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Abstract

The subspace approximation problem Subspace(k, p)
asks for a k dimensional linear subspace that fits a
given set of m points in Rn optimally. The error for
fitting is a generalization of the least squares fit and
uses the `p norm of the distances (`2 distances) of
the points from the subspace, e.g., p = ∞ means
minimizing the `2 distance of the farthest point
from the subspace. Previous work on subspace
approximation considers either the case of small or
constant k and p [27, 11, 14] or the case of p = ∞
[16, 8, 17, 7, 24, 23, 29].

In this paper, we study the algorithms and
hardness for Subspace(k, p) in the natural range
1 ≤ k ≤ n and 2 ≤ p ≤ ∞. Our results are as
follows.

• Extending the convex relaxation and rounding
techniques of Varadarajan, Venkatesh, Ye and
Zhang [29], we give a polynomial time approxi-
mation algorithm for Subspace(k, p), for any k
and any p ≥ 2, with an approximation guarantee
of roughly

√
2γp, where γp ≈

√
p/e(1 + o(1)) is

the pth moment of a standard normal variable.
This improves to γp for k = n− 1.

• We exhibit a simple integrality gap (or “rank
gap”) instance for our convex relaxation giving
a gap of γp(1− ε), for any constant ε > 0.

• We show that, assuming the Unique Games Con-
jecture, the subspace approximation problem is
hard to approximate within a factor better than
γp(1 − ε), for any constant ε > 0. Our hard-
ness reduction involves a dictatorship test which
is somewhat different from “long code” based
tests used in reductions from Unique Games, and
seems better suited for problems of a continuous
nature.
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1 Introduction

Large data sets that arise in data mining, ma-
chine learning, statistics and computational geome-
try problems are naturally modeled as sets of points
in a high-dimensional Euclidean space. Even though
these points live in a high-dimensional space, in prac-
tice they are observed to have low intrinsic dimension
and it is an algorithmic challenge to capture their
underlying low-dimensional structure. The subspace
approximation problem described below generalizes
several problems formulated in this context.
Subspace(k, p): Given points a1, a2, . . . , am ∈ Rn, an
integer k, with 0 ≤ k ≤ n, and p ≥ 1, find a k-
dimensional linear subspace that minimizes the sum
of pth powers of Euclidean distances of these points
to the subspace, or equivalently,

minimize
V : dim(V )=k

(
m∑
i=1

d(ai, V )p
)1/p

.

Note that, here, `p norm is used as a function
of (d(a1, V ), d(a2, V ), . . . , d(am, V )); the individual
distances d(ai, V ) are the usual `2 distances, e.g.,
p = ∞ means minimizing the `2 distances of the
farthest point from the subspace.

Previous work on subspace approximation con-
siders either the case of small or constant k and p [27,
11, 14] or the case of p =∞ [16, 8, 17, 7, 24, 23, 29].
In this paper, we study the algorithms and hardness
for Subspace(k, p) in the natural range 1 ≤ k ≤ n and
2 ≤ p ≤ ∞. For problems whose objective is mod-
eled using `p norms (e.g., frequency moments in data
streams [1], load balancing [4], server scheduling [5]),
it is typical to study how their complexity varies over
the range of p. Also for theoretical problems such as
the shortest vector problem in lattices, a considerable
effort has gone into understanding its complexity for
the full range of p [21, 18].

We describe below the special cases of the sub-
space approximation problem which have been stud-
ied previously and the known results about them.

1. Low-rank matrix approximation problem
or the least squares fit (p = 2): Given
a matrix A ∈ Rm×n and 0 ≤ k ≤ n, the
matrix approximation problem is to find another
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matrix B ∈ Rm×n of rank at most k that
minimizes the Frobenius (also known as Hilbert-
Schmidt) norm of their difference ‖A−B‖F

def=(∑
ij(Aij −Bij)2

)1/2

. Taking the rows of A
to be points a1, a2, . . . , am ∈ Rn, the above
problem is equivalent to the problem Subspace(k,
2). Elementary linear algebra shows that the
optimal subspace is spanned by the top k right
singular vectors of A, which can be found in
time O(min{mn2,m2n}) using Singular Value
Decomposition (SVD) [15].

2. Computing radii of point sets (p = ∞):
Given points a1, a2, . . . , am ∈ Rn, their outer
(n−k)-radius is defined as the minimum, over all
k-dimensional linear subspaces, of the maximum
Euclidean distance of these points to the sub-
space (which is equivalent to Subspace(k, ∞)).
Gritzmann and Klee initiated the study of this
quantity in computational convex geometry [16]
and gave a polynomial time algorithm for the
minimum enclosing ball problem (or the prob-
lem Subspace(0, ∞)).

(a) For small k: Bădoiu, Har-Peled and Indyk
[8] gave a (1 + ε)-approximation algorithm
running in polynomial time for the mini-
mum enclosing cylinder problem (equiva-
lent to Subspace(1, ∞)), which was fur-
ther extended by Har-Peled and Varadara-
jan [17] to Subspace(k, ∞) for constant k.

(b) For large k: Brieden, Gritzmann and Klee
[7] showed that it is NP-hard to approxi-
mate the width of a point set (equivalent
to Subspace(n − 1, ∞)) within any con-
stant factor. From the algorithmic side,
the results by Nesterov [24] and Nemirovski,
Roos and Tarlaky [23] on quadratic opti-
mization imply O(

√
logm)-approximation

for Subspace(n− 1, ∞) in polynomial time.
Building on these techniques, Varadarajan,
Venkatesh, Ye and Zhang [29] gave a poly-
nomial time O(

√
logm)-approximation al-

gorithm for Subspace(k, ∞), for any k. On
the hardness side, they proved that there
exists a constant δ > 0 such that, for any
0 < ε < 1 and k ≤ n− nε, there is no poly-
nomial time algorithm that gives (logm)δ-
approximation for Subspace(k, ∞) unless
NP ⊆ DTIME

(
2polylog(n)

)
.

3. Other values of p: For general p and
constant k, a result of Shyamalkumar and
Varadarajan [27] and subsequent work

by Deshpande and Varadarajan [11] gave
a (1 + ε)-approximation algorithm with
running time O (mn · exp(k, p, 1/ε)). The
running time was recently improved to
O (mn · poly(k, 1/ε) + (m+ n) · exp(k, 1/ε)) by
Feldman, Monemizadeh, Sohler and Woodruff
[14], for the case p = 1.

For p 6= 2, we do not know any suitable gener-
alization of SVD, and therefore, have no exact char-
acterization of the optimal subspace. The approxi-
mation techniques used so far to overcome this are:
(i) coresets and sampling-based techniques: which
give nearly optimal approximations but only for small
or constant k and p. (ii) convex relaxations and
rounding: which give somewhat sub-optimal approx-
imations mostly for large values of k; the only ex-
ception is the result of Varadarajan, Venkatesh, Ye
and Zhang [29] which works for any k (but only for
p =∞).

Our work In this paper, we study the problem
Subspace(k, p) for p < ∞, about which little is
known in general. One motivation for doing so is
that often the case p < ∞ gives significantly better
approximation guarantees and requires somewhat
different techniques to analyze than p = ∞. This
is evident in the work for subspace approximation
for small k ([11] and [14] for p < ∞ versus [8] and
[17] for p = ∞) and in the work on regression ([9]
and [10] versus the p = ∞ case which is solvable by
fixed dimensional linear programming). Also, in the
study of hardness of approximation, the case p = ∞
can often be reduced to a discrete problem; while the
case p <∞ is inherently of a more continuous nature,
and requires somewhat different techniques.

On the algorithmic side, we give a factor γp ·√
2− (1/n−k) approximation algorithm for the prob-

lem Subspace(k, p) in Rn, where γp ≈
√
p/e(1+o(1))

is the pth norm of a standard Gaussian. Our al-
gorithm is based on a convex relaxation, similar to
the semi-definite relaxations used in [23] and [29] for
p =∞. We give a tighter analysis for general p. We
also exhibit an integrality gap instance (or more cor-
rectly, “rank gap”) for the convex program that has
a gap of factor γp for Subspace(k, p) (when k is su-
perconstant), showing that our analysis is tight up to
a factor of at most

√
2− (1/n−k).

We also investigate the hardness of approxima-
tion for Subspace(k, p). We give a reduction from the
Unique Label Cover problem of Khot [19] to the prob-
lem of approximating Subspace(n−1, p) within a fac-
tor γp (which can trivially be extended to a reduction
to Subspace(k, p) for k = nΩ(1)). The reduction is re-
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lated to the ones used for similar geometric problems
in [22], [20] and [3]. However, an interesting difference
here in comparison to usual reductions is that we use
a different (real-valued) encoding of the assignment
to Unique Label Cover (in terms of the Fourier coef-
ficients of the long-code instead of the truth table)
which is more natural in our context. This may also
be useful for other problems of a continuous nature.

Other related problems
Lp-Grothendieck problem. In the k = n − 1

case, subspace approximation problem can be rewrit-
ten as min‖z‖2=1 ‖Az‖p, where the rows of A ∈ Rm×n
represent the points a1, a2, . . . , am and z ∈ Rn repre-
sents the unit normal to the subspace we are asked
to find. When A is invertible, this problem can be
shown (using duality in Banach spaces) to be equiv-
alent to a special case of the Lp-Grothendieck prob-
lem (introduced by Kindler, Naor and Schechtman
[22]) which asks for maximizing xTMx subject to
‖x‖p ≤ 1. Subspace(n − 1, p) with invertible A, re-
duces to this problem with M = (A−1)TA−1.

In this special case, using Grothendieck’s inequal-
ity and a technique by Alon and Naor [2], one can
get O(1)-approximation. Moreover, in this case, the
above problem is also equivalent to finding diameters
of convex bodies given by ‖Ax‖p ≤ 1 and computing
p 7→ 2 norm of the matrix A−1 [6].

`p-regression problem. In the `p-regression
problem, we are given an m× n matrix A and a vec-
tor b ∈ Rm, and the goal is to minimize ‖Az − b‖p
over all z ∈ Rn. This is clearly related to subspace
approximation with k = n− 1, but the fact that z is
unconstrained makes it a convex optimization prob-
lem. Efficient approximation algorithms for the re-
gression problem are given by Clarkson [9] for p = 1,
Drineas, Mahoney, and Muthukrishnan [12] for p = 2,
and Dasgupta et al. [10] for p ≥ 1. It is not clear that
these results can be employed fruitfully for the sub-
space approximation problem for k = n− 1 where it
is required that ‖z‖ ≥ 1.

2 Approximation Algorithm via Convex
Programming

Throughout this paper, ‖·‖p denotes the `p norm.
Norms of vectors are taken with respect to the
counting measure and of functions are taken with
respect to the uniform probability measure on their
domain. When the subscript is unspecified, ‖·‖
denotes ‖·‖2.

We will use a formulation of the problem Sub-
space(k, p) for points a1, . . . , am, in terms of the or-
thogonal complement of the desired subspace V . Let

z1, . . . , zn−k be an orthonormal basis for the orthogo-
nal complement and let Z ∈ Rn×(n−k) denote the ma-
trix with the jth column Z(j) = zj . Then d(ai, V ) =∥∥aTi Z∥∥2

and the problem of finding (the orthogonal
complement of) the subspace can be stated as

minimize

(
m∑
i=1

∥∥aTi Z∥∥p2
)1/p

subject to:
∥∥∥Z(j)

∥∥∥ ≥ 1 ∀j ∈ {1, . . . , n− k}〈
Z(j1), Z(j2)

〉
= 0 ∀j1 6= j2,

Z ∈ Rn×(n−k)

For the hardness results we shall be concerned
with the special case of the problem with k = n− 1.
For points a1, . . . , am ∈ Rn, let A be m × n matrix
with Ai = aTi . The problem Subspace(n − 1, p) is
then simply to minimize ‖Az‖p for z ∈ Rn, subject
to ‖z‖2 ≥ 1.

Remark 2.1. It is easy to check that (by a change
of variable and suitable modification of A) both the
norms can be taken to be with respect to an arbitrary
measure instead of the counting measure. In partic-
ular, if A ∈ Rm×n, the p-norm is taken with respect
to a measure µ on [m] and the 2-norm with respect a
measure ν on [n], then we change variables to z̃ with
z̃j =

√
ν(j)zj and modify Aij to Aij(µ(i))1/p/

√
ν(j)

to get an equivalent problem with norms according to
the counting measure.

To get a convex relaxation as in [23, 29], we
rewrite the distances

∥∥aTi Z∥∥ in the objective as
(aTi ZZ

Tai)
1/2. Note that ZZT is a positive semidef-

inite matrix of rank n − k, all of whose nonzero sin-
gular values are 1 and whose singular vectors (the
columns of Z) specify the (complement of the) sub-
space V . A convex relaxation of Subspace(k, p) is
then obtained by optimizing over arbitrary positive
semidefinite matrices X and replacing the require-
ment that the matrix have rank n− k by a condition
on the trace of X (see Figure 1). Note that this relax-
ation removes the constraint on the rank and relaxes
the constraint on the length of the individual vec-
tors Z(j) to the trace of entire matrix X. Also, the

objective function is written as
(∑

i

∣∣aTi Xai∣∣p/2)1/p

which is not convex. However, for solving the convex
program, we can work with

∑
i

∣∣aTi Xai∣∣p/2, which is
convex for p ≥ 2.

The problem now reduces to giving a “rounding
algorithm” which reduces the rank of the matrix X
(which might be as large as n) to n− k, and achieves
a good approximation of the objective value of the
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Minimization Problem

minimize

(
m∑
i=1

∣∣aTi ZZTai∣∣p/2
)1/p

subject to:
∥∥∥Z(j)

∥∥∥ ≥ 1 ∀j ∈ {1, . . . , n− k}〈
Z(j1), Z(j2)

〉
= 0 ∀j1 6= j2

Z ∈ Rn×(n−k)

Convex Relaxation

minimize

(
m∑
i=1

∣∣aTi Xai∣∣p/2
)1/p

subject to:Tr(X) ≥ n− k
I < X < 0

X ∈ Rn×n

Figure 1: The problem Subspace(k, p) and its convex
relaxation

convex program. In keeping with the intuition that
the singular vectors of ZZT span the orthogonal
complement of V , our algorithm looks at the singular
vectors of the matrix X obtained by solving the
convex relaxation. It then divides the singular vectors
into n− k “bins”, and constructs one vector for each
bin by taking a random linear combination of vectors
within each bin.

We shall show that our algorithm outputs a ma-
trix Z of rank n − k which achieves an approxima-
tion ratio of γp ·

√
2− 1/n−k in expectation, for even

integers p ≥ 2. For other values of p we get the ap-
proximation guarantee γq ·

√
2− 1

n−k for Subspace(k,
p), where q = 2 · dp/2e, and this can be obtained
via Jensen’s inequality. We state the dependence on
n − k precisely as we shall be interested in the case
n − k = 1. Below is the theorem with its proof de-
ferred to Appendix B.

Theorem 2.1. Let X be the solution of the convex
relaxation and let Z be the matrix returned by the
rounding (or rank reduction) algorithm. Let p ≥ 1
and let q = 2 · dp/2e. Then,

E
Z

( m∑
i=1

∥∥aTi Z∥∥p2
)1/p


≤ γq ·

√
2− (1/n−k) ·

(
m∑
i=1

(
aTi Xai

)p/2

)1/p

.

Input: A matrix X ∈ Rn×n satisfying I � X � 0
and Tr(X) ≥ n− k.

1. Express X in terms of its singular vectors
as X =

∑r
t=1 λtxtx

T
t where the vectors

x1, . . . , xr form an orthonormal set and λ1 ≥
λ2 ≥ · · · ≥ λr ≥ 0, where r = rank(X).

2. Partition [r] into n− k subsets S1, . . . , Sn−k
using a greedy algorithm as follows. Start
with S1 = · · · = Sn−k = ∅. Then for t from
1 to r do:

(a) Find the set Sj for which
∑
t′∈Sj

λt′ is
minimum.

(b) Set Sj := Sj ∪ {t}.

3. Pick r independent Bernoulli variables
b1, . . . , br ∈R {−1, 1}. For each j ∈ [n − k],
let yj

def=
∑
t∈Sj

bt ·
√
λt · xt.

4. Output the matrix Z ∈ Rn×(n−k) with
Z(j) def=

yj
‖yj‖

.

Figure 2: The rank reduction algorithm

We remark that the problem of obtaining low-
rank solutions to a semidefinite program was also
considered by [28], and was addressed by simply tak-
ing random (chosen according to a Gaussian) linear
combinations of the singular vectors of the relevant
matrix. However, in their case, they were only in-
terested in satisfying the constraints, with an error
depending inversely on the rank parameter. In our
case, we require a rank n − k positive semidefinite
matrix, all of whose eigenvalues are exactly 1. Since
the only constraint enforcing this is a constraint on
the trace of the matrix, even a small multiplicative
error in satisfying the constraint can make some sin-
gular values quite small. To resolve this, we proceed
by dividing the singular vectors in various bins and
take Bernoulli linear combinations, to directly gener-
ate the orthogonal singular vectors.

3 A Gap Instance for the Convex Relaxation

Here we show that the convex relaxation used in Sec-
tion 2 has an integrality gap, or more correctly “rank
gap”, of γp(1− ε), for any constant ε > 0. Given any
constant ε > 0, we construct points b1, b2, . . . , bm ∈
Rn such that the optimum for Subspace(n − 1, p)
on these points (given by a rank-1 p.s.d. matrix)
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and the optimum for its corresponding convex relax-
ation (given by a rank-n p.s.d. matrix) are at least
a factor of γp(1 − ε) apart. We first show such a
gap for the continuous analog of Subspace(n − 1, p)
where the point set is the entire Rn equipped with
Gaussian measure (Theorem 3.1). We then discretize
this example to get our final integrality gap construc-
tion (Theorem 3.2). This also gives a gap of factor
γp(1 − ε) for Subspace(k, p) for any super-constant
k = k(n), since an instance of Subspace(n − 1, p) in
Rn can be trivially converted (by adding extra zero
coordinates) to an instance of Subspace(k, p) in Rn′

with k(n′) = n− 1.

3.1 A continuous gap instance Recall that an
instance of Subspace(n − 1, p) can be expressed as
min‖z‖2=1 ‖Az‖p for A ∈ Rn×m, where a1, a2, . . . , am
form the rows of A. We consider a continuous
generalization of this, where instead of points, we are
given a probability distribution on Rn with density
function µ(·), and objective is:

min
‖z‖2=1

(∫
a∈Rn

|〈a, z〉|p µ(a)da
)1/p

.

The corresponding convex relaxation is

min
I<X<0
Tr(X)=1

(∫
a∈Rn

(
aTXa

)p/2
µ(a)da

)1/p

.

We first show that Gaussian measure on Rn, i.e., i.i.d.
coordinates from N(0, 1), gives a gap instance for the
above problem.

Theorem 3.1. Given η > 0, there exists n0 ∈ Z
such that for all n ≥ n0 if µ is the Gaussian density
function on Rn with each coordinate having mean 0
and variance 1, then

min
‖z‖2=1

(∫
a∈Rn

|〈a, z〉|p µ(a)da
)1/p

≥ γp(1− η) · min
I<X<0
Tr(X)=1

(∫
a∈Rn

(
aTXa

)p/2
µ(a)da

)1/p

.

Proof. We first consider the value of the LHS. By the
rotational invariance of the Gaussian measure, the
value is equal for all z and we can restrict ourselves

to z = e1.

min
‖z‖2=1

(∫
a∈Rn

|〈a, z〉|p µ(a)da
)1/p

=
(∫

Rn

|〈a, e1〉|p µ(a)da
)1/p

=

(∫
Rn

|a1|p
e−‖a‖

2/2

(2π)d/2
da1 · da2 · · · · dan

)1/p

=

∫ ∞
−∞
|a1|p

e−a2
1/2

√
2π

da1 ·
n∏
j=2

(
1√
2π

∫ ∞
−∞
e−

a2
j/2daj

)1/p

= γp.

In comparison, the optimum of the convex relaxation
can be upper bounded by using the matrix X = 1/n·I.

min
I<X<0
Tr(X)=1

(∫
a∈Rn

(
aTXa

)p/2
µ(a)da

)1/p

≤ 1√
n

(∫
Rn

‖a‖p e
−‖a‖2/2

(2π)n/2
da1 · da2 · · · · dan

)1/p

=
1√
n

(∫
ω∈Sn−1

∫ ∞
r=0

rp
e−r2/2

(2π)n/2
rn−1dr · dω

)1/p

=
1√
n

(
1

(2π)(n−1)/2

∫ ∞
0

rn+p−1 e
−r2/2

√
2π

dr ·
∫
ω∈Sn−1

dω

)1/p

=
1√
n

(
1

(2π)(n−1)/2
·

2(n+p−1)/2Γ(n+p
2 )

2
√
π

· 2πn/2

Γ(n/2)

)1/p

=

((
2
n

)p/2

·
Γ(n+p

2 )
Γ(n/2)

)1/p

≤
(

1 +
O(p)
n

)1/2

where the third equality used that
∫
ω∈Sn−1 dω =

area(Sn−1) = 2π
n/2

Γ(n/2) , and
∫∞

0
rn+p−1 e−

r2
/2

√
2π

dr =

γn+p−1
n+p−1/2. Choosing n� p/η then proves the claim.

3.2 Discretizing the gap example A discrete
analog of the above, i.e., picking sufficiently many
samples from the same distribution, gives us our final
integrality gap (or “rank gap”) example. The proof
of Theorem 3.2 is deferred to Appendix C.

Theorem 3.2. Given any η > 0, there exist
m0, n0 ∈ Z such that for all m ≥ m0 and n ≥ n0, if
we pick i.i.d. random points a1, a2, . . . , am ∈ Rn with
each point having i.i.d. N(0, 1) coordinates, then with
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some non-zero probability,

min
‖z‖2=1

(
1
m

m∑
i=1

|〈ai, z〉|p
)1/p

≥ (1− η) · γp · min
I<X<0
Tr(X)=1

(
1
m

m∑
i=1

∣∣aTi Xai∣∣p/2
)1/p

.

In other words, there exist points b1, b2, . . . , bm ∈ Rn,
where bi

def= m−1/p · ai, giving the desired integrality
gap example.

4 Unique-Games Hardness

4.1 Khot’s Unique Games Conjecture We
shall show a reduction to subspace approximation
problem from the Unique Label Cover problem de-
fined below.

Definition 4.1. An instance of Unique Label Cover
with alphabet size R is specified as a bipartite graph
U = (V,W,E) with a set of permutations {πvw :
[R] → [R]}(v,w)∈E. A labeling L : V ∪ W → [R]
is said to satisfy an edge (v, w) if L(w) = πvw(L(v)).
We denote by val(U) the maximum fraction of edges
satisfied by any labeling L.

The Unique Games Conjecture proposed by Khot
in [19] conjectures the hardness of distinguishing
between the cases when the optimum to the above
problem is very close to 1 and when it is very close
to 0. This conjecture is an important complexity
assumption as several approximation problems have
been shown to be at least as hard as deciding if a
given instance U of Unique Label Cover problem has
val(U) > 1− ε or val(U) < δ for appropriate positive
constants ε and δ.

Conjecture 4.1. (Khot [19]) Given any con-
stants ε, δ > 0, there is an integer R such that
it is NP-hard to decide if for given an instance
U = (V,W,E) of Unique Label Cover with alphabet
size R, val(U) ≥ 1− ε or val(U) ≤ δ.

4.2 Reduction from Unique Label Cover We
will now prove Unique-Games hardness of approxi-
mating Subspace(n−1, p) within a factor better than
γp. As in Section 3, this also gives a hardness approx-
imating Subspace(k, p) for k which is a sufficiently
large function of k, by a trivial embedding of the
given instance Rn into Rn′ such k(n′) = n − 1. If
we want n′ to be a polynomial in n, this will give a
hardness for all k = nΩ(1).

We describe below the reduction from an instance
U = (V,W,E) of Unique Label Cover with alphabet

size R to Subspace(n − 1, p). The variables in our
reduction will be of the form bw,i for each w ∈W and
i ∈ [R]. We denote the vector (bw,1, . . . , bw,R) by bw
and for each v ∈ V , define bv

def= Ew∈N(v)[πwv(bw)].
For any b ∈ RR, we define the function fb :
{−1, 1}R → R as

fb(x1, . . . , xR) def=
R∑
i=1

xi · bi

Norms for functions are defined as usual (over the
uniform probability measure). Note that ‖fb‖22 =
‖b‖22. When the exponent in the norm is unspecified,
‖·‖ denotes ‖·‖2.

Given an instance U = (V,W,E) of Unique Label
Cover we output the following instance of subspace
approximation, for a suitable constant B to be deter-
mined later:

minimize

E
(v,w)∈E

[
‖fbv
‖pp
]

+B · E
(v,w)∈E

[∥∥fbv
− fπwv(bw)

∥∥p
p

]
subject to: E

(v,w)∈E

[
‖fbw‖

2
2

]
= E

(v,w)∈E

[
‖bw‖22

]
≥ 1

Note that the variables in the problem are only the
vectors bw for all w ∈ W . Also the functions
fbv and fbw can be generated by applying a linear
operator A. In the proof below we shall often drop
the subscript on the permutations πwv when it is
clear from the context. Note that value of instance of
Subspace(n−1, p) is actually the pth root of the above
objective. Let (opt)p denote the optimal value for
the above objective (so that opt is the optimal value
for Subspace(n − 1, p)). Appendix D explains the
intuition behind our reduction and how it is different
from the “long-code” based dictatorship tests used in
reductions from Unique Games.

Completeness The following claim shows that the
optimum of the subspace approximation problem is
low when the Unique Label Cover is instance is highly
satisfiable. The completeness part (the proof of
Claim 4.1 below) is relatively easier than the sound-
ness part and is, therefore, deferred to Appendix D.

Claim 4.1. If val(U) ≥ 1 − ε, then (opt)p ≤ 1 + ε ·
B · 2p.

Soundness For the soundness, we need to prove that
if val(U) ≤ δ, then opt ≥ γpp ·(1−ν) where ν is a small
constant depending on ε and δ. We first make some
simple observations about the optimal solution.
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Claim 4.2. For any optimal solution {bw}w∈W to
the above instance of Subspace(n − 1, p), it must be
true that

E
(v,w)∈E

[
‖bv‖2

]
≤ 1 and

E
(v,w)∈E

[∥∥fbv
− fπ(bw)

∥∥p
p

]
≤ γp

p/B.

Proof. Scaling all vectors by a constant less than
1 can only improve the value of the objective, so
assume that for the vectors {bw}w∈W in the solution

E(v,w)∈E

[
‖bw‖22

]
= 1. By Jensen’s Inequality,

E
(v,w)∈E

[
‖bv‖2

]
= E

(v,w)∈E

[∥∥∥∥ E
w′∈N(v)

[πw′v(bw′)]
∥∥∥∥2
]

≤ E
(v,w)∈E

[
‖bw‖2

]
= 1.

To deduce the second fact, we show that there
exists a feasible solution {bw}w∈W such that opt ≤
γpp . For all w ∈ W , we take bw = (1/

√
R, . . . , 1/

√
R).

The solution is feasible since ‖bw‖ = 1 for each w ∈
W and also E(v,w)∈E

[∥∥fbv
− fπ(bw)

∥∥p
p

]
= 0. Also,

since fbv
is a linear function of Bernoulli variables

and ‖bv‖ = 1, Claim A.1 gives that for each v ∈ V ,
‖fbv
‖p ≤ γp.

We show that if val(U) ≤ δ, then in fact the first
term itself is approximately γpp . As is standard in
Unique Games based reductions, the proof proceeds
by arguing separately about the “high-influence” and
“low-influence” cases. However, since the inputs for
our problem are not in the form of a long-code but
the vectors b, we will use maxi∈R{|bi| / ‖b‖} as a
substitute for influence of the ith variable on the
function fb .

For the vertices v ∈ V where the functions fbv

have no influential coordinates, the Central Limit
Theorem shows that ‖fbv‖p is very close to γp. We
then show that the contribution of the remaining
vertices to the objective function is small.

Below, we define S1 to be the set of vertices
corresponding to low influence functions and divide
the remaining vertices into three cases which we shall
analyze separately:

S1
def=
{
v ∈ V

∣∣∣∣ max
i∈[R]
{|bv,i|} < τ · ‖bv‖

}
,

S2
def=
{
v ∈ V

∣∣∣∣ ‖bv‖2 ≤ 4/5 · E
w∈N(v)

[
‖bw‖2

]}
,

S3
def=

{
v ∈ V \ S2

∣∣∣∣∣ ∃i s.t. |bv,i|≥τ ·‖bv‖ and

Pw∈N(v)[|bw,πvw(i)|≥τ/4·‖bw‖]≤1/4

}
,

S4
def= V \ (S1 ∪ S2 ∪ S3).

Since fbv (x1, . . . , xR) = bv,1 · x1 + · · ·+ bv,R · xR is a
linear function of Bernoulli variables, Claim A.2 gives
that for all v ∈ S1,

‖fbv
‖pp ≥ γ

p
p · ‖bv‖

p
2 ·
(

1− 10τ · (log(1/τ))p/2
)

(4.1)

Note that the norm ‖fbv
‖p may be unbounded for

individual vertices. Hence we will use the quantity
E(v,w)∈E

[
1{Si}(v) · ‖bv‖

]
as a measure of the contri-

bution of the set Si to the objective, where 1{Si}(·)
is the indicator function of the set Si. Claims 4.3,
4.4 and 4.5 help upper bound the contribution of the
sets S2, S3 and S4.

Claim 4.3. E(v,w)∈E

[
1{S2}(v) · ‖bv‖2

]
≤ 4γ2

p/B2/p.

Proof. Since bw = Ew∈N(v)[πwv(bbw )], being in S2

means that on average, many vectors bw differ from
bv. We use this to get a bound on the measure of S2.
We have

‖bv‖2 ≤ 4/5 · E
w∈N(v)

[
‖bw‖2

]
=⇒ 1/5 · E

w∈N(v)

[
‖bw‖2

]
≤ E
w∈N(v)

[
‖bw‖2

]
− ‖bv‖2

=⇒ 1/5 · E
w∈N(v)

[
‖bw‖2

]
≤ E
w∈N(v)

[
‖πwv(bw)− bv‖2

]
,

as ‖bw‖ = ‖πwv(bw)‖ and bv is the mean of πwv(bw).
Now, since ‖b‖ = ‖fb‖ we get

1/5 · E
(v,w)∈E

[
1{S2}(v) · ‖bw‖2

]
≤ E

(v,w)∈E

[∥∥fbv − fπ(bw)

∥∥2

2

]
≤ E

(v,w)∈E

[∥∥fbv
− fπ(bw)

∥∥2

p

]
since ‖f‖2 ≤ ‖f‖p

≤
(

E
(v,w)∈E

[∥∥fbv − fπ(bw)

∥∥p
p

])2/p

by Jensen’s Inequality
≤ γ2

p/B2/p,

where we used the assumption that

E(v,w)∈E

[∥∥fbv
− fπ(bw)

∥∥p
p

]
≤ γp

p/B. This gives
that

E
(v,w)∈E

[
1{S2}(v) · ‖bv‖2

]
≤ 4/5 · E

(v,w)∈E

[
1{S2}(v) · ‖bw‖2

]
≤ 4/5 · 5γ2

p/B2/p

= 4γ2
p/B2/p.

488 Copyright © by SIAM. 
Unauthorized reproduction of this article is prohibited.



Claim 4.4. E(v,w)∈E

[
1{S3}(v) · ‖bv‖2

]
≤ 16/τ2 ·

γ2
p/B2/p.

Proof. Consider a vertex v ∈ S3. Since we know that
v /∈ S2, we get that

P
w∈N(v)

[‖bw‖ ≥ 2 ‖bv‖] ≤
Ew∈N(v)

[
‖bw‖2

]
4 ‖bv‖2

≤ 5/16.

Fix and i ∈ [R] such that |bv,i| ≥ τ · ‖bv‖ and
Pw∈N(v)

[∣∣bw,πvw(i)

∣∣ ≥ τ/4 · ‖bw‖
]
≤ 1/4. By a union

bound,

P
w∈N(v)

[
‖bw‖ ≤ 2 ‖bv‖ and

∣∣bw,πvw(i)

∣∣ ≤ τ/4 · ‖bw‖
]

≥ 1− 1/4− 5/16 > 1/4.

Using this we can again say that ‖bv − πwv(bw)‖
must be large on average and, hence, derive a bound
on the measure of S3.

E
w∈N(v)

[
‖bv − πwv(bw)‖2

]
≥ E
w∈N(v)

[∣∣bv,i − bw,π(i)

∣∣2]
≥ 1/4 · |τ · ‖bv‖ − τ/4 · 2 ‖bv‖|2

≥ τ2
/16 · ‖bv‖2 .

As in the previous claim, we use this to conclude that

E
(v,w)∈E

[
1{S3}(v) · ‖bv‖2

]
≤ 16/τ2 · E

(v,w)∈E

[∥∥fbv − fπ(bw)

∥∥2

2

]
≤ 16/τ2

(
E

(v,w)∈E

[∥∥fbv
− fπ(bw)

∥∥p
p

])2/p

≤ 16/τ2 · γ2
p/B2/p.

Claim 4.5. E(v,w)∈E
[
1{S4}(v)

]
≤ 64δ/τ2.

Proof. Since v /∈ S1 ∪ S2 ∪ S3, we know that there
exists i ∈ [R] such that

P
w∈N(v)

[∣∣bw,πvw(i)

∣∣ ≥ τ/4 · ‖bw‖
]
≥ 1/4.

Construct a labeling for U by assigning to each v ∈ V ,
the special label i as above, and to each w ∈ W , a
random label j satisfying |bw,j | ≥ τ/4 · ‖bw‖. For,
w ∈ W when no such j exists or for v /∈ S4, we fix a
label arbitrarily.

Note that there can be at most 16/τ2 choices of
j satisfying |bw,j | ≥ τ/4 · ‖bw‖. By the condition on
i, we know that, in expectation, the labeling satisfies

1/4 · τ2
/16 fraction of the edges incident on a v ∈ S4.

Since the fraction of edges satisfied overall is at most
δ, we get that

E
(v,w)∈E

[
1{S4}(v) · τ2

/64
]
≤ δ

=⇒ E
(v,w)∈E

[
1{S4}(v)

]
≤ 64δ/τ2.

Using these estimates, we can now prove the
soundness of the reduction.

Lemma 4.1. If val(U) < δ, then for the reduction
with parameters B and τ

(opt)p

≥ γpp ·

(
1− 10τ · (log(1/τ))

p/2 − 6p · γp
τB1/p

− 8p ·
√
δ

τ

)
.

Proof. Let ν denote 10τ · (log(1/τ))
p/2. Using (4.1) we

have that

(opt)p

≥ E
(v,w)∈E

[
1{S1}(v) · γpp · (1− ν) ‖bv‖p2

]
≥ γpp · (1− ν) ·

(
E

(v,w)∈E

[
1{S1}(v) · ‖bv‖2

])p
.

We lower bound 1{S1}(v) by 1 − 1{S2}(v) −
1{S3}(v)−1{S4}(v). Claims 4.3, 4.4, 4.5 and Cauchy-
Schwarz give bounds on each of the negative terms.

E
(v,w)∈E

[
1{S2} ‖bv‖

]
≤
(

E
(v,w)∈E

[
1{S2} ‖bv‖

2
])1/2

≤ 2γp
B1/p

,

E
(v,w)∈E

[
1{S3} ‖bv‖

]
≤
(

E
(v,w)∈E

[
1{S3} ‖bv‖

2
])1/2

≤ 4γp
τB1/p

,

and

E
(v,w)∈E

[
1{S4} ‖bv‖

]
≤
(

E
(v,w)∈E

[
1{S4}(v)

])1/2(
E

(v,w)∈E

[
‖bv‖2

])1/2

≤ 8
√
δ

τ
,

where the last bound used the assumption from Claim
4.2 that E(v,w)∈E

[
‖bv‖2

]
≤ 1. Combining this with
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the above bounds gives

(opt)p ≥ γpp · (1− ν) ·

(
1− 2γp

B1/p
− 4γp
τB1/p

− 8
√
δ

τ

)p

≥ γpp ·

(
1− 10τ (log(1/τ))

p/2 − 6pγp
τB1/p

− 8p
√
δ

τ

)

which proves the lemma.

For a small constant η such that η(log(1/η))p/2 <
2−

p/2
/30, choosing parameters as

ε
def=

η3p+1

p(40pγp)p
, δ

def=
η6

600p2
,

τ
def= η2, and B

def=
(

20pγp
η3

)p
in Lemma 4.1 would imply that opt ≤ 1 + η in
the completeness case and opt ≥ γp · (1 − η) in the
soundness case. This gives the following theorem.

Theorem 4.1. For any p ≥ 2 and sufficiently small
constant η, there exist constants ε, δ > 0 and a reduc-
tion from Unique Label Cover to Subspace(n − 1, p)
such that if val(U) is the fraction of edges satisfiable
in the given instance of Unique Label Cover and opt
if the optimum of the instance of Subspace(n− 1, p),
then

val(U) ≥ 1− ε =⇒ opt ≤ 1 + η and
val(U) ≤ δ =⇒ opt ≥ γp · (1− η).
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A Bernoulli and Gaussian Random Variables

A Bernoulli random variable is a discrete random
variable taking values in {−1, 1} with probability
1/2 each. A standard normal random variables
(or 1-dimensional Gaussian) is a continuous random
variable with probability density function 1/

√
2π ·

exp(−x2/2). We use γp to denote the pth moment

of N(0, 1),

γp
def=

(∫ ∞
−∞
|x|p · e

−x2/2

√
2π

dx

)1/p

=

(
2p/2 · Γ

(
p+1

2

)
√
π

)1/p

≈
√
p

e
(1 + o(1)).

We shall require both upper and lower bounds on
moments of a sum of Bernoulli random variables by
the moment of an appropriate Gaussian. The follow-
ing upper bound is one direction of the Khintchine
inequality (see [25]) well-known in functional analy-
sis.

Claim A.1. Let x1, . . . , xR be independent Bernoulli
random variables and let c1, . . . , cR ∈ R and ‖c‖ =√
c21 + · · ·+ c2R. Then for any positive p > 0,

E
x1,...,xR

[(
R∑
i=1

ci · xi

)p]
≤ γpp · ‖c‖

p

The following version of the reverse direction,
when all ci’s are much smaller than ‖c‖, can be
derived using the Berry-Esseen Theorem (as in [26]).
A proof of the statement below appears in [22] (as
Lemma 2.5).

Claim A.2. Let x1, . . . , xR be independent Bernoulli
random variables and let c1, . . . , cR ∈ R be such that
for all i ∈ [R], |ci| ≤ τ · ‖c‖ for τ ∈ (0, e−4). Then,
for any p ≥ 1,

E
x1,...,xR

[∣∣∣∣∣
R∑
i=1

ci · xi

∣∣∣∣∣
p]

≥ γpp · ‖c‖
p ·
(

1− 10τ · (log(1/τ))p/2
)
.

B Proof of the approximation guarantee
(Theorem 2.1)

It is clear that the columns of the matrix Z given by
the algorithm form an orthonormal set since they are
all in the span of distinct eigenvectors of X, and are
normalized to have length 1. However, this assumes
that the lengths of the vectors yj are nonzero. Since
a vector yj is a weighted sum of orthogonal vectors,
‖yj‖2 =

∑
t∈Sj

λt. The following claim gives a
lower bound on this quantity which is also useful in
bounding the approximation ratio.
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Claim B.1. Let S1, . . . , Sn−k be the partition con-
structed by the algorithm in step 2. Then

∀j ∈ [n− k],
∑
t∈Sj

λt ≥
1

α2
n,k

.

Proof. Let j0
def= argminj

{∑
t∈Sj

λt

}
and let s∗ def=∑

t∈Sj0
λt. Let Q def= {j0} ∪ {j | |Sj | > 1}. Note that

the algorithm ensures that |Sj | > 0 for all j but in
T we discard the singleton sets. We will show that
s∗ ≥ 1/ (2− 1/|Q|), which will prove the claim since
|Q| ≤ n− k.

We argue that for each j ∈ Q, j 6= j0,∑
t∈Sj

λt ≤ 2s∗. To see this, let tj be the maxi-
mal index in Sj . At step t = tj , tj was added to set
Sj and not to the set Sj0 . Hence,∑

t∈Sj ,t<tj

λt ≤
∑

t∈Sj0 ,t<tj

λt ≤ s∗.

Also, there exists at least one t0 ∈ Sj0 such that
t0 < tj . This is because Sj was non-empty at step
tj (otherwise it would be a singleton). But then
λtj ≤ λt0 ≤ s∗ and, hence,

∑
t∈Sj

λt ≤ 2s∗.
Finally, we note that for each j /∈ Q, Sj contains

exactly one element t, the eigenvalue λt correspond-
ing to which is at most 1. Thus,

(|Q|−1)·2s∗+s∗+(n−k−|Q|)·1 ≥
∑
t∈[r]

λt ≥ n−k,

which completes the proof.

The following lemma proves the required approx-
imation guarantee for the expected pth moment of the
distance a single point ai from the orthogonal com-
plement of the column span of Z.

Lemma B.1. Let X be the solution of the convex
relaxation and let Z be the matrix returned by the
algorithm. Also, let p be even. Then, for each i ∈ [m]

E
Z

[∥∥aTi Z∥∥p2] ≤ γpp · α
p
n,k ·

(
aTi Xai

)p/2
.

Proof. We can expand
∥∥aTi Z∥∥, using Wj to denote〈

ai, Z
(j)
〉
, as

E
Z

[∥∥aTi Z∥∥p2] = E
Z


n−k∑
j=1

〈
ai, Z

(j)
〉2

p/2


= E


n−k∑
j=1

W 2
j

p/2
 .

Note that the Wj-s are independent random variables
since each Wj only depends on bt such that t ∈ Sj ,
and the sets are disjoint. Using the multinomial
expansion and the fact that p is even, the above can
be written as

E


n−k∑
j=1

W 2
j

p/2


=
∑

p1,...,pn−k

(
p/2

p1, . . . , pn−k

)
E

∏
j

W
2pj

j


=

∑
p1,...,pn−k

(
p/2

p1, . . . , pn−k

)∏
j

E[W 2pj

j ]

 .

The following claim then finishes the proof.

Claim B.2.

E
[
W

2pj

j

]
≤ γ2pj

p ·

(∑
t∈Sj

λt 〈ai, xt〉2∑
t∈Sj

λt

)pj

.

Proof. The proof follows an application of upper
bound on a sum Bernoulli variables derived in Claim
A.1. We expand E[W 2pj

j ] as

E
[
W

2pj

j

]
= E



〈
ai,
∑
t∈Sj

bt ·
√
λt · xt

〉
∥∥∥∑t∈Sj

bt ·
√
λt · xt

∥∥∥
2pj



=
E
[(∑

t∈Sj
bt ·
√
λt · 〈ai, xt〉

)2pj
]

(∑
t∈Sj

λt

)pj
.

Claim A.1 gives that

E


∑
t∈Sj

bt ·
√
λt · 〈ai, xt〉

2pj


≤ γ2pj

2pj
·

∑
t∈Sj

λt 〈ai, xt〉2
pj

and noting that γ2pj ≤ γp (since 2pj ≤ p) proves the
claim.

For each j, let Dj denote
∑
t∈Sj

λt 〈ai, xt〉2 and
let Λj denote

∑
t∈Sj

λt. Using the above claim we
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get that

E
Z

[∥∥aTi Z∥∥p2]
≤

∑
p1,...,pn−k

(
p/2

p1, . . . , pn−k

)
·
∏
j

(
Dj

Λj

)pj

· γpp

=

∑
j

Dj

Λj

p/2

· γpp .

Claim B.1 gives that 1/Λj ≤ α2
n,k. Also, we have

that
∑
j Dj =

∑
t λt 〈ai, xt〉

2 = aTi Xai. Combining

these gives EZ
[∥∥aTi Z∥∥p2] ≤ γpp · α

p
n,k ·

(
aTi Xai

)p/2

which proves the lemma.

An approximation guarantee for other values of
p can be obtained via a standard application of
Jensen’s Inequality. We state the dependence on n−k
precisely as we shall be interested in the case n−k = 1
in the later sections. Notice that the approximation
factor is γq, where q = 2 · dp/2e, in the case n−k = 1,
and thus matches the integrality gap and unique-
games hardness that appear in the later sections. We
restate Theorem 2.1 below.

Theorem B.1. Let X be the solution of the convex
relaxation and let Z be the matrix returned by the
algorithm. Let p ≥ 1 and let q = 2 · dp/2e be the
smallest even integer such that q ≥ p. Then,

E
Z

( m∑
i=1

∥∥aTi Z∥∥p2
)1/p


≤ γq ·

√
2− (1/n−k) ·

(
m∑
i=1

(
aTi Xai

)p/2

)1/p

.

Proof. (Proof of Theorem 2.1) By the concavity of
the function f(u) = u1/p and Jensen’s Inequality we
have that

E
Z

( m∑
i=1

∥∥aTi Z∥∥p2
)1/p

 ≤

(
E
Z

[
m∑
i=1

∥∥aTi Z∥∥p2
])1/p

,

and by linearity it suffices to consider a single term
of the summation. Another application of Jensen’s
(using p ≤ q) and Lemma B.1 give that

E
Z

[∥∥aTi Z∥∥p2] = E
Z

[(∥∥aTi Z∥∥q2)p/q
]

≤
(

E
Z

[∥∥aTi Z∥∥q2])p/q

≤ γpq · α
p
n,k ·

(
aTi Xai

)p/2
,

which completes the proof of the theorem.

Remark B.1. Our results are stated in terms of the
expected approximation ratio achieved by the algo-
rithm. However, one can get arbitrarily close to this
ratio with high probability, simply by considering few
independent runs of the algorithm and picking the best
solution. In particular, one can achieve an approxi-
mation guarantee (1+ε) ·γq ·

√
2− (1/n−k) with prob-

ability 1− pe, by using O(1/ε · log(1/pe)) runs.

C Proof of the discrete rank-gap theorem
(Theorem 3.2)

We restate Theorem 3.2 below.

Theorem C.1. Given any η > 0, there exist
m0, n0 ∈ Z such that for all m ≥ m0 and n ≥ n0, if
we pick i.i.d. random points a1, a2, . . . , am ∈ Rn with
each point having i.i.d. N(0, 1) coordinates, then with
some non-zero probability,

min
‖z‖2=1

(
1
m

m∑
i=1

|〈ai, z〉|p
)1/p

≥ (1− η) · γp · min
I<X<0
Tr(X)=1

(
1
m

m∑
i=1

∣∣aTi Xai∣∣p/2
)1/p

.

In other words, there exist points b1, b2, . . . , bm ∈ Rn,
where bi

def= m−1/p · ai, giving the desired integrality
gap example.

Proof. Let a1, a2, . . . , am be i.i.d. random points in
Rn, where each point has i.i.d. N(0, 1) coordinates.
Then, as we have seen above

E [|〈ai, y〉|p] =
∫

Rn

|〈a, y〉|p µ(a)da = γpp , for y ∈ Sn−1,

Var [|〈ai, y〉|p] = E
[
|〈ai, y〉|2p

]
− E [|〈ai, y〉|p]

2

= γ2p
2p − γ2p

p , for y ∈ Sn−1.

By Chebyshev’s Inequality,

P

[
1
m

m∑
i=1

|〈ai, y〉|p ≤ (1− ε)γpp

]
≤

(γ2p
2p − γ2p

p )

mε2γ2p
p

.

Let N be any δ-net of the unit sphere (i.e., N ⊆ Sn−1

such that for any z ∈ Sn−1, there exists some y ∈ N
such that ‖y − z‖2 ≤ δ), where δ is a parameter that
will be picked later. It is known (e.g. see Claim 2.9 in
[13]) how to construct such δ-nets of Sn−1 with size
as small as |N | ≤ ( 9

δ )n. Now using union bound over
N

P

[
1
m

m∑
i=1

|〈ai, y〉|p ≥ (1− ε)γpp , for all y ∈ N

]

≥ 1−
( 9
δ )n · (γ2p

2p − γ2p
p )

mε2γ2p
p

>
3
4
,
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as long as we choose m large enough so that

m >
4 · ( 9

δ )n · (γ2p
2p − γ2p

p )

ε2γ2p
p

.

For any z ∈ Sn−1, using y ∈ N closest to it
m∑
i=1

|〈ai, z〉|p =
m∑
i=1

|〈ai, y〉+ 〈ai, z − y〉|p

≥
m∑
i=1

〈ai, y〉p − pδ
m∑
i=1

‖ai‖p−1
2 .

Therefore,

P

 min‖z‖2=1
1
m

∑m
i=1 |〈ai, z〉|

p

≥ (1− ε)γpp −
pδ
m

∑m
i=1 ‖ai‖

p−1
2

 > 3
4
.

But we also know that

E
[
‖ai‖p−1

2

]
=
∫
a∈Rn

‖a‖p−1
2 µ(a)da

= n(p−1)/2(1 + o(1))

and

Var
[
‖ai‖p−1

2

]
= E

[
‖ai‖2p−2

2

]
− E

[
‖ai‖p−1

2

]2
= n(p−1)(1 + o(1)).

By Chebyshev’s Inequality,

P

[
1
m

m∑
i=1

‖ai‖p−1
2 ≥ (1 + ε)n(p−1)/2(1 + o(1))

]

≤ 1 + o(1)
mε2

.

Hence, choosing m > 5/ε2, we have

P

[
1
m

m∑
i=1

‖ai‖p−1
2 ≤ (1 + ε)n(p−1)/2(1 + o(1))

]

≥ 1− 1 + o(1)
mε2

>
3
4
.

Putting these together,

P

 min‖z‖2=1
1
m

∑m
i=1 |〈ai, z〉|

p

≥ (1− ε)γpp − pδ(1 + ε)n(p−1)/2(1 + o(1))

 > 3/4.

Overall, choosing

ε
def=

η2

8
, δ

def=
η2γpp

(8 + η2)pn(p−1)/2
, and

m > max

{
4δ−n(γ2p

2p − γ2p
p )

ε2γ2p
p

,
5
ε2

}
,

we get

P

[
min
‖z‖2=1

1
m

m∑
i=1

|〈ai, z〉|p ≥
(

1− η2

4

)
γpp

]
>

1
2
.

On the other hand to analyze the value of the
corresponding convex relaxation, we use

E [‖ai‖p2] =
∫
a∈Rn

‖a‖p2 µ(a)da = n
p/2(1 + o(1))

Var [‖ai‖p2] = E
[
‖ai‖2p2

]
− E [‖ai‖p2]2 = np(1 + o(1))

Again by Chebyshev’s Inequality,

P

[
1
m

m∑
i=1

‖ai‖p2 ≥ (1 + η/2)np/2(1 + o(1))

]

≤ 4(1 + o(1))
mη2

.

Choosing m > 9/η2, we get

P

[
1
m

m∑
i=1

‖ai‖p2 ≤ (1 + η/2)np/2(1 + o(1))

]

≥ 1− 4(1 + o(1))
mη2

>
1
2
.

Therefore, the convex relaxation satisfies

P

[
1
m

m∑
i=1

∣∣1/n · aTi Iai∣∣p/2 ≤ (1 + η/2) (1 + o(1))

]
>

1
2
.

Hence,

P


min
‖z‖2=1

(
1
m

∑m
i=1 |〈ai, z〉|

p)1/p

≥ (1− η) · γp · min
I<X<0
Tr(X)=1

(
1
m

∑m
i=1

∣∣aTi Xai∣∣p/2)1/p



≥ P


min
‖z‖2=1

1
m

∑m
i=1 |〈ai, z〉|

p ≥
(

1− η2

4

)
· γpp

and
1
m

∑m
i=1

∣∣ 1
n · a

T
i Iai

∣∣p/2 ≤ (1 + η
2

)
(1 + o(1))


> 0.

D Intuition behind the reduction and a proof
of Claim 4.1

To understand the intuition behind our reduction, let
us consider a simpler problem of testing whether a
given function f : {−1, 1}R → {−1, 1} is a “dictator”
i.e. f(x1, . . . , xR) = xi for some i ∈ [R], which is
a useful primitive in such reductions. The problem
is to design an instance I of Subspace(n − 1, p) and
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interpret the description of f as a solution to I. The
required property is that if f is a dictator then the
corresponding subspace fits the points in I with small
error. On the other hand, if f is “far from being a
dictator”, the error is required to be larger by a factor
of γp.

In most reductions, f is assumed to be described
by its truth table. However, if we want to interpret
the input simply as the coordinates of a vector z,
there is no way to enforce that the coordinates be
boolean. It turns out to be more convenient if we
require f as a list of its Fourier coefficients which can
be thought of as a vector with arbitrary real numbers
coordinates and norm 1 (since E[f2] = 1). Also,
since we are only interested in dictator functions, it is
sufficient to ask for the “level 1” Fourier coefficients
f̂({1}), . . . , f̂({R}).

In particular, consider the input being described
by R real numbers b1, . . . , bR such that

∑
i b

2
i =

1 and we think of it as describing the function
fb(x1, . . . , xR) = b1 ·x1 + · · ·+ bR ·xR. We also think
of b1, . . . , bR as the normal to some R−1 dimensional
subspace of RR. Let the points be given by (1/2R/p) ·x
for each vector x ∈ {−1, 1}R, so that the objective of
the subspace approximation problem is exactly ‖fb‖p.
If f is a dictator, i.e., one of the bi’s is 1 and others
0, then ‖fb‖p = 1. Also, if it is far from a dictator
in the sense that maxi bi ≤ τ for a small constant τ ,
then ‖fb‖p ≈ γp by Claim A.2.

Translating this intuition to a reduction from
Unique Label Cover turns out to be slightly technical
due to the fact that we need to consider one function
for each vertex of Unique Label Cover and all bounds
on norms do not hold for individual functions but
only on average. Similar technicalities arise when
working with the `p norm in [22] (though they specify
functions by their truth tables).

Now we restate Claim 4.1 of the completeness
part below with a proof.

Claim D.1. If val(U) ≥ 1 − ε, then (opt)p ≤ 1 + ε ·
B · 2p.

Proof. By assumption, there exists a labeling L : V ∪
W → [R] such that P(v,w)∈E [L(v) 6= πwv(L(w))] ≤ ε.
We construct a solution the above instance of the
subspace approximation problem, taking bw,i = 1 if
L(w) = i and 0 otherwise. It is easy to check that

E(v,w)∈E

[
‖fbw
‖22
]

= 1.
We now bound the value of the objective

function. First note that fbv
= Ew∈N(v)[fπ(bw)]

is bounded between -1 and 1, which implies

E(v,w)∈E

[
‖fbv
‖pp
]
≤ 1. To bound the second term,

we can use Jensen’s Inequality to get

E
(v,w)∈E

[∥∥fbv
− fπwv(bw)

∥∥p
p

]
= E

(v,w1)∈E

[∥∥∥∥ E
w2∈N(v)

[
fπw2v(bw2 )

]
− fπw1v(bw1 )

∥∥∥∥p
p

]

≤ E
v,w1,w2

[∥∥∥fπw2v(bw2 ) − fπw1v(bw1 )

∥∥∥p
p

]
.

Note that
∥∥∥fπw2v(bw2 ) − fπw1v(bw1 )

∥∥∥p
p

equals 2p−1 if

πw1v(L(w1)) 6= πw2v(L(w2)) and 0 otherwise. Hence,

E
v,w1,w2

[∥∥∥fπw2v(bw2 ) − fπw1v(bw1 )

∥∥∥p
p

]
= 2p−1 · P

v,w1,w2

[πw1v(L(w1)) 6= πw2v(L(w2))]

≤ 2p−1 P
v,w1

[πw1v(L(w1)) 6= L(v)]

+ 2p−1 P
v,w2

[πw2v(L(w2)) 6= L(v)]

≤ 2p · ε.

Combining the two bounds above gives (opt)p ≤
1 + ε ·B · 2p.

E NP-hardness of Subspace Approximation

In this section, we show unconditionally that the
problem Subspace(n − 1, p) is NP-hard, for p > 2,
using a reduction from the Min-Uncut problem on
graphs. Such a result was also obtained indepen-
dently by Gibson and Xiao (personal communica-
tion).
Min-Uncut problem: Given a graph G = (V,E),
find a bipartition of its vertices V = S ∪ T that
minimizes the number of edges with both endpoints
on the same side of the bipartition.

Let |V | = n and |E| = m. Min-Uncut problem
is known to be NP-hard, i.e., for some 1 ≤ t ≤ m
it is NP-hard to find if the Min-Uncut has at most t
edges. We give a polynomial time reduction from
Min-Uncut to subspace approximation as follows:
Given an instance of Min-Uncut, construct a matrix
A ∈ R(m+n)×n such that

min
‖y‖2=

√
n
‖Ay‖pp = min

‖y‖2=
√
n

∑
ij∈E

(yi + yj)p +N
n∑
i=1

ypi ,

where N is an integer polynomially large in n and m
which will be chosen later.
Yes case: The Min-Uncut has at most t edges. Define
xi = 1 if i ∈ S and xi = 1 if i ∈ T . Using this
x ∈ {−1, 1}n we get OPT ≤ ‖Ax‖pp = t2p +Nn.
No case: Otherwise, for any bipartition the Min-
Uncut has at least t + 1 edges, i.e., for any x ∈
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{−1, 1}n we have
∑
ij∈E(xi + xj)p ≥ (t+ 1)2p. Now

divide the sphere of radius
√
n into two parts as

follows:

S =

y :
‖y‖2 =

√
n and

|yj | ∈ (1− ε, 1 + ε) for all j ∈ [n]

 ,

T = {y : ‖y‖2 =
√
n and y /∈ S},

where ε < 1/p · (m+ 1). For any y ∈ T ,

• Case 1: |yi| = 1 + εi ≥ 1 + ε for some i. Then,

n∑
j=1

ypj ≥ (1 + εi)p + (n− 1)
(
n− (1 + εi)2

n− 1

)p/2

≥ (1 + εi)p + (n− 1)
(

1− 2εi + ε2
i

n− 1

)p/2

≥ 1 + pεi +
(
p

2

)
ε2
i

+ (n− 1)
(

1− p/2 · 2εi + ε2
i

n− 1

)
≥ n+

p2ε2

4
,

using p > 2
(

1 + 1
n−1

)
, for large enough n.

• Case 2: |yi| = 1− εi ≤ 1− ε for some i. Then,∑
j 6=i

y2
j = n− (1− ε2

i ).

Hence, there exists some k such that

y2
k ≥

n− (1− εi)2

n− 1
≥ 1 +

2εi − ε2
i

n− 1
≥ 1 +

ε

n

=⇒ |yk| ≥ 1 +
ε

2n
.

Therefore, using the same analysis as in the
previous case, we get

n∑
j=1

ypj ≥ n+
p2ε2

16n2
.

Using the above property of y ∈ T , we get

∑
ij∈E

(yi + yj)p +N

n∑
j=1

ypj ≥ N
p∑
j=1

ypj

≥ Nn+
Np2ε2

16n2

> t2p +Nn,

using N > 2p+4n2m(m+ 1)2. For any y ∈ S,

∑
ij∈E

(yi + yj)p +N
n∑
j=1

ypj ≥ (1− ε)p(t+ 1)2p +Nn

≥ (1− pε)(t+ 1)2p +Nn

> t2p +Nn,

using ε < 1
p(t+1) .
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