of A is
sometimes required to avoid loss of accuracy due to floating-point arith-
metic.

Algorithm 18 summarizes the techniques introduced in this section. The
method is simple, and easy to code. It requires far more flops than tradi-
tional methods for computing rank-revealing factorizations, yet it is faster
in practice. For instance, if m= n and q= 2, then powerURV requires ≈ 5n3

flops versus 0.5n3 flops for CPQR, but Figure 16.1 shows that powerURV
is still faster. This is noteworthy, since powerURV with q = 2 does a far
better job at revealing the numerical rank of A than CPQR, as shown in
Figure 16.2. See Gopal and Martinsson (2018) for details.

16.4. Computing a rank-revealing factorization of an n×n matrix in less
than O(n3) operations

The basic version of the randomized URV factorization algorithm described
in Section 16.3 was originally proposed by Demmel et al. (2007) for pur-
poses loftier than practical acceleration. Indeed, randomization allows us to
exploit fast matrix–matrix multiplication primitives to design accelerated
algorithms for other NLA problems, such as constructing rank-revealing
factorizations. The main point of this research is that, whenever the fast
matrix–matrix multiplication is stable, the computation of a rank-revealing
factorization is stable too.

Let us be more precise. Demmel et al. (2007) embark from the observation
that there exist algorithms1 for multiplying two n×n matrices using O(nω)

1 The celebrated method of Strassen (1969) has exponent ω = log
2
(7) = 2.807 · · · . It

is a compelling algorithm in terms of both its numerical stability and its practical
speed, even for modest matrix sizes. More exotic algorithms, such as the Coppersmith–
Winograd method and variants, attain complexity of about ω ≈ 2.37, but they are not
considered to be practically useful.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

508 P.-G. Martinsson and J. A. Tropp

1000090008000700060005000400030002000

10-1

100

101

CPQR

powerURV q=2

powerURV q=1

powerURV q=0

QR

powerURV q=2 (on gpu)

powerURV q=1 (on gpu)

powerURV q=0 (on gpu)

QR (on gpu)

C
o
m
p
u
ta
ti
o
n
a
l
ti
m
e
in

se
co
n
d
s

n

Figure 16.1. Computational times required for column-pivoted QR (CPQR) and
unpivoted QR (QR) of an n×n real matrix using MATLAB on an Intel i7-8700k
CPU. We see that the unpivoted factorization is an order of magnitude faster,
despite having the identical asymptotic flop count. The graph also shows the times
required for the randomized rank-revealing factorization described in Section 16.4,
executed both on a CPU (solid lines) and an Nvidia Titan V GPU (dashed lines).

0
10

-10

10
-8

10
-6

10
-4

10
-2

10
-2

10
-2

10
-1

10
-1

10
-3

10
0

10
0

100 200 300 400 0 100 200 300 400 100 200 300 400

Theoretical min

CPQR

powerURV q=0

powerURV q=1

powerURV q=2

(a) (b) (c)

Figure 16.2. The rank-revealing ability of CPQR and powerURV for different values
of the power parameter q, as discussed in Section 16.3. The error ek = ‖A−U(: ,1 :
k)R(1 : k, :)V∗‖ (see (16.2)) is plotted versus k for three different matrices A of
size 400× 400. The black lines plot the theoretical minimal values σk+1. (a) A
matrix whose singular values decay rapidly; we see that all methods perform well.
(b) A matrix whose singular values plateau; we see that CPQR performs poorly,
and so does the randomized method unless powering is used. (c) A discretized
boundary integral operator whose singular values decay slowly; we again see the
high precision of powerURV for q = 1 and q = 2.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 509

flops, where ω < 3. Once such an algorithm is available, one can stably
perform a whole range of other standard matrix operations at the same
asymptotic complexity. The idea is to apply a divide-and-conquer approach
that moves essentially all flops into the matrix–matrix multiplication. This
approach turns out to be relatively straightforward for decompositions that
do not reveal the numerical rank such as the unpivoted QR factorization. It
is harder to implement, however, for (pivoted) rank-revealing factorizations.

16.5. Classical column-pivoted QR

The powerURV algorithm described in Section 16.3 can be very effective,
but it operates on the whole matrix at once, and it cannot be used to
compute a partial factorization. In the remainder of this section we describe
algorithms that build a rank-revealing factorization incrementally. These
methods enjoy the property that the factorization can be halted once a
specified tolerance has been met.

We start off this discussion by reviewing a classical (deterministic) method
for computing a column-pivoted QR factorization. This material is element-
ary, but the discussion serves to set up a notational framework that lets us
describe the randomized version succinctly in Section 16.6. Suppose that
we are given an m×n matrix A with m≥ n. We seek a factorization of the
form

A = Q R Π∗,
m×n m×n n×n n×n (16.5)

where Q has orthonormal columns, where Π is a permutation matrix, and
where R is upper-triangular with diagonal elements that decay in magnitude
so that |R(1,1)| ≥ |R(2,2)| ≥ |R(3,3)| ≥ · · · . The factors are typically built
through a sequence of steps, where A is driven to upper-triangular form one
column at a time.

To be precise, we start by forming the matrix A0 = A. Then we proceed
using the iteration formula

Aj =Q∗
jAj−1Πj,

where Πj is a permutation matrix that swaps the j th column of Aj−1 with
the column in Aj−1(: ,j : n) that has the largest magnitude, and where Qj

is a Householder reflector that zeros out all elements below the diagonal in
the j th column of Aj−1Πj ; see Figure 16.3. Once the process concludes, the
relation (16.5) holds for

Q=QnQn−1Qn−2 · · ·Q1, R= An, Π=ΠnΠn−1Πn−2 · · ·Π1.

This algorithm is well understood, and it is ubiquitous in numerical com-
putations. For exotic matrices, it can produce factorizations that are quite
far from optimal (Kahan 1966, Section 5), but it typically works very well

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

510 P.-G. Martinsson and J. A. Tropp

(a) A0 = A (b) A1 = Q
∗

1A0Π1 (c) A2 = Q
∗

2A1Π2 (d) A3 = Q
∗

3A2Π3

Figure 16.3. The figure shows the sparsity pattern of a 4× 3 matrix A as it is
driven to upper-triangular form in the column-pivoted QR factorization algorithm
described in Section 16.5. The process takes three steps in this case, and step
j involves the application of a permutation matrix Πj from the right, and by a
Householder reflector Qj from the left.

for many tasks. For instance, it serves for revealing the numerical rank of
a matrix or for solving an ill-conditioned linear system. However, a serious
drawback to this algorithm is that it fundamentally consists of a sequence
of n− 1 steps (or n steps if m > n), where a large part of the matrix is
updated in each step.

16.6. A randomized algorithm for computing a CPQR decomposition

Our next objective is to recast the algorithm for computing a CPQR decom-
position that was introduced in Section 16.5 so that it works with ‘panels’
of b contiguous columns, as shown in Figure 16.4. The difficulty is to find
a set of b pivot vectors without updating the matrix between each selec-
tion. Fortuitously, the randomized algorithm for interpolatory decomposi-
tion (Section 13.4) is well adapted for this task. Indeed, a set of b columns
that forms a good basis for the column space also forms a good set of pivot
vectors.

To be specific, let us describe how to pick the first group of b pivot
columns for an m× n matrix A. Adapting the ideas in Section 13.4, we
draw a Gaussian random matrix Ω of size (b+ p)×m, where p is a small
oversampling parameter. We form a sample matrix

Y = Ω A,
(b+p)×n (b+p)×m m×n

and then we execute b steps of column-pivoted QR on the matrix Y (either
Householder or Gram–Schmidt is fine for this step). The resulting b pivot
columns turn out to be good pivot columns for A as well. Once these b
columns have been moved to the front of A, we perform a local CPQR

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 511

(a) A0 = A (b) A1 = Q
∗

1A0Π1 (c) A2 = Q
∗

2A1Π2 (d) A3 = Q
∗

3A2Π3

Figure 16.4. The sparsity pattern of a matrix A consisting of 4× 3 blocks, each
of size 3×3, as it undergoes the blocked version of the Householder QR algorithm
described in Section 16.6. Each matrix Qj is a product of three Householder
reflectors. The difficulty in building an algorithm of this type is to find groups
of pivot vectors before applying the corresponding Householder reflectors.

factorization of this panel. We update the remaining n− b columns using
the computed Householder reflectors.

We could then proceed using exactly the same method a second time:
draw a (b+p)× (m−b) Gaussian random matrix Ω, form a (b+p)× (n−b)
sample matrix Y, perform classical CPQR on Y, and so on. However, there
is a shortcut. We can update the sample matrix that was used in the first
step, which renders the overhead cost induced by randomization almost
negligible (Duersch and Gu 2017, Section 4).

Extensive numerical work has demonstrated dramatic acceleration over
deterministic algorithms. Figure 16.5 draws on data from Martinsson,
Quintana-Ort́ı, Heavner and van de Geijn (2017) that illustrates the acceler-
ation over a state-of-the-art software implementation of the classical CPQR
method. Computer experiments also show that the randomized scheme
chooses pivot columns whose quality is almost indistinguishable from those
chosen by traditional pivoting, in the sense that the relation (16.2) holds
to about the same accuracy. (However, the diagonal entries of R do not
strictly decay in magnitude across the block boundaries.)

To understand the behaviour of the algorithm, it is helpful to think about
two extreme cases. In the first, suppose that the singular values of A decay
very rapidly. Here, the analysis in Section 11 can be modified to show that,
for any j, the first j pivot columns chosen by the randomized algorithm
is likely to span the column space nearly as well as the optimal set of j
columns. Therefore, they are excellent pivot vectors. At the other extreme,
suppose that the singular values of A hardly decay at all. In this case the
randomized method may pick a completely different set of pivot vectors
than the deterministic method, but this outcome is unproblematic because

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

512 P.-G. Martinsson and J. A. Tropp

0 2000 4000 6000 8000 10000
0

1

2

3

4

5

6

7

1 core
4 cores
8 cores
14 cores

S
p
ee
d
u
p
fa
ct
o
r

Matrix size n

Figure 16.5. Speedup of the randomized algorithm for computing a column-
pivoted QR decomposition described in Section 16.6, relative to LAPACK’s faster
routine (dgeqp3) as implemented in the Intel MKL library (version 11.2.3), running
on an Intel Xeon E5-2695 v3 processor.

we can take any group of columns as pivot vectors. Of course, the interesting
cases are intermediate between these two extremes. It turns out that the
randomized methods work well regardless of how rapidly the singular values
decay. For a detailed analysis, see Duersch and Gu (2017), Xiao et al. (2017),
Melgaard and Gu (2015) and Feng, Xiao and Gu (2019).

Remark 16.1 (history). Finding a blocked version of the CPQR al-
gorithm described in Section 16.5 has remained an open challenge in NLA
for some time (Bischof and Quintana-Ort́ı 1998, Demmel, Grigori, Gu and
Xiang 2015). The randomized technique described in this section was intro-
duced in Martinsson (2015), while the updating technique was described in
Duersch and Gu (2015). For full details, see Martinsson et al. (2017) and
Duersch and Gu (2017).

16.7. A randomized algorithm for computing a URV decomposition

In this section we describe an incremental randomized algorithm for com-
puting the URV factorization (16.1). Let us recall that for A ∈ F

m×n, with
m≥ n, this factorization takes the form

A = U R V∗,
m×n m×n n×n n×n (16.6)

where U and V have orthonormal columns and where R is upper-triangular.
The algorithm we describe is blocked, and executes efficiently on modern

computing platforms. It is similar in speed to the randomized CPQR de-
scribed in Section 16.6, and it shares the advantage that the decomposition
is built incrementally so that the process can be stopped once a requested

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 513

(a) A0 = A (b) A1 = U
∗

1A0V1 (c) A2 = U
∗

2A1V2 (d) A3 = U
∗

3A2V3

Figure 16.6. Sparsity pattern of a matrix being driven to upper-triangular form
in the randomized URV factorization algorithm described in Section 16.7; see
Figure 16.4. The matrices Ui and Vi are now more general unitary transforms
(consisting in the bulk of Householder reflectors). The entries shown as grey are
nonzero, but are typically very small in magnitude.

accuracy has been met. However, the URV factorization offers compelling
advantages. (1) It is almost as good at revealing the numerical rank as
the SVD (unlike the CPQR). (2) The URV factorization provides us with
orthonormal basis vectors for both the column and the row spaces. (3) The
off-diagonal entries of R are very small in magnitude. (4) The diagonal
entries of R form excellent approximations to the singular values of A.

The randomized algorithm for computing a URV factorization we present
follows the same algorithmic template as the randomized CPQR described
in Section 16.6. It drives A to upper-triangular form one block at a time,
but it replaces the permutation matrices Πj in the CPQR with general
unitary matrices Vj . Using this increased freedom, we can obtain a fac-
torization where all diagonal blocks are themselves diagonal matrices and
all off-diagonal elements have small magnitude. Figure 16.6 summarizes the
process.

To provide details on how the algorithm works, suppose that we are given
an m×n matrix A and a block size b. In the first step of the process, our
objective is then to build unitary matrices U1 and V1 such that

A=U1A1V
∗
1,

where A1 has the block structure

A1 =

[
A1,11 A1,12

0 A1,22

]
= ,

so that the b×b matrix A1,11 is diagonal and the entries of A1,12 are small in

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

514 P.-G. Martinsson and J. A. Tropp

magnitude. To build V1, we use the randomized power iteration described
in Section 11.6 to find a basis that approximately spans the same space as
the top b right singular vectors of A. To be precise, we form the sample
matrix

Y =ΩA(A∗A)q,

where Ω is a Gaussian random matrix of size b×m and where q is a para-
meter indicating the number of steps of power iteration taken. We then
perform an unpivoted QR factorization of the rows of Y to form a matrix
Ṽ whose first b columns form an orthonormal basis for the column space of
Y. We then apply Ṽ from the right to form the matrix AṼ, and we perform
an unpivoted QR factorization of the first b columns of AṼ. This results in
a new matrix

Ã= (Ũ)∗AṼ

that has the block structure

Ã=

[
Ã1,11 Ã1,12

0 Ã1,22

]
= .

The top left b×b block Ã1,11 is upper-triangular, and the bottom left block

is zero. The entries of Ã1,12 are typically small in magnitude. Next, we

compute a full SVD of the block Ã1,11:

Ã1,11 = ÛD11V̂
∗
.

This step is inexpensive because Ã1,11 has size b× b, where b is small. As a
final step, we form the transformation matrices

U1 = Ũ

[
Û 0

0 Im−b

]
and V1 = Ṽ

[
V̂ 0

0 In−b

]

and set
A1 =U∗

1AV1.

The result of this process is that the diagonal entries of D11 typically give ac-
curate approximations to the first b singular values of A, and the ‘remainder’
matrix A1,22 has spectral norm that is similar to σb+1. Thus

‖A1,22‖ ≈ inf{‖A−B‖ : B has rank b}.
This process corresponds to the first step in Figure 16.6. The succeeding
iterations execute the same process, at each step working on the remain-
ing lower-right part of the matrix that has not yet been driven to upper-
triangular form. We refer to Martinsson, Quintana Orti and Heavner (2019)
and Martinsson (2018) for details.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 515

From a theoretical point of view, the first step of the URV factorization
described is well understood since it is mathematically equivalent to the
randomized power iteration described in Section 11.6. We observe that
the first b columns of U1 do a better job of spanning the column space
of A than the first b columns of V1 do for spanning the row space; the
reason for this asymmetry is that by forming the product AV1, we in effect
perform an additional step of the power iteration (Gopal and Martinsson
2018, Section 6).

An important feature of the method described in this section is that it
is incremental, and it can be halted once a given computational tolerance
has been met. This feature has been a key competitive advantage of the
column-pivoted QR decomposition, and it is often cited as the motivation
for using CPQR. The method described in this section has almost all the ad-
vantages of the randomized Householder CPQR factorization (it is blocked,
it is incremental, and it executes very fast in practice), while resulting in a
factorization that is far closer to optimal in revealing the rank.

Remark 16.2 (related work). The idea of loosening the requirements
on the factors in a rank-revealing factorization and searching for a decom-
position such as (16.6) is well explored in the literature (Fierro, Hansen and
Hansen 1999, Stewart 1994, Park and Eldén 1995, Stewart 1998). Determ-
inistic techniques for computing the URV decomposition are described in
Fierro et al. (1999) and Stewart (1999); these algorithms combine some of
the appealing qualities of the SVD (high accuracy in revealing the rank)
with some of the appealing qualities of CPQR (the possibility of halting the
execution once a requested tolerance has been met). However, they were not
blocked, and therefore they were subject to the same liabilities as determin-
istic algorithms for computing the SVD and the CPQR. A more recent use
of randomization in this context is described in Feng et al. (2019).

17. General linear solvers

Researchers are currently exploring randomized algorithms for solving linear
systems, such as

Ax= b, (17.1)

where A is a given coefficient matrix and b is a given vector. This section
describes a few probabilistic approaches for solving (17.1). For the most
part, we restrict our attention to the case where A is square and the system
is consistent, but we will also touch on linear regression problems. Research
on randomized linear solvers has not progressed as rapidly as some other
areas of randomized NLA, so the discussion here is more preliminary than
other parts of this survey.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

516 P.-G. Martinsson and J. A. Tropp

17.1. Background: Iterative solvers

It is important to keep in mind that existing iterative solvers often work
exceptionally well. Whenever A is well-conditioned or, more generally,
whenever its spectrum is ‘clustered’, Krylov solvers such as the conjug-
ate gradient (CG) algorithm or GMRES tend to converge very rapidly. For
practical purposes, the cost of solving (17.1) is no larger than the cost of
a handful of matrix–vector multiplications with A. In terms of speed, it is
very difficult to beat these techniques. Consequently, we focus on the cases
where known iterative methods converge slowly and where we cannot deploy
standard preconditioners to resolve the problem.

Having limited ourselves to this situation, the choice of solver for (17.1)
will depend on properties of the coefficient matrix: Is it dense or sparse?
Does it fit in RAM? Do we have access to individual matrix entries? Can
we apply A to a vector? We will consider several of these environments.

17.2. Accelerating solvers based on dense matrix factorizations

As it happens, one of the early examples of randomization in NLA was a
method for accelerating the solution of a dense linear system (17.1). Parker
(1995) observed that we can precondition a linear system by left and right
multiplying the coefficient matrix by random unitary matrices U and V.
With probability 1, we can solve the resulting system

(UAV∗)(Vx) =Ub (17.2)

by Gaussian elimination without pivoting. More precisely, Parker proved
that, almost surely, blocked Gaussian elimination will not encounter a de-
generate diagonal block.

Blocked Gaussian elimination without pivoting is substantially faster than
ordinary Gaussian elimination for two reasons: matrix operations are more
efficient than vector operations on modern computers, and we avoid the
substantial communication costs that arise when we search for pivots. (Sec-
tion 16.2 contains more discussion about blocking.) Parker also observed
that structured random matrices (such as the randomized trigonometric
transforms from Section 9.3) allow us to perform the preconditioning step
at lower cost than the subsequent Gaussian elimination procedure.

Parker (1995) inspired many subsequent papers, including Baboulin, Li
and Rouet (2014), Trogdon (2017), Demmel et al. (2012), Baboulin et al.
(2017) and Pan and Zhao (2017). Another related direction concerns the
smoothed analysis of Gaussian elimination undertaken in Sankar, Spielman
and Teng (2006).

As we saw in Section 16, randomization can be used to accelerate the
computation of rank-revealing factorizations of the matrix A. In this con-
text, randomness allows us to block the factorization method, which in-

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 517

creases its practical speed, even though the overall arithmetic cost remains
at O(n3). Randomized rank-revealing factorizations are ideal for solving
ill-conditioned linear systems because they allow the user to stabilize the
computation by avoiding subspaces associated with small singular values.

For instance, suppose that we have computed a singular value decompos-
ition (SVD):

A=UDV∗ =
∑n

j=1
σj ujv

∗
j .

Let us introduce a truncation parameter ε and ignore all singular modes
where σj ≤ ε. Then the stabilized solution to (17.1) is

xε =
∑

j :σj>ε

1

σj
vju

∗
jb.

By allowing the residual to take a nonzero value, we can ensure that xε
does not include large components that contribute little toward satisfying
the original equation. The randomized URV decomposition, described in
Section 16.7, can also be used for stabilization, and we can compute it
much faster than an SVD.

Remark 17.1 (Are rank-revealing factorizations needed?). In some
applications, computing a rank-revealing factorization is overkill for pur-
poses of solving the linear system (17.1). In particular, if we compute an
unpivoted QR decomposition of A, then it is easy to block both the factoriz-
ation and the solve stages so that very high speed is attained. This process
is provably backwards stable, which is sometimes all that is needed. (In
practice, partially pivoted LU can often be used in an analogous manner,
despite being theoretically unstable.)

In contrast, when the actual entries of the computed solution xapprox
matter (as opposed to the value of Axapprox), a stabilized solver is generally
preferred. As a consequence, column-pivoted QR is often cited as a method
of choice for ill-conditioned problems in situations where an SVD is not
affordable.

Remark 17.2 (Strassen accelerated solvers). We saw in Section 16.4
that randomization has enabled us to compute a rank-revealing factorization
of an n× n matrix in less than O(n3) operations. The idea was to use
randomized preconditioning as in (17.2), and then accelerate an unpivoted
factorization of the resulting coefficient matrix using fast algorithms for the
matrix–matrix multiplication such as Strassen (Demmel et al. 2007). This
methodology can of course be immediately applied to the task of solving
ill-conditioned linear systems. For improved numerical stability, a few steps
of power iteration can be incorporated to this approach; see (16.4).

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

518 P.-G. Martinsson and J. A. Tropp

17.3. Sketch and precondition

Another approach to preconditioning is to look for a random transform-
ation of the linear system that makes an iterative linear solver converge
more quickly. Typically, these preconditioning transforms need to cluster
the eigenvalues of the matrix.

The most successful example of this type of randomized preconditioning
does not concern square systems, but rather highly overdetermined least-
squares problems. See Section 10.5 et seq. for a discussion of this idea.
This type of randomized preconditioning can greatly enhance the robustness
and power of ‘asynchronous’ solvers for communication-constrained envir-
onments (Avron, Druinsky and Gupta 2015). Related techniques for kernel
ridge regression are described in Avron, Clarkson and Woodruff (2017). For
linear systems involving high-dimensional tensors, see Kressner, Steinlech-
ner and Vandereycken (2016).

For square linear systems, the search for randomized preconditioners has
been less fruitful. Section 18 outlines the main success story. Nevertheless,
techniques already at hand can be very helpful for solving linear systems in
special situations, which we illustrate with a small example.

Consider the task of solving (17.1) for a positive definite (PD) coefficient
matrix A. In this environment, the iterative method of choice is the
conjugate gradient (CG) algorithm (Hestenes and Stiefel 1952). A detailed
convergence analysis for CG is available; for example, see Trefethen and
Bau III (1997, Section 38). In a nutshell, CG converges rapidly when the
eigenvalues of A are clustered, as in Figure 17.1(a). Therefore our task is
to find a matrix M for which M−1 can be applied rapidly to vectors and
for which M−1/2AM−1/2 has a tightly clustered spectrum.

In a situation where A has a few outlying eigenvalues that are larger
than the others (Figure 17.1(b)), randomized algorithms for low-rank ap-
proximation provide excellent preconditioners. For instance, we can use the
randomized Nyström method (Section 14) to compute an approximation

A≈UDU∗, (17.3)

where D ∈ R
k×k
+ is a diagonal matrix whose entries hold approximations

to the largest k eigenvalues of A, and where U ∈ F
m×k is an orthonormal

matrix holding the corresponding approximate eigenvectors. We then form
a preconditioner for A by setting

M= (1/α)UDU∗+(I−UU∗).

It is trivial to invert M because M−1 = αUD−1U∗ + (I−UU∗). Now, if
(17.3) captured the top k eigenmodes of A exactly, then the preconditioned

coefficient matrix M−1/2AM−1/2 would have the same eigenvectors as A,
but with the top k eigenvalues replaced by α and the remaining eigenvalues

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 519

0

0.5

1

(a)

0

0.5

1

(b)

0

0.5

1

(c)

0 50 100 0 50 100 0 50 100 0 50 100
0

0.5

1

(d)

Figure 17.1. The eigenvalues of four different PD matrices that all have condi-
tion number 10 (since λmax = 1 and λmin = 0.1). As discussed in Section 17.3,
the difficulty of solving the corresponding linear systems using conjugate gradi-
ents differ significantly between these cases. (a) For this matrix, CG converges in
two iterations, without the need for preconditioners. (b) When the spectrum has
some large outliers, the randomized preconditioner outlined in Section 17.3 works
well. (c, d) Finding randomized preconditioners for matrices with spectra like these
remains an open research problem.

unchanged. By setting α = λk, say, the spectrum of M−1/2AM−1/2 would
become far more tightly clustered. In reality, the columns of U do not
exactly align with the eigenvectors of A. Even so, the accuracy will be good
for the eigenvectors associated with the top eigenvalues, which is what
matters.

17.4. The randomized Kaczmarz method and its relatives

The Kaczmarz method is an iterative algorithm for solving linear systems
that is typically used for large, overdetermined problems with inconsistent
equations. Randomized variants of the Kaczmarz method have received a lot
of attention in recent years, in part because of close connections to stochastic
gradient descent (SGD) algorithms for solving least-squares problems.

To explain the idea, consider a (possibly inconsistent) linear system

A∗x≈ b where A∗ ∈ F
m×n. (17.4)

The basic Kaczmarz algorithm starts with an initial guess x0 ∈ F
n for the

solution. At each iteration t, we select a new index j = j(t)∈ {1, . . . ,m}, and
we make the update

xt+1 = xt+
b(j)−〈A(: ,j), xt〉

‖A(: ,j)‖2
A(: ,j). (17.5)

The rule (17.5) has a simple interpretation: it ensures that xt+1 is the closest
point to xt in the hyperplane containing solutions to the linear equation
determined by the j th equation in the system.

In implementing this method, we must choose a control mechanism that
determines the next index. A simple and robust approach is to cycle through

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

520 P.-G. Martinsson and J. A. Tropp

the rows consecutively; that is, j(t) = t mod m. Another effective, but
expensive, option is to select the equation with the largest violation.

The randomized Kaczmarz (RK) algorithm uses a probabilistic control
mechanism instead. This kind of approach also has a long history, and it is
useful in cases where cyclic control is ineffective. The RK method has re-
ceived renewed attention owing to work of Strohmer and Vershynin (2009).
They proposed sampling each j(t) independently at random, with the prob-
ability of choosing the ith equation proportional to the squared ℓ2 norm of
the ith column of A. They proved that this version of RK converges linearly
with a rate determined by the (Demmel) condition number of the matrix A.
Later, it was recognized that this approach is just a particular instantiation
of SGD for the least-squares problem (17.4). See Needell, Ward and Srebro
(2014), which draws on results from Moulines and Bach (2011).

There are many subsequent papers that have built on the RK approach
for solving inconsistent linear systems. Leventhal and Lewis (2010) observed
that related ideas can be used to design randomized Gauss–Seidel and
randomized Jacobi iterations. Needell and Tropp (2014) studied a blocked
version of the RK algorithm, which is practically more efficient for many of
the same reasons that other blocked algorithms work well (Section 16.2).

Gower and Richtárik (2015) observed that the RK algorithm is a par-
ticular type of iterative sketching method. Based on this connection, they
proposed a generalization. At each iteration, we draw an independent ran-
dom embedding St ∈ F

ℓ×m. The next iterate is chosen by solving the
least-squares problem

xt = argminy ‖xt−1−y‖2 subject to StA
∗y = Stb. (17.6)

The idea is to choose the dimension ℓ sufficiently small that the sketched
least-squares problem can be solved explicitly using a direct method (e.g.
QR factorization). This flexibility leads to algorithms that converge more
rapidly in practice because the sketch St can mix equations instead of just
sampling. Later, Richtárik and Takáč (2020) showed that this procedure
can be accelerated to achieve rates that depend on the square root of an
appropriate condition number; see also Gower, Hanzely, Richtárik and Stich
(2018).

18. Linear solvers for graph Laplacians

In this section we describe the randomized algorithm SparseCholesky,
which can efficiently solve a linear system whose coefficient matrix is a
graph Laplacian matrix. Up to a small logarithmic factor, this method
achieves the minimum possible runtime and storage costs. This algorithm
has the potential to accelerate many types of computations involving graph
Laplacian matrices.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 521

The SparseCholesky algorithm was developed by Kyng and Sachdeva
(2016) and further refined by Kyng (2017). These approaches are based on
earlier work from Dan Spielman’s group, notably the paper of Kyng et al.
(2016). The presentation here is adapted from Tropp (2019).

18.1. Overview

We begin with a high-level approach for solving Laplacian linear systems.
The basic idea is to construct a preconditioner using a randomized variant
of the incomplete Cholesky method. Then we can solve the original linear
system by means of the preconditioned conjugate gradient (PCG) algorithm.

18.1.1. Approximate solutions to the Poisson problem
Let L ∈Hn(R) be the Laplacian matrix of a weighted, loop-free, undirected
graph on the vertex set V = {1, . . . ,n}. We write m for the number
of edges in the graph, i.e. the sparsity of the graph. For simplicity we will
also assume that the graph is connected ; equivalently, ker(L) = span{1},
where 1 ∈ R

n is the vector of ones. See Section 7.4 for definitions. See
Figure 18.1 for an illustration of an unweighted, undirected graph.

The basic goal is to find the unique solution x⋆ to the Poisson problem

Lx= f where 1∗f = 0 and 1∗x= 0.

For a parameter ε > 0, we can relax this requirement by asking instead for
an approximate solution xε that satisfies

‖xε−x⋆‖L ≤ ε‖x⋆‖L.

We have written ‖x‖L := (x∗Lx)1/2 for the energy seminorm induced by the
Laplacian matrix.

18.1.2. Approximate Cholesky decomposition
Imagine that we can efficiently construct a sparse, approximate Cholesky
decomposition of the Laplacian matrix L. More precisely, we seek a morally
lower-triangular matrix C that satisfies

0.5L4 CC∗ 4 1.5L where nnz(C) =O(m logn). (18.1)

In other words, there is a known permutation of the rows that brings the
matrix C into lower-triangular form. As usual, 4 is the semidefinite order,
and nnz returns the number of nonzero entries in a matrix.

This section describes an algorithm, called SparseCholesky, that can
complete the task outlined in the previous paragraph. This algorithm is
motivated by the insight that we can produce a sparse approximation of a
Laplacian matrix by random sampling (Section 7.4). The main challenge is
to obtain sampling probabilities without extra computation. The resulting

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

522 P.-G. Martinsson and J. A. Tropp

method can be viewed as a randomized variant of the incomplete Cholesky
factorization (Golub and Van Loan 2013, Section 11.5.8).

18.1.3. Preconditioning
Given the sparse, approximate Cholesky factor C, we can precondition the
Poisson problem:

(C†LC∗†)(C∗x) = (C†f). (18.2)

When (18.1) holds, the matrix C†LC∗† has condition number κ≤ 3.
Therefore we can solve the preconditioned system (18.2) quickly using

the PCG algorithm (Golub and Van Loan 2013, Section 11.5). If the initial
iterate x0 = 0, then j steps of PCG produce an iterate xj that satisfies

‖xj −x⋆‖L ≤ 2

[√
κ−1√
κ+1

]j
‖x⋆‖L < 31−j‖x⋆‖L.

As a consequence, we can achieve relative error ε after 1+ log3(1/ε) itera-
tions. Each iteration requires a matrix–vector product with L and the solu-
tion of a (consistent) linear system CC∗u = y. We can perform these steps
in O(m logn) operations per iteration. Indeed, L has only O(m) nonzero
entries. The matrix C is morally triangular with O(m logn) nonzero entries,
so we can apply (CC∗)† using two triangular solves.

Remark 18.1 (triangular solve). To solve a consistent linear system

(CC∗)u= y, we can apply C† by triangular elimination and then apply C∗†

by triangular elimination. The four subspace theorem ensures that solution
to the first problem renders the second problem consistent too. Since
ker(CC∗) = span{1}, we can enforce consistency numerically by removing
the constant component of the input y. Similarly, we can remove the con-
stant component of the output u to ensure it belongs to the correct space.

18.1.4. Main results
The following theorem describes the performance of the SparseCholesky

procedure. This is the main result from Kyng and Sachdeva (2016).

Theorem 18.2 (SparseCholesky). Let L be the Laplacian of a connec-
ted graph on n vertices, with m weighted edges. With high probability, the
SparseCholesky algorithm produces a morally lower-triangular matrix C

that satisfies
0.5L4 CC∗ 4 1.5L.

The matrix C has O(m logn) nonzero entries. The expected running time is
O(m log2n) operations.

In view of our discussion about PCG, we arrive at the following statement
about solving the Poisson problem.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 523

Corollary 18.3 (Poisson problem). Suppose the SparseCholesky al-
gorithm delivers an approximation L ≈ CC∗ that satisfies (18.1). Then we
can solve each consistent linear system Lx = f to relative error ε in the
seminorm ‖ · ‖L using at most 1+ log3(1/ε) iterations of PCG, each with a
cost of O(m logn) arithmetic operations.

18.1.5. Discussion
As we have mentioned, the Poisson problem serves as a primitive for under-
taking many computations on undirected graphs (Teng 2010). Potential ap-
plications include clustering, analysis of random walks, and finite-element
discretizations of elliptic PDEs.

The SparseCholesky algorithm achieves a near-optimal runtime and
storage guarantee for the Poisson problem on a graph. Indeed, for a general
graph with m edges, any algorithm must use O(m) storage and arithmetic.

There is a proof that the cost O(m log1/2(n)) is achievable in theory (Cohen
et al. 2014), but the resulting methods are currently impractical. Meanwhile,
the simplicity of the SparseCholesky method makes it a candidate for
real-world computation.

For particular classes of Laplacian matrices, existing solvers can be very
efficient. Optimized sparse direct solvers (Davis, Rajamanickam and Sid-
Lakhdar 2016) work very well for small- and medium-size problems, but
they typically have superlinear scaling, which renders them unsuitable for
truly large-scale problems. Iterative methods such as multigrid or precon-
ditioned Krylov solvers can attain linear complexity for important classes
of problems, in particular for sparse systems arising from the discretization
of elliptic PDEs. However, we are not aware of competing methods that
provably enjoy near-optimal complexity for all problems.

We regard the SparseCholesky algorithm as one of the most dramatic
examples of how randomization has the potential to accelerate basic linear
algebra computations, both in theory and in practice.

18.2. Cholesky decomposition of a graph Laplacian

To begin our explanation of the SparseCholesky algorithm, let us sum-
marize what happens when we apply the standard Cholesky decomposition
method to a graph Laplacian.

18.2.1. The Laplacian of a multigraph
For technical reasons, related to the design and analysis of the algorithm, we
need to work with multigraphs instead of ordinary graphs. In the discussion,
we will point out specific places where this generality is important.

Consider a weighted, undirected multigraph G, defined on the vertex set
V = {1, . . . ,n}. Each edge e = {u,v} is an unordered pair of vertices; we

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

524 P.-G. Martinsson and J. A. Tropp

typically use the abbreviated notation e= uv = vu. We introduce a weight
function wG that assigns a positive weight to each edge e in the multigraph
G. Since G is a multigraph, there may be many multiedges, with distinct
weights, connecting the same two vertices.

Taking some notational liberties, we will identify the multigraph G with
its Laplacian matrix L, which we express in the form

L=
∑

e∈L
wL(e)∆e. (18.3)

The matrix ∆e is the elementary Laplacian on the vertex pair (u,v) that
composes the edge e= uv. That is,

∆e :=∆uv := (δu−δv)(δu−δv)
∗ where e= uv.

The sum in (18.3) takes place over all the multiedges e in the multigraph L,
so the same elementary Laplacian may appear multiple times with different
weights.

18.2.2. Stars and cliques
To describe the Cholesky algorithm on a graph, we need to introduce a few
more concepts from graph theory. Define the degree and the total weight of
a vertex u in the multigraph L to be

degL(u) :=
∑

e=uv∈L
1 and wL(u) :=

∑
e=uv∈L

wL(e).

In other words, the degree of u is the total number of multiedges e that
contain u. The total weight of u is the sum of the weights of the multiedges
e that contain u.

Let u be a fixed vertex. The star induced by u is the Laplacian

star(u,L) :=
∑

e=uv∈L
wL(e)∆e.

In words, the star includes precisely those multiedges e in the multigraph
L that contain the vertex u.

The clique induced by u is defined implicitly as the correction that occurs
when we take the Schur complement (2.4) of the Laplacian with respect to
the coordinate u:

L/δu =: (L− star(u,L))+clique(u,L).

Recall that δu is the standard basis vector in coordinate u. By direct cal-
culation, one may verify that

clique(u,L) =
1

2wL(u)

∑

e1=uv1∈L

∑

e2=uv2∈L

wL(e1)wL(e2)∆v1v2 .

Each sum takes place over all multiedges e in L that contain the vertex

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 525

Figure 18.1. A combinatorial graph. The Ursa Major graph with a distinguished
vertex (the star Megrez) highlighted in red.

(a) (b)

Figure 18.2. Illustration of a star and clique in the Ursa Major graph. (a) The
star induced by the red vertex consists of the three solid black edges. (b) The clique
induced by the red vertex consists of the three solid black edges. These edges are
added when the red vertex is eliminated.

u. It can be verified that the clique is also the Laplacian of a weighted
multigraph.

Figures 18.1 and 18.2 contain an illustration of a (simple) graph, along
with the star and clique induced by eliminating a vertex. In our more general
setting, the edges in the star and clique would have associated weights. These
diagrams are courtesy of Richard Kueng.

18.2.3. Graphs and Cholesky
With the notation introduced in Section 18.2.2, we can present the graph-
theoretic interpretation of the Cholesky algorithm as it applies to the Lapla-
cian L of a weighted multigraph.

Define the initial Laplacian S0 := L. In each step i= 1,2, . . . ,n, we select a
new vertex ui. We extract the associated column of the current Laplacian:

ci :=
1√

(Si−1)uiui

Si−1δui
.

We compute the Schur complement with respect to the vertex ui:

Si := Si−1/δui
= (Si−1− star(ui,Si−1))+clique(ui,Si−1).

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

526 P.-G. Martinsson and J. A. Tropp

In other words, we remove the star induced by ui and replace it with the
clique induced by ui. Each Si is the Laplacian of a multigraph; it has no
multiedge that contains any one of the vertices u1, . . . ,ui. Therefore we have
reduced the size of the problem.

After n steps, the Cholesky factorization is determined by a vector π =
(u1,u2, . . . ,un) that holds the chosen indices and a matrix C=

[
c1 · · · cn

]

such that C(π, :) is lower-triangular. The algorithm ensures that we have
the exact decomposition

L= CC∗.

This is the (pivoted) Cholesky factorization of the Laplacian matrix.
To choose a vertex to eliminate, the classical approach is to find a vertex

with minimum degree or with minimum total weight. Or one may simply
select one of the remaining vertices at random.

18.2.4. Computational costs
The cost to compute a Cholesky factorization L= CC∗ of a Laplacian mat-
rix L is typically superlinear in n, with a worst-case cost of O(n3) arithmetic
and O(n2) storage. This is the reason that C is less sparse than L: the clique
that is introduced at an elimination step has more edges than the star that
it replaces, a phenomenon referred to as fill-in. The exact growth in the
number of nonzero entries depends on the sparsity pattern of L and on the
chosen elimination order. For special cases, using a nested dissection order-
ing can provably improve on the worst-case estimates (Davis et al. 2016).
For instance, if L results from the finite-difference or finite-element discret-
ization of an elliptic PDE, then nnz(C) = O(n log(n)) in two dimensions
and nnz(C) =O(n4/3) in three.

For general graphs, one path towards improving the efficiency of the
Cholesky factorization procedure is to randomly approximate the clique
by sampling, in order to curb the fill-in. Section 7.4 already indicates that
this innovation may be possible, provided that we can find a way to obtain
sampling probabilities.

18.3. The SparseCholesky algorithm

We are now prepared to present the SparseCholesky procedure, which
uses randomized sampling to compute a sparse, approximate Cholesky fac-
torization.

18.3.1. Procedure
Let L be the Laplacian of a weighted multigraph on V = {1, . . . ,n}. We
perform the following steps.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 527

(1) Preprocessing. Split each multiedge e = uv in L into R = ⌈8log(en)⌉
multiedges, each connecting {u,v}, and each with weight wL(e)/R. The
purpose of this step is to control the effective resistance (7.5) of each
multiedge at the outset of the algorithm. Note that this splitting results
in a weighted multigraph, even if we begin with a simple graph.

(2) Initialization. Form the initial Laplacian S0 = L and the list of remain-
ing vertices F0 = V .

(3) Iteration. For each i= 1,2, . . . ,n:

– Select a vertex. Choose a vertex ui uniformly at random from Fi−1.
Remove this vertex from the list: Fi = Fi−1 \{ui}.

– Extract the column. Copy the normalized uith column from the cur-
rent Laplacian:

ci =
1√

(Si−1)uiui

Si−1δui
.

Set ci = 0 if the denominator equals zero.

– Sampling the clique. Construct the Laplacian Ki of a random sparse
approximation of clique(ui,Si−1). We will detail this procedure in
Section 18.3.2.

– Approximate Schur complement. Form

Si = (Si−1− star(ui,Si−1))+Ki.

(4) Decomposition. Collate the columns ci into the Cholesky factor

C=
[
c1 · · · cn

]
.

Define the row permutation π(i) = ui for each i.

Once these operations are complete, C is a sparse, morally lower-triangular
matrix. It is also very likely that L≈ CC∗. Theorem 18.2 makes a rigorous
accounting of these claims.

18.3.2. Clique sampling
The remaining question is how to construct a random approximation K of
a clique clique(u,S). Here is the procedure.

(1) Probabilities. Construct a probability mass p such that

p(e) =
wS(e)

wS(u)
for each e ∈ star(u,S).

(2) Sampling. For each i= 1, . . . ,d= degS(u):

– Draw a random multiedge e1 = uv1 from the multiedges in star(u,S)
according to the probability mass p.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

528 P.-G. Martinsson and J. A. Tropp

– Draw a second random multiedge e2 = uv2 from the multiedges in
star(u,S) according to the uniform distribution.

– Form the random Laplacian matrix of a new multiedge:

Xi =
wS(e1)wS(e2)

wS(e1)+wS(e2)
∆v1v2 .

(3) Approximation. Return K=
∑d

i=1Xi.

The key fact about this construction is that it produces an unbiased estim-
ator K of the clique:

EK= clique(u,S).

Furthermore, each summand Xi creates a multiedge with uniformly bounded
effective resistance (7.5). This property persists as the SparseCholesky

algorithm executes, and it ensures that the random matrix K has con-
trolled variance. Note that the sampling procedure can result in several
edges between the same pair of vertices, which is another reason we need
the multigraph formalism.

Next, observe that the number d of multiedges in K is no greater than
the number d of multiedges in the star that we are removing from S. (For
comparison, note that the full clique has d2 multiedges.) As a consequence,
the clique approximation is inexpensive to construct. Moreover, the total
number of multiedges in the Laplacian can only decrease as the Spar-

seCholesky algorithm proceeds.

18.3.3. Analysis
The analysis of SparseCholesky is well beyond the scope of this paper.
The key technical tool is a concentration inequality for matrix-valued mar-
tingales that was derived in Oliveira (2009a) and Tropp (2011a). To activate
this result, Kyng and Sachdeva (2016) use the fact that the random clique
approximation is unbiased and low-variance, conditional on previous choices
made by the algorithm. The proof also relies heavily on the fact that we
eliminate a random vertex at each step of the iteration. For the technical
details, see Kyng and Sachdeva (2016), Kyng (2017) and Tropp (2019).

18.3.4. Implementation
The SparseCholesky algorithm is fairly simple to describe, but it de-
mands some care to develop an implementation that achieves the runtime
guarantees stated in Theorem 18.2.

The most important point is that we need to use data structures for
weighted multigraphs. One method is to maintain the vertex–multiedge
adjacency matrix, along with a list of weights. This approach requires sparse
matrix libraries, including efficient iterators over the rows and columns.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 529

A secondary point is that we need fast methods for constructing finite
probability distributions and sampling from them repeatedly. See Bring-
mann and Panagiotou (2017).

It is unlikely that the SparseCholesky procedure will fail to produce a
factor C that satisfies (18.1). Even so, it is reassuring to know that we can
detect failures. Indeed, we can estimate the extreme singular values of the
preconditioned linear system (18.2) using the methods from Section 6.

The failure probability can also be reduced by modifying the random
vertex selection rule. Instead, we can draw a random vertex whose total
weight is at most twice the average total weight of the remaining vertices
(Kyng 2017). In practice, it may suffice to use the classical elimination rules
based on minimum degree or minimum total weight.

The main shortcoming of the SparseCholesky procedure arises from
the initialization step, where we split each multiedge into O(logn) pieces.
This step increases the storage and computation costs of the algorithm
enough to make it uncompetitive (e.g. with fast direct Poisson solvers) for
some problem instances. At present, it is unclear whether the initialization
step can be omitted or relaxed, while maintaining the reliability and
correctness of the algorithm.

19. Kernel matrices in machine learning

Randomized NLA algorithms have played a major role in developing scal-
able kernel methods for large-scale machine learning. This section contains
a brief introduction to kernels. Then it treats two probabilistic techniques
that have had an impact on kernel matrix computations: Nyström approx-
imation by random coordinate sampling (Williams and Seeger 2001) and
empirical approximation by random features (Rahimi and Recht 2008).

The literature on kernel methods is truly vast, so we cannot hope to
achieve comprehensive coverage within our survey. There are also many
computational considerations and learning-theoretic aspects that fall out-
side the realm of NLA. Our goal is simply to give a taste of the ideas, along
with a small selection of key references.

19.1. Kernels in machine learning

We commence with a crash course on kernels and their applications in ma-
chine learning. The reader may refer to Schölkopf and Smola (2001) for a
more complete treatment.

19.1.1. Kernel functions and kernel matrices
Let X be a set, called the input space or data space. Suppose that we
acquire a finite set of observations {x1, . . . ,xn} ⊂ X . We would like to use
the observed data to perform learning tasks.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

530 P.-G. Martinsson and J. A. Tropp

One approach is to introduce a kernel function:

k : X ×X → F.

The value k(x,y) of the kernel function is interpreted as a measure of sim-
ilarity between two data points x and y. We can tabulate the pairwise
similarities of the observed data points in a kernel matrix :

(K)ij := k(xi,xj) for i,j = 1, . . . ,n.

The kernel matrix is an analogue of the Gram matrix of a set of vectors in
a Euclidean space. In Sections 19.1.5 and 19.1.6 we will explain how to use
the matrix K to solve some core problems in data analysis.

The kernel function is required to be positive definite. That is, for each
natural number n and each set {x1, . . . ,xn} ⊂ X of observations, the asso-
ciated kernel matrix

K= [k(xi,xj)]i,j=1,...,n ∈Hn is PSD.

In particular, k(x,x)≥ 0 for all x ∈ X . The kernel must also be self-adjoint
in its arguments: k(x,y) = k(y,x)∗ for all x,y ∈ X . These properties mirror
the properties of a Gram matrix. In Section 19.1.3 we give some examples
of positive definite kernel functions.

19.1.2. The feature space
It is common to present kernel functions using the theory of reproducing
kernel Hilbert spaces. This approach gives an alternative interpretation of
the kernel function as the inner product defined on a feature space. We give
a very brief treatment, omitting all technical details.

Let F be a Hilbert space, called the feature space. We introduce a feature
map Φ : X → F , which maps a point in the input space to a point in the
feature space. Heuristically, the feature map extracts information from a
data point that is relevant for learning applications.

Under mild conditions, we can construct a positive definite kernel function
k from the feature map:

k(x,y) = 〈Φ(x),Φ(y)〉 for all x,y ∈ X .
In other words, the kernel function reports the inner product between the
features associated with the data points x and y. Conversely, a positive
definite kernel always induces a feature map into an appropriate feature
space.

19.1.3. Examples of kernels
Kernel methods are powerful because we can select or design a kernel that
automatically extracts relevant feature information from our data. This ap-
proach applies in all sorts of domains, including images and text and DNA

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 531

sequences. Let us present a few kernels that commonly arise in applica-
tions. See Schölkopf and Smola (2001) for many additional examples and
references.

Example 19.1 (inner product kernel). The simplest example of a ker-
nel is the ordinary inner product. Let X = F

d. Evidently,

k(x,y) = 〈x, y〉 for x,y ∈ F
d

is a positive definite kernel.

Example 19.2 (angular similarity). Another simple example is the an-
gular similarity map. Let X = S

d−1(R) ⊂ R
d. This kernel is given by the

formula

k(x,y) =
2

π
arcsin 〈x, y〉 for x,y ∈ X .

This kernel is positive definite because of Schoenberg’s theorem (Schoenberg
1942). We will give a short direct proof in Example 19.8.

Example 19.3 (polynomial kernels). Let X be a subset of Fd. For a
natural number p, the inhomogeneous polynomial kernel is

k(x,y) = (1+ 〈x, y〉)p.
This kernel is also positive definite because of Schoenberg’s theorem; see Kar
and Karnick (2012). There is a short direct proof using the Schur product
theorem.

Example 19.4 (Gaussian kernel). An important example is the Gaus-
sian kernel. Let X = F

d. For a bandwidth parameter σ > 0, define

k(x,y) = exp

(−‖x−y‖2
2σ2

)
for x,y ∈ F

d.

This kernel is positive definite because of Bochner’s theorem (Bochner 1933).
We will give a short direct proof in Example 19.9.

19.1.4. The kernel trick
As we have mentioned, kernels can be used for a wide range of tasks in
machine learning. Schölkopf and Smola (2001, Remark 2.8) state the key
idea succinctly:

Given an algorithm which is formulated in terms of a positive definite kernel k,
one can construct an alternative algorithm by replacing k with another positive
definite kernel k̃.

In particular, any algorithm that can be formulated in terms of the inner
product kernel applies to every other kernel. That is to say, an algorithm for
Euclidean data that depends only on the Gram matrix can be implemented

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

532 P.-G. Martinsson and J. A. Tropp

with a kernel matrix instead. The next two subsections give two specific
examples of this methodology; there are many other applications.

19.1.5. Kernel PCA
Given a set of observations in a Euclidean space, principal component ana-
lysis (PCA) searches for orthogonal directions in which the data has the
maximum variability. The nonlinear extension, kernel PCA (KPCA), was
proposed in Schölkopf, Smola and Müller (1996); see also Schölkopf and
Smola (2001, Chapter 14).

Let {x1, . . . ,xn} ⊂ X be a set of observations. For a kernel k associ-
ated with a feature map Φ, construct the kernel matrix K ∈Hn associated
with the observations. For a natural number ℓ, we compute a truncated
eigenvalue decomposition of the kernel matrix:

K=
∑ℓ

i=1
λiuiu

∗
i .

Each unit-norm eigenvector ui determines a direction

(nλi)
−1/2

∑n

j=1
ui(j)Φ(xj)

of high variability in the feature space, called the ith kernel principal com-
ponent.

To find the projection of a new point x ∈ X onto the ith kernel principal
component, we embed it into the feature space via Φ(x) and compute the
inner product with the ith kernel principal component. In terms of the
kernel function,

PCi(x) :=
1√
nλi

∑n

j=1
ui(j)k(x,xj).

We can summarize the observation x with the vector

(PC1(x), . . . ,PCℓ(x)) ∈ F
ℓ.

This representation provides a data-driven feature that can be used for
downstream learning tasks.

In practice, it is valuable to centre the feature space representation of the
data, which requires a simple modification of the kernel matrix. We also
need to centre each observation before computing its projection onto the
kernel principal components. See Schölkopf et al. (1996, Appendix 1) for
details.

19.1.6. Kernel ridge regression
Given a set of labelled observations in a Euclidean space, ridge regression
uses regularized least-squares to model the labels as a linear functional of
the observations. The nonlinear extension of this approach is called kernel

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 533

ridge regression (KRR). We refer to Schölkopf and Smola (2001, Chapter
4) for a more detailed treatment, including an interpretation in terms of a
nonlinear feature map.

Let {(xi,yi) : i = 1, . . . ,n} ⊂ X ×F be a set of paired observations. For a
kernel k, construct the kernel matrix K ∈ Hn associated with the observa-
tions xi (but not the numerical values yi). For a regularization parameter
τ > 0, the kernel ridge regression problem takes the form

minimize
α∈Fn

1

n

∑n

i=1
[yi− (Kα)i]

2+
τ

2
α∗Kα.

The solution to this optimization problem is obtained by solving an ordinary
linear system:

(K+ τn I)α= y where y = (y1, . . . ,yn).

Let α̂ be the solution to this system.
Given a new observation x ∈ X , we can make a prediction ŷ ∈ F for its

label via the formula

ŷ(x) :=
∑n

j=1
α̂j k(x,xj).

In practice, the regularization parameter τ is chosen by cross-validation with
a holdout set of the paired observations.

19.1.7. The issue
Kernel methods are powerful tools for data analysis. Nevertheless, in their
native form, they suffer from two weaknesses.

First, it is very expensive to compute the kernel matrix explicitly. For
example, if points in the data space X have a d -dimensional parametriza-
tion, we may expect that it will cost O(d) arithmetic operations to evaluate
the kernel a single time. Therefore the cost of forming the kernel matrix K

for n observations is O(n2d).
Second, after computing the kernel matrix K, it remains expensive to

perform the linear algebra required by kernel methods. Both KPCA and
KRR require O(n3) operations if we use direct methods.

The poor computational profile of kernel methods limits our ability to
use them directly for large-scale data applications.

19.1.8. The solution
Fortunately, there is a path forward. To implement kernel methods, we
simply need to approximate the kernel matrix (Schölkopf and Smola 2001,
Section 10.2). Surprisingly, using the approximation often results in bet-
ter learning outcomes than using the exact kernel matrix. Even a poor
approximation of the kernel can suffice to achieve near-optimal perform-
ance, both in theory and in practice (Bach 2013, Rudi, Camoriano and

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

534 P.-G. Martinsson and J. A. Tropp

Rosasco 2015, Rudi et al. 2017). Last, working with a structured approxim-
ation of the kernel can accelerate the linear algebra computations dramat-
ically.

Randomized algorithms provide several effective tools for approximating
kernel matrices. Since we pay a steep price for each kernel evaluation,
we need to develop algorithms that explicitly control this cost. The rest
of this section describes two independent approaches. In Section 19.2 we
present coordinate sampling algorithms for Nyström approximations, while
Section 19.3 develops the method of random features.

Remark 19.5 (function approximation). Let us remark that approx-
imation of the kernel matrix is usually incidental to the goals of learning
theory. In many applications, such as KRR, we actually need to approxim-
ate a function on the input space. The sampling complexity of the latter
task may be strictly lower than the complexity of approximating the full
kernel matrix. We cannot discuss this issue in detail because it falls outside
the scope of NLA.

19.2. Coordinate Nyström approximation of kernel matrices

One way to approximate a kernel matrix is to form a Nyström decomposition
with respect to a judiciously chosen coordinate subspace. A natural idea is
to draw these coordinates at random. This basic technique was proposed by
Williams and Seeger (2001).

Coordinates play a key role here because we only have access to indi-
vidual entries of the kernel matrix. There is no direct way to compute a
matrix–vector product with the kernel matrix, so we cannot easily apply
the more effective constructions of random embeddings (e.g. Gaussians or
sparse maps or SRTTs). Indeed, kernel computation is the primary setting
where coordinate sampling is a practical idea.

19.2.1. Coordinate Nyström approximation
Suppose that {x1, . . . ,xn} ⊂ X is a collection of observations. Let K be the
PSD kernel matrix associated with some kernel function k.

Given a set I ⊆ {1, . . . ,n} consisting of r indices, we can form a PSD
Nyström approximation of the kernel matrix:

K〈I〉 :=K(: ,I)K(I,I)†K(I, :).

This matrix is equivalent to the Nyström decomposition (14.1) with respect
to a test matrix X whose range is span{δi : i ∈ I}.

To obtain K〈I〉, the basic cost is nr kernel evaluations, which typically
require O(nrd) operations for a d -dimensional input space X . We typically
do not form the pseudoinverse directly, but rather use the factored form of
the Nyström approximation for downstream calculations.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 535

For kernel problems, it is common to regularize the coordinate Nyström
approximation. One approach replaces the core matrix K(I,I) with its
truncated eigenvalue decomposition before computing the pseudoinverse;
for example, see Drineas and Mahoney (2005). The RSVD algorithm (Sec-
tion 11.2) has been proposed for this purpose (Li et al. 2015a). When it is
computationally feasible, we recommend taking a truncated eigenvalue de-
composition of the full Nyström approximation K〈I〉, rather than just the
core; see Tropp et al. (2017a).

19.2.2. Greedy selection of coordinates
Recall from Section 14 that the error K/I := K−K〈I〉 in the Nyström
decomposition is simply the Schur complement of K with respect to the
coordinates in I.

This connection suggests that we should use a pivoted Cholesky method
or a pivoted QR algorithm to select the coordinates I. These techniques
lead to Nyström approximations with superior learning performance; for
example, see Fine and Scheinberg (2001), Bach and Jordan (2005) and Bach
(2013). Unfortunately the O(n2r) cost is prohibitive in applications. See
Schölkopf and Smola (2001, Section 10.2) for some randomized strategies
that can reduce the expense.

19.2.3. Ridge leverage scores
A natural approach to selecting the coordinate set I is to perform ran-
domized sampling. To describe these approaches, we need to take a short
detour.

Fix a regularization parameter τ > 0. Consider the smoothed projector:

hτ (K) :=K(K+ τnI)−1.

The number of effective degrees of freedom at regularization level τ is

νeff := tracehτ (K).

The maximum marginal number of degrees of freedom at regularization level
τ is

νmof := n · max
i=1,...,n

(hτ (K))ii.

Observe that νeff ≤ νmof. The statistic νmof is analogous with the coherence
that appears in our initial discussion of coordinate sampling (Section 9.6).

The ridge leverage scores at regularization level τ are the (normalized)
diagonal entries of the smoothed projector:

pi =
(hτ (K))ii

νeff
for i= 1, . . . ,n.

Evidently (p1, . . . ,pn) is a probability distribution. The ridge leverage scores

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

536 P.-G. Martinsson and J. A. Tropp

and related quantities are expensive to compute directly, but there are effi-
cient algorithms for approximating them well. These approximations suffice
for applications. See Section 19.2.5 for more discussion.

Remark 19.6 (history). Bach (2013) identified the core role of the
smoothed projector for KRR. Alaoui and Mahoney (2015) proposed the
definition of the ridge leverage scores and described a simple method for
approximating them. At present, the most practical algorithm for approx-
imating ridge leverage scores appears in Rudi et al. (2018). Musco and
Musco (2017) recognize that ridge leverage scores also have relevance for
KPCA.

19.2.4. Uniform sampling
The simplest way to select a set I of r coordinates for the Nyström ap-
proximation K〈I〉 is to draw the set uniformly at random. Although this
approach seems näıve, it can be surprisingly effective in practice. The main
failure mode occurs when there are a few significant observations that make
outsize contributions to the kernel matrix; uniform sampling is likely to miss
these influential data points.

Bach (2013) proves that we can achieve optimal learning guarantees for
KRR with a uniformly sampled Nyström approximation. It suffices that the
number r of coordinates is proportional to νmof logn. A similar result holds
for KPCA.

Nyström approximation with uniform coordinate sampling was proposed
by Williams and Seeger (2001). The theoretical and numerical performance
of this approach has been studied in many subsequent works, including
Kumar et al. (2012), Gittens (2013), Bach (2013) and Rudi et al. (2017).

19.2.5. Sampling with ridge leverage scores
Suppose that we have computed an approximation of the ridge leverage
score distribution. We can construct a coordinate set I for the Nyström ap-
proximation K〈I〉 by sampling r coordinates independently at random from
the ridge leverage score distribution. Properly implemented, this method is
unlikely to miss influential observations.

Alaoui and Mahoney (2015) prove that we can achieve optimal learning
guarantees for KRR by ridge leverage score sampling. It suffices that the
number r of sampled coordinates is proportional to νeff logn. This bound
improves over the uniform sampling bound. Musco and Musco (2017) give
related theoretical results for KPCA.

Effective algorithms for estimating ridge leverage scores are based on
multilevel procedures that sequentially improve the ridge leverage score
estimates. The basic idea is to start with a small uniform sample of co-
ordinates, which we use to approximate the smoothed projector for a very

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 537

large regularization parameter τ0. From this smoothed projector, we estim-
ate the ridge leverage scores at level τ0. We then sample a larger set of
coordinates non-uniformly using the approximate ridge leverage score dis-
tribution at level τ0. These samples allow us to approximate the smoothed
projector at level τ1 = const. τ0 for a constant smaller than one. We obtain
an estimate for the ridge leverage score distribution at level τ1. This process
is repeated. In this way, the sampling and the matrix approximation are
intertwined. See Musco and Musco (2017) and Rudi et al. (2018).

Musco and Musco (2017) provide empirical evidence that ridge leverage
score sampling is more efficient than uniform sampling for KPCA, including
the cost of the ridge leverage score approximations. Likewise, Rudi et al.
(2018) report empirical evidence that ridge leverage score sampling is more
efficient than uniform sampling for KRR.

19.3. Random features approximation of kernels

A second approach to kernel approximation is based on the method of empir-
ical approximation (Section 7). This technique constructs a random rank-
one matrix that serves as an unbiased estimator for the kernel matrix. By
averaging many copies of the estimator, we can obtain superior approxima-
tions of the kernel matrix. The individual rank-one components are called
random features.

Neal (1996) proposed the idea of using empirical approximation for ker-
nels arising in Gaussian process regression. Later, Rahimi and Recht (2008,
2009) developed empirical approximations for translation-invariant kernels
and Mercer kernels, and they coined the term ‘random features’. Our
presentation is based on an abstract formulation of the random feature
method from Tropp (2015, Section 6.5); see also Bach (2017).

In this subsection we introduce the idea of a random feature map, along
with some basic examples. We explain how to use random feature maps
to construct empirical approximations of a kernel matrix, and we give a
short analysis. Afterwards, we summarize two randomized NLA methods
for improving the computational profile of random features.

19.3.1. Random feature maps
In many cases a kernel function k on a domain X can be written as an
expectation, and we can exploit this representation to obtain empirical ap-
proximations of the kernel matrix.

Let W be a probability space equipped with a probability measure ρ.
Assume that there is a bounded function

ψ : X ×W → {z ∈ C : |z| ≤ b}

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

538 P.-G. Martinsson and J. A. Tropp

with the reproducing property

k(x,y) =

∫
ψ(x;w)ψ(y;w)∗ ρ(dw) for all x,y ∈ X . (19.1)

The star ∗ denotes the conjugate of a complex number. We call (ψ,ρ) a ran-
dom feature map for the kernel function k. As we will see in Section 19.3.2,
a kernel that admits a random feature map must be positive definite.

It is not obvious that we can equip kernels of practical interest with
random feature maps, so let us offer a few concrete examples.

Example 19.7 (inner product kernel). There are many ways to con-
struct a random feature map for the inner product kernel on F

d. One simple
example is

ψ(x;w) = 〈x,w〉 with w ∼ normal(0,Id).

To check that this map satisfies the reproducing property (19.1), just note
that w is isotropic: E[ww∗] = I. This formulation is closely related to the
theory of random embeddings (Sections 8 and 9) and to approximate matrix
multiplication (Section 7.3).

Example 19.8 (angular similarity kernel). For the angular similarity
map defined in Example 19.2, we can construct a random feature map using
an elegant fact from geometry. Indeed, the function

ψ(x;w) = sgn 〈x,w〉 with w ∼ uniform(Sd−1(R))

gives a random feature map for the angular similarity kernel. As a con-
sequence, the angular similarity kernel is positive definite.

Example 19.9 (translation-invariant kernels). A kernel function k
on F

d is called translation-invariant if it has the form

k(x,y) = φ(x−y) for all x,y ∈ F
d.

A classic result from analysis, Bochner’s theorem (Bochner 1933), gives
a characterization of these kernels. A kernel is continuous, positive defin-
ite and translation-invariant if and only if it is the Fourier transform of a
positive probability measure ρ on F

d:

φ(x−y) = cφ

∫
ei〈x,w〉e−i〈y,w〉 ρ(dw).

The constant cφ is a normalizing factor that depends only on φ, and i is the
imaginary unit.

Bochner’s theorem immediately delivers a random feature map for the
translation-invariant kernel k :

ψ(x;w) =
√
cφ e

i〈x,w〉 where w ∼ ρ.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 539

This was one of the original examples of a random feature map (Rahimi
and Recht 2008). When working with data in R

d, the construction can also
be modified to avoid complex values.

The key example of a positive definite, translation-invariant kernel is the
Gaussian kernel on F

d, defined in Example 19.4. The Gaussian kernel is
derived from the function

φ(x) = e−‖x‖2/(2σ2) where the bandwidth σ > 0.

The associated random feature map is

ψ(x;w) = ei〈x,w〉 where w ∼ normal(0,σ−2I) ∈ F
d.

This fact is both beautiful and useful because of the ubiquity of the Gaussian
kernel in data analysis.

There are many other kinds of kernels that admit random feature maps.
Random feature maps for dot product kernels were obtained in Kar and
Karnick (2012), Pham and Pagh (2013) and Hamid, Xiao, Gittens and
Decoste (2014). For nonstationary kernels, see Samo and Roberts (2015)
and Ton, Flaxman, Sejdinovic and Bhatt (2018). Catalogues of examples
appear in Rudi and Rosasco (2017, Appendix E) and Bach (2017).

19.3.2. Random features and kernel matrix approximation
We can use the random feature map to construct an empirical approximation
of the kernel matrix K ∈ Hn induced by the dataset {x1, . . . ,xn}. To do so,
we draw a random variable w ∈W with the distribution ρ. Then we form a
random vector

z=



z1
...
zn


=



ψ(x1;w)

...
ψ(xn;w)


 ∈ F

n.

Note that we are using the same random variable w for each data point. A
realization of the random vector z is called a random feature. The reprodu-
cing property (19.1) ensures that the random feature verifies the identity

(K)ij = k(xi,xj) =

∫
ψ(xi;w)ψ(xj ;w)∗ ρ(dw) = E[zi ·z∗j].

In matrix form,

K= E[zz∗].

Therefore the random rank-one PSD matrix Z= zz∗ is an unbiased estim-
ator for the kernel matrix. The latter display proves that a kernel k must
be positive definite if it admits a random feature map.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

540 P.-G. Martinsson and J. A. Tropp

To approximate the kernel matrix, we can average r copies of the rank-one
estimator:

Z̄r :=
1

r

∑r

i=1
Zi where Zi ∼ Z are i.i.d.

If the points in the input space X are parametrized by d numbers, each ran-
dom feature typically requires O(nd) arithmetic. The total cost of forming
the approximation Z̄r is thus O(rnd). When r≪ n, we can obtain substan-
tial improvements over the direct approach of computing the kernel matrix
K explicitly at a cost of O(n2d).

19.3.3. Analysis of the random feature approximation
How many random features are enough to approximate the kernel matrix
in spectral norm? Theorem 7.2 delivers bounds.

For simplicity, assume that the kernel satisfies k(x,x) = 1 for all x∈X ; the
angular similarity kernel and the Gaussian kernel both enjoy this property.
For an accuracy parameter ε > 0, suppose that we select

r ≥ 2bε−2 intdim(K) log(2n).

The number b is the uniform bound on the feature map ψ defined in (19.1),
and the intrinsic dimension is defined in (2.1). Theorem 7.2 implies that the
empirical approximation Z̄r satisfies

E‖Z̄r−K‖
‖K‖ ≤ ε+ε2.

In other words, we achieve a relative error approximation of the kernel mat-
rix in spectral norm when the number r of random features is proportional
to the number of energetic dimensions in the range of the matrix K.

This analysis is due to Lopez-Paz et al. (2014); see also Tropp (2015,
Section 6.5). For learning applications, such as KPCA or KRR, this result
suggests that we need about O(n logn) random features to obtain optimal
generalization guarantees (where ε = n−1/2). In fact, roughly O(

√
n logn)

random features are sufficient to achieve optimal learning rates. This claim
depends on involved arguments from learning theory that are outside the
realm of linear algebra. For example, see Sriperumbudur and Szabó (2015),
Rudi and Rosasco (2017), Ullah, Mianjy, Marinov and Arora (2018), Szabó
and Sriperumbudur (2019) and Wang (2019).

19.3.4. Randomized embeddings and random features
Random feature approximations are faster than explicit computation of a
kernel matrix. Even so, it takes a significant amount of effort to extract
r random features and form an empirical approximation Z̄r of the kernel
matrix. Several groups have proposed using structured random embeddings

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 541

(Section 9) to accelerate this process; see Pham and Pagh (2013), Le, Sarlós
and Smola (2013) and Hamid et al. (2014).

As an example, let us summarize a heuristic method, called FFT Fastfood
(Le et al. 2013), for speeding up the computation of random features for the
complex Gaussian kernel with bandwidth σ2. Consider the matrix X formed
from n observations in C

d:

X=



x∗1
...
x∗n


 ∈ C

n×d.

Let Γ ∈C
d×d be a matrix with i.i.d. complex normal(0,σ−2) entries. Then

we can simultaneously compute d random features z1, . . . ,zd for the Gaussian
kernel by forming a matrix product and applying the exponential map:

exp ·(iXΓ) =
[
z1 · · · zd

]
∈ C

n×d.

We have written exp · for the entrywise exponential. This procedure typic-
ally involves O(nd2) arithmetic.

The idea behind FFT Fastfood is to accelerate this computation by repla-
cing the Gaussian matrix with a structured random matrix. This exchange
is motivated by the observed universality properties of random embeddings.
Consider a random matrix of the form

S=
1

σ
EΠF ∈ C

d×d,

where E is a random sign flip, Π is a random permutation and F is the
discrete DFT. The FFT algorithm supports efficient matrix products with
S. Therefore we can simultaneously extract d random features by computing
exp ·(iXS)∈C

n×d. This procedure uses only O(nd logd) operations. To form
r random features where r > d, we simply repeat the same process ⌈r/d⌉
times.

Compared with using a Gaussian matrix product, FFT Fastfood gives a
substantial reduction in arithmetic. Even so, the performance for learning is
almost identical to a direct application of the random feature approximation.

19.3.5. Random features and streaming matrix approximation
Suppose that we wish to perform KPCA. The direct random features ap-
proach requires us to form the empirical approximation Z̄r of the kernel
matrix K and to compute its rank- ℓ truncated eigenvalue decomposition.
It is often the case that the desired number ℓ of principal components is far
smaller than the number r of random features we need to obtain a suitable
approximation of the kernel matrix. In this case we can combine random
features with streaming matrix approximation to make economies in storage
and computation.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

542 P.-G. Martinsson and J. A. Tropp

Let {z1,z2,z3, . . .} ⊂ F
n be an i.i.d. sequence of random features for the

kernel matrix K∈Hn. The empirical approximation Z̄r of the kernel matrix,
obtained from the first r random features, follows the recursion

Z̄0 = 0 and Z̄t = (1− t−1)Z̄t−1+ t
−1 ztz

∗
t for t= 1,2,3,

This is a PSD matrix, generated by a stream of linear updates. There-
fore we can track the evolution using a streaming Nyström approximation
(Section 14).

Let Ω ∈ F
n×s be a random test matrix, with s > ℓ. By performing rank-

one updates, we can efficiently maintain the sample matrices

Yt = Z̄tΩ ∈ F
n×s for t= 1,2,3,

After collecting a sufficient number r of samples, we can apply Algorithm 16
to Yt to obtain a near-optimal rank- ℓ eigenvalue decomposition of the em-
pirical approximation Z̄r.

It usually suffices to take the sketch size s to be proportional to the rank ℓ
of the truncated eigenvalue decomposition. In this case the overall approach
uses O(ℓn) storage. We can generate and process r random features using
O((d+ ℓ)rn) arithmetic, where d is the dimension of X . The subsequent
cost of the Nyström approximation is O(ℓ2n) operations. The streaming
random features approach has storage and arithmetic costs roughly ℓ/r
times those of the direct random features approach. The streaming method
can be combined with dimension reduction techniques (Section 19.3.4) for
further acceleration.

Remark 19.10 (history). Ghashami, Perry and Phillips (2016b) proposed
using a stream of random features to perform KPCA; their algorithm tracks
the stream with the (deterministic) frequent directions sketch (Ghashami
et al. 2016a). We have presented a new variant, based on randomized
Nyström approximation, that is motivated by the work in Tropp et al.
(2017a). Ullah et al. (2018) have developed a somewhat different streaming
KPCA algorithm based on Oja’s method (Oja 1982). At present, we lack a
full empirical comparison of these alternatives.

20. High-accuracy approximation of kernel matrices

In this section we continue the discussion of kernel matrices that we started
in Section 19, but we now consider the high-accuracy regime. In particu-
lar, given a kernel matrix K, we seek an approximation Kapprox for which
‖K−Kapprox‖ is small, say of relative accuracy 10−3 or 10−6. This ob-
jective was not realistic for the applications discussed in Section 19, but
it can be achieved in situations where we have access to fast techniques
for evaluating the matrix–vector product x 7→ Kx (and also x 7→ K∗x when

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 543

K is not self-adjoint). The algorithms that we describe will build a data
sparse approximation to K by using information in samples such as Kx and
K∗x for random vectors x. These techniques are particularly well suited to
problems that arise in modelling physical phenomena such as electromag-
netic scattering, or the deformation of solid bodies; we describe how the fast
matrix–vector application we need can be realized in Section 20.3.

As in Section 19, we say that a matrix K ∈C
n×n is a kernel matrix if its

entries are given by a formula such as

K(i,j) = k(xi,xj), (20.1)

where {xi}ni=1 is a set of points in R
d, and where k : R

d ×R
d → C is a

kernel function. The kernel matrices that we consider tend to have singular
values that decay slowly or not at all, which rules out the possibility that
Kapprox could have low rank. Instead, we build an approximation Kapprox

that is tessellated into O(n) blocks in such a way that each off-diagonal block
has low rank. Figure 20.2(b) (page 453) shows a representative tessellation
pattern. We say that a matrix of this type is a rank-structured hierarchical
matrix.

The purpose of determining a rank-structured approximation to an oper-
ator for which we already have fast matrix–vector multiplication techniques
available is that the new representation can be used to rapidly execute a
whole range of linear algebraic operations: matrix inversion, LU factoriza-
tion, and even full spectral decompositions in certain cases.

20.1. Separation of variables and low-rank approximation

The reason that many kernel matrices can be tessellated into blocks that
have low numerical rank is that the function (x,y) 7→ k(x,y) is typically
smooth as long as x and y are not close. To illustrate the connection, let us
consider a computational domain D that holds a set of points {xi}ni=1 ⊂R

2,
as shown in Figure 20.1. Suppose further that Ds and Dt are two subdo-
mains of D that are located a bit apart from each other, as shown in the
figure. When the kernel function k is smooth, we can typically approximate
it to high accuracy through an approximate separation of variables of the
form

k(x,y)≈
∑P

p=1
bp(x)cp(y), x ∈Dt, y ∈Ds. (20.2)

Let Is and It denote two index vectors that identify the points located in
Ds and Dt, respectively (so that, for example, i ∈ Is if and only if xi ∈Ds).
Then combining the formula (20.1) with the separation of variables (20.2),
we get

K(i,j)≈
∑P

p=1
bp(xi)cp(xj), i ∈ It, j ∈ Is. (20.3)

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

544 P.-G. Martinsson and J. A. Tropp

D

Ds

Dt

Figure 20.1. The geometry discussed in Section 20.2: a box D holding points
{xi}ni=1 (the blue, red and grey dots) that define a kernel matrix K(i,j) = k(xi,xj).
The regions Ds (the red box) and Dt (the blue box) are separated enough that
k(x,y) is smooth when x ∈ Dt and y ∈ Ds. In consequence, K(It,Is) has low
numerical rank, where Is identifies the red points and It the blue.

Equation (20.3) is exactly the low-rank approximation to the block K(It,Is)
that we seek. To be precise, (20.3) can be written as

K(It,Is)≈ BC,

where B and C are defined via B(i,p) = bp(xi) and C(p,j) = cp(xj).
A separation of variables such as (20.2) is sometimes provided through

analytic knowledge of the kernel function, as illustrated in Example 20.1.
Perhaps more typically, all we know is that such a formula should in principle
exist, for instance because we know that the matrix approximates a singular
integral operator for which a Calderón–Zygmund decomposition must exist.
It is then the task of the randomized algorithm to explicitly build the factors
B and C, given a computational tolerance.

Example 20.1 (Laplace kernel in two dimensions). A standard ex-
ample of a kernel matrix in mathematical physics is the matrix K that maps
a vector of electric source strengths q = (qj)

n
j=1 to a vector of potentials

u= (ui)
n
i=1. When the set {xi}ni=1 ⊂ R

2 identifies the locations of both the
source and the target points, K takes the form (20.1), for

k(x,y) =

{
log |x−y| when x 6= y,

0 when x= y.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 545

There is a well-known result from potential theory that provides the re-
quired separation of variables. Expressing x and y in polar coordinates with
respect to some expansion centre c, so that x−c= r(cosθ, sinθ) and y−c=
r′(cosθ′, sinθ′), the separation of variables (known as amultipole expansion)

k(x,y) = log(r)−
∑∞

p=1

1

p

(
r′

r

)p

(cos(pθ)cos(pθ′)+sin(pθ)sin(pθ′)) (20.4)

is valid whenever r′ < r.

20.2. Rank-structured matrices and randomized compression

The observation that the off-diagonal blocks of a kernel matrix often have
low numerical rank underpins many ‘fast’ algorithms in computational phys-
ics. In particular, it is the foundation of the Barnes–Hut (Barnes and Hut
1986) and fast multipole methods (Greengard and Rokhlin 1987) for
evaluating all O(n2) pairwise interactions between n electrically charged
particles in linear or close-to-linear complexity. These methods were gener-
alized by Hackbusch and co-workers, who developed the H- and H2-matrix
frameworks (Hackbusch 1999, Grasedyck and Hackbusch 2003, Hackbusch,
Khoromskij and Sauter 2002). These explicitly linear algebraic formulations
enable fast algorithms not only for matrix–vector multiplication but also
for matrix inversion, LU factorization, matrix–matrix multiplication and
many more.

A fundamental challenge that arises when rank-structured matrix formu-
lations are used is how to find the data sparse representation of the operator
in the first place. The straightforward approach would be to form the full
matrix, and then loop over all the compressible off-diagonal blocks and com-
press them using, for example, a singular value decomposition. The cost of
such a process is necessarily at least O(n2), which is rarely affordable. Using
randomized compression techniques, it turns out to be possible to compress
all the off-diagonal blocks jointly, without any need to sample each block
individually. In this section we describe two such methods. Both require the
user to supply a fast algorithm for applying the full matrix (and its adjoint)
to vectors; see Section 20.3. The two methods have different computational
profiles.

(a) The technique described in Sections 20.4 and 20.5 is a true ‘black-box’
technique that interacts with K only through the matrix–vector multi-
plication. It has storage complexity O(n logn) and it requires O(logn)
applications of K and K∗ to test matrices of size n× (r+p), where r is
an upper bound on the ranks of the off-diagonal blocks, and p is a small
over-sampling parameter.

(b) The technique described in Section 20.6 attains true linear O(n) com-
plexity, and requires only a single application of K and K∗ to a random

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

546 P.-G. Martinsson and J. A. Tropp

matrix of size n× (r+p), where r and p are as in (a). Its drawbacks are
that it requires evaluation of O(n) individual matrix entries, and that
it works only for a smaller class of matrices.

Remark 20.2 (scope of Section 20). To keep the presentation as un-
cluttered by burdensome notation as possible, in this survey we restrict
attention to two basic ‘formats’ for representing a rank-structured hierarch-
ical matrix. In Sections 20.4 and 20.5 we use the hierarchically off-diagonal
low-rank (HODLR) format and in Section 20.6 we use the hierarchically
block separable (HBS) format (sometimes referred to as the hierarchically
semi-separable (HSS) format). The main limitation of these formats is that
they require all off-diagonal blocks of the matrix to have low numerical
rank. This is realistic only when the points {xi}ni=1 are restricted to a low-
dimensional manifold. In practical applications, one sometimes has to leave
a larger part of the matrix uncompressed, to avoid attempting to impose
a separation of variables such as (20.2) on a kernel k = k(x,y) when x and
y are too close. This is done through enforcing what is called a ‘strong
admissibility condition’ (in contrast to the ‘weak admissibility condition’ of
the HODLR and HBS formats), as was done in the original Barnes–Hut and
fast multipole methods.

Remark 20.3 (alternative compression strategies). Let us briefly de-
scribe what alternatives to randomized compression exist. The original
papers on H-matrices used Taylor approximations to derive a separation of
variables, but this works only when the kernel is given analytically. It also
tends to be quite expensive. The adaptive cross-approximation (ACA) tech-
nique of Kurz, Rain and Rjasanow (2002) and Bebendorf and Grzhibovskis
(2006) relies on using ‘natural basis’ vectors (see Section 13.1) that are found
using semi-heuristic techniques. The method can work very well in practice,
but is not guaranteed to provide an accurate factorization. When the kernel
matrix comes from mathematical physics, specialized techniques that
exploit mathematical properties of the kernel function often perform well
(Martinsson and Rokhlin 2005). For a detailed discussion of compression
of rank-structured matrices, we refer to Martinsson (2019, Chapter 17).

20.3. Computational environments

The compression techniques that we describe rely on the user providing a
fast algorithm for applying the operator to be compressed to vectors. Rep-
resentative environments where such fast algorithms are available include
the following.

Matrix–matrix multiplication. Suppose that K = BC, where B and C are
matrices that can rapidly be applied to vectors. Then the randomized com-
pression techniques allow us to compute their product.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 547

Compression of boundary integral operators. It is often possible to reformu-
late a boundary value problem involving an elliptic partial different operator,
such as the Laplace or the Helmholtz operators, as an equivalent boundary
integral equation (BIE); see Martinsson (2019, Part III). When such a BIE
is discretized, the result is a kernel matrix which can be applied rapidly to
vectors using fast summation techniques such as the fast multipole method
(Greengard and Rokhlin 1987). Randomized compression techniques al-
low us to build an approximation to the matrix that can be factorized or
inverted, thus enabling direct (as opposed to iterative) solvers.

Dirichlet-to-Neumann (DtN) operators. A singular integral operator of cent-
ral importance in engineering, physics and scientific computing is the DtN
operator, which maps given Dirichlet data for an elliptic boundary value
problem to the boundary fluxes of the corresponding solution. The kernel
of the DtN operator is rarely known analytically, but the operator can be
applied through a fast solver for the PDE, such as a finite-element dis-
cretization combined with a multigrid solver. The randomized techniques
described allow for the DtN operator to be built and stored explicitly.

Frontal matrices in sparse direct solvers. Suppose that S is a large sparse
matrix arising from the discretization of an elliptic PDEs. A common tech-
nique for solving Sx= b is to compute an LU factorization of the matrix S.
There are ways to do this that preserve sparsity as far as possible, but in
the course of the factorization procedure, certain dense matrices of increas-
ing size will need to be factorized. These matrices turn out to be kernel
matrices with kernels that are not known explicitly, but that can be built
using the techniques described here (Xia 2013, Ghysels et al. 2017).

20.4. Hierarchically off-diagonal low-rank matrices

In order to illustrate how randomized methods can be used to construct
data sparse representations of rank-structured matrices, we will describe
a particularly simple ‘format’ in this section that is often referred to as
the hierarchically off-diagonal low-rank (HODLR) format. This is a basic
format that works well when the points {xi}ni=1 are organized on a one- or
two-dimensional manifold.

The first step towards defining the HODLR format is to build a binary
tree on the index vector I = [1,2,3, . . . ,n] through a process that is illustrated
in Figure 20.2(a). With any node τ in the tree, we associate an index vector
Iτ ⊆ I. The root of the tree is given the index τ = 1, and we associate it with
the full index vector, so that I1 = I. At the next finer level of the tree, we
split I1 into two parts I2 and I3 so that I1 = I2∪I3 forms a disjoint partition.
Then continue splitting the index vectors until each remaining index vector
is ‘short’. (Exactly what ‘short’ means is application-dependent, but one

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

548 P.-G. Martinsson and J. A. Tropp

may think of a short vector as holding a few hundred indices or so.) We let
ℓ denote a level of the tree, with ℓ = 0 denoting the root, so that level ℓ
holds 2ℓ nodes. We use the terms parent and child in the obvious way, and
say that a pair of nodes {α,β} forms a sibling pair if they have the same
parent. A leaf node is of course a node that has no children.

The binary tree that we defined induces a natural tessellation of the kernel
matrix K into O(n) blocks. Figure 20.2(b) shows the tessellation that follows
from the tree in Figure 20.2(a). Each parent node τ in the tree gives rise to
two off-diagonal blocks that both have low numerical rank. Letting {α,β}
denote the children of τ , these two blocks are

Kα,β =K(Iα,Iβ) and Kβ,α =K(Iβ,Iα). (20.5)

For each leaf node τ , we define a corresponding diagonal block as

Dτ =K(Iτ,Iτ). (20.6)

The disjoint partition of K into blocks is now formed by all sibling pairs,
as defined in (20.5), together with all diagonal blocks, as defined by (20.6).
When each off-diagonal block in this tessellation has low rank, we say that
K is a hierarchically off-diagonal low-rank (HODLR) matrix.

20.5. Compressing a rank-structured hierarchical matrix through the
matrix–vector multiplication only

Having introduced the ‘HODLR’ format in Section 20.4, we are now in
position to describe the computational profile of a randomized algorithm
for computing low-rank factorizations of all the off-diagonal blocks. This
technique does not need to evaluate individual entries of the matrix K that
is to be compressed. Instead, it works only with the information resulting
from the application of K and K∗ to vectors. The following theorem provides
a precise bound of its computational cost.

Theorem 20.4. Let K be a HODLR matrix associated with a fully popu-
lated binary tree on the index vector, as described in Section 20.4. Suppose
that the tree has L levels, that each off-diagonal block has rank at most r,
and that each leaf node in the tree holds at most cr indices for some fixed
number c. Then the diagonal blocks Dτ , as well as rank-r factorizations
of all sibling interaction matrices Kα,β, can be computed by a randomized
algorithm with cost at most

Ttotal = Tmatvec× (4L+ c)r+Tflop×O(L2r2n),

where Tmatvec is the cost of applying either K or K∗ to a vector, and Tflop
is the cost of a floating-point operation.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 549

8 9 10 11 12 13 14 15

4 5 6 7

2 3

1Level 0

Level 1

Level 2

Level 3

(a)

D8

D9

D10

D11

D12

D13

D14

D15

K9,8

K8,9

K15,14

K14,15

K13,12

K12,13

K11,10

K10,11

K3,2

K2,3

K5,4

K4,5

K7,6

K6,7

K =

(b)

Figure 20.2. (a) A binary tree with three levels; see Section 20.4. Each node τ in
the tree owns an index vector Iτ that is a subset of the full index vector I = 1 : n.
For the root node, we set I1 = I. Each split in the tree represents a disjoint partition
of the corresponding index vectors, so that, for example, I1 = I2 ∪ I3 and I7 =
I14∪ I15. (b) A matrix K tessellated according to the tree shown in (a).

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

550 P.-G. Martinsson and J. A. Tropp

Figure 20.3(a). First step of the ‘peeling algorithm’ for computing a HODLR
representation of a matrix described in Section 20.5, as applied to the matrix
shown in Figure 20.2. The sibling interaction matrices K2,3 and K3,2 on level 1,
shown in red, are compressed. The blue blocks are populated by Gaussian random
matrices, and the corresponding samples are collected from the green matrices.

The proof of the theorem is an explicit algorithm for building all matrices
that is often referred to as a ‘peeling algorithm’. It consists of a top-down
pass through the levels of the hierarchical tree on the index vector, going
from larger boxes to smaller. At each level, a tall and thin random test mat-
rix that holds 2r columns is formed, and then bases for the column spaces
of all off-diagonal blocks on the corresponding level are formed through the
application of K to the test matrix. The factorization is completed using
information collected through the application of K∗ to a second tall thin
test matrix holding 2r columns. In total, 4r matrix–vector multiplications
are required at each of the L∼ log(n) levels.

The trick to make the factorization work is to introduce some zero blocks
into the test matrices in order to isolate sub-blocks of K, as illustrated in
Figures 20.3(a), 20.3(b) and 20.3(c). Additional details can be found in the
technical report of Martinsson and Tropp (2020, Section 20.5).

In our discussion we have assumed we are in the particular case where
all off-diagonal blocks have exact rank r. In practical applications, it is of
course more typical for the off-diagonal blocks to be only of approximate low
rank. In this case the same algorithm still works, provided that the number
of samples drawn is increased from r to r+p for some modest oversampling
parameter p. The result is then of course a HODLR representation that
approximates K.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 551

Figure 20.3(b). Second step of the ‘peeling algorithm’. The four sibling interaction
matrices on level 2, shown in red, are compressed. In this step, we exploit that we
now possess factorizations of the grey blocks.

Figure 20.3(c). Third step of the ‘peeling algorithm’. The eight sibling interaction
matrices on level 8, shown in red, are compressed. We again exploit that we possess
factorizations of the grey blocks.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

552 P.-G. Martinsson and J. A. Tropp

Remark 20.5 (history). The ‘peeling algorithm’ described was intro-
duced in Lin, Lu and Ying (2011), where it was applied in a more gen-
eral framework than the one considered here. The method was further
developed in Martinsson (2016). Our discussion follows Martinsson (2019,
Section 17.4).

20.6. Linear complexity algorithms for rank-structured matrices

In scientific computing, many state-of-the-art fast algorithms have arith-
metic complexity that scales linearly with the number n of degrees of free-
dom in the problem without factors of log(n). For instance, both the fast
multipole method, mentioned in Section 20.2, and the well-known multigrid
method for solving linear elliptic PDEs have this property. In this section
we describe a randomized algorithm that also attains true linear complexity
in important environments. This technique is typically far faster than the
method described in Section 20.5, but it is not as widely applicable, since
it requires not only the ability to apply the matrix to be compressed to
vectors, but also the ability to evaluate a small number of individual matrix
entries.

We observe that in order to attain linear complexity, we cannot use
the ‘HODLR’ format of Section 20.4, since it requires storing O(rn log(n))
floating-point numbers. The reason is that at level ℓ, there are 2ℓ matrices
of rank r that need to be represented, and each of these matrices is of size
≈ 2−ℓn. This means that we need ≈ 2nr floating-point numbers at every
level to store the basis vectors, and there are O(logn) levels.

To overcome the logarithmic storage requirement, one must switch to a
multiresolution representation of the matrices. The idea is to represent a
vector using a hierarchical set of basis functions that are analogous to a
wavelet basis. On the operator side, this means that we only need to store
the action of the matrix as restricted to each separate length scale, just as
is done in the FMM and multigrid frameworks. Then the HODLR format
of Section 20.4 turns into what is called the hierarchically block separable
(HBS) format, where the storage required is only O(rn).

For a matrix that is compressible in the HBS format, there is a random-
ized compression algorithm whose computational profile is described by the
following theorem (Martinsson 2008, Martinsson 2011).

Theorem 20.6. Let K be an n×n matrix that is compressible in the
HBS format for some rank r. Let Tapply denote the time it takes to evaluate
the two products

Y = KG, (20.7)

Z= K∗G, (20.8)

where G is an n×r matrix drawn from a Gaussian distribution. Then a full

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 553

Figure 20.4. Illustration of the butterfly rank-structured matrix format described
in Section 20.7. The figures show the blocks that must all be of numerically low
rank for a butterfly matrix arising from a binary tree with 16 leaf nodes.

HBS representation of K can be computed at cost bounded by

Ttotal = Tapply+Tentry×O(nr)+Tflop×O(nr2),

where Tflop is the cost of a floating-point operation, and where Tentry is the
time it takes to evaluate an individual entry of K.

When the off-diagonal blocks are only approximately of rank r, we do
some over-sampling as usual, and replace the number r in the theorem with
r+ p for some small number p. This of course results in an approximate
HBS representation of K.

The proof of Theorem 20.6 is an algorithm that explicitly builds the data
sparse representation of the matrix within the specified time budget. The
algorithm consists of a pass through all nodes in the hierarchical tree, go-
ing from smaller boxes to larger; ‘bottom-up’, as opposed to the ‘top-down’
method for HODLR matrices in Section 20.5. For details, see Martinsson
and Tropp (2020, Section 20) or Martinsson (2019, Section 17.4). Techniques
that partially avoid the constraint that individual matrix elements must be
accessible are described in Xia (2013) and Ghysels et al. (2017).

20.7. Butterfly matrices

An interesting class of rank-structured matrices arises from a generaliza-
tion of the discrete Fourier transform. These ‘butterfly matrices’ provide
a data sparse format for many matrices that appear in the analysis of
neural networks, wave propagation problems, and signal processing (Dao
et al. 2019, O’Neil 2007, Candès, Demanet and Ying 2009). This format
involves an additional complication in comparison to the HODLR and HBS
formats in that it requires O(logn) different tessellations of the matrix, as
illustrated for a simple case in Figure 20.4. It can be demonstrated that
when all of the resulting submatrices are of numerically low rank, the mat-
rix as a whole can be written (approximately) as a product of O(logn)
sparse matrices, in a manner analogous to the butterfly representation of
an FFT (Briggs and Henson 1995, Section 10.4).

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

554 P.-G. Martinsson and J. A. Tropp

Randomization has proved to be a powerful tool for finding butterfly
representations of matrices. The techniques involved are more complex than
the methods described in Sections 20.4–20.6 due to the multiplicative nature
of the representation, and typically involve iterative refinement rather than
direct approximation (Li et al. 2015b, Li and Yang 2017, Li, Yang and
Ying 2018). Similar techniques played an essential role in a recent ground-
breaking paper (Guo, Liu, Hu and Michielssen 2017) that exploits butterfly
representations to directly solve linear systems arising from the modelling
of scattering problems in the high-frequency regime.

20.8. Applications of rank-structured matrices in data analysis

The machinery for working with rank-structured hierarchical matrices that
we have described can in some environments also be used for the kernel
matrices discussed in Section 19 that arise in machine learning and com-
putational statistics. For instance, Ambikasaran et al. (2015) demonstrate
that data sparse formats of this type can be very effective for simulating
Gaussian processes in low-dimensional spaces.

When the underlying dimension grows, the techniques that we have de-
scribed so far become uncompetitive. Even d = 4 would be considered a
stretch. Fortunately, significant progress has recently been made towards
extending the essential ideas to higher dimensions. For instance, March,
Xiao and Biros (2015) describe a technique that is designed to uncover in-
trinsic lower-dimensional structures that are often present in sets of points
{xi}ni=1 that ostensibly live in higher-dimensional spaces. The idea is to use
randomized algorithms both for organizing the points into a hierarchical
tree (that induces the tessellation of the matrix) and for computing low-
rank approximations to the resulting admissible blocks. The authors report
promising numerical results for a wide selection of kernel matrices.

In this context, as we saw in Section 19, it is rarely possible to execute a
matrix–vector multiplication, or even to evaluate more than a tiny fraction
of the entries of the matrix. This means on the one hand that sampling must
form an integral part of the compression strategy, and on the other hand
that firm performance guarantees are typically not available. The saving
grace is that when a kernel matrix is used for learning and data analysis, a
rough approximation is often sufficient.

Remark 20.7 (geometry-oblivious methods). A curious observation
is that techniques developed for kernel matrices appear to also be applicable
for certain symmetric positive definite (PD) matrices that are not explicitly
presented as kernel matrices. This is a consequence of the well-known fact
that any PD matrix K admits a factorization

K= G∗G (20.9)

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 555

for a ‘Gramian matrix’ G. (If the eigenvalue decomposition of K takes the

form K = UΛU∗, then a matrix of the form G = VΛ1/2U∗ is a Gramian if
and only if V is unitary.) The factorization (20.9) says that the entries of K
are formed by the inner products between the columns of G,

K(i,j) = 〈gi, gj〉= k(gi,gi), (20.10)

where gi is the ith column of G (the ‘Gram vector’) and where the k is the
inner product kernel of Example 19.7. At this point, it becomes plausible
that the techniques of March et al. (2015) for kernel matrices associated
with points in high-dimensional spaces may apply to certain PD matrices.
The key to make this work is the observation that it is not necessary to
explicitly form the Gram factors G. All that is needed in order to organize
the points {gi}ni=1 are relative distances and angles between the points, and
we can evaluate these from the matrix entries of K, via the formula

‖gi−gj‖2 = ‖gi‖2−2Re〈gi, gj〉+‖gj‖2 =K(i,i)−2ReK(i,j)+K(j,j).

The resulting technique was presented in Yu, Levitt, Reiz and Biros (2017a)
as a ‘geometry-oblivious FMM (GOFMM)’, along with numerical evidence
of its usefulness for important classes of matrices.

Acknowledgements

We are grateful to Arieh Iserles for proposing that we write this survey.
Both authors have benefited greatly from our collaborations with Vladimir
Rokhlin and Mark Tygert. Most of all, we would like to thank Richard
Kueng for his critical reading of the entire manuscript, which has improved
the presentation in many places. Madeleine Udell, Riley Murray, James
Levitt and Abinand Gopal also gave us useful feedback on parts of the
paper. Lorenzo Rosasco offered invaluable assistance with the section on
kernel methods for machine learning. Navid Azizan, Babak Hassibi and
Peter Richtárik helped with citations to the literature on SGD. Finally, we
would like to thank our ONR programme managers, Reza Malek-Madani
and John Tague, for supporting research on randomized numerical linear
algebra.

JAT acknowledges support from the Office of Naval Research (awards N-
00014-17-1-2146 and N-00014-18-1-2363). PGM acknowledges support from
the Office of Naval Research (award N00014-18-1-2354), from the National
Science Foundation (award DMS-1620472) and from Nvidia Corp.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

556 P.-G. Martinsson and J. A. Tropp

REFERENCES2

D. Achlioptas (2003), ‘Database-friendly random projections: Johnson–
Lindenstrauss with binary coins’, J. Comput. System Sci. 66, 671–687.

D. Achlioptas and F. McSherry (2001), Fast computation of low rank matrix ap-
proximations. In 33rd Annual ACM Symposium on Theory of Computing,
ACM, pp. 611–618.

D. Achlioptas and F. McSherry (2007), ‘Fast computation of low-rank matrix ap-
proximations’, J. Assoc. Comput. Mach. 54, 9.

R. Ahlswede and A. Winter (2002), ‘Strong converse for identification via quantum
channels’, IEEE Trans. Inform. Theory 48, 569–579.

N. Ailon and B. Chazelle (2006), Approximate nearest neighbors and the fast
Johnson–Lindenstrauss transform. In 38th Annual ACM Symposium on The-
ory of Computing, ACM, pp. 557–563.

N. Ailon and B. Chazelle (2009), ‘The fast Johnson–Lindenstrauss transform and
approximate nearest neighbors’, SIAM J. Comput. 39, 302–322.

A. Alaoui and M. W. Mahoney (2015), Fast randomized kernel ridge regression
with statistical guarantees. In Advances in Neural Information Processing
Systems 28 (C. Cortes et al., eds), Curran Associates, pp. 775–783.

N. Alon, P. B. Gibbons, Y. Matias and M. Szegedy (2002), ‘Tracking join and
self-join sizes in limited storage’, J. Comput. System Sci. 64, 719–747.

N. Alon, Y. Matias and M. Szegedy (1999), ‘The space complexity of approximating
the frequency moments’, J. Comput. System Sci. 58, 137–147.

S. Ambikasaran, D. Foreman-Mackey, L. Greengard, D. W. Hogg and M. O’Neil
(2015), ‘Fast direct methods for Gaussian processes’, IEEE Trans. Pattern
Anal. Machine Intel. 38, 252–265.

D. Amelunxen, M. Lotz, M. B. McCoy and J. A. Tropp (2014), ‘Living on the edge:
Phase transitions in convex programs with random data’, Inf. Inference 3,
224–294.

T. Ando (2005), Schur complements and matrix inequalities: Operator-theoretic
approach. In The Schur Complement and its Applications (F. Zhang, ed.),
Vol. 4 of Numerical Methods and Algorithms, Springer, pp. 137–162.

M. A. Arcones and E. Gine (1992), ‘On the bootstrap of uand vstatistics’, Ann.
Statist. 20, 655–674.

B. Arras, M. Bachmayr and A. Cohen (2019), ‘Sequential sampling for optimal
weighted least squares approximations in hierarchical spaces’, SIAM J. Math.
Data Sci. 1, 189–207.

H. Avron (2018), Randomized Riemannian preconditioning for quadratically con-
strained problems. Slides, Workshop on Randomized Numerical Linear Al-
gebra, Simons Institute, UC Berkeley.

H. Avron, K. Clarkson and D. Woodruff (2017), ‘Faster kernel ridge regression
using sketching and preconditioning’, SIAM J. Matrix Anal. Appl. 38, 1116–
1138.

2 The URLs cited in this work were correct at the time of going to press, but the publisher
and the authors make no undertaking that the citations remain live or are accurate or
appropriate.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 557

H. Avron, A. Druinsky and A. Gupta (2015), ‘Revisiting asynchronous linear solv-
ers: Provable convergence rate through randomization’, J. Assoc. Comput.
Mach. 62, 51.

H. Avron, M. Kapralov, C. Musco, C. Musco, A. Velingker and A. Zandieh (2019),
A universal sampling method for reconstructing signals with simple Fourier
transforms. In 51st Annual ACM SIGACT Symposium on Theory of Com-
puting (STOC 2019), ACM, pp. 1051–1063.

H. Avron, P. Maymounkov and S. Toledo (2010), ‘Blendenpik: Supercharging
LAPACK’s least-squares solver’, SIAM J. Sci. Comput. 32, 1217–1236.

M. Baboulin, J. J. Dongarra, A. Rémy, S. Tomov and I. Yamazaki (2017), ‘Solving
dense symmetric indefinite systems using GPUs’, Concurr. Comput. Pract.
Exp. 29, e4055.

M. Baboulin, X. S. Li and F.-H. Rouet (2014), Using random butterfly transform-
ations to avoid pivoting in sparse direct methods. In International Confer-
ence on High Performance Computing for Computational Science (VECPAR
2014), Vol. 8969 of Lecture Notes in Computer Science, Springer, pp. 135–144.

F. Bach (2013), Sharp analysis of low-rank kernel matrix approximations. In 26th
Annual Conference on Learning Theory, Vol. 30 of JMLR Workshop and
Conference Proceedings, PMLR, pp. 185–209.

F. Bach (2017), ‘On the equivalence between kernel quadrature rules and random
feature expansions’, J. Mach. Learn. Res. 18, 1–38.

F. R. Bach and M. Jordan (2005), Predictive low-rank decomposition for kernel
methods. In 22nd International Conference on Machine Learning (ICML
’05), ACM, pp. 33–40.

Z. Bai and J. W. Silverstein (2010), Spectral Analysis of Large Dimensional Ran-
dom Matrices, second edition, Springer Series in Statistics, Springer.

Z. Bai, J. Demmel, J. Dongarra, A. Ruhe and H. van der Vorst (1987), Templates
for the Solution of Algebraic Eigenvalue Problems: A Practical Guide (Soft-
ware, Environments and Tools), first edition, SIAM.

P. Baldi and R. Vershynin (2019), ‘Polynomial threshold functions, hyperplane
arrangements, and random tensors’, SIAM J. Math. Data Sci. 1, 699–729.

G. Ballard, J. Demmel, I. Dumitriu and A. Rusciano (2019), A generalized ran-
domized rank-revealing factorization . arXiv:1909.06524

J. Banks, J. G. Vargas, A. Kulkarni and N. Srivastava (2019), Pseudospectral shat-
tering, the sign function, and diagonalization in nearly matrix multiplication
time. arXiv:1912.08805

J. Barnes and P. Hut (1986), ‘A hierarchical O(NlogN)force-calculation al-
gorithm’, Nature 324, 446–449.

P. Bartlett (2013), U-statistics. Berkeley Statistics 210B Lecture Notes.
J. Batson, D. A. Spielman and N. Srivastava (2014), ‘Twice-Ramanujan sparsifiers’,

SIAM Rev. 56, 315–334.
M. Bebendorf and R. Grzhibovskis (2006), ‘Accelerating Galerkin BEM for linear

elasticity using adaptive cross approximation’, Math. Methods Appl. Sci. 29,
1721–1747.

R. Bhatia (1997), Matrix Analysis, Vol. 169 of Graduate Texts in Mathematics,
Springer.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

558 P.-G. Martinsson and J. A. Tropp

C. H. Bischof and G. Quintana-Ort́ı (1998), ‘Computing rank-revealing QR factor-
izations of dense matrices’, ACM Trans. Math. Software 24, 226–253.

S. Bochner (1933), ‘Monotone Funktionen, Stieltjessche Integrale und harmonische
Analyse’, Math. Ann. 108, 378–410.

L. Bottou (2010), Large-scale machine learning with stochastic gradient descent.
In Proceedings of COMPSTAT ’2010 (Y. Lechevallier and G. Saporta, eds),
Physica-Verlag HD, pp. 177–186.

S. Boucheron, G. Lugosi and P. Massart (2013), Concentration Inequalities: A
Nonasymptotic Theory of Independence, Oxford University Press.

J. Bourgain, S. Dirksen and J. Nelson (2015), ‘Toward a unified theory of sparse
dimensionality reduction in Euclidean space’, Geom. Funct. Anal. 25, 1009–
1088.

C. Boutsidis, M. W. Mahoney and P. Drineas (2009), An improved approximation
algorithm for the column subset selection problem. In 20th Annual ACM–
SIAM Symposium on Discrete Algorithms, SIAM, pp. 968–977.

C. Boutsidis, D. P. Woodruff and P. Zhong (2016), Optimal principal component
analysis in distributed and streaming models. In 48th Annual ACM Sym-
posium on Theory of Computing, ACM, pp. 236–249.

W. L. Briggs and V. E. Henson (1995), The DFT: An Owner’s Manual for the
Discrete Fourier Transform, SIAM.

K. Bringmann and K. Panagiotou (2017), ‘Efficient sampling methods for discrete
distributions’, Algorithmica 79, 484–508.

E. Candès, L. Demanet and L. Ying (2009), ‘A fast butterfly algorithm for the
computation of Fourier integral operators’, Multiscale Model. Simul. 7, 1727–
1750.

B. Carl (1985), ‘Inequalities of Bernstein–Jackson-type and the degree of com-
pactness of operators in Banach spaces’, Ann. Inst. Fourier (Grenoble) 35,
79–118.

Y. Carmon, J. C. Duchi, A. Sidford and K. Tian (2019), A rank-1 sketch for
matrix multiplicative weights. In 32nd Conference on Learning Theory (A.
Beygelzimer and D. Hsu, eds), Vol. 99 of Proceedings of Machine Learning
Research, PMLR, pp. 589–623.

V. Chandrasekaran, B. Recht, P. A. Parrilo and A. S. Willsky (2012), ‘The convex
geometry of linear inverse problems’, Found. Comput. Math. 12, 805–849.

M. Charikar, K. Chen and M. Farach-Colton (2004), ‘Finding frequent items in
data streams’, Theoret. Comput. Sci. 312, 3–15.

L. H. Y. Chen, L. Goldstein and Q.-M. Shao (2011), Normal Approximation by
Stein’s Method, Probability and its Applications (New York), Springer.

X. Chen and E. Price (2019), Active regression via linear-sample sparsification. In
32nd Conference on Learning Theory (A. Beygelzimer and D. Hsu, eds), Vol.
99 of Proceedings of Machine Learning Research, PMLR, pp. 663–695.

Z. Chen and J. J. Dongarra (2005), ‘Condition numbers of Gaussian random
matrices’, SIAM J. Matrix Anal. Appl. 27, 603–620.

H. Cheng, Z. Gimbutas, P.-G. Martinsson and V. Rokhlin (2005), ‘On the com-
pression of low rank matrices’, SIAM J. Sci. Comput. 26, 1389–1404.

K. L. Clarkson and D. P. Woodruff (2009), Numerical linear algebra in the stream-
ing model. In 41st Annual ACM Symposium on Theory of Computing, ACM,
pp. 205–214.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 559

K. L. Clarkson and D. P. Woodruff (2013), Low rank approximation and regression
in input sparsity time. In 2013 ACM Symposium on Theory of Computing
(STOC ’13), ACM, pp. 81–90.

A. Cohen and G. Migliorati (2017), ‘Optimal weighted least-squares methods’,
SIAM J. Comput. Math. 3, 181–203.

A. Cohen, M. A. Davenport and D. Leviatan (2013), ‘On the stability and accuracy
of least squares approximations’, Found. Comput. Math. 13, 819–834.

E. Cohen and D. D. Lewis (1999), ‘Approximating matrix multiplication for pattern
recognition tasks’, J. Algorithms 30, 211–252.

M. B. Cohen (2016), Nearly tight oblivious subspace embeddings by trace inequal-
ities. In 27th Annual ACM–SIAM Symposium on Discrete Algorithms, ACM,
pp. 278–287.

M. B. Cohen, R. Kyng, G. L. Miller, J. W. Pachocki, R. Peng, A. B. Rao and S.
C. Xu (2014), Solving SDD linear systems in nearly mlog1/2n time. In 46th
Annual ACM Symposium on Theory of Computing (STOC ’14), ACM, pp.
343–352.

J. Cullum and W. E. Donath (1974), A block generalization of the s-step Lanczos
algorithm. Report RC 4845 (21570), IBMThomas J.WatsonResearchCenter,
Yorktown Heights, New York.

T. Dao, A. Gu, M. Eichhorn, A. Rudra and C. Ré (2019), Learning fast algorithms
for linear transforms using butterfly factorizations. In 36th International Con-
ference on Machine Learning (K. Chaudhuri and R. Salakhutdinov, eds), Vol.
97 of Proceedings of Machine Learning Research, PMLR, pp. 1517–1527.

K. R. Davidson and S. J. Szarek (2001), Local operator theory, random matrices
and Banach spaces. In Handbook of the Geometry of Banach Spaces, Vol. I,
North-Holland, pp. 317–366.

T. A. Davis, S. Rajamanickam and W. M. Sid-Lakhdar (2016), A survey of direct
methods for sparse linear systems. In Acta Numerica, Vol. 25, Cambridge
University Press, pp. 383–566.

J. Demmel, I. Dumitriu and O. Holtz (2007), ‘Fast linear algebra is stable’, Numer.
Math. 108, 59–91.

J. Demmel, L. Grigori, M. Hoemmen and J. Langou (2012), ‘Communication-
optimal parallel and sequential QR and LU factorizations’, SIAM J. Sci.
Comput. 34, A206–A239.

J. W. Demmel, L. Grigori, M. Gu and H. Xiang (2015), ‘Communication avoiding
rank revealing QR factorization with column pivoting’, SIAM J. Matrix Anal.
Appl. 36, 55–89.

J. D. Dixon (1983), ‘Estimating extremal eigenvalues and condition numbers of
matrices’, SIAM J. Numer. Anal. 20, 812–814.

E. Dobriban and S. Liu (2019), Asymptotics for sketching in least squares regres-
sion. In Advances in Neural Information Processing Systems 32 (H. Wallach
et al., eds), Curran Associates, pp. 3675–3685.

P. Drineas and M. W. Mahoney (2018), Lectures on randomized linear algebra. In
The Mathematics of Data (M. W. Mahoney, J. Duchi and A. Gilbert, eds),
Vol. 25 of IAS/Park City Mathematics Series, AMS, pp. 1–48.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

560 P.-G. Martinsson and J. A. Tropp

P. Drineas and M.W. Mahoney (2005), ‘On the Nyström method for approximating
a Gram matrix for improved kernel-based learning’, J. Mach. Learn. Res. 6,
2153–2175.

P. Drineas, R. Kannan and M. W. Mahoney (2006a), ‘Fast Monte Carlo algorithms
for matrices, I: Approximating matrix multiplication’, SIAM J. Comput. 36,
132–157.

P. Drineas, R. Kannan and M. W. Mahoney (2006b), ‘Fast Monte Carlo algorithms
for matrices, II: Computing a low-rank approximation to a matrix’, SIAM J.
Comput. 36, 158–183.

P. Drineas, R. Kannan and M. W. Mahoney (2006c), ‘Fast Monte Carlo algorithms
for matrices, III: Computing a compressed approximate matrix decomposi-
tion’, SIAM J. Comput. 36, 184–206.

P. Drineas, M. W. Mahoney and S. Muthukrishnan (2006d), Subspace sampling
andrelative-errormatrixapproximation:Column-basedmethods. InApproxim-
ation, Randomization and Combinatorial Optimization, Vol. 4110 of Lecture
Notes in Computer Science, Springer, pp. 316–326.

P. Drineas, M. W. Mahoney and S. Muthukrishnan (2008), ‘Relative-error CUR
matrix decompositions’, SIAM J. Matrix Anal. Appl. 30, 844–881.

J. A. Duersch and M. Gu (2015), True BLAS-3 performance QRCP using random
sampling. arXiv:1509.06820v1

J. A. Duersch and M. Gu (2017), ‘Randomized QR with column pivoting’, SIAM
J. Sci. Comput. 39, C263–C291.

A. S. Edelman (1989), Eigenvalues and condition numbers of random matrices.
ProQuest LLC, Ann Arbor, MI. PhD thesis, Massachusetts Institute of Tech-
nology.

B. Efron (1982), The Jackknife, the Bootstrap and Other Resampling Plans, Vol. 38
of CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM.

D. Feldman, M. Volkov and D. Rus (2016), Dimensionality reduction of massive
sparse datasets using coresets. In Advances in Neural Information Processing
Systems 29 (D. D. Lee et al., eds), Curran Associates, pp. 2766–2774.

Y. Feng, J. Xiao and M. Gu (2019), ‘Flip-flop spectrum-revealing QR factorization
and its applications to singular value decomposition’, Electron. Trans. Numer.
Anal. 51, 469–494.

R. D. Fierro, P. C. Hansen and P. S. K. Hansen (1999), ‘UTV tools: Matlab
templates for rank-revealing UTV decompositions’, Numer. Algorithms 20,
165–194.

S. Fine and K. Scheinberg (2001), ‘Efficient SVM training using low-rank kernel
representation’, J. Mach. Learn. Res. 2, 243–264.

J. K. Fitzsimons, M. A. Osborne, S. J. Roberts and J. F. Fitzsimons (2018), Im-
proved stochastic trace estimators using mutually unbiased bases. In Uncer-
tainty in Artificial Intelligence: Proceedings of the Thirty-Fourth Conference
(A. Globerson and R. Silva, eds), AUAI Press.

S. Foucart and H. Rauhut (2013), A Mathematical Introduction to Compressive
Sensing, Applied and Numerical Harmonic Analysis, Birkhäuser/Springer.

A. Frieze, R. Kannan and S. Vempala (2004), ‘Fast Monte-Carlo algorithms for
finding low-rank approximations’, J. Assoc. Comput. Mach. 51, 1025–1041.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 561

M. Ghashami, E. Liberty, J. M. Phillips and D. P. Woodruff (2016a), ‘Frequent
directions: Simple and deterministic matrix sketching’, SIAM J. Comput. 45,
1762–1792.

M. Ghashami, D. J. Perry and J. Phillips (2016b), Streaming kernel principal com-
ponent analysis. In 19th International Conference on Artificial Intelligence
and Statistics (A. Gretton and C. C. Robert, eds), Vol. 51 of Proceedings of
Machine Learning Research, PMLR, pp. 1365–1374.

P. Ghysels, X. S. Li, C. Gorman and F.-H. Rouet (2017), A robust parallel pre-
conditioner for indefinite systems using hierarchical matrices and randomized
sampling. In 2017 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), IEEE, pp. 897–906.

A. Gionis, P. Indyk and R. Motwani (1999), Similarity search in high dimensions
via hashing. In 25th International Conference on Very Large Data Bases
(VLDB ’99), Morgan Kaufmann, pp. 518–529.

D. A. Girard (1989), ‘A fast “Monte Carlo cross-validation” procedure for large
least squares problems with noisy data’, Numer. Math. 56, 1–23.

A. Gittens (2013), Topics in Randomized Numerical Linear Algebra. ProQuest
LLC, Ann Arbor, MI. PhD thesis, California Institute of Technology.

L. Goldstein, I. Nourdin and G. Peccati (2017), ‘Gaussian phase transitions and
conic intrinsic volumes: Steining the Steiner formula’, Ann. Appl. Probab. 27,
1–47.

G. H. Golub and G. Meurant (1994), Matrices, moments and quadrature. In Nu-
merical Analysis 1993, Vol. 303 of Pitman Research Notes in Mathematics
Series, Longman Scientific and Technical, pp. 105–156.

G. H. Golub and G. Meurant (2010), Matrices, Moments and Quadrature with
Applications, Princeton Series in Applied Mathematics, Princeton University
Press.

G. H. Golub and R. Underwood (1977), The block Lanczos method for comput-
ing eigenvalues. In Mathematical Software III (Proceedings of a Symposium
Conducted by the Mathematics Research Center, the University of Wisconsin–
Madison), Academic Press, pp. 361–377.

G. H. Golub and C. F. Van Loan (2013), Matrix Computations, fourth edition,
Johns Hopkins Studies in the Mathematical Sciences, The Johns Hopkins
University Press.

G. H. Golub, F. T. Luk and M. L. Overton (1981), ‘A block Lánczos method for
computing the singular values of corresponding singular vectors of a matrix’,
ACM Trans. Math. Software 7, 149–169.

I. J. Good (1977), ‘A new formula for k-statistics’, Ann. Statist. 5, 224–228.
A. Gopal and P.-G. Martinsson (2018), The PowerURV algorithm for computing

rank-revealing full factorizations. arXiv:1812.06007
Y. Gordon (1988), On Milman’s inequality and random subspaces which es-

cape through a mesh in R
n. In Geometric Aspects of Functional Analysis

(1986/87), Vol.1317 of Lecture Notes in Mathematics, Springer, pp.84– 106.
S. A. Goreinov, I. V. Oseledets, D. V. Savostyanov, E. E. Tyrtyshnikov and N. L.

Zamarashkin (2010), How to find a good submatrix. In Matrix Methods: The-
ory, Algorithms And Applications: Dedicated to the Memory of Gene Golub,
World Scientific, pp. 247–256.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

562 P.-G. Martinsson and J. A. Tropp

S. A.Goreinov, N. L. Zamarashkin and E. E. Tyrtyshnikov (1997), ‘Pseudo-skeleton
approximations by matrices of maximal volume’, Math. Notes 62, 515–519.

R. Gower and P. Richtárik (2015), ‘Randomized iterative methods for linear sys-
tems’, SIAM J. Matrix Anal. Appl. 36, 1660–1690.

R. Gower, F. Hanzely, P. Richtárik and S. U. Stich (2018), Accelerated stochastic
matrix inversion: General theory and speeding up BFGS rules for faster
second-order optimization. In Advances in Neural Information Processing
Systems 31 (S. Bengio et al., eds), Curran Associates, pp. 1619–1629.

L. Grasedyck and W. Hackbusch (2003), ‘Construction and arithmetics of H-
matrices’, Computing 70, 295–334.

S. Gratton and D. Titley-Peloquin (2018), ‘Improved bounds for small-sample
estimation’, SIAM J. Matrix Anal. Appl. 39, 922–931.

L. Greengard and V. Rokhlin (1987), ‘A fast algorithm for particle simulations’,
J. Comput. Phys. 73, 325–348.

G. R. Grimmett and D. R. Stirzaker (2001), Probability and Random Processes,
third edition, Oxford University Press.

M. Gu (2015), ‘Subspace iteration randomization and singular value problems’,
SIAM J. Sci. Comput. 37, A1139–A1173.

M. Gu and S. C. Eisenstat (1996), ‘Efficient algorithms for computing a strong
rank-revealing QR factorization’, SIAM J. Sci. Comput. 17, 848–869.

H. Guo, Y. Liu, J. Hu and E. Michielssen (2017), ‘A butterfly-based direct integral-
equation solver using hierarchical LU factorization for analyzing scattering
from electrically large conducting objects’, IEEE Trans. Antennas Propaga-
tion 65, 4742–4750.

W. Hackbusch (1999), ‘A sparse matrix arithmetic based on H-matrices, I: Intro-
duction to H-matrices’, Computing 62, 89–108.

W. Hackbusch, B. Khoromskij and S. Sauter (2002), On H2-matrices. In Lectures
on Applied Mathematics (H.-J. Bungartz, R. H. W. Hoppe and C. Zenger,
eds), Springer, pp. 9–29.

N. Halko, P. G. Martinsson and J. A. Tropp (2011a), ‘Finding structure with
randomness: Probabilistic algorithms for constructing approximate matrix
decompositions’, SIAM Rev. 53, 217–288.

N. Halko, P.-G. Martinsson, Y. Shkolnisky and M. Tygert (2011b), ‘An algorithm
for the principal component analysis of large data sets’, SIAM J. Sci. Comput.
33, 2580–2594.

R. Hamid, Y. Xiao, A. Gittens and D. Decoste (2014), Compact random feature
maps. In 31st International Conference on Machine Learning (E. P. Xing
and T. Jebara, eds), Vol. 32 of Proceedings of Machine Learning Research,
PMLR, pp. 19–27.

J. Hampton and A. Doostan (2015), ‘Coherence motivated sampling and conver-
gence analysis of least squares polynomial chaos regression’, Comput. Methods
Appl. Mech. Engrg 290, 73–97.

P. Hennig and M. A. Osborne (2019), probabilistic-numerics.org
M. R. Hestenes and E. Stiefel (1952), ‘Methods of conjugate gradients for solving

linear systems’, J. Res. Nat. Bur. Standards 49, 2379.
R. A. Horn and C. R. Johnson (2013), Matrix Analysis, second edition, Cambridge

University Press.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 563

M. F. Hutchinson (1990), ‘A stochastic estimator of the trace of the influence
matrix for Laplacian smoothing splines’, Comm. Statist. Simul. Comput. 19,
433–450.

P. Indyk and R. Motwani (1999), Approximate nearest neighbors: Towards remov-
ing the curse of dimensionality. In 30th Annual ACM Symposium on Theory
of Computing (STOC ’98), ACM, pp. 604–613.

R. Jin, T. G. Kolda and R. Ward (2019), Faster Johnson–Lindenstrauss transforms
via Kronecker products. arXiv:1909.04801

W. B. Johnson and J. Lindenstrauss (1984), Extensions of Lipschitz mappings
into a Hilbert space. In Conference in Modern Analysis and Probability (New
Haven, Conn., 1982), Vol. 26 of Contemporary Mathematics, AMS, pp. 189–
206.

I. M. Johnstone (2001), ‘On the distribution of the largest eigenvalue in principal
components analysis’, Ann. Statist. 29, 295–327.

W. D. Joubert and G. F. Carey (1991), Parellelizable restarted iterative methods
for nonsymmetric linear systems. Center for Numerical Analysis Report CNA-
251, UT-Austin.

M. Kac (1956), Foundations of kinetic theory. In Third Berkeley Symposium on
Mathematical Statistics and Probability, 1954–1955, Vol. III, University of
California Press, pp. 171–197.

W. Kahan (1966), ‘Numerical linear algebra’, Canad. Math. Bull. 9, 757–801.
R. Kannan and S. Vempala (2017), Randomized algorithms in numerical linear

algebra. In Acta Numerica, Cambridge University Press, Vol. 26, pp. 95–135.
P. Kar and H. Karnick (2012), Random feature maps for dot product kernels. In

15th International Conference on Artificial Intelligence and Statistics (N. D.
Lawrence and M. Girolami, eds), Vol. 22 of Proceedings of Machine Learning
Research, PMLR, pp. 583–591.

S. P. Kasiviswanathan, M. Rudelson, A. Smith and J. Ullman (2010), The price
of privately releasing contingency tables and the spectra of random matrices
with correlated rows. In 2010 ACM International Symposium on Theory of
Computing (STOC ’10), ACM, pp. 775–784.

W. Kong and G. Valiant (2017), ‘Spectrum estimation from samples’, Ann. Statist.
45, 2218–2247.

V. S. Koroljuk and Y. V. Borovskich (1994), Theory of U -Statistics, Vol. 273 of
Mathematics and its Applications, Kluwer Academic.

F. Krahmer and R. Ward (2011), ‘New and improved Johnson–Lindenstrauss em-
beddings via the restricted isometry property’, SIAM J. Math. Anal. 43,
1269–1281.

D. Kressner, M. Steinlechner and B. Vandereycken (2016), ‘Preconditioned low-
rank Riemannian optimization for linear systems with tensor product struc-
ture’, SIAM J. Sci. Comput. 38, A2018–A2044.

J. Kuczyński and H. Woźniakowski (1992), ‘Estimating the largest eigenvalue by
the power and Lanczos algorithms with a random start’, SIAM J. Matrix
Anal. Appl. 13, 1094–1122.

R. Kueng (2019), 2-designs minimize variance of trace estimators. Unpublished
manuscript.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

564 P.-G. Martinsson and J. A. Tropp

S. Kumar, M. Mohri and A. Talwalkar (2012), ‘Sampling methods for the Nyström
method’, J. Mach. Learn. Res. 13, 981–1006.

S. Kurz, O. Rain and S. Rjasanow (2002), ‘The adaptive cross-approximation tech-
nique for the 3D boundary-element method’, IEEE Trans. Magnetics 38,
421–424.

R. Kyng (2017), Approximate Gaussian elimination. ProQuest LLC, Ann Arbor,
MI. PhD thesis, Yale University.

R. Kyng and S. Sachdeva (2016), ApproximateGaussianelimination forLaplacians:
Fast, sparse, and simple. In 57th Annual IEEE Symposium on Foundations
of Computer Science (FOCS 2016), IEEE, pp. 573–582.

R. Kyng, Y. T. Lee, R. Peng, S. Sachdeva and D. A. Spielman (2016), Sparsified
Cholesky and multigrid solvers for connection Laplacians. In 48th Annual
ACM SIGACT Symposium on Theory of Computing (STOC ’16), ACM, pp.
842–850.

Q. Le, T. Sarlós and A. Smola (2013), Fastfood: Computing Hilbert space expan-
sions in loglinear time. In 30th International Conference on Machine Learn-
ing (S. Dasgupta and D. McAllester, eds), Vol. 28 of Proceedings of Machine
Learning Research, PMLR, pp. 244–252.

M. Ledoux and M. Talagrand (1991), Probability in Banach Spaces: Isoperimetry
and Processes, Vol. 23 of Ergebnisse der Mathematik und ihrer Grenzgebiete
[Results in Mathematics and Related Areas] (3), Springer.

D. Leventhal and A. S. Lewis (2010), ‘Randomized methods for linear constraints:
Convergence rates and conditioning’, Math. Oper. Res. 35, 641–654.

Z. Leyk and H. Woźniakowski (1998), ‘Estimating a largest eigenvector by Lanczos
and polynomial algorithms with a random start’, Numer. Linear Algebra
Appl. 5, 147–164.

H. Li, G. C. Linderman, A. Szlam, K. P. Stanton, Y. Kluger and M. Tygert (2017),
‘Algorithm 971: An implementation of a randomized algorithm for principal
component analysis’, ACM Trans. Math. Software 43, Art. 28, 14.

M. Li, W. Bi, J. T. Kwok and B. Lu (2015a), ‘Large-scale Nyström kernel mat-
rix approximation using randomized SVD’, IEEE Trans. Neural Networks
Learning Syst. 26, 152–164.

Y. Li and H. Yang (2017), ‘Interpolative butterfly factorization’, SIAM J. Sci.
Comput. 39, A503–A531.

Y. Li, H. L. Nguyen and D. P. Woodruff (2014a), On sketching matrix norms and
the top singular vector. In 25th Annual ACM–SIAM Symposium on Discrete
Algorithms, ACM, pp. 1562–1581.

Y. Li, H. L. Nguyen and D. P. Woodruff (2014b), Turnstile streaming algorithms
might as well be linear sketches. In 2014 ACM Symposium on Theory of
Computing (STOC ’14), ACM, pp. 174–183.

Y. Li, H. Yang and L. Ying (2018), ‘Multidimensional butterfly factorization’, Appl.
Comput. Harmon. Anal. 44, 737–758.

Y. Li, H. Yang, E. R. Martin, K. L. Ho and L. Ying (2015b), ‘Butterfly factoriza-
tion’, Multiscale Model. Simul. 13, 714–732.

E. Liberty (2009), Accelerated dense random projections. PhD thesis, Computer
Science, Yale University.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 565

E. Liberty, F. Woolfe, P.-G. Martinsson, V. Rokhlin and M. Tygert (2007), ‘Ran-
domized algorithms for the low-rank approximation of matrices’, Proc. Nat.
Acad. Sci. USA 104, 20167–20172.

L.-H. Lim and J. Weare (2017), ‘Fast randomized iteration: Diffusion Monte Carlo
through the lens of numerical linear algebra’, SIAM Review 59, 547–587.

L. Lin, J. Lu and L. Ying (2011), ‘Fast construction of hierarchical matrix rep-
resentation from matrix–vector multiplication’, J. Comput. Phys. 230, 4071–
4087.

N. Linial, E. London and Y. Rabinovich (1995), ‘The geometry of graphs and some
of its algorithmic applications’, Combinatorica 15, 215–245.

M. E. Lopes (2019), ‘Estimating the algorithmic variance of randomized ensembles
via the bootstrap’, Ann. Statist. 47, 1088–1112.

D. Lopez-Paz, S. Sra, A. Smola, Z. Ghahramani and B. Schölkopf (2014), Ran-
domized nonlinear component analysis. In 31st International Conference on
Machine Learning (E. P. Xing and T. Jebara, eds), Vol. 32 of Proceedings of
Machine Learning Research, PMLR, pp. 1359–1367.

F. Lust-Piquard (1986), ‘Inégalités de Khintchine dans Cp (1< p <∞)’, C.R. Acad.
Sci. Paris Sér. I Math. 303, 289–292.

L. Mackey, M. I. Jordan, R. Y. Chen, B. Farrell and J. A. Tropp (2014), ‘Mat-
rix concentration inequalities via the method of exchangeable pairs’, Ann.
Probab. 42, 906–945.

M. W. Mahoney (2011), ‘Randomized algorithms for matrices and data’, Found.
Trends Mach. Learn. 3, 123–224.

M. W. Mahoney and P. Drineas (2009), ‘CUR matrix decompositions for improved
data analysis’, Proc. Nat. Acad. Sci. USA 106, 697–702.

O. A. Malik and S. Becker (2019), Guarantees for the Kronecker fast
Johnson–Lindenstrauss transform using a coherence and sampling argument.
arXiv:1911.08424

W. B. March, B. Xiao and G. Biros (2015), ‘ASKIT: Approximate skeletonization
kernel-independent treecode in high dimensions’, SIAM J. Sci. Comput. 37,
A1089–A1110.

M. B. Marcus and G. Pisier (1981), Random Fourier Series with Applications to
Harmonic Analysis, Vol. 101 of Annals of Mathematics Studies, Princeton
University Press and University of Tokyo Press.

P.-G. Martinsson (2008), Rapid factorization of structured matrices via randomized
sampling. arXiv:0806.2339

P.-G. Martinsson (2011), ‘A fast randomized algorithm for computing a hierarch-
ically semiseparable representation of a matrix’, SIAM J. Matrix Anal. Appl.
32, 1251–1274.

P.-G. Martinsson (2015), Blocked rank-revealing QR factorizations: How random-
ized sampling can be used to avoid single-vector pivoting. arXiv:1505.08115

P.-G. Martinsson (2016), ‘Compressing rank-structured matrices via randomized
sampling’, SIAM J. Sci. Comput. 38, A1959–A1986.

P.-G. Martinsson (2018), Randomized methods for matrix computations. In The
Mathematics of Data (M. W. Mahoney, J. Duchi and A. Gilbert, eds), Vol.
25 of IAS/Park City Mathematics Series, AMS, pp. 187–231.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

566 P.-G. Martinsson and J. A. Tropp

P.-G. Martinsson (2019), Fast Direct Solvers for Elliptic PDEs, Vol. CB96 of
CBMS-NSF Conference Series, SIAM.

P.-G. Martinsson and V. Rokhlin (2005), ‘A fast direct solver for boundary integral
equations in two dimensions’, J. Comput. Phys. 205, 1–23.

P.-G. Martinsson and J. Tropp (2020), Randomized numerical linear algebra:
Foundations and algorithms. arXiv:2002.01387

P.-G. Martinsson and S. Voronin (2016), ‘A randomized blocked algorithm for
efficiently computing rank-revealing factorizations of matrices’, SIAM J. Sci.
Comput. 38, S485–S507.

P.-G. Martinsson, V. Rokhlin and M. Tygert (2006a), A randomized algorithm for
the approximation of matrices. Yale CS research report YALEU/DCS/RR-
1361, Computer Science Department, Yale University.

P.-G. Martinsson, V. Rokhlin and M. Tygert (2006b), ‘On interpolation and integ-
ration in finite-dimensional spaces of bounded functions’, Comm. Appl. Math.
Comput. Sci. 1, pp. 133–142.

P.-G. Martinsson, G. Quintana Orti and N. Heavner (2019), randUTV: A blocked
randomized algorithm for computing a rank-revealing UTV factorization.
ACM Trans. Math. Software 45, 4.

P.-G. Martinsson, G. Quintana-Ort́ı, N. Heavner and R. van de Geijn (2015),
Householder QR factorization with randomization for column pivoting
(HQRRP). arXiv:1512.02671

P.-G. Martinsson, G. Quintana-Ort́ı, N. Heavner and R. van de Geijn (2017),
‘Householder QR factorization with randomization for column pivoting
(HQRRP)’, SIAM J. Sci. Comput. 39, C96–C115.

R. Mathias and G. W. Stewart (1993), ‘A block {QR} algorithm and the singular
value decomposition’, Linear Algebra Appl. 182, 91–100.

M. B. McCoy and J. A. Tropp (2013), The achievable performance of convex
demixing. ACM Technical Report 2017-02, Caltech.

M. B. McCoy and J. A. Tropp (2014), ‘From Steiner formulas for cones to concen-
tration of intrinsic volumes’, Discrete Comput. Geom. 51, 926–963.

C. Melgaard and M. Gu (2015), Gaussian elimination with randomized complete
pivoting. arXiv:1511.08528

S. Mendelson, H. Rauhut and R. Ward (2018), ‘Improved bounds for sparse re-
covery from subsampled random convolutions’, Ann. Appl. Probab. 28, 3491–
3527.

X. Meng and M. W. Mahoney (2013), Low-distortion subspace embeddings in
input-sparsity time and applications to robust linear regression. In 2013 ACM
Symposium on Theory of Computing (STOC ’13), ACM, pp. 91–100.

X. Meng, M. A. Saunders and M. W. Mahoney (2014), ‘LSRN: A parallel iterative
solver for strongly over- or underdetermined systems’, SIAM J. Sci. Comput.
36, C95–C118.

F. Mezzadri (2007), ‘How to generate random matrices from the classical compact
groups’, Notices Amer. Math. Soc. 54, 592–604.

E. Moulines and F. R. Bach (2011), Non-asymptotic analysis of stochastic ap-
proximation algorithms for machine learning. In Advances in Neural Inform-
ation Processing Systems 24 (J. Shawe-Taylor et al., eds), Curran Associates,
pp. 451–459.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 567

R. J. Muirhead (1982), Aspects of Multivariate Statistical Theory, Wiley Series in
Probability and Mathematical Statistics, Wiley.

C. Musco and C. Musco (2015), Randomized block Krylov methods for stronger
and faster approximate singular value decomposition. In Advances in Neural
Information Processing Systems 28 (C. Cortes et al., eds), Curran Associates,
pp. 1396–1404.

C. Musco and C. Musco (2017), Recursive sampling for the Nyström method. In
Advances in Neural Information Processing Systems 30 (I. Guyon et al., eds),
Curran Associates, pp. 3833–3845.

C. Musco, C. Musco and A. Sidford (2018), Stability of the Lanczos method for
matrix function approximation. In 29th Annual ACM–SIAM Symposium on
Discrete Algorithms, SIAM, pp. 1605–1624.

S. Muthukrishnan (2005), ‘Data streams: Algorithms and applications’, Found.
Trends Theor. Comput. Sci. 1, 117–236.

R. M. Neal (1996), Priors for Infinite Networks, Springer, pp. 29–53.
D. Needell and J. A. Tropp (2014), ‘Paved with good intentions: Analysis of a

randomized block Kaczmarz method’, Linear Algebra Appl. 441, 199–221.
D. Needell, R. Ward and N. Srebro (2014), Stochastic gradient descent, weighted

sampling, and the randomized Kaczmarz algorithm. In Advances in Neural
Information Processing Systems 27 (Z. Ghahramani et al., eds), Curran As-
sociates, pp. 1017–1025.

J. Nelson and H. L. Nguyen (2013), OSNAP: Faster numerical linear algebra al-
gorithms via sparser subspace embeddings. In 2013 IEEE 54th Annual Sym-
posium on Foundations of Computer Science (FOCS 2013), IEEE, pp. 117–
126.

The Numerical Algorithms Group (NAG) (2019), The NAG Library Mark 27.
https://www.nag.com/content/naglibrary-mark27

E. J. Nyström (1930), ‘Über Die Praktische Auflösung von Integralgleichungen mit
Anwendungen auf Randwertaufgaben’, Acta Math. 54, 185–204.

E. Oja (1982), ‘A simplified neuron model as a principal component analyzer’, J.
Math. Biol. 15, 267–273.

R. I. Oliveira (2009a), Concentration of the adjacency matrix and of the Laplacian
in random graphs with independent edges. arXiv:0911.0600

R. I. Oliveira (2009b), ‘On the convergence to equilibrium of Kac’s random walk
on matrices’, Ann. Appl. Probab. 19, 1200–1231.

M. O’Neil (2007), A new class of analysis-based fast transforms. PhD thesis, Math-
ematics, Yale University.

S. Oymak and J. A. Tropp (2018), ‘Universality laws for randomized dimension
reduction, with applications’, Inf. Inference 7, 337–446.

R. Pagh (2013), ‘Compressed matrix multiplication’, ACM Trans. Comput. Theory
5, 9.

V. Y. Pan and L. Zhao (2017), ‘Numerically safe Gaussian elimination with no
pivoting’, Linear Algebra Appl. 527, 349–383.

C. H. Papadimitriou, P. Raghavan, H. Tamaki and S. Vempala (2000), ‘Latent
semantic indexing: A probabilistic analysis’, J. Comput. System Sci. 61, 217–
235.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

568 P.-G. Martinsson and J. A. Tropp

H. Park and L. Eldén (1995), ‘Downdating the rank-revealing URV decomposition’,
SIAM J. Matrix Anal. Appl. 16, 138–155.

D. S. Parker (1995), Random butterfly transformations with applications in com-
putational linear algebra. Report CSD-950023, UCLA.

B. N. Parlett (1998), The Symmetric Eigenvalue Problem, corrected reprint of the
1980 original, Vol. 20 of Classics in Applied Mathematics, SIAM.

N. Pham and R. Pagh (2013), Fast and scalable polynomial kernels via explicit
feature maps. In 19th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD ’13), ACM, pp. 239–247.

M. Pilanci and M. J. Wainwright (2015), ‘Randomized sketches of convex programs
with sharp guarantees’, IEEE Trans. Inform. Theory 61, 5096–5115.

M. Pilanci and M. J. Wainwright (2016), ‘Iterative Hessian sketch: Fast and ac-
curate solution approximation for constrained least-squares’, J. Mach. Learn.
Res. 17, Paper No. 53, 38.

N. S. Pillai and A. Smith (2017), ‘Kac’s walk on n-sphere mixes in n logn steps’,
Ann. Appl. Probab. 27, 631–650.

U. Porod (1996), ‘The cut-off phenomenon for random reflections’, Ann. Probab.
24, 74–96.

F. Pourkamali-Anaraki and S. Becker (2019), ‘Improved fixed-rank Nyström ap-
proximation via QR decomposition: Practical and theoretical aspects’, Neuro-
comput. 363, 261–272.

A. Rahimi and B. Recht (2008), Random features for large-scale kernel machines.
In Advances in Neural Information Processing Systems 20 (J. C. Platt et al.,
eds), Curran Associates, pp. 1177–1184.

A. Rahimi and B. Recht (2009), Weighted sums of random kitchen sinks: Re-
placing minimization with randomization in learning. In Advances in Neural
Information Processing Systems 21 (D. Koller et al., eds), Curran Associates,
pp. 1313–1320.

H. Rauhut and R. Ward (2012), ‘Sparse Legendre expansions via ℓ1-minimization’,
J. Approx. Theory 164, 517–533.

H. Rauhut and R. Ward (2016), ‘Interpolation via weighted ℓ1minimization’, Appl.
Comput. Harmon. Anal. 40, 321–351.

H. Rauhut, J. Romberg and J. A. Tropp (2012), ‘Restricted isometries for partial
random circulant matrices’, Appl. Comput. Harmon. Anal. 32, 242–254.

P. Richtárik and M. Takáč (2020), ‘Stochastic reformulations of linear systems:
Algorithms and convergence theory’, SIAM J. Matrix Anal. Appl. o41, 487–
524.

V. Rokhlin and M. Tygert (2008), ‘A fast randomized algorithm for overdetermined
linear least-squares regression’, Proc. Nat. Acad. Sci. USA 105, 13212–13217.

V. Rokhlin, A. Szlam and M. Tygert (2009), ‘A randomized algorithm for principal
component analysis’, SIAM J. Matrix Anal. Appl. 31, 1100–1124.

J. S. Rosenthal (1994), ‘Random rotations: Characters and random walks on
SO(N)’, Ann. Probab. 22, 398–423.

N. Ross (2011), ‘Fundamentals of Stein’s method’, Probab. Surv. 8, 210–293.
M. Rudelson (1999), ‘Random vectors in the isotropic position’, J. Funct. Anal.

164, 60–72.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 569

M. Rudelson (2012), ‘Row products of random matrices’, Adv. Math. 231, 3199–
3231.

M. Rudelson and R. Vershynin (2007), ‘Sampling from large matrices: An approach
through geometric functional analysis’, J. Assoc. Comput. Mach. 54, 21.

M. Rudelson and R. Vershynin (2008), ‘On sparse reconstruction from Fourier and
Gaussian measurements’, Comm. Pure Appl. Math. 61, 1025–1045.

A. Rudi and L. Rosasco (2017), Generalization properties of learning with random
features. In Advances in Neural Information Processing Systems 30 (I. Guyon
et al., eds), Curran Associates, pp. 3215–3225.

A. Rudi, D. Calandriello, L. Carratino and L. Rosasco (2018), On fast leverage score
sampling and optimal learning. In Advances in Neural Information Processing
Systems 31 (S. Bengio et al., eds), Curran Associates, pp. 5672–5682.

A. Rudi, R. Camoriano and L. Rosasco (2015), Less is more: Nyström computa-
tional regularization. In Advances in Neural Information Processing Systems
28 (C. Cortes et al., eds), Curran Associates, pp. 1657–1665.

A. Rudi, L. Carratino and L. Rosasco (2017), FALKON: An optimal large scale
kernel method. In Advances in Neural Information Processing Systems 30 (I.
Guyon et al., eds), Curran Associates, pp. 3888–3898.

Y.-L. K. Samo and S. Roberts (2015), Generalized spectral kernels.
arXiv:1506.02236

A. Sankar, D. A. Spielman and S.-H. Teng (2006), ‘Smoothed analysis of the con-
dition numbers and growth factors of matrices’, SIAM J. Matrix Anal. Appl.
28, 446–476.

T. Sarlós (2006), Improved approximation algorithms for large matrices via ran-
dom projections. In 2006 47th Annual IEEE Symposium on Foundations of
Computer Science (FOCS ’06), pp. 143–152.

I. J. Schoenberg (1942), ‘Positive definite functions on spheres’, Duke Math. J. 9,
96–108.

B. Schölkopf and A. Smola (2001), Learning with Kernels, MIT Press.
B. Schölkopf, A. Smola and K.-R. Müller (1996), Nonlinear component analysis

as a kernel eigenvalue problem. Technical report 44, Max-Planck-Institut für
biologische Kybernetik.

M. Simchowitz, A. E. Alaoui and B. Recht (2017), On the gap between strict-
saddles and true convexity: An Omega (logd) lower bound for eigenvector
approximation. arXiv:1704.04548

N. J. A. Sloane (1983), Encrypting by random rotations. In Cryptography (Burg
Feuerstein, 1982), Vol. 149 of Lecture Notes in Computer Science, Springer,
pp. 71–128.

D. C. Sorensen and M. Embree (2016), ‘A DEIM induced CUR factorization’,
SIAM J. Sci. Comput. 38, A1454–A1482.

D. A. Spielman and N. Srivastava (2011), ‘Graph sparsification by effective resist-
ances’, SIAM J. Comput. 40, 1913–1926.

B. Sriperumbudur and Z. Szabó (2015), Optimal rates for random Fourier features.
In Advances in Neural Information Processing Systems 28 (C. Cortes et al.,
eds), Curran Associates, pp. 1144–1152.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

570 P.-G. Martinsson and J. A. Tropp

G. W. Stewart (1994), UTV decompositions. In Numerical Analysis 1993, Vol. 303
of Pitman Research Notes in Mathematics Series, Longman Scientific and
Technical, pp. 225–225.

G. W. Stewart (1998), Matrix Algorithms, Vol. 1: Basic Decompositions, SIAM.
G. W. Stewart (1999), ‘The QLP approximation to the singular value decomposi-

tion’, SIAM J. Sci. Comput. 20, 1336–1348.
G. W. Stewart (2001), Matrix Algorithms, Vol. 2: Eigensystems, SIAM.
M. Stojnic (2010), ℓ1optimization and its various thresholds in compressed sens-

ing. In 2010 IEEE International Conference on Acoustics, Speech and Signal
Processing, pp. 3910–3913.

G. Strang (2019), Linear Algebra and Learning from Data, Wellesley-Cambridge
Press.

V. Strassen (1969), ‘Gaussian elimination is not optimal’, Numer. Math. 13, 354–
356.

T. Strohmer and R. Vershynin (2009), ‘A randomized Kaczmarz algorithm with
exponential convergence’, J. Fourier Anal. Appl. 15, 262–278.

Y. Sun, Y. Guo, J. A. Tropp and M. Udell (2018), Tensor random projection for
low memory dimension reduction. In 32nd Conference on Neural Information
Processing Systems, Montréal, Canada.

Z. Szabó and B. Sriperumbudur (2019), On kernel derivative approximation with
random Fourier features. In 22nd International Conference on Artificial In-
telligence and Statistics (K. Chaudhuri and M. Sugiyama, eds), Vol. 89 of
Proceedings of Machine Learning Research, PMLR, pp. 827–836.

S.-H. Teng (2010), The Laplacian paradigm: Emerging algorithms for massive
graphs. In Theory and Applications of Models of Computation, Vol. 6108
of Lecture Notes in Computer Science, Springer, pp. 2–14.

C. Thrampoulidis and B. Hassibi (2015), Isotropically random orthogonal matrices:
Performance of LASSO and minimum conic singular values. In 2015 IEEE
International Symposium on Information Theory (ISIT), pp. 556–560.

C. Thrampoulidis, S. Oymak and B. Hassibi (2014), The Gaussian min-max the-
orem in the presence of convexity. arXiv:1408.4837

C. Thurau, K. Kersting and C. Bauckhage (2012), Deterministic CUR for improved
large-scale data analysis: An empirical study. In 2012 SIAM International
Conference on Data Mining, SIAM, pp. 684–695.

N. Tomczak-Jaegermann (1974), ‘The moduli of smoothness and convexity and
the Rademacher averages of trace classes Sp (1≤ p <∞)’, Studia Math. 50,
163–182.

J.-F. Ton, S. Flaxman, D. Sejdinovic and S. Bhatt (2018), ‘Spatial mapping with
Gaussian processes and nonstationary Fourier features’, Spat. Statist. 28, 59–
78.

L. N. Trefethen and D. Bau III (1997), Numerical Linear Algebra, SIAM.
T. Trogdon (2017), ‘On spectral and numerical properties of random butterfly

matrices’, Appl. Math. Lett. 95, 48–58.
J. A. Tropp (2011a), ‘Freedman’s inequality for matrix martingales’, Electron.

Commun. Probab. 16, 262–270.
J. A. Tropp (2011b), ‘Improved analysis of the subsampled randomized Hadamard

transform’, Adv. Adapt. Data Anal. 3, 115–126.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

Randomized numerical linear algebra 571

J. A. Tropp (2012a), ‘A comparison principle for functions of a uniformly random
subspace’, Probab. Theory Related Fields 153, 759–769.

J. A. Tropp (2012b), ‘User-friendly tail bounds for sums of random matrices’,
Found. Comput. Math. 12, 389–434.

J. A. Tropp (2015), ‘An introduction to matrix concentration inequalities’, Found.
Trends Mach. Learn. 8, 1–230.

J. A. Tropp (2016), The expected norm of a sum of independent random matrices:
An elementary approach. In High Dimensional Probability VII, Vol. 71 of
Progress in Probability, Springer, pp. 173–202.

J. A. Tropp (2018), Analysis of randomized block Krylov methods. Under revision.
J. A. Tropp (2019), Matrix concentration and computational linear algebra. CMS

Lecture Notes 2019-01, Caltech, Pasadena, CA.
J. A. Tropp, M. B. Wakin, M. F. Duarte, D. Baron and R. G. Baraniuk (2006),

Random filters for compressive sampling and reconstruction. In 2006 IEEE
International Conference on Acoustics, Speech, and Signal Processing Pro-
ceedings, Vol. 3.

J. A. Tropp, A. Yurtsever, M. Udell and V. Cevher (2017a), Fixed-rank approx-
imation of a positive-semidefinite matrix from streaming data. In Advances
in Neural Information Processing Systems 30 (I. Guyon et al., eds), Curran
Associates, pp. 1225–1234.

J. A. Tropp, A. Yurtsever, M. Udell and V. Cevher (2017b), ‘Practical sketching
algorithms for low-rank matrix approximation’, SIAM J. Matrix Anal. Appl.
38, 1454–1485.

J. A. Tropp, A. Yurtsever, M. Udell and V. Cevher (2019), ‘Streaming low-rank
matrix approximation with an application to scientific simulation’, SIAM J.
Sci. Comput. 41, A2430–A2463.

S. Ubaru, J. Chen and Y. Saad (2017), ‘Fast estimation of tr (f(A))via stochastic
Lanczos quadrature’, SIAM J. Matrix Anal. Appl. 38, 1075–1099.

E. Ullah, P. Mianjy, T. V. Marinov and R. Arora (2018), Streaming kernel PCA

with Õ (
√
n)random features. In Advances in Neural Information Processing

Systems 31 (S. Bengio et al., eds), Curran Associates, pp. 7311–7321.
J. Upadhyay (2016), Fast and space-optimal low-rank factorization in the streaming

model with application in differential privacy. arXiv:1604.01429
Y. Urano (2013), A fast randomized algorithm for linear least-squares regression

via sparse transforms. Master’s thesis, New York University.
R. Van Handel (2016), Probability in high dimension. APC 550 Lecture Notes,

Princeton University.
R. Vershynin (2018), High-Dimensional Probability: An Introduction with Applic-

ations in Data Science, Vol. 47 of Cambridge Series in Statistical and Prob-
abilistic Mathematics, Cambridge University Press.

R. Vershynin (2019), Concentration inequalities for random tensors.
arXiv:1905.00802

S. Voronin and P.-G. Martinsson (2017), ‘Efficient algorithms for CUR and inter-
polative matrix decompositions’, Adv. Comput. Math. 43, 495–516.

S. F. D. Waldron (2018), An Introduction to Finite Tight Frames, Applied and
Numerical Harmonic Analysis, Birkhäuser/Springer.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

572 P.-G. Martinsson and J. A. Tropp

S. Wang (2019), Simple and almost assumption-free out-of-sample bound for ran-
dom feature mapping. arXiv:1909.11207

S. Wang, A. Gittens and M. W. Mahoney (2019), ‘Scalable kernel k-means clus-
tering with Nyström approximation: Relative-error bounds’, J. Mach. Learn.
Res. 20, 431–479.

R. C. Whaley and J. J. Dongarra (1998), Automatically tuned linear algebra soft-
ware. In 1998 ACM/IEEE Conference on Supercomputing (SC ’98), IEEE,
pp. 1–27.

C. K. I. Williams and M. Seeger (2001), Using the Nyström method to speed up
kernel machines. In Advances in Neural Information Processing Systems 13
(T. K. Leen, T. G. Dietterich and V. Tresp, eds), MIT Press, pp. 682–688.

D. P. Woodruff (2014), ‘Sketching as a tool for numerical linear algebra’, Found.
Trends Theor. Comput. Sci. 10, 1–157.

F. Woolfe, E. Liberty, V. Rokhlin and M. Tygert (2008), ‘A fast randomized al-
gorithm for the approximation of matrices’, Appl. Comput. Harmon. Anal.
25, 335–366.

W. K. Wootters and B. D. Fields (1989), ‘Optimal state-determination by mutually
unbiased measurements’, Ann. Phys. 191, 363–381.

J. Xia (2013), ‘Randomized sparse direct solvers’, SIAM J. Matrix Anal. Appl. 34,
197–227.

J. Xiao, M. Gu and J. Langou (2017), Fast parallel randomized QR with
column pivoting algorithms for reliable low-rank matrix approximations. In
2017 IEEE 24th International Conference on High Performance Computing
(HiPC), IEEE, pp. 233–242.

C. D. Yu, J. Levitt, S. Reiz and G. Biros (2017a), Geometry-oblivious FMM
for compressing dense SPD matrices. In International Conference for High
Performance Computing, Networking, Storage and Analysis (SC ’17), ACM,
art. 53.

W. Yu, Y. Gu, J. Li, S. Liu and Y. Li (2017b), Single-pass PCA of large high-
dimensional data. In Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence (IJCAI-17), pp. 3350–3356.

Q. Yuan, M. Gu and B. Li (2018), Superlinear convergence of randomized block
Lanczos algorithm. In 2018 IEEE International Conference on Data Mining
(ICDM), pp. 1404–1409.

F. Zhang, ed. (2005), The Schur Complement and its Applications, Vol. 4 of Nu-
merical Methods and Algorithms, Springer.

A. Zouzias (2013), Randomized primitives for linear algebra and applications. PhD
thesis, University of Toronto.

https://doi.org/10.1017/S0962492920000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492920000021

	1 Introduction
	1.1 Classical numerical linear algebra
	1.2 Randomized algorithms emerge
	1.3 What does randomness accomplish?
	1.4 Algorithm design considerations
	1.5 Overview
	1.6 Omissions
	1.7 Other surveys

	2 Linear algebra preliminaries
	2.1 Basics
	2.2 Eigenvalues and singular values
	2.3 Inner product geometry
	2.4 Norms on matrices
	2.5 Approximation in the spectral norm
	2.6 Intrinsic dimension and stable rank
	2.7 Schur complements
	2.8 Miscellaneous

	3 Probability preliminaries
	3.1 Basics
	3.2 Distributions
	3.3 Concentration inequalities
	3.4 Gaussian random matrix theory

	4 Trace estimation by sampling
	4.1 Overview
	4.2 Trace estimation by randomized sampling
	4.3 A priori error estimates
	4.4 Universality
	4.5 A posteriori error estimates
	4.6 Bootstrapping the sampling distribution
	4.7 Structured distributions for test vectors
	4.7.1 Optimal measurement systems
	4.7.2 Examples

	4.8 Extension: The Frobenius norm and the Schatten 4-norm

	5 Schatten p-norm estimation by sampling
	5.1 Overview
	5.2 Interlude: Lower bounds
	5.3 Estimating Schatten norms the hard way
	5.4 Estimating Schatten norms the easy way
	5.5 Bootstrapping the sampling distribution
	5.6 Extension: Estimating the spectral norm by random sampling

	6 Maximum eigenvalues and trace functions
	6.1 Overview
	6.2 The randomized power method
	6.2.1 Procedure
	6.2.2 Analysis
	6.2.3 Discussion

	6.3 Randomized Krylov methods
	6.3.1 Abstract procedure
	6.3.2 Analysis
	6.3.3 Discussion
	6.3.4 Implementing Krylov methods

	6.4 The minimum eigenvalue
	6.5 Block methods
	6.6 Estimating trace functions
	6.6.1 Overview
	6.6.2 Examples
	6.6.3 Procedure

	7 Matrix approximation by sampling
	7.1 Empirical approximation
	7.2 The matrix Bernstein inequality
	7.3 Approximate matrix multiplication
	7.3.1 Matrix multiplication by sampling
	7.3.2 Uniform sampling
	7.3.3 Importance sampling
	7.3.4 History

	7.4 Approximating a graph by a sparse graph
	7.4.1 Graphs and Laplacians
	7.4.2 Spectral approximation
	7.4.3 The normalizing map
	7.4.4 Effective resistance
	7.4.5 Sparsification by sampling
	7.4.6 Analysis
	7.4.7 History

	8 Randomized embeddings
	8.1 What is a random embedding?
	8.2 Restricted singular values
	8.3 Gaussian embeddings
	8.4 The Gaussian width
	8.5 Restricted singular values of Gaussian matrices
	8.6 Example: Johnson–Lindenstrauss
	8.6.1 Overview
	8.6.2 Analysis
	8.6.3 Discussion
	8.6.4 History

	8.7 Example: Subspace embedding
	8.7.1 Overview
	8.7.2 Analysis
	8.7.3 History

	8.8 Universality of the minimum restricted singular value
	8.9 Random partial isometries

	9 Structured random embeddings
	9.1 General techniques
	9.2 Sparse sign matrices
	9.3 Subsampled trigonometric transforms
	9.4 Tensor random projections
	9.5 Other types of structured random embeddings
	9.6 Coordinate sampling
	9.6.1 Coherence and leverage
	9.6.2 Uniform sampling
	9.6.3 Leverage score sampling
	9.6.4 Discussion
	9.6.5 History

	9.7 But how does it work in theory?

	10 How to use random embeddings
	10.1 Overdetermined least-squares
	10.2 Subspace embeddings for least-squares
	10.3 Sketch and solve
	10.4 Iterative sketching
	10.5 Sketch and precondition
	10.6 Comparisons
	10.7 Summary

	11 The randomized rangefinder
	11.1 The rangefinder: Problem statement
	11.1.1 The randomized rangefinder: A pseudoalgorithm
	11.1.2 Practicalities

	11.2 The randomized singular value decomposition (RSVD)
	11.3 The rangefinder and Schur complements
	11.4 A priori error bounds
	11.4.1 Master error bound
	11.4.2 Gaussian test matrices

	11.5 Other test matrices
	11.5.1 Random embeddings for the rangefinder
	11.5.2 Universality
	11.5.3 Aside: Subspace embeddings

	11.6 Subspace iteration
	11.6.1 Rangefinder with powering
	11.6.2 Analysis

	11.7 Block Krylov methods
	11.7.1 Rangefinder with a Krylov subspace
	11.7.2 Alternative bases
	11.7.3 Analysis
	11.7.4 Spectral computations

	12 Error estimation and adaptivity
	12.1 A posteriori error estimation
	12.2 A certificate of accuracy for structured random matrices
	12.3 Adaptive rank determination using Gaussian test matrices
	12.4 An incremental algorithm based on Gaussian test matrices

	13 Finding natural bases: QR, ID and CUR
	13.1 The CUR decomposition, and three flavours of interpolative decompositions
	13.2 Approximate rank
	13.3 Deterministic methods, and the connection to column-pivoted QR
	13.4 Randomized methods for finding natural bases
	13.5 Techniques based on coordinate sampling

	14 Nyström approximation
	14.1 Low-rank PSD approximation
	14.2 The Nyström approximation
	14.3 Randomized Nyström approximation algorithms
	14.4 Analysis
	14.5 Powering
	14.6 History

	15 Single-view algorithms
	15.1 Algorithms
	15.2 Error estimation, parameter choices and truncation
	15.3 Structured test matrices
	15.4 A posteriori error estimation
	15.5 History

	16 Factoring matrices of full or nearly full rank
	16.1 Rank-revealing factorizations
	16.2 Blocking of matrix computations
	16.3 The powerURV algorithm
	16.4 Computing a rank-revealing factorization of an nn matrix in less than O(n3) operations
	16.5 Classical column-pivoted QR
	16.6 A randomized algorithm for computing a CPQR decomposition
	16.7 A randomized algorithm for computing a URV decomposition

	17 General linear solvers
	17.1 Background: Iterative solvers
	17.2 Accelerating solvers based on dense matrix factorizations
	17.3 Sketch and precondition
	17.4 The randomized Kaczmarz method and its relatives

	18 Linear solvers for graph Laplacians
	18.1 Overview
	18.1.1 Approximate solutions to the Poisson problem
	18.1.2 Approximate Cholesky decomposition
	18.1.3 Preconditioning
	18.1.4 Main results
	18.1.5 Discussion

	18.2 Cholesky decomposition of a graph Laplacian
	18.2.1 The Laplacian of a multigraph
	18.2.2 Stars and cliques
	18.2.3 Graphs and Cholesky
	18.2.4 Computational costs

	18.3 The SparseCholesky algorithm
	18.3.1 Procedure
	18.3.2 Clique sampling
	18.3.3 Analysis
	18.3.4 Implementation

	19 Kernel matrices in machine learning
	19.1 Kernels in machine learning
	19.1.1 Kernel functions and kernel matrices
	19.1.2 The feature space
	19.1.3 Examples of kernels
	19.1.4 The kernel trick
	19.1.5 Kernel PCA
	19.1.6 Kernel ridge regression
	19.1.7 The issue
	19.1.8 The solution

	19.2 Coordinate Nyström approximation of kernel matrices
	19.2.1 Coordinate Nyström approximation
	19.2.2 Greedy selection of coordinates
	19.2.3 Ridge leverage scores
	19.2.4 Uniform sampling
	19.2.5 Sampling with ridge leverage scores

	19.3 Random features approximation of kernels
	19.3.1 Random feature maps
	19.3.2 Random features and kernel matrix approximation
	19.3.3 Analysis of the random feature approximation
	19.3.4 Randomized embeddings and random features
	19.3.5 Random features and streaming matrix approximation

	20 High-accuracy approximation of kernel matrices
	20.1 Separation of variables and low-rank approximation
	20.2 Rank-structured matrices and randomized compression
	20.3 Computational environments
	Matrix–matrix multiplication.
	Compression of boundary integral operators.
	Dirichlet-to-Neumann (DtN) operators.
	Frontal matrices in sparse direct solvers.

	20.4 Hierarchically off-diagonal low-rank matrices
	20.5 Compressing a rank-structured hierarchical matrix through the matrix–vector multiplication only
	20.6 Linear complexity algorithms for rank-structured matrices
	20.7 Butterfly matrices
	20.8 Applications of rank-structured matrices in data analysis

	References

